


Systems of Units. Some Important Conversion Factors

The most important systems of units are shown in the table below. The mks system is also known as
the International System of Units (abbreviated SI), and the abbreviations sec (instead of s), 
gm (instead of g), and nt (instead of N) are also used.

System of units Length Mass Time Force

cgs system centimeter (cm) gram (g) second (s) dyne

mks system meter (m) kilogram (kg) second (s) newton (nt)

Engineering system foot (ft) slug second (s) pound (lb)

1 inch (in.) � 2.540000 cm 1 foot (ft) � 12 in. � 30.480000 cm

1 yard (yd) � 3 ft � 91.440000 cm 1 statute mile (mi) � 5280 ft � 1.609344 km

1 nautical mile � 6080 ft � 1.853184 km

1 acre � 4840 yd2 � 4046.8564 m2 1 mi2 � 640 acres � 2.5899881 km2

1 fluid ounce � 1/128 U.S. gallon � 231/128 in.3 � 29.573730 cm3

1 U.S. gallon � 4 quarts (liq) � 8 pints (liq) � 128 fl oz � 3785.4118 cm3

1 British Imperial and Canadian gallon � 1.200949 U.S. gallons � 4546.087 cm3

1 slug � 14.59390 kg

1 pound (lb) � 4.448444 nt 1 newton (nt) � 105 dynes

1 British thermal unit (Btu) � 1054.35 joules 1 joule � 107 ergs

1 calorie (cal) � 4.1840 joules

1 kilowatt-hour (kWh) � 3414.4 Btu � 3.6 • 106 joules

1 horsepower (hp) � 2542.48 Btu/h � 178.298 cal/sec � 0.74570 kW

1 kilowatt (kW) � 1000 watts � 3414.43 Btu/h � 238.662 cal/s

°F � °C • 1.8 � 32 1° � 60� � 3600� � 0.017453293 radian

For further details see, for example, D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics. 9th ed., Hoboken,
N. J: Wiley, 2011. See also AN American National Standard, ASTM/IEEE Standard Metric Practice, Institute of Electrical and
Electronics Engineers, Inc. (IEEE), 445 Hoes Lane, Piscataway, N. J. 08854, website at www.ieee.org.
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Integration

�uv� dx � uv � � u�v dx (by parts)

�xn dx � � c (n � �1)

� dx � ln �x� � c

�eax dx � eax � c

�sin x dx � �cos x � c

�cos x dx � sin x � c

� tan x dx � �ln �cos x� � c

�cot x dx � ln �sin x� � c

�sec x dx � ln �sec x � tan x� � c

�csc x dx � ln �csc x � cot x� � c

� � arctan � c

� � arcsin � c

� � arcsinh � c

� � arccosh � c

�sin2 x dx � 1_
2 x � 1_

4 sin 2x � c

�cos2 x dx � 1_
2 x � 1_

4 sin 2x � c

� tan2 x dx � tan x � x � c

�cot2 x dx � �cot x � x � c

� ln x dx � x ln x � x � c

�eax sin bx dx

� (a sin bx � b cos bx) � c

�eax cos bx dx

� (a cos bx � b sin bx) � c
eax

a2 � b2

eax

a2 � b2

x
�
a

dx
��
�x2� �� a�2�

x
�
a

dx
��
�x2� �� a�2�

x
�
a

dx
��
�a�2��� x�2�

x
�
a

1
�
a

dx
�
x2 � a2

1
a

1
x

xn�1

n � 1

Differentiation

(cu)� � cu� (c constant)

(u � v)� � u� � v�

(uv)� � u�v � uv�

( )� �

� • (Chain rule)

(xn)� � nxn�1

(ex)� � ex

(eax)� � aeax

(ax)� � ax ln a

(sin x)� � cos x

(cos x)� � �sin x

(tan x)� � sec2 x

(cot x)� � �csc2 x

(sinh x)� � cosh x

(cosh x)� � sinh x

(ln x)� �

(loga x)� �

(arcsin x)� �

(arccos x)� � �

(arctan x)� �

(arccot x)� � �
1

�
1 � x2

1
�
1 � x2

1
��
�1� �� x�2�

1
��
�1� �� x�2�

loga e
�

x

1
�
x

dy
�
dx

du
�
dy

du
�
dx

u�v � uv�
��

v2

u
�
v
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S o f t w a r e ( p .  7 8 8 – 7 8 9 )

C H A P T E R  1 9 Numerics in General

C H A P T E R  2 0 Numeric Linear Algebra

C H A P T E R  2 1 Numerics for ODEs and PDEs

787

P A R T  E

Numeric 
Analysis

Numeric analysis or briefly numerics continues to be one of the fastest growing areas
of engineering mathematics. This is a natural trend with the ever greater availability of
computing power and global Internet use. Indeed, good software implementation of
numerical methods are readily available. Take a look at the updated list of Software
starting on p. 788. It contains software for purchase (commercial software) and software
for free download (public-domain software). For convenience, we provide Internet
addresses and phone numbers. The software list includes computer algebra systems
(CASs), such as Maple and Mathematica, along with the Maple Computer Guide, 10th
ed., and Mathematica Computer Guide, 10th ed., by E. Kreyszig and E. J. Norminton
related to this text that teach you stepwise how to use these computer algebra systems and
with complete engineering examples drawn from the text. Furthermore, there is scientific
software, such as IMSL, LAPACK (free download), and scientific calculators with graphic
capabilities such as TI-Nspire. Note that, although we have listed frequently used quality
software, this list is by no means complete.

In your career as an engineer, appplied mathematician, or scientist you are likely to use
commercially available software or proprietary software, owned by the company you work
for, that uses numeric methods to solve engineering problems, such as modeling chemical or
biological processes, planning ecologically sound heating systems, or computing trajectories
of spacecraft or satellites. For example, one of the collaborators of this book (Herbert Kreyszig)
used proprietary software to determine the value of bonds, which amounted to solving higher
degree polynomial equations, using numeric methods discussed in Sec. 19.2.
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However, the availability of quality software does not alleviate your effort and
responsibility to first understand these numerical methods. Your effort will pay off
because, with your mathematical expertise in numerics, you will be able to plan your
solution approach, judiciously select and use the appropriate software, judge the quality
of software, and, perhaps, even write your own numerics software.

Numerics extends your ability to solve problems that are either difficult or impossible
to solve analytically. For example, certain integrals such as error function [see App. 3,
formula (35)] or large eigenvalue problems that generate high-degree characteristic
polynomials cannot be solved analytically. Numerics is also used to construct approximating
polynomials through data points that were obtained from some experiments.

Part E is designed to give you a solid background in numerics. We present many numeric
methods as algorithms, which give these methods in detailed steps suitable for software
implementation on your computer, CAS, or programmable calculator. The first chapter,
Chap. 19, covers three main areas. These are general numerics (floating point, rounding errors,
etc.), solving equations of the form (using Newton’s method and other methods),
interpolation along with methods of numeric integration that make use of it, and differentiation.

Chapter 20 covers the essentials of numeric linear algebra. The chapter breaks into two
parts: solving linear systems of equations by methods of Gauss, Doolittle, Cholesky, etc.
and solving eigenvalue problems numerically. Chapter 21 again has two themes: solving
ordinary differential equations and systems of ordinary differential equations as well as
solving partial differential equations.

Numerics is a very active area of research as new methods are invented, existing methods
improved and adapted, and old methods—impractical in precomputer times—are
rediscovered. A main goal in these activities is the development of well-structured
software. And in large-scale work—millions of equations or steps of iterations—even
small algorithmic improvements may have a large significant effect on computing time,
storage demand, accuracy, and stability.

Remark on Software Use. Part E is designed in such a way as to allow compelete flexibility
on the use of CASs, software, or graphing calculators. The computational requirements
range from very little use to heavy use. The choice of computer use is at the discretion
of the professor. The material and problem sets (except where clearly indicated such as
in CAS Projects, CAS Problems, or CAS Experiments, which can be omitted without loss
of continuity) do not require the use of a CAS or software. A scientific calculator perhaps
with graphing capabilities is all that is required.

Software
See also http://www.wiley.com/college/kreyszig/

The following list will help you if you wish to find software. You may also obtain information
on known and new software from websites such as Dr. Dobb’s Portal, from articles published
by the American Mathematical Society (see also its website at www.ams.org), the Society
for Industrial and Applied Mathematics (SIAM, at www.siam.org), the Association for
Computing Machinery (ACM, at www.acm.org), or the Institute of Electrical and Electronics
Engineers (IEEE, at www.ieee.org). Consult also your library, computer science department,
or mathematics department.

f (x) � 0

788 PART E Numeric Analysis
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TI-Nspire. Includes TI-Nspire CAS and programmable graphic calculators. Texas Instru-
ments, Inc., Dallas, TX. Telephone: 1-800-842-2737 or (972) 917-8324; website at
www.education.ti.com.

EISPACK. See LAPACK.

GAMS (Guide to Available Mathematical Software). Website at http://gams.nist.gov.
Online cross-index of software development by NIST.

IMSL (International Mathematical and Statistical Library). Visual Numerics, Inc.,
Houston, TX. Telephone: 1-800-222-4675 or (713) 784-3131; website at www.vni.com.
Mathematical and statistical FORTRAN routines with graphics.

LAPACK. FORTRAN 77 routines for linear algebra. This software package supersedes
LINPACK and EISPACK. You can download the routines from www.netlib.org/lapack.
The LAPACK User’s Guide is available at www.netlib.org.

LINPACK see LAPACK

Maple. Waterloo Maple, Inc., Waterloo, ON, Canada. Telephone: 1-800-267-6583 or
(519) 747-2373; website at www.maplesoft.com.

Maple Computer Guide. For Advanced Engineering Mathematics, 10th edition. By
E. Kreyszig and E. J. Norminton. John Wiley and Sons, Inc., Hoboken, NJ. Telephone:
1-800-225-5945 or (201) 748-6000.

Mathcad. Parametric Technology Corp. (PTC), Needham, MA. Website at www.ptc.com.

Mathematica. Wolfram Research, Inc., Champaign, IL. Telephone: 1-800-965-3726 or
(217) 398-0700; website at www.wolfram.com.

Mathematica Computer Guide. For Advanced Engineering Mathematics, 10th edition.
By E. Kreyszig and E. J. Norminton. John Wiley and Sons, Inc., Hoboken, NJ. Telephone:
1-800-225-5945 or (201) 748-6000.

Matlab. The MathWorks, Inc., Natick, MA. Telephone: (508) 647-7000; website at
www.mathworks.com.

NAG. Numerical Algorithms Group, Inc., Lisle, IL. Telephone: (630) 971-2337; website
at www.nag.com. Numeric routines in FORTRAN 77, FORTRAN 90, and C.

NETLIB. Extensive library of public-domain software. See at www.netlib.org.

NIST. National Institute of Standards and Technology, Gaithersburg, MD. Telephone:
(301) 975-6478; website at www.nist.gov. For Mathematical and Computational Science
Division telephone: (301) 975-3800. See also http://math.nist.gov.

Numerical Recipes. Cambridge University Press, New York, NY. Telephone: 1-800-221-
4512 or (212) 924-3900; website at www.cambridge.org/us. Book, 3rd ed. (in see
App. 1, Ref. [E25]; source code on CD ROM in which also contains old source code
(but not text) for (out of print) 2nd ed. C, FORTRAN 77, FORTRAN 90 as well as source
code for (out of print) 1st ed. To order, call office at West Nyack, NY, at 1-800-872-7423
or (845) 353-7500 or online at www.nr.com.

FURTHER SOFTWARE IN STATISTICS. See Part G.

C��,
C��)
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790

C H A P T E R 1 9

Numerics in General

Numeric analysis or briefly numerics has a distinct flavor that is different from basic
calculus, from solving ODEs algebraically, or from other (nonnumeric) areas. Whereas in
calculus and in ODEs there were very few choices on how to solve the problem and your
answer was an algebraic answer, in numerics you have many more choices and your
answers are given as tables of values (numbers) or graphs. You have to make judicous
choices as to what numeric method or algorithm you want to use, how accurate you need
your result to be, with what value (starting value) do you want to begin your computation,
and others. This chapter is designed to provide a good transition from the algebraic type
of mathematics to the numeric type of mathematics.

We begin with the general concepts such as floating point, roundoff errors, and general
numeric errors and their propagation. This is followed in Sec. 19.2 by the important topic
of solving equations of the type by various numeric methods, including the famous
Newton method. Section 19.3 introduces interpolation methods. These are methods that
construct new (unknown) function values from known function values. The knowledge
gained in Sec. 19.3 is applied to spline interpolation (Sec. 19.4) and is useful for under-
standing numeric integration and differentiation covered in the last section.

Numerics provides an invaluable extension to the knowledge base of the problem-
solving engineer. Many problems have no solution formula (think of a complicated integral
or a polynomial of high degree or the interpolation of values obtained by measurements).
In other cases a complicated solution formula may exist but may be practically useless.
It is for these kinds of problems that a numerical method may generate a good answer.
Thus, it is very important that the applied mathematician, engineer, physicist, or scientist
becomes familiar with the essentials of numerics and its ideas, such as estimation of errors,
order of convergence, numerical methods expressed in algorithms, and is also informed
about the important numeric methods.

Prerequisite: Elementary calculus.
References and Answers to Problems: App. 1 Part E, App. 2.

19.1 Introduction
As an engineer or physicist you may deal with problems in elasticity and need to solve
an equation such as or a more difficult problem of finding the roots of a
higher order polynomial. Or you encounter an integral such as

�
1

0

 exp (�x2) dx

x cosh x � 1

f (x) � 0
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[see App. 3, formula (35)] that you cannot solve by elementary calculus. Such problems,
which are difficult or impossible to solve algebraically, arise frequently in applications.
They call for numeric methods, that is, systematic methods that are suitable for solving,
numerically, the problems on computers or calculators. Such solutions result in tables of
numbers, graphical representation (figures), or both. Typical numeric methods are iterative
in nature and, for a well-choosen problem and a good starting value, will frequently
converge to a desired answer. The evolution from a given problem that you observed in
an experimental lab or in an industrial setting (in engineering, physics, biology, chemistry,
economics, etc.) to an approximation suitable for numerics to a final answer usually
requires the following steps.

1. Modeling. We set up a mathematical model of our problem, such as an integral, a
system of equations, or a differential equation.

2. Choosing a numeric method and parameters (e.g., step size), perhaps with a
preliminary error estimation.

3. Programming. We use the algorithm to write a corresponding program in a CAS,
such as Maple, Mathematica, Matlab, or Mathcad, or, say, in Java, C or or
FORTRAN, selecting suitable routines from a software system as needed.

4. Doing the computation.

5. Interpreting the results in physical or other terms, also deciding to rerun if further
results are needed.

Steps 1 and 2 are related. A slight change of the model may often admit of a more efficient
method. To choose methods, we must first get to know them. Chapters 19–21 contain efficient
algorithms for the most important classes of problems occurring frequently in practice.

In Step 3 the program consists of the given data and a sequence of instructions to be
executed by the computer in a certain order for producing the answer in numeric or graphic
form.

To create a good understanding of the nature of numeric work, we continue in this
section with some simple general remarks.

Floating-Point Form of Numbers
We know that in decimal notation, every real number is represented by a finite or an
infinite sequence of decimal digits. Now most computers have two ways of representing
numbers, called fixed point and floating point. In a fixed-point system all numbers are
given with a fixed number of decimals after the decimal point; for example, numbers
given with 3 decimals are 62.358, 0.014, 1.000. In a text we would write, say, 3 decimals
as 3D. Fixed-point representations are impractical in most scientific computations because
of their limited range (explain!) and will not concern us.

In a floating-point system we write, for instance,

or sometimes also

We see that in this system the number of significant digits is kept fixed, whereas the decimal
point is “floating.” Here, a significant digit of a number c is any given digit of c, except

�2.000 � 10�2.1.735 � 10�14,6.247 � 102,

�0.2000 � 10�10.1735 � 10�13,0.6247 � 103,

C��,
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possibly for zeros to the left of the first nonzero digit; these zeros serve only to fix the
position of the decimal point. (Thus any other zero is a significant digit of c.) For instance, 

all have 5 significant digits. In a text we indicate, say, 5 significant digits, by 5S.
The use of exponents permits us to represent very large and very small numbers. Indeed,

theoretically any nonzero number a can be written as

(1) n integer.

On modern computers, which use binary (base 2) numbers, m is limited to k binary digits (e.g.,
and n is limited (see below), giving representations (for finitely many numbers only!)

(2)

These numbers are called k-digit binary machine numbers. Their fractional part m
(or is called the mantissa. This is not identical with “mantissa” as used for logarithms.
n is called the exponent of 

It is important to realize that there are only finitely many machine numbers and that
they become less and less “dense” with increasing a. For instance, there are as many
numbers between 2 and 4 as there are between 1024 and 2048. Why?

The smallest positive machine number eps with is called the machine
accuracy. It is important to realize that there are no numbers in the intervals 

This means that, if the mathematical
answer to a computation would be the computer result will be either
1024 or so it is impossible to achieve greater accuracy.

Underflow and Overflow. The range of exponents that a typical computer can handle
is very large. The IEEE (Institute of Electrical and Electronic Engineers) floating-point
standard for single precision is from to and
for double precision it is from 

As a minor technicality, to avoid storing a minus in the exponent, the ranges are shifted
from by adding 126 (for double precision 1022). Note that shifted exponents
of 255 and 1047 are used for some special cases such as representing infinity.

If, in a computation a number outside that range occurs, this is called underflow when
the number is smaller and overflow when it is larger. In the case of underflow, the result
is usually set to zero and computation continues. Overflow might cause the computer to
halt. Standard codes (by IMSL, NAG, etc.) are written to avoid overflow. Error messages
on overflow may then indicate programming errors (incorrect input data, etc.). From here
on, we will be discussing the decimal results that we obtain from our computations.

Roundoff
An error is caused by chopping discarding all digits from some decimal on) or rounding.
This error is called roundoff error, regardless of whether we chop or round. The rule for
rounding off a number to k decimals is as follows. (The rule for rounding off to k significant
digits is the same, with “decimal” replaced by “significant digit.”)

Roundoff Rule. To round a number x to k decimals, and to x and chop the
digits after the digit.(k � 1)st

5 � 10�(k�1)

(�

[�126, 128]

2�1022 to 21024 (2.225 � 10�308 to 1.798 � 10308).
2128 (1.175 � 10�38 to 3.403 � 1038)2�126

1024 � eps
1024 � 1024 � eps>2,

[2, 2 � 2 � eps], Á , [1024, 1024 � 1024 � eps], Á .
[1, 1 � eps],

1 � eps � 1

a.
m)

a

d1 � 0.m � 0.d1d2
Á dk,a � �m � 2n,

k � 8)

0.1 � ƒ m ƒ 	 1,a � �m � 10n,

13600, 1.3600, 0.0013600
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E X A M P L E  1 Roundoff Rule

Round the number 1.23454621 to (a) 2 decimals, (b) 3 decimals, (c) 4 decimals, (d) 5 decimals, and (e) 6 decimals.

Solution. (a) For 2 decimals we add to the given number, that is,
Then we chop off the digits “954621” after the space or equivalently

(b) so that for 3 decimals we get 1.234.
(c) 1.23459621 after chopping give us 1.2345 (4 decimals).
(d) 1.23455121 yields 1.23455 (5 decimals).
(e) 1.23454671 yields 1.234546 (6 decimals).
Can you round the number to 7 decimals?

Chopping is not recommended because the corresponding error can be larger than that
in rounding. (Nevertheless, some computers use it because it is simpler and faster. On the
other hand, some computers and calculators improve accuracy of results by doing
intermediate calculations using one or more extra digits, called guarding digits.)

Error in Rounding. Let in (2) be the floating-point computer approximation of
a in (1) obtained by rounding, where fl suggests floating. Then the roundoff rule gives (by
dropping exponents) Since this implies (when 

(3)

The right side is called the rounding unit. If we write we
have by algebra hence by (3). This shows that the rounding unit
u is an error bound in rounding.

Rounding errors may ruin a computation completely, even a small computation. In
general, these errors become the more dangerous the more arithmetic operations (perhaps
several millions!) we have to perform. It is therefore important to analyze computational
programs for expected rounding errors and to find an arrangement of the computations
such that the effect of rounding errors is as small as possible.

As mentioned, the arithmetic in a computer is not exact and causes further errors;
however, these will not be relevant to our discussion.

Accuracy in Tables. Although available software has rendered various tables of function
values superfluous, some tables (of higher functions, of coefficients of integration
formulas, etc.) will still remain in occasional use. If a table shows k significant digits, it
is conventionally assumed that any value in the table deviates from the exact value a
by at most unit of the kth digit.

Loss of Significant Digits
This means that a result of a calculation has fewer correct digits than the numbers from
which it was obtained. This happens if we subtract two numbers of about the same size,
for example, (“subtractive cancellation”). It may occur in simple
problems, but it can be avoided in most cases by simple changes of the algorithm—if one
is aware of it! Let us illustrate this with the following basic problem.

E X A M P L E  2 Quadratic Equation. Loss of Significant Digits

Find the roots of the equation

using 4 significant digits (abbreviated 4S) in the computation.

x2 � 40x � 2 � 0,

0.1439 � 0.1426

�1
2

a�

ƒd ƒ � u(a � a)>a � d,
a � a(1 � d),u � 1

2 � 101�k

` a � a
a ` � ` m � m

m ` �
1
2

� 101�k.

a 
 0)ƒ m ƒ � 0.1,ƒ m � m ƒ � 1
2 � 10�k.

a � fl (a)

�

1.23454621 � 0.0005 � 1.235 04621,
1.23954621 � 0.00954621 � 1.23.
1.2345621 � 0.005 � 1.23 954621.

5 � 10�(k�1) � 5 � 10�3 � 0.005
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Solution. A formula for the roots of a quadratic equation is

(4)

Furthermore, since another formula for those roots

(5) as in (4).

We see that this avoids cancellation in for positive b.
If calculate from (4) and then 
For we obtain from (4) hence 

involving no difficulty, and a poor value involving loss of digits by subtractive
cancellation.

In contrast, (5) gives the absolute value of the error being less than one
unit of the last digit, as a computation with more digits shows. The 10S-value is 

Errors of Numeric Results
Final results of computations of unknown quantities generally are approximations; that
is, they are not exact but involve errors. Such an error may result from a combination
of the following effects. Roundoff errors result from rounding, as discussed above.
Experimental errors are errors of given data (probably arising from measurements).
Truncating errors result from truncating (prematurely breaking off), for instance, if we
replace a Taylor series with the sum of its first few terms. These errors depend on the
computational method used and must be dealt with individually for each method.
[“Truncating” is sometimes used as a term for chopping off (see before), a terminology
that is not recommended.]

Formulas for Errors. If is an approximate value of a quantity whose exact value is
a, we call the difference

(6)

the error of Hence

(6*)

For instance, if is an approximation of its error is The
error of an approximation of is 

CAUTION! In the literature (“absolute error”) or are sometimes also
used as definitions of error.

The relative error of is defined by

(7)

This looks useless because a is unknown. But if is much less than then we can
use instead of a and get

Pr �
P

a�
  .(7r)

a�
ƒ a� ƒ ,ƒ P ƒ

(a 
 0).Pr �
P

a
 �

a � a�

a
 �

Error
True value

 

a�Pr

a� � aƒ a � a� ƒ

P � 0.22.a � 1.82a� � 1.60
P � �0.3.a � 10.2,a� � 10.5

a � a� � P,  True value � Approximation � Error.

a�.

P � a � a�

a�

��0.05006265674.
x1 � 2.000>(�39.95) � �0.05006,

x1 � �20.00 � 19.95 � �0.05,
x2 � �20.00 � 19.95,x � �20 � 1398 � �20 � 19.95,x2 � 40x � 2 � 0

x2 � c>(ax1).x1b 	 0,
x1

x1 �
c

ax2
 ,  x2

x1x2 � c>a,

x1 �
1

2a
  (�b � 2b2 � 4ac),   x2 �

1

2a
  (�b � 2b2 � 4ac).

ax2 � bx � c � 0x1, x2
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This still looks problematic because is unknown—if it were known, we could get
from (6) and we would be done. But what one often can obtain in practice is

an error bound for that is, a number such that

hence

This tells us how far away from our computed the unknown a can at most lie. Similarly,
for the relative error, an error bound is a number such that

hence

Error Propagation
This is an important matter. It refers to how errors at the beginning and in later steps
(roundoff, for example) propagate into the computation and affect accuracy, sometimes
very drastically. We state here what happens to error bounds. Namely, bounds for the
error add under addition and subtraction, whereas bounds for the relative error add under
multiplication and division. You do well to keep this in mind.

T H E O R E M  1 Error Propagation

(a) In addition and subtraction, a bound for the error of the results is given by
the sum of the error bounds for the terms.

(b) In multiplication and division, an error bound for the relative error of the
results is given (approximately) by the sum of the bounds for the relative errors
of the given numbers.

P R O O F (a) We use the notations Then for the
error of the difference we obtain

The proof for the sum is similar and is left to the student.

(b) For the relative error of we get from the relative errors and of 
and bounds 

This proof shows what “approximately” means: we neglected as small in absolute
value compared to and The proof for the quotient is similar but slightly more
tricky (see Prob. 13). �

ƒ Py ƒ .ƒ Px ƒ

PxPy

 � ` Pxy � Pyx
xy ` � ` Px

x ` � ` Py

y ` � ƒ Prx ƒ � ƒ Pry ƒ � brx � bry.

 ƒ Pr ƒ � ` xy � x�y�

xy  ` � ` xy � (x � Px)(y � Py)
xy ` � ` Px y � Py x � PxPy

xy `
brx, bry

x�, y�PryPrxx�y�Pr

 � ƒ Px � Py ƒ � ƒ Px ƒ � ƒ Py ƒ � bx � by.

 � ƒ x � x� � (y � y�) ƒ

 ƒ P ƒ � ƒ x � y � (x� � y�) ƒ

P

x � x� � Px, y � y� � Py, ƒ Px ƒ � bx, ƒ Py ƒ � by.

` a � a�

a  ` � br .ƒ Pr ƒ � br,

br

a�

ƒ a � a� ƒ � b.ƒ P ƒ � b,

ba�,
a � a� � P

P
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Basic Error Principle
Every numeric method should be accompanied by an error estimate. If such a formula is
lacking, is extremely complicated, or is impractical because it involves information (for
instance, on derivatives) that is not available, the following may help.

Error Estimation by Comparison. Do a calculation twice with different accuracy.
Regard the difference of the results as a (perhaps crude) estimate of the
error of the inferior result Indeed, by formula This implies

because is generally more accurate than so that is
small compared to 

Algorithm. Stability
Numeric methods can be formulated as algorithms. An algorithm is a step-by-step
procedure that states a numeric method in a form (a “pseudocode”) understandable to
humans. (See Table 19.1 to see what an algorithm looks like.) The algorithm is then used
to write a program in a programming language that the computer can understand so that
it can execute the numeric method. Important algorithms follow in the next sections. For
routine tasks your CAS or some other software system may contain programs that you
can use or include as parts of larger programs of your own.

Stability. To be useful, an algorithm should be stable; that is, small changes in the initial
data should cause only small changes in the final results. However, if small changes in the
initial data can produce large changes in the final results, we call the algorithm unstable.

This “numeric instability,” which in most cases can be avoided by choosing a better
algorithm, must be distinguished from “mathematical instability” of a problem, which is
called “ill-conditioning,” a concept we discuss in the next section.

Some algorithms are stable only for certain initial data, so that one must be careful in
such a case.

ƒ P1 ƒ .
ƒ P2 ƒa�1,a�2a�2 � a�1 � P1 � P2 � P1

(4*).a�1 � P1 � a�2 � P2a�1.P1

a�1, a�2a�2 � a�1
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1. Floating point. Write 
and in floating-point form, rounded to 5S
(5 significant digits).

2. Write and in floating-
point form, rounded to 4S.

3. Small differences of large numbers may be parti-
cularly strongly affected by rounding errors. Illustrate
this by computing as
given with 5S, then rounding stepwise to 4S, 3S, and 2S,
where “stepwise” means round the rounded numbers, not
the given ones.

4. Order of terms, in adding with a fixed number of
digits, will generally affect the sum. Give an example.
Find empirically a rule for the best order.

0.81534>(35 � 724 � 35.596)

�0.00001�76.437125, 60100,

�362005
0.000924138,84.175, �528.685,

P R O B L E M  S E T  1 9 . 1

5. Rounding and adding. Let be numbers with
correctly rounded to digits. In calculating the sum

retaining significant digits,
is it essential that we first add and then round the result
or that we first round each number to S significant digits
and then add?

6. Nested form. Evaluate

at using 3S arithmetic and rounding, in both
of the given forms. The latter, called the nested form,
is usually preferable since it minimizes the number of
operations and thus the effect of rounding.

x � 3.94

 � ((x � 7.5)x � 11.2)x � 2.8

 f (x) � x3 � 7.5x2 � 11.2x � 2.8

S � min Sja1 � Á � an,
Sjaj

a1, Á , an
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7. Quadratic equation. Solve by (4)
and by (5), using 6S in the computation. Compare and
comment.

8. Solve using 4S-computation.

9. Do the computations in Prob. 7 with 4S and 2S.

10. Instability. For small the equation 
has nearly a double root. Why do these roots show
instability?

11. Theorems on errors. Prove Theorem 1(a) for addition.

12. Overflow and underflow can sometimes be avoided
by simple changes in a formula. Explain this in terms 

of with and x so
large that would cause overflow. Invent examples
of your own.

13. Division. Prove Theorem 1(b) for division.

14. Loss of digits. Square root. Compute 
with 6S arithmetic for (a) as given and
(b) from (derive!).

15. Logarithm. Compute with 6S arithmetic
for and (a) as given and
(b) from 

16. Cosine. Compute with 6S arithmetic for
(a) as given and (b) by (derive!).

17. Discuss the numeric use of (12) in App. A3.1 for
when 

18. Quotient near (a) Compute with
6S arithmetic for . (b) Looking at Prob. 16,
find a much better formula.

19. Exponential function. Calculate (6S)
from the partial sums of 5–10 terms of the Maclaurin
series (a) of with (b) of with and
then taking the reciprocal. Which is more accurate?

20. Compute with 6S arithmetic in two ways (as in
Prob. 19).

21. Binary conversion. Show that

can be obtained by the division algorithm

Remainder

0 1 � c4

0 � c32  2

1 � c22  5

1 � c12  11

1 � c02  23

 � 24 � 22 � 21 � 20 � (1 0 1 1 1.)2

 23 � 20 # 101 � 3 # 100 � 16 � 4 � 2 � 1

e�10

x � 1exx � 1,e�x

1>e � 0.367879

x � 0.005
(1 � cos x)>sin x0>0.

u � v.cos v � cos u

2 sin2 12 xx � 0.02
1 � cos x

ln (a>b).
b � 3.99900a � 4.00000
ln a � ln b

x2>(2x2 � 4 � 2)
x � 0.001

2x2 � 4 � 2

x2
x2 � y22x2 � y2 � x21 � (y>x)2

(x � k)2 � aƒ a ƒ

x2 � 40x � 2 � 0,

x2 � 30x � 1 � 0 22. Convert to by successive
multiplication by 2 and dropping (removing) the integer
parts, which give the binary digits 

23. Show that 0.1 is not a binary machine number.

24. Prove that any binary machine number has a finite
decimal representation. Is the converse true?

25. CAS EXPERIMENT. Approximations. Obtain 

from Prob. 23. Which machine 

number (partial sum) will first have the value 0.1
to 30 decimal digits?

26. CAS EXPERIMENT. Integration from Calculus.
Integrating by parts, show that 

(a) Compute 
using 4S arithmetic, obtaining Why is
this nonsense? Why is the error so large?

(b) Experiment in (a) with the number of digits 
As you increase k, will the first negative value 
occur earlier or later? Find an empirical formula for

27. Backward Recursion. In Prob. 26. Using 
conclude that as

Solve the iteration formula for 
start from and compute 4S values

of 

28. Harmonic series. diverges. Is the
same true for the corresponding series of computer
numbers?

29. Approximations of are
and Determine the corresponding errors

and relative errors to 3 significant digits.

30. Compute by Machin’s approximation 
to 10S (which are correct). [In

1986, D. H. Bailey (NASA Ames Research Center,
Moffett Field, CA 94035) computed almost 30 million
decimals of on a CRAY-2 in less than 30 hrs. The
race for more and more decimals is continuing. See the
Internet under pi.]

p

(1
5) � 4 arctan ( 1

239)
16 arctanp

355>113.22>7
p � 3.14159265358979 Á  

1 � 1
2 � 1

3 � Á  

I14, I13, Á , I1.
I15 � 0(e � In)>n,

In�1 �n : �.
ƒ In ƒ � e>(n � 1) :  0 (0 � x � 1),

ex � e 

N � N (k).

n � N
k 	 4.

I8 � �3.906.
In, n � 0, Á ,e � nIn�1, I0 � e � 1.

ex xn dx �In � �1
0

Sn

x � 0.1 �
3
2

 a
�

m�1

 2�4m

 c5 �  1  .0

 c4 �  1  .5 � 2

 c3 �  0  .75 � 2

 c2 �  0  .375 � 2

 c1 �  1  .1875 � 2

0  .59375 � 2

c1, c2, Á :

(0.10011)2(0.59375)10
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19.2 Solution of Equations by Iteration
For each of the remaining sections of this chapter, we select basic kinds of problems and
discuss numeric methods on how to solve them. The reader will learn about a variety of
important problems and become familiar with ways of thinking in numerical analysis.

Perhaps the easiest conceptual problem is to find solutions of a single equation

(1)

where f is a given function. A solution of (1) is a number such that Here,
s suggests “solution,” but we shall also use other letters.

It is interesting to note that the task of solving (1) is a question made for numeric
algorithms, as in general there are no direct formulas, except in a few simple cases.

Examples of single equations are 
which can all be written in the form of (1). The first of the five equations

is an algebraic equation because the corresponding f is a polynomial. In this case the
solutions are called roots of the equation and the solution process is called finding roots. The
other equations are transcendental equations because they involve transcendental functions.

There are a very large number of applications in engineering, where we have to solve a
single equation (1). You have seen such applications when solving characteristic equations
in Chaps. 2, 4, and 8; partial fractions in Chap. 6; residue integration in Chap. 16, finding
eigenvalues in Chap. 12, and finding zeros of Bessel functions, also in Chap. 12. Moreover,
methods of finding roots are very important in areas outside of classical engineering. For
example, in finance, the problem of determining how much a bond is worth amounts to
solving an algebraic equation.

To solve (1) when there is no formula for the exact solution available, we can use an
approximation method, such as an iteration method. This is a method in which we start from
an initial guess (which may be poor) and compute step by step (in general better and better)
approximations of an unknown solution of (1). We discuss three such methods that
are of particular practical importance and mention two others in the problem set.

It is very important that the reader understand these methods and their underlying ideas.
The reader will then be able to select judiciously the appropriate software from among
different software packages that employ variations of such methods and not just treat the
software programs as “black boxes.”

In general, iteration methods are easy to program because the computational operations
are the same in each step—just the data change from step to step—and, more importantly,
if in a concrete case a method converges, it is stable in general (see Sec. 19.1).

Fixed-Point Iteration for Solving Equations 
Note: Our present use of the word “fixed point” has absolutely nothing to do with that in
the last section.

By some algebraic steps we transform (1) into the form

(2)

Then we choose an and compute and in general

(3) (n � 0, 1, Á ).xn�1 � g(xn)

x1 � g(x0), x2 � g(x1),x0

x � g(x).

f (x) � 0

x1, x2, Á  

x0

cosh x cos x � �1,
x3 � x � 1, sin x � 0.5x, tan x � x, cosh x � sec x,

f (s) � 0.x � s

f (x) � 0,
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A solution of (2) is called a fixed point of g, motivating the name of the method. This is a
solution of (1), since from we can return to the original form From (1)
we may get several different forms of (2). The behavior of corresponding iterative sequences

may differ, in particular, with respect to their speed of convergence. Indeed, some
of them may not converge at all. Let us illustrate these facts with a simple example.

E X A M P L E  1 An Iteration Process (Fixed-Point Iteration)

Set up an iteration process for the equation . Since we know the solutions

thus 2.618034 and 0.381966,

we can watch the behavior of the error as the iteration proceeds.

Solution. The equation may be written

(4a) , thus

If we choose we obtain the sequence (Fig. 426a; computed with 6S and then rounded)

which seems to approach the smaller solution. If we choose the situation is similar. If we choose
we obtain the sequence (Fig. 426a, upper part)

which diverges.
Our equation may also be written (divide by x)

(4b) thus

and if we choose we obtain the sequence (Fig. 426b)

which seems to approach the larger solution. Similarly, if we choose we obtain the sequence
(Fig. 426b)

x0 � 3.000,  x1 � 2.667,  x2 � 2.625,  x3 � 2.619,  x4 � 2.618, Á .

x0 � 3,

x0 � 1.000,  x1 � 2.000,  x2 � 2.500,  x3 � 2.600,  x4 � 2.615, Á

x0 � 1,

xn�1 � 3 �
1
xn

 ,x � g2 (x) � 3 �
1
x

  ,

x0 � 3.000,  x1 � 3.333,  x2 � 4.037,  x3 � 5.766,  x4 � 11.415, Á

x0 � 3,
x0 � 2,

x0 � 1.000,  x1 � 0.667,  x2 � 0.481,  x3 � 0.411,  x4 � 0.390, Á

x0 � 1,

xn�1 � 1
3 (xn

2 � 1) .x � g1(x) � 1
3 (x2 � 1)

x � 1.5 � 11.25,

f (x) � x2 � 3x � 1 � 0

x0, x1, Á

f (x) � 0.x � g(x)
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2
(x)

(a) (b)

Fig. 426. Example 1, iterations (4a) and (4b)
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Our figures show the following. In the lower part of Fig. 426a the slope of is less than the slope of 
which is 1, thus and we seem to have convergence. In the upper part, is steeper 
and we have divergence. In Fig. 426b the slope of is less near the intersection point fixed
point of solution of and both sequences seem to converge. From all this we conclude that
convergence seems to depend on the fact that, in a neighborhood of a solution, the curve of is less steep
than the straight line and we shall now see that this condition is sufficient
for convergence.

An iteration process defined by (3) is called convergent for an if the corresponding
sequence is convergent.

A sufficient condition for convergence is given in the following theorem, which has
various practical applications.

T H E O R E M  1 Convergence of Fixed-Point Iteration

Let be a solution of and suppose that g has a continuous derivative
in some interval J containing s. Then, if in J, the iteration process
defined by (3) converges for any in J. The limit of the sequence is s.

P R O O F By the mean value theorem of differential calculus there is a t between x and s such that

(x in J ).

Since and we obtain from this and the condition on
in the theorem

Applying this inequality n times, for gives

Since we have hence as 

We mention that a function g satisfying the condition in Theorem 1 is called a contraction
because where Furthermore, K gives information on
the speed of convergence. For instance, if then the accuracy increases by at least
2 digits in only 7 steps because 

E X A M P L E  2 An Iteration Process. Illustration of Theorem 1

Find a solution of by iteration.

Solution. A sketch shows that a solution lies near . (a) We may write the equation as or

so that Also

for any x because so that by Theorem 1 we have convergence for
any . Choosing , we obtain (Fig. 427)

The solution exact to 6D is s � 0.682328.

x1 � 0.500, x2 � 0.800, x3 � 0.610, x4 � 0.729, x5 � 0.653, x6 � 0.701, Á .

x0 � 1x0

4x2>(1 � x2)4 � 4x2>(1 � 4x2 � Á ) 	 1,

ƒ g1r(x) ƒ �
2 ƒ x ƒ

(1 � x2)2
	 1xn�1 �

1

1 � xn
2

 .x � g1 (x) �
1

1 � x2
  ,

(x2 � 1)x � 1x � 1

f (x) � x3 � x � 1 � 0

0.57 	 0.01.
K � 0.5,

K 	 1.ƒ g(x) � g(v) ƒ � K ƒ x � v ƒ ,

�n : �.ƒ xn � s ƒ : 0K n : 0;K 	 1,

ƒ xn � s ƒ � K ƒ xn�1 � s ƒ � K 2
ƒ xn�2 � s ƒ � Á � K n

ƒ x0 � s ƒ .

n, n � 1, Á , 1

ƒ xn � s ƒ � ƒ g(xn�1) � g(s) ƒ � ƒ gr(t) ƒ ƒ xn�1 � s ƒ � K ƒ xn�1 � s ƒ .

ƒ gr(x) ƒ

x1 � g(x0), x2 � g(x1), Á ,g(s) � s

g(x) � g(s) � gr(t)(x � s)

{xn}x0

ƒ gr(x) ƒ � K 	 1
x � g(x)x � s

x0, x1, Á

x0

�
ƒ gr(x) ƒ 	 1 (� slope of y � x)y � x,

g(x)
f (x) � 0),g2,

(x � 2.618,g2(x)
(g1r(x) � 1)g1(x)ƒ g1r(x) ƒ 	 1,

y � x,g1(x)
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(b) The given equation may also be written

Then

and this is greater than 1 near the solution, so that we cannot apply Theorem 1 and assert convergence. Try
and see what happens.

The example shows that the transformation of a given into the form with g satisfying
may need some experimentation. �ƒ gr(x) � K 	 1

x � g(x)f (x) � 0
x0 � 1, x0 � 0.5, x0 � 2

ƒ g2r(x) ƒ � 3x2x � g2 (x) � 1 � x3.
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1JOSEPH RAPHSON (1648–1715), English mathematician who published a method similar to Newton’s
method. For historical details, see Ref. [GenRef2], p. 203, listed in App. 1.

0
0

1.0

0.5

1.00.5
x

g
1
(x)

x
1

x
2

Fig. 427. Iteration in Example 2

Newton’s Method for Solving Equations 
Newton’s method, also known as Newton–Raphson’s method,1 is another iteration
method for solving equations where f is assumed to have a continuous derivative 
The method is commonly used because of its simplicity and great speed. 

The underlying idea is that we approximate the graph of f by suitable tangents. Using
an approximate value obtained from the graph of f, we let be the point of intersection
of the x-axis and the tangent to the curve of f at (see Fig. 428). Then

hence

In the second step we compute in the third step from again
by the same formula, and so on. We thus have the algorithm shown in Table 19.1. Formula
(5) in this algorithm can also be obtained if we algebraically solve Taylor’s formula

(5*) f (xn�1) � f (xn) � (xn�1 � xn) f r(xn) � 0.

x2x3x2 � x1 � f (x1)>f r(x1),

x1 � x0 �
f (x0)

f r(x0)
  .tan b � f r(x0) �

f (x0)

x0 � x1
 ,

x0

x1x0

f r.f (x) � 0,

f (x) � 0

y

x

f (x
0
)

y = f (x)

x
2

x
1

x
0

β

Fig. 428. Newton’s method
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Table 19.1 Newton’s Method for Solving Equations ƒ(x) � 0

ALGORITHM NEWTON 

This algorithm computes a solution of ƒ(x) � 0 given an initial approximation x0 (starting
value of the iteration). Here the function ƒ(x) is continuous and has a continuous
derivative ƒ(x).

INPUT: ƒ, ƒ, initial approximation x0, tolerance � � 0, maximum number of
iterations N.

OUTPUT: Approximate solution xn (n N) or message of failure.

For n � 0, 1, 2, • • • , do:

1 Compute ƒ(xn).

2 If ƒ(xn) � 0 then OUTPUT “Failure.” Stop.

[Procedure completed unsuccessfully]

3 Else compute

(5)

4 If then OUTPUT Stop.

[Procedure completed successfully]

End

5 OUTPUT “Failure”. Stop.

[Procedure completed unsuccessfully after N iterations]

End NEWTON

xn�1.ƒ xn�1 � xn ƒ � P ƒ xn�1 ƒ

xn�1 � xn �
f (xn)

f r(xn)
 .

N � 1

�

( f, f r, x0, P, N)

If it happens that for some n (see line 2 of the algorithm), then try another
starting value . Line 3 is the heart of Newton’s method.

The inequality in line 4 is a termination criterion. If the sequence of the converges
and the criterion holds, we have reached the desired accuracy and stop. Note that this is just
a form of the relative error test. It ensures that the result has the desired number of significant
digits. If the condition is satisfied if and only if otherwise

must be sufficiently small. The factor is needed in the case of zeros
of very small (or very large) absolute value because of the high density (or of the scarcity)
of machine numbers for those x.

WARNING! The criterion by itself does not imply convergence. Example. The
harmonic series diverges, although its partial sums satisfy the criterion
because lim (xn�1 � xn) � lim (1>(n � 1)) � 0.

xn � Sn
k�1 1/k

ƒ xn�1 ƒƒ xn�1 � xn ƒ

xn�1 � xn � 0,ƒ xn�1 ƒ � 0,

xn

x0

f r(xn) � 0
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Line 5 gives another termination criterion and is needed because Newton’s method may
diverge or, due to a poor choice of may not reach the desired accuracy by a reasonable
number of iterations. Then we may try another If has more than one solution,
different choices of may produce different solutions. Also, an iterative sequence may
sometimes converge to a solution different from the expected one.

E X A M P L E  3 Square Root

Set up a Newton iteration for computing the square root x of a given positive number c and apply it to 

Solution. We have , hence and (5) takes the form

For choosing we obtain

is exact to 6D.

E X A M P L E  4 Iteration for a Transcendental Equation

Find the positive solution of 

Solution. Setting we have and (5) gives

xn�1 � xn �
xn � 2 sin xn

1 � 2 cos xn

 �
2(sin xn � xn cos xn)

1 � 2 cos xn

 �
Nn

Dn

 .

f r(x) � 1 � 2 cos x,f (x) � x � 2 sin x,

2 sin x � x.

�x4

x1 � 1.500000,  x2 � 1.416667,  x3 � 1.414216,  x4 � 1.414214, Á .

x0 � 1,c � 2,

xn�1 � xn �
xn

2 � c

2xn
 �

1
2

 axn �
c

xn
 b .

f (x) � x2 � c � 0, f r(x) � 2x,x � 1c

c � 2.

x0

f (x) � 0x0.
x0,
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n xn Nn Dn xn�1

0 2.00000 3.48318 1.83229 1.90100
1 1.90100 3.12470 1.64847 1.89552
2 1.89552 3.10500 1.63809 1.89550
3 1.89550 3.10493 1.63806 1.89549

From the graph of f we conclude that the solution is near We compute:
is exact to 5D since the solution to 6D is 1.895494.

E X A M P L E  5 Newton’s Method Applied to an Algebraic Equation

Apply Newton’s method to the equation 

Solution. From (5) we have

Starting from we obtain

where has the error A comparison with Example 2 shows that the present convergence is much
more rapid. This may motivate the concept of the order of an iteration process, to be discussed next. �

�1 � 10�6.x4

x1 � 0.750000, x2 � 0.686047, x3 � 0.682340, x4 � 0.682328, Á

x0 � 1,

xn�1 � xn �
xn

3 � xn � 1

3xn
2 � 1

 �
2xn

3 � 1

3xn
2 � 1

 .

f (x) � x3 � x � 1 � 0.

�x4 � 1.89549
x0 � 2.
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Order of an Iteration Method. 
Speed of Convergence
The quality of an iteration method may be characterized by the speed of convergence, as
follows.

Let define an iteration method, and let approximate a solution s of
Then where is the error of Suppose that g is differentiable

a number of times, so that the Taylor formula gives

(6)

The exponent of in the first nonvanishing term after is called the order of the
iteration process defined by g. The order measures the speed of convergence.

To see this, subtract on both sides of (6). Then on the left you get 
where is the error of . And on the right the remaining expression equals

approximately its first nonzero term because is small in the case of convergence.
Thus

(7)
(a) in the case of first order,

(b) in the case of second order, etc.

Thus if in some step, then for second order, 
so that the number of significant digits is about doubled in each step.

Convergence of Newton’s Method
In Newton’s method, By differentiation,

(8)

Since this shows that also Hence Newton’s method is at least of second
order. If we differentiate again and set we find that

which will not be zero in general. This proves

T H E O R E M  2 Second-Order Convergence of Newton’s Method

If is three times differentiable and and are not zero at a solution s of
then for sufficiently close to s, Newton’s method is of second order.x0f (x) � 0,

f sf rf (x)

gs(s) �
f s(s)

f r(s)
(8*)

x � s,
gr(s) � 0.f (s) � 0,

 �
f (x) f s(x)

f r(x)2
 .

 gr(x) � 1 �
f r(x)2 � f (x) f s(x)

f r(x)2

g(x) � x � f (x)>f r(x).

Pn�1 � c �  (10�k)2 � c � 10�2k,Pn � 10�k

 Pn�1 � �1
2 gs (s)Pn

2

 Pn�1 � �gr(s)Pn

ƒ Pn ƒ

xn�1Pn�1�Pn�1,
xn�1 � s �g(s) � s

g(s)Pn

 � g(s) � gr(s)Pn � 1
2 gs  (s)Pn

2 � Á .

 xn�1 � g(xn) � g(s) � gr(s)(xn � s) � 1
2 gs(s)(xn � s)2 � Á

xn.Pnxn � s � Pn,x � g(x).
xnxn�1 � g(xn)

804 CHAP. 19 Numerics in General
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Comments. For Newton’s method, (7b) becomes, by 

(9)

For the rapid convergence of the method indicated in Theorem 2 it is important that s be
a simple zero of (thus and that be close to s, because in Taylor’s formula
we took only the linear term [see assuming the quadratic term to be negligibly small.
(With a bad the method may even diverge!)

E X A M P L E  6 Prior Error Estimate of the Number of Newton Iteration Steps

Use and in Example 4 for estimating how many iteration steps we need to produce the
solution to 5D-accuracy. This is an a priori estimate or prior estimate because we can compute it after only
one iteration, prior to further iterations.

Solution. We have Differentiation gives

Hence (9) gives

where We show below that Consequently, our
condition becomes

Hence is the smallest possible n, according to this crude estimate, in good agreement with Example 4.
is obtained from hence 

or which gives 

Difficulties in Newton’s Method. Difficulties may arise if is very small near a
solution s of For instance, let s be a zero of of second or higher order. Then
Newton’s method converges only linearly, as is shown by an application of l’Hopital’s rule
to (8). Geometrically, small means that the tangent of near s almost coincides
with the x-axis (so that double precision may be needed to get and accurately
enough). Then for values far away from s we can still have small function values

In this case we call the equation ill-conditioned. is called the residual of
at . Thus a small residual guarantees a small error of only if the equation is

not ill-conditioned.

E X A M P L E  7 An Ill-Conditioned Equation

is ill-conditioned, is a solution. is small. At the residual
is small, but the error is larger in absolute value by a factor 5000. Invent a more drastic

example of your own.

Secant Method for Solving 
Newton’s method is very powerful but has the disadvantage that the derivative may
sometimes be a far more difficult expression than f itself and its evaluation therefore

f r
f (x) � 0

�
�0.1f (0.1) � 2 � 10�5

s� � 0.1f r(0) � 10�4x � 0f (x) � x5 � 10�4x � 0

s�s�f (x) � 0
R (s�)f (x) � 0

R (s�) � f (s�).

x � s�
f r(x)f (x)

f (x)ƒ f r(x) ƒ

f (x)f (x) � 0.
ƒ f r(x) ƒ

�P0 � �0.11.0.57P0
2 � P0 � 0.10 � 0,�0.57P0

2
P1 � P0 � 0.10 �P1 � P0 � (P1 � s) � (P0 � s) � �x1 � x0 � 0.10,P0 � �0.11

n � 2

0.57M0.11M�1 � 5 � 10�6.

P0 � �0.11.M � 2n � 2n�1 � Á � 2 � 1 � 2n�1 � 1.

ƒ Pn�1 ƒ � 0.57Pn
2 � 0.57(0.57P

2
n�1)2 � 0.573

P
4
n�1 � Á � 0.57M

P
M�1
0 � 5 � 10�6

f s(s)

2 f r(s)
�

f s(x1)

2 f r(x1)
 �

2 sin x1

2(1 � 2 cos x1)
� 0.57.

f (x) � x � 2 sin x � 0.

x1 � 1.901x0 � 2

x0

(5*)],
x0f r(s) 
 0)f (x)

Pn�1 � � 
f s(s)

2 f r(s)
 Pn

2 .

(8*),

SEC. 19.2 Solution of Equations by Iteration 805
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computationally expensive. This situation suggests the idea of replacing the derivative
with the difference quotient

Then instead of (5) we have the formula of the popular secant method

f r(xn) �
f (xn) � f (xn�1)

xn � xn�1
  .

Fig. 429. Secant method

y

x

Pn –1

xn –1

y = f (x) Secant

Pn

xns xn +1

(10)

Geometrically, we intersect the x-axis at with the secant of passing through
and in Fig. 429. We need two starting values and Evaluation of derivatives

is now avoided. It can be shown that convergence is superlinear (that is, more rapid than
linear, see [E5] in App. 1), almost quadratic like Newton’s
method. The algorithm is similar to that of Newton’s method, as the student may show.

CAUTION! It is not good to write (10) as

because this may lead to loss of significant digits if and are about equal. (Can
you see this from the formula?)

E X A M P L E  8 Secant Method

Find the positive solution of by the secant method, starting from 

Solution. Here, (10) is

Numeric values are:

xn�1 � xn �
(xn � 2 sin xn)(xn � xn�1)

xn � xn�1 � 2(sin xn�1 � sin xn)
� xn �

Nn

Dn

 .

x0 � 2, x1 � 1.9.f (x) � x � 2 sin x � 0

xn�1xn

xn�1 �
xn�1 f (xn) � xn f (xn�1)

f (xn) � f (xn�1)
  ,

ƒ Pn�1 ƒ � const #
ƒ Pn ƒ

1.62;

x1.x0PnPn�1

f (x)xn�1

xn�1 � xn � f (xn)  
xn � xn�1

f (xn) � f (xn�1)
  .

n xn�1 xn Nn Dn xn�1 � xn

1 2.000000 1.900000 �0.000740 �0.174005 �0.004253
2 1.900000 1.895747 �0.000002 �0.006986 �0.000252
3 1.895747 1.895494 0 0

is exact to 6D. See Example 4. �x3 � 1.895494
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1–13 FIXED-POINT ITERATION
Solve by fixed-point iteration and answer related
questions where indicated. Show details.
1. Monotone sequence. Why is the sequence in Example 1

monotone? Why not in Example 2?

2. Do the iterations (b) in Example 2. Sketch a figure
similar to Fig. 427. Explain what happens.

3. Sketch a figure.

4. the zero near 

5. Sketch showing
roots near and 5. Write 

Find a root by starting from 
Explain the (perhaps unexpected) results.

6. Find a form of in Prob. 5 that yields
convergence to the root near 

7. Find the smallest positive solution of 

8. Solve by starting from 

9. Find the negative solution of 

10. Elasticity. Solve (Similar equations
appear in vibrations of beams; see Problem Set 12.3.)

11. Drumhead. Bessel functions. A partial sum of the
Maclaurin series of (Sec. 5.5) is 

Conclude from a sketch that 
near Write as (by dividing
by and taking the resulting x-term to the other side).
Find the zero. (See Sec. 12.10 for the importance of these
zeros.)

12. CAS EXPERIMENT. Convergence. Let
Write this as for g choos-

ing (1) (2) (3) 
(4) (5) and (6) 
and in each case Find out about convergence
and divergence and the number of steps to reach 6S-
values of a root.

13. Existence of fixed point. Prove that if g is continuous
in a closed interval I and its range lies in I, then the
equation has at least one solution in I. Illustrate
that it may have more than one solution in I.

x � g(x)

x0 � 1.5.
x � f>f r(2x2 � f )>(2x),(x3 � f )>x2,
x � 1

3  f,(x2 � 1
2  f )1>2,(x3 � f )1>3,

x � g(x),2x2 � 3x � 4 � 0.
f (x) � x3 �

1
4 x

f (x)x � g(x)f (x) � 0x � 2.
f (x) � 01

64 x4 � 1
2304 x6.

f (x) � 1 � 1
4 x2 �J0(x)

x cosh x � 1.

x4 � x � 0.12 � 0.

x0 � 1.x4 � x � 0.12 � 0

sin x � e�x.

x � 1.
f (x) � 0x � g(x)

5, 4, 1, �1.
x0 �1.01x � 1.88)>x2.

x � g(x) � (5.00x2 ��1
f (x) � x3 � 5.00x2 � 1.01x � 1.88,

x � 1.f � x � cosec x

f � x � 0.5 cos x � 0, x0 � 1.

P R O B L E M  S E T  1 9 . 2

14–23 NEWTON’S METHOD
Apply Newton’s method (6S-accuracy). First sketch the
function(s) to see what is going on.

14. Cube root. Design a Newton iteration. Compute

15. Compare with Prob. 3.

16. What happens in Prob. 15 for any other ?

17. Dependence on . Solve Prob. 5 by Newton’s method
with Explain the result.

18. Legendre polynomials. Find the largest root of
the Legendre polynomial given by 

(Sec. 5.3) (to be needed in
Gauss integration in Sec. 19.5) (a) by Newton’s
method, (b) from a quadratic equation.

19. Associated Legendre functions. Find the smallest posi-
tive zero of 
(Sec. 5.3) (a) by Newton’s method, (b) exactly, by
solving a quadratic equation.

20.

21.

22. Heating, cooling. At what time x (4S-accuracy only) will
the processes governed by and

reach the same temperature? Also
find the latter.

23. Vibrating beam. Find the solution of 
near (This determines a frequency of a
vibrating beam; see Problem Set 12.3.)

24. Method of False Position (Regula falsi). Figure 430
shows the idea. We assume that f is continuous. We
compute the x-intercept of the line through

If we are done. If
(as in Fig. 430), we set 

and repeat to get etc. If then
and we set etc.

(a) Algorithm. Show that

and write an algorithm for the method.

c0 �
a0 f (b0) � b0 f (a0)

f (b0) � f (a0)

a1 � c0, b1 � b0,f (c0) f (b0) 	 0
f (a0)f (c0) � 0,c1,

a1 � a0, b1 � c0f (a0) f (c0) 	 0
f (c0) � 0,(a0, f (a0)), (b0, f (b0)).

c0

x � 3
2 p.

cos x cosh x � 1

f2 (x) � 40e�0.01x
f1 (x) � 100(1 � e�0.2x)

f � x3 � 5x � 3 � 0, x0 � 2, 0, �2

x � ln x � 2, x0 � 2

(�7x4 � 8x2 � 1)P4
2 � (1 � x2)P4s � 15

2  

(63x5 � 70x3 � 15x)1
8

P5 (x) �P5 (x)

x0 � 5, 4, 1, �3.
x0

x0

f � 2x � cos x, x0 � 1.

2
3 7, x0 � 2.

Summary of Methods. The methods for computing solutions s of with given
continuous (or differentiable) start with an initial approximation of s and generate
a sequence by iteration. Fixed-point methods solve written as

so that s is a fixed point of g, that is, For this is
Newton’s method, which, for good and simple zeros, converges quadratically (and for
multiple zeros linearly). From Newton’s method the secant method follows by replacing

by a difference quotient. The bisection method and the method of false position in
Problem Set 19.2 always converge, but often slowly.
f r(x)

x0

g(x) � x � f (x)>f r(x)s � g(s).x � g(x),
f (x) � 0x1, x2, Á

x0f (x)
f (x) � 0
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19.3 Interpolation
We are given the values of a function at different points We want to
find approximate values of the function for “new” x’s that lie between these points
for which the function values are given. This process is called interpolation. The student
should pay close attention to this section as interpolation forms the underlying foundation
for both Secs. 19.4 and 19.5. Indeed, interpolation allows us to develop formulas for
numeric integration and differentiation as shown in Sec. 19.5.

Continuing our discussion, we write these given values of a function f in the form

or as ordered pairs

Where do these given function values come from? They may come from a “mathematical”
function, such as a logarithm or a Bessel function. More frequently, they may be measured
or automatically recorded values of an “empirical” function, such as air resistance of a
car or an airplane at different speeds. Other examples of functions that are “empirical”
are the yield of a chemical process at different temperatures or the size of the U.S.
population as it appears from censuses taken at 10-year intervals.

A standard idea in interpolation now is to find a polynomial of degree n (or less)
that assumes the given values; thus

(1)

We call this an interpolation polynomial and the nodes. And if is a
mathematical function, we call an approximation of f (or a polynomial approximation,
because there are other kinds of approximations, as we shall see later). We use to get
(approximate) values of f for x’s between and (“interpolation”) or sometimes outside
this interval (“extrapolation”).x0 � x � xn

xnx0

pn

pn

f (x)x0, Á , xnpn

pn(x0) � f0,  pn(x1) � f1,  Á ,  pn(xn) � fn .

pn (x)

(x0, f0),   (x1, f1),   Á , (xn, fn).

f0 � f (x0),  f1 � f (x1),  Á ,  fn � f (xn)

f (x)
x0, x1, Á , xn.f (x)

(b) Solve
a � 1, b � 2.

x4 � 2, cos x � 1x, and x � ln x � 2, with

must be 0 somewhere on The solution is found
by repeated bisection of the interval and in each iteration
picking that half which also satisfies that sign condition.

(a) Algorithm. Write an algorithm for the method.

(b) Comparison. Solve by Newton’s method
and by bisection. Compare.

(c) Solve by bisection.

26–29 SECANT METHOD
Solve, using and as indicated:

26.

27. Prob. 21, 

28.

29.

30. WRITING PROJECT. Solution of Equations.
Compare the methods in this section and problem set,
discussing advantages and disadvantages in terms of
examples of your own. No proofs, just motivations and
ideas.

sin x � cot x, x0 � 1, x1 � 0.5

x � cos x, x0 � 0.5, x1 � 1

x0 � 1.0, x1 � 2.0

e�x � tan x � 0, x0 � 1, x1 � 0.7

x1x0

e�x � ln x and ex � x4 � x � 2

x � cos x

[a, b].y

x

y = f (x)

b
0

a
0

c
0

c
1

Fig. 430. Method of false position

25. TEAM PROJECT. Bisection Method. This simple but
slowly convergent method for finding a solution of

with continuous f is based on the intermediate
value theorem, which states that if a continuous function
f has opposite signs at some and that
is, either or then ff (b) 	 0, f (a) � 0,f (b) � 0f (a) 	 0,

x � b (� a),x � a

f (x) � 0
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Motivation. Polynomials are convenient to work with because we can readily differentiate
and integrate them, again obtaining polynomials. Moreover, they approximate continuous
functions with any desired accuracy. That is, for any continuous on an interval

and error bound there is a polynomial (of sufficiently high
degree n) such that

for all x on J.

This is the famous Weierstrass approximation theorem (for a proof see Ref. [GenRef7],
App. 1).

Existence and Uniqueness. Note that the interpolation polynomial satisfying (1) for
given data exists and we shall give formulas for it below. Furthermore, is unique:
Indeed, if another polynomial also satisfies then

at but a polynomial of degree n (or less) with 
roots must be identically zero, as we know from algebra; thus for all x, which
means uniqueness.

How Do We Find pn? We shall explain several standard methods that give us By
the uniqueness proof above, we know that, for given data, the different methods must give
us the same polynomial. However, the polynomials may be expressed in different forms
suitable for different purposes.

Lagrange Interpolation
Given with arbitrarily spaced Lagrange had the idea of
multiplying each by a polynomial that is 1 at and 0 at the other n nodes and then
taking the sum of these polynomials. Clearly, this gives the unique interpolation
polynomial of degree n or less. Beginning with the simplest case, let us see how this
works.

Linear interpolation is interpolation by the straight line through see
Fig. 431. Thus the linear Lagrange polynomial is a sum with 
the linear polynomial that is 1 at and 0 at similarly, is 0 at and 1 at 
Obviously,

This gives the linear Lagrange polynomial

(2) p1(x) � L0(x) f0 � L1(x) f1 �
x � x1

x0 � x1
 � f0 �

x � x0

x1 � x0
 �  f1 .

L0(x) �
x � x1

x0 � x1
 ,   L1(x) �

x � x0

x1 � x0
 .

x1.x0L1x1;x0

L0p1 � L0 f0 � L1 f1p1

(x0, f0), (x1, f1);

n � 1
x jfj

x j,(x0, f0), (x1, f1), Á , (xn, fn)

pn.

�

pn(x) � qn(x)
n � 1pn � qnx0, Á , xn,pn(x) � qn(x) � 0

qn(x0) � f0, Á , qn(xn) � fn,qn

pn

pn

ƒ f (x) � pn(x) ƒ 	 b

pn (x)b � 0,J: a � x � b
f (x)

SEC. 19.3 Interpolation 809

y

x

y = f (x)

Error

p
1
(x)

x
0

x
1

x

f
1f

0

Fig. 431. Linear Interpolation
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E X A M P L E  1 Linear Lagrange Interpolation

Compute a 4D-value of ln 9.2 from ln by linear Lagrange interpolation and
determine the error, using ln (4D).

Solution. . Ln (2) we need

(see Fig. 432) and obtain the answer

The error is Hence linear interpolation is not sufficient here to get
4D accuracy; it would suffice for 3D accuracy. �

P � a � a� � 2.2192 � 2.2188 � 0.0004.

ln 9.2 � p1(9.2) � L0(9.2) f0 � L1(9.2) f1 � 0.6 � 2.1972 � 0.4 � 2.2513 � 2.2188.

 L1(x) �
x � 9.0

0.5
� 2.0(x � 9.0),  L1(9.2) � 2 � 0.2 � 0.4

 L0(x) �
x � 9.5

�0.5
� �2.0(x � 9.5),  L0(9.2) � �2.0(�0.3) � 0.6

x0 � 9.0, x1 � 9.5,  f0 � ln 9.0,  f1 � ln 9.5

9.2 � 2.2192
9.0 � 2.1972, ln 9.5 � 2.2513

810 CHAP. 19 Numerics in General

9 9.59.2 10 11 x0

1

y L0 L1

Fig. 432. and in Example 1L1L0

Quadratic interpolation is interpolation of given by a second-
degree polynomial which by Lagrange’s idea is

(3a)

with and etc. We claim that

(3b)

How did we get this? Well, the numerator makes if And the denominator
makes because it equals the numerator at 

E X A M P L E  2 Quadratic Lagrange Interpolation

Compute ln 9.2 by (3) from the data in Example 1 and the additional third value ln 

Solution. In (3),

 L2(x) �
(x � 9.0)(x � 9.5)

(11.0 � 9.0)(11.0 � 9.5)
�

1

3
  (x2 � 18.5x � 85.5),  L2(9.2) � �0.0200,

 L1(x) �
(x � 9.0)(x � 11.0)

(9.5 � 9.0)(9.5 � 11.0)
� � 

1

0.75
 (x2 � 20x � 99),  L1(9.2) � 0.4800,

 L0(x) �
(x � 9.5)(x � 11.0)

(9.0 � 9.5)(9.0 � 11.0)
� x2 � 20.5x � 104.5,  L0(9.2) � 0.5400,

11.0 � 2.3979.

x � xk .Lk (xk) � 1
j 
 k.Lk(x j) � 0

L2(x) �
l2(x)

l2(x2)
�

(x � x0)(x � x1)
(x2 � x0)(x2 � x1)

 .

L1(x) �
l1(x)

l1(x1)
�

(x � x0)(x � x2)
(x1 � x0)(x1 � x2)

L0(x) �
l0(x)

l0(x0)
�

(x � x1)(x � x2)
(x0 � x1)(x0 � x2)

L0(x1) � L0(x2) � 0,L0(x0) � 1, L1(x1) � 1, L2(x2) � 1,

p2(x) � L0(x) f0 � L1(x) f1 � L2(x) f2

p2(x),
(x0,  f0), (x1,  f1), (x2,  f2)
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(see Fig. 433), so that (3a) gives, exact to 4D,

�ln 9.2 � p2(9.2) � 0.5400 � 2.1972 � 0.4800 � 2.2513 � 0.0200 � 2.3979 � 2.2192 .

SEC. 19.3 Interpolation 811

0

1

9 9.5 10 11 x
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Fig. 433. , , in Example 2L2L1L0

General Lagrange Interpolation Polynomial. For general n we obtain

(4a)

where and is 0 at the other nodes, and the are independent of the function
f to be interpolated. We get (4a) if we take

(4b)

We can easily see that Indeed, inspection of (4b) shows that if
so that for the sum in (4a) reduces to the single term 

Error Estimate. If f is itself a polynomial of degree n (or less), it must coincide
with because the data determine a polynomial uniquely,
so the error is zero. Now the special f has its st derivative identically zero. This
makes it plausible that for a general f its st derivative should measure the
error

It can be shown that this is true if exists and is continuous. Then, with a suitable
t between and (or between and x if we extrapolate),

(5)

Thus is 0 at the nodes and small near them, because of continuity. The product
is large for x away from the nodes. This makes extrapolation risky.

And interpolation at an x will be best if we choose nodes on both sides of that x. Also,
we get error bounds by taking the smallest and the largest value of in (5) on the
interval (or on the interval also containing x if we extrapolate).x0 � t � xn

f (n�1)(t)

(x � x0) Á (x � xn)
ƒ Pn(x) ƒ

Pn(x) � f (x) � pn(x) � (x � x0)(x � x1) Á (x � xn)  
f (n�1)(t)

(n � 1)!
 .

x0, xn,xnx0

f (n�1)

Pn(x) � f (x) � pn(x).

f (n�1)(n � 1)
(n � 1)

(x0, f0), Á , (xn, fn)n � 1pn

(lk(xk)>lk(xk)) fk � fk.x � xk,j 
 k,
lk (x j) � 0pn (xk) � fk.

 ln(x) � (x � x0)(x � x1) Á (x � xn�1).

0 	 k 	 n, lk(x) � (x � x0) Á (x � xk�1)(x � xk�1) Á (x � xn),

 l0(x) � (x � x1)(x � x2) Á (x � xn),

LkLkLk(xk) � 1

f (x) � pn(x) � a
n

k�0

  Lk(x) fk � a
n

k�0

   
lk(x)

lk (xk)
  fk
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Most importantly, since is unique, as we have shown, we have

T H E O R E M  1 Error of Interpolation

Formula (5) gives the error for any polynomial interpolation method if has a
continuous st derivative.

Practical error estimate. If the derivative in (5) is difficult or impossible to obtain, apply
the Error Principle (Sec. 19.1), that is, take another node and the Lagrange polynomial

and regard as a (crude) error estimate for 

E X A M P L E  3 Error Estimate (5) of Linear Interpolation. Damage by Roundoff. Error Principle

Estimate the error in Example 1 first by (5) directly and then by the Error Principle (Sec. 19.1).

Solution. (A) Estimation by (5). We have Hence

thus

gives the maximum and gives the minimum so that
we get or better, 0.00038 because 

But the error 0.0004 in Example 1 disagrees, and we can learn something! Repetition of the computation there
with 5D instead of 4D gives

with an actual error which lies nicely near the middle between our two
error bounds.

This shows that the discrepancy (0.0004 vs. 0.00035) was caused by rounding, which is not taken into account
in (5).

(B) Estimation by the Error Principle. We calculate as before and then as in
Example 2 but with 5D, obtaining

The difference is the approximate error of that we wanted to obtain; this
is an approximation of the actual error 0.00035 given above.

Newton’s Divided Difference Interpolation
For given data the interpolation polynomial satisfying (1) is
unique, as we have shown. But for different purposes we may use in different forms.
Lagrange’s form just discussed is useful for deriving formulas in numeric differentiation
(approximation formulas for derivatives) and integration (Sec. 19.5).

Practically more important are Newton’s forms of which we shall also use for solving
ODEs (in Sec. 21.2). They involve fewer arithmetic operations than Lagrange’s form.
Moreover, it often happens that we have to increase the degree n to reach a required accuracy.
Then in Newton’s forms we can use all the previous work and just add another term, a
possibility without counterpart for Lagrange’s form. This also simplifies the application of
the Error Principle (used in Example 3 for Lagrange). The details of these ideas are as follows.

Let be the st Newton polynomial (whose form we shall determine);
thus Furthermore, let us write the
nth Newton polynomial as

(6) pn(x) � pn�1(x) � gn(x);

pn�1(x0) � f0, pn�1(x1) � f1, Á , pn�1(xn�1) � fn�1.
(n � 1)pn�1(x)

pn(x),

pn(x)
pn(x)(x0, f0), Á , (xn, fn)

�
p1(9.2)p2(9.2) � p1(9.2) � 0.00031

p2(9.2) � 0.54 � 2.19722 � 0.48 � 2.25129 � 0.02 � 2.39790 � 2.21916.

p2(9.2)p1(9.2) � 2.21885

P � 2.21920 � 2.21885 � 0.00035,

ln 9.2 � p1(9.2) � 0.6 � 2.19722 � 0.4 � 2.25129 � 2.21885

0.3>81 � 0.003703 Á .0.00033 � P1 (9.2) � 0.00037,
0.03>9.52 � 0.00033,t � 9.50.03>92 � 0.00037t � 0.9

P1(9.2) �
0.03

t 2
 .P1(x) � (x � 9.0)(x � 9.5) 

(�1)

2t 2
,

n � 1, f (t) � ln t, f r(t) � 1>t,  f s(t) � �1>t 2.

pn(x).pn�1(x) � pn(x)pn�1(x)

(n � 1)
f (x)

pn

812 CHAP. 19 Numerics in General
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hence

Here is to be determined so that 
Since and agree at we see that is zero there. Also, will

generally be a polynomial of nth degree because so is whereas can be of degree
at most. Hence must be of the form

We determine the constant For this we set and solve algebraically for 
Replacing according to and using we see that this gives

(7)

We write instead of and show that equals the kth divided difference, recursively
denoted and defined as follows:

and in general

(8)

If then because is constant and equal to the value
of at Hence (7) gives

and (6) and give the Newton interpolation polynomial of the first degree

If then this and (7) give

where the last equality follows by straightforward calculation and comparison with the
definition of the right side. (Verify it; be patient.) From (6) and we thus obtain the
second Newton polynomial

(6s)

a2 �
f2 � p1(x2)

(x2 � x0)(x2 � x1)
�

f2 � f0 � (x2 � x0) f [x0, x1]

(x2 � x0)(x2 � x1)
� f [x0, x1, x2]

p1n � 2,

p1(x) � f0 � (x � x0) f  [x0, x1].

(6s)

a1 �
f1 � p0(x1)

x1 � x0
�

f1 � f0
x1 � x0

� f [x0, x1],

x0.f (x)
f0,p0(x)pn�1(xn) � p0(x1) � f0n � 1,

ak � f [x0, Á , xk] �
f [x1, Á , xk] � f [x0, Á , xk�1]

xk � x0
 .

a2 � f [x0, x1, x2] �
f [x1, x2] � f [x0, x1]

x2 � x0

a1 � f [x0, x1] �
f1 � f0

x1 � x0

akanak

an �
fn � pn�1(xn)

(xn � x0)(xn � x1) Á  (xn � xn�1)
 .

pn(xn) � fn,(6r)gn(xn)
an.(6s)x � xnan.

gn(x) � an(x � x0)(x � x1) Á (x � xn�1).(6s)

gnn � 1
pn�1pn,

gngnx0, Á , xn�1,pn�1pn

pn(x0) � f0, pn(x1) � f1, Á , pn(xn) � fn.gn(x)

gn(x) � pn(x) � pn�1(x).(6r)
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For formula (6) gives

(9)

With by repeated application with this finally gives Newton’s
divided difference interpolation formula

(10)

An algorithm is shown in Table 19.2. The first do-loop computes the divided differences
and the second the desired value .

Example 4 shows how to arrange differences near the values from which they are
obtained; the latter always stand a half-line above and a half-line below in the preceding
column. Such an arrangement is called a (divided) difference table.

pn(x)ˆ

� Á � (x � x0)(x � x1) Á (x � xn�1) f  [x0, Á , xn].

f (x) � f0 � (x � x0) f [x0, x1] � (x � x0)(x � x1) f [x0, x1, x2]

k � 1, Á , np0(x) � f0

pk(x) � pk�1(x) � (x � x0)(x � x1) Á (x � xk�1) f  [x0, Á , xk].

n � k,

p2(x) � f0 � (x � x0) f  [x0, x1] � (x � x0)(x � x1) f  [x0, x1, x2].

814 CHAP. 19 Numerics in General

Table 19.2 Newton’s Divided Difference Interpolation

ALGORITHM INTERPOL (x0, , xn; ƒ0, , ƒn; )

This algorithm computes an approximation pn( ) of ƒ( ) at .

INPUT: Data (x0, ƒ0), (x1, ƒ1), , (xn, ƒn); 

OUTPUT: Approximation pn( ) of ƒ( )

Set ƒ[xj] � ƒj ( j � 0, , n).

For do:

For do:

End

End

Set p0(x) � ƒ0.

For k � 1, , n do:

pk( ) � pk�1( ) � ( � x0) ( � xk�1)ƒ[x0, , xk]

End

OUTPUT pn( )

End INTERPOL

x̂

Áx̂Áx̂x̂x̂

Á

f [x j, Á , x j�m] �
f [x j�1, Á , x j�m] � f [x j, Á , x j�m�1]

x j�m � x j

j � 0, Á , n � m

m � 1, Á , n � 1)

Á

x̂x̂

x̂Á

x̂x̂x̂

x̂ÁÁ
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E X A M P L E  4 Newton’s Divided Difference Interpolation Formula

Compute from the values shown in the first two columns of the following table.f (9.2)

SEC. 19.3 Interpolation 815

xj ƒj � ƒ(xj) ƒ[xj, xj�1] ƒ[xj, xj�1, xj�2] ƒ[xj, • • • , xj�3]

8.0 2.079442
0.117783

9.0 2.197225 �0.006433
0.108134 0.000411

9.5 2.251292 �0.005200
0.097735

11.0 2.397895

Solution. We compute the divided differences as shown. Sample computation:

The values we need in (10) are circled. We have

At 

The value exact to 6D is Note that we can nicely see how the accuracy increases
from term to term:

Equal Spacing: Newton’s Forward Difference Formula
Newton’s formula (10) is valid for arbitrarily spaced nodes as they may occur in practice in
experiments or observations. However, in many applications the ’s are regularly spaced—
for instance, in measurements taken at regular intervals of time. Then, denoting the distance
by h, we can write

(11)

We show how (8) and (10) now simplify considerably!
To get started, let us define the first forward difference of f at by

the second forward difference of f at by

and, continuing in this way, the kth forward difference of f at by

(12) (k � 1, 2, Á ).¢
kfj � ¢

k�1fj�1 � ¢
k�1fj

x j

¢
2fj � ¢fj�1 � ¢fj,

x j

¢fj � fj�1 � fj,

x j

x0,  x1 � x0 � h, x2 � x0 � 2h, Á , xn � x0 � nh.

x j

�p1(9.2) � 2.220782,  p2(9.2) � 2.219238,  p3(9.2) � 2.219208.

f (9.2) � ln 9.2 � 2.219203.

f (9.2) � 2.079442 � 0.141340 � 0.001544 � 0.000030 � 2.219208.

x � 9.2,

� 0.000411(x � 8.0)(x � 9.0)(x � 9.5).

f (x) � p3(x) � 2.079442 � 0.117783(x � 8.0) � 0.006433(x � 8.0)(x � 9.0)

(0.097735 � 0.108134)>(11 � 9) � �0.005200.
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Examples and an explanation of the name “forward” follow on the next page. What is the
point of this? We show that if we have regular spacing (11), then

(13)

P R O O F We prove (13) by induction. It is true for because so that

Assuming (13) to be true for all forward differences of order k, we show that (13) holds for
We use (8) with instead of k; then we use resulting

from (11), and finally (12) with that is, This gives

which is (13) with instead of k. Formula (13) is proved.

In (10) we finally set . Then since
and so on. With this and (13), formula (10) becomes Newton’s (or

Gregory2–Newton’s) forward difference interpolation formula

(14)

where the binomial coefficients in the first line are defined by

(15)

and 

Error. From (5) we get, with etc.,

(16)

with t as characterized in (5).

Pn(x) � f (x) � pn(x) �
hn�1

(n � 1)!
 r˛(r � 1) Á  (r � n) f (n�1)(t)

x � x0 � rh, x � x1 � (r � 1)h,

s! � 1 � 2 Á s.

(s � 0, integer)ar

0
b � 1, ar

s
b �

r (r � 1)(r � 2) Á (r � s � 1)
s!

 � f0 � r¢f0 �
r (r � 1)

2!
 ¢2f0 � Á �

r (r � 1) Á (r � n � 1)
n!

 ¢nf0

(x � x0 � rh, r � (x � x0)>h) f (x) � pn(x) � a
n

s�0

 arsb¢s f0

x1 � x0 � h,
x � x1 � (r � 1)hx � x0 � rh,x � x0 � rh

�k � 1

 �
1

(k � 1)!hk�1
  ¢k�1 f0

 �
1

(k � 1)h
  c 1

k!hk ¢kf1 �
1

k!hk ¢kf0 d

 f [x0, Á , xk�1] �
f [x1, Á , xk�1] � f [x0, Á , xk]

(k � 1)h

¢
k�1f0 � ¢

kf1 � ¢
kf0.j � 0,

(k � 1)h � xk�1 � x0,k � 1k � 1.

f [x0, x1] �
f1 � f0

x1 � x0
�

1
h

  ( f1 � f0) �
1

1!h
  ¢f0 .

x1 � x0 � h,k � 1

f [x0, Á , xk] �
1

k!hk
 ¢kf0.
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2JAMES GREGORY (1638–1675), Scots mathematician, professor at St. Andrews and Edinburgh. � in (14)
and �2 (on p. 818) have nothing to do with the Laplacian.
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Formula (16) is an exact formula for the error, but it involves the unknown t. In
Example 5 (below) we show how to use (16) for obtaining an error estimate and an
interval in which the true value of must lie.

Comments on Accuracy. (A) The order of magnitude of the error is about equal
to that of the next difference not used in 

(B) One should choose such that the x at which one interpolates is as well
centered between as possible.

The reason for (A) is that in (16),

if

(and actually for any r as long as we do not extrapolate). The reason for (B) is that
becomes smallest for that choice.

E X A M P L E  5 Newton’s Forward Difference Formula. Error Estimation

Compute from (14) and the four values in the following table and estimate the error.cosh 0.56

ƒ r (r � 1) Á  (r � n) ƒ

ƒ r ƒ  �  1
ƒ r (r � 1) Á  (r � n) ƒ

1 � 2 Á (n � 1)
 �  1f n�1(t) �

¢
n�1 f (t)

hn�1
 ,

x0, Á , xn

x0, Á , xn

pn(x).
Pn(x)

f (x)

SEC. 19.3 Interpolation 817

j xj ƒj � cosh xj �ƒj �2ƒj �3ƒj

0 0.5 1.127626
0.057839

1 0.6 1.185465 0.011865
0.069704 0.000697

2 0.7 1.255169 0.012562
0.082266

3 0.8 1.337435

Solution. We compute the forward differences as shown in the table. The values we need are circled. In (14)
we have so that (14) gives

Error estimate. From (16), since the fourth derivative is 

where and We do not know t, but we get an inequality by taking the largest
and smallest cosh t in that interval:

Since

f (x) � p3(x) � P3(x),

A cosh 0.8 � P3(0.62) � A cosh 0.5.

0.5 � t � 0.8.A � �0.00000336

 � A cosh t,

 P3(0.56) �
0.14

4!
� 0.6 (�0.4)(�1.4)(�2.4) cosh t 

cosh(4) t � cosh t,

 � 1.160944.

 � 1.127626 � 0.034703 � 0.001424 � 0.000039

 cosh 0.56 � 1.127626 � 0.6 � 0.057839 �
0.6(�0.4)

2
� 0.011865 �

0.6(�0.4)(�1.4)

6
� 0.000697

r � (0.56 � 0.50)>0.1 � 0.6,
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this gives

Numeric values are

The exact 6D-value is It lies within these bounds. Such bounds are not always so tight.
Also, we did not consider roundoff errors, which will depend on the number of operations.

This example also explains the name “forward difference formula”: we see that the
differences in the formula slope forward in the difference table.

Equal Spacing: Newton’s Backward Difference Formula
Instead of forward-sloping differences we may also employ backward-sloping differ-
ences. The difference table remains the same as before (same numbers, in the same
positions), except for a very harmless change of the running subscript j (which we explain
in Example 6, below). Nevertheless, purely for reasons of convenience it is standard to
introduce a second name and notation for differences as follows. We define the first
backward difference of f at by

the second backward difference of f at by

and, continuing in this way, the kth backward difference of f at by

(17)

A formula similar to (14) but involving backward differences is Newton’s (or
Gregory–Newton’s) backward difference interpolation formula

(18)

E X A M P L E  6 Newton’s Forward and Backward Interpolations

Compute a 7D-value of the Bessel function for from the four values in the following table, using
(a) Newton’s forward formula (14), (b) Newton’s backward formula (18).

x � 1.72J0(x)

 � f0 � r�f0 �
r(r � 1)

2!
  �2f0 � Á �

r(r � 1) Á (r � n � 1)
n!

  �nf0 .

(x � x0 � rh, r � (x � x0)>h) f (x) � pn(x) � a
n

s�0

 ar � s � 1

s
b �sf0

(k � 1, 2, Á ).�kfj � �k�1 fj � �k�1 fj�1

x j

�2fj � � fj � � fj�1,

x j

�fj � fj � fj�1,

x j

�
cosh 0.56 � 1.160941.

1.160939 � cosh 0.56 � 1.160941.

p3(0.56) � A cosh 0.8 � cosh 0.56 � p3(0.56) � A cosh 0.5.
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1. Linear interpolation. Calculate in Example 1
and from it 3.

2. Error estimate. Estimate the error in Prob. 1 by (5).

3. Quadratic interpolation. Gamma function. Calculate
the Lagrange polynomial for the values

of the gamma function [(24) in App. A3.1] and from it
approximations of and 

4. Error estimate for quadratic interpolation. Estimate
the error for in Example 2 from (5).

5. Linear and quadratic interpolation. Find and
by linear interpolation of with 

respectively. Then find
by quadratic interpolation of with 

and from it and 
Compare the errors. Use 4S-values of e�x.

e�0.75.e�0.25x1 � 0.5, x2 � 1
x0 � 0,e�xp2(x)

x1 � 0.5 and x0 � 0.5, x1 � 1,
x0 � 0,e�xe�0.75

e�0.25

p2(9.2)

�(1.03).�(1.01)

�(1.04) � 0.9784�(1.00) � 1.0000, �(1.02) � 0.9888,
p2(x)

ln 9.
p1(x) 6. Interpolation and extrapolation. Calculate in

Example 2. Compute from it approximations of
Compute the

errors by using exact 5S-values and comment.

7. Interpolation and extrapolation. Find the quadratic
polynomial that agrees with at 
and use it for the interpolation and extrapolation of 
at Compute the errors.

8. Extrapolation. Does a sketch of the product of the
in (5) for the data in Example 2 indicate that

extrapolation is likely to involve larger errors than
interpolation does?

9. Error function (35) in App. A3.1. Calculate the
Lagrange polynomial for the 5S-values 

and from
an approximation of f (0.75) (� 0.71116).p2(x)

f (0.5) � 0.52050, f (1.0) � 0.842700.27633,
f (0.25) �p2(x)

(x � x j)

x � �p>8, p>8, 3p>8, 5p>8.
sin x

x � 0, p>4, p>2sin x

ln 9.4, ln 10, ln 10.5, ln 11.5, and ln 12.

p2(x)

P R O B L E M  S E T  1 9 . 3

Solution. The computation of the differences is the same in both cases. Only their notation differs.

(a) Forward. In (14) we have and j goes from 0 to 3 (see first column). In
each column we need the first given number, and (14) thus gives

which is exact to 6D, the exact 7D-value being 0.3864185.

(b) Backward. For (18) we use j shown in the second column, and in each column the last number. Since
we thus get from (18)

There is a third notation for differences, called the central difference notation. It
is used in numerics for ODEs and certain interpolation formulas. See Ref. [E5] listed in
App. 1.

� � 0.3864184.

 � 0.2238908 � 0.1621978 � 0.0006048 � 0.0002750

 J0(1.72) � 0.2238908 � 2.8 (�0.0579278) �
�2.8 (�1.8)

2
� 0.0002400 �

�2.8(�1.8)(�0.8)

6
� 0.0004093

r � (1.72 � 2.00)>0.1 � �2.8,

 � 0.3979849 � 0.0115997 � 0.0000135 � 0.0000196 � 0.3864183,

 J0 (1.72) � 0.3979849 � 0.2 (�0.0579985) �
0.2(�0.8)

2
  (�0.0001693) �

0.2(�0.8)(�1.8)

6
� 0.0004093

r � (1.72 � 1.70)>0.1 � 0.2,

jfor jback xj J0(xj) 1st Diff. 2nd Diff. 3rd Diff.

0 �3 1.7 0.3979849
�0.0579985

1 �2 1.8 0.3399864 �0.0001693
�0.0581678 0.0004093

2 �1 1.9 0.2818186 0.0002400
�0.0579278

3 0 2.0 0.2238908
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10. Error bound. Derive an error bound in Prob. 9 from (5).

11. Cubic Lagrange interpolation. Bessel function 
Calculate and graph with 

on common axes. Find 
for the data 

[values of the Bessel function 
Find for and compare with the 6S-
exact values 

12. Newton’s forward formula (14). Sine integral. Using
(14), find by linear, quadratic, and cubic
interpolation of the data (values of (40) in App. A31); 6S-
value 

and com-
pute the errors. For the linear interpolation use 

for the quadratic etc.

13 Lower degree. Find the degree of the interpolation
polynomial for the data 

using a difference table. Find the polynomial.

14. Newton’s forward formula (14). Gamma function.
Set up (14) for the data in Prob. 3 and compute 

15. Divided differences. Obtain in Example 2 from (10).

16. Divided differences. Error function. Compute 
from the data in Prob. 9 and Newton’s divided difference
formula (10).

17. Backward difference formula (18). Use in (18)
and the values of in Table A4 of
App. 5, compute and the error. (4S-exact 
0.3286).

erf 0.3 �erf 0.3
erf x, x � 0.2, 0.4, 0.6

p2(x)

p2(0.75)

p2

�(1.03), �(1.05).
�(1.01),

(4, 18),
(2, 2),(�4, 50), (�2, 18), (0, 2),

f (1.0), f (1.5),  f (2.0),and f (1.5),
f (1.0)

1.77852,f (2.5) �1.32468, f (2.0) � 1.60541,
f (1.5) �� 0.94608,Si(1.25) � 1.14645) f (1.0)

f (1.25)

0.938470, 0.511828, �0.048384.
x � 0.5, 1.5, 2.5p3

J0(x)].�0.260052)(3,
(2, 0.223891),(1, 0.765198),(0, 1),

p3(x)x1 � 1, x2 � 2, x3 � 3
x0 � 0,L0, L1, L2, L3

J0.

18. In Example 5 of the text, write down the difference table
as needed for (18), then write (18) with general x and
then with to verify the answer in Example 5.

19. CAS EXPERIMENT. Adding Terms in Newton
Formulas. Write a program for the forward formula
(14). Experiment on the increase of accuracy by
successively adding terms. As data use values of some
function of your choice for which your CAS gives the
values needed in determining errors.

20. TEAM PROJECT. Interpolation and Extrapolation.
(a) Lagrange practical error estimate (after Theo-
rem 1). Apply this to and for the data

(6S-values).

(b) Extrapolation. Given 
Find

from the quadratic interpolation polynomials
based on 

Compare the errors and comment. [Exact 
(4S).]

(c) Graph the product of factors in the error
formula (5) for separately. What do
these graphs show regarding accuracy of interpolation
and extrapolation?

21. WRITING PROJECT. Comparison of interpolation
methods. List 4–5 ideas that you feel are most important
in this section. Arrange them in best logical order.
Discuss them in a 2–3 page report.

n � 2, Á , 10
(x � x j)

cos (1
2 px2),  f (0.7) � 0.7181

f (x) �0.6.
(a) 0.6, 0.8, 1.0, (b) 0.4, 0.6, 0.8, (g) 0.2, 0.4,

f (0.7)
(0.8, 0.5358), (1.0, 0).(0.6, 0.8443),(0.4, 0.9686),
(x j,  f (x j)) � (0.2, 0.9980),

f2 � ln x2

f1 � ln x1,f0 � ln x0,x2 � 11.0,x1 � 9.5,x0 � 9.0,
p2(9.2)p1(9.2)

x � 0.56

19.4 Spline Interpolation
Given data (function values, points in the xy-plane) can be
interpolated by a polynomial of degree n or less so that the curve of passes
through these points here See Sec. 19.3.

Now if n is large, there may be trouble: may tend to oscillate for x between the nodes
Hence we must be prepared for numeric instability (Sec. 19.1). Figure 434 shows

a famous example by C. Runge3 for which the maximum error even approaches as 
(with the nodes kept equidistant and their number increased). Figure 435 illustrates the increase
of the oscillation with n for some other function that is piecewise linear.

Those undesirable oscillations are avoided by the method of splines initiated by I. J.
Schoenberg in 1946 (Quarterly of Applied Mathematics 4, pp. 45–99, 112–141). This
method is widely used in practice. It also laid the foundation for much of modern CAD
(computer-aided design). Its name is borrowed from a draftman’s spline, which is an
elastic rod bent to pass through given points and held in place by weights. The mathematical
idea of the method is as follows:

n : ��
x0, Á , xn.

Pn(x)
f0 � f (x0), Á , fn � f (xn),(x j, fj);n � 1

Pn(x)Pn(x)
(x0, f0), (x1, f1), Á , (xn, fn)

3CARL RUNGE (1856–1927), German mathematician, also known for his work on ODEs (Sec. 21.1).
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Instead of using a single high-degree polynomial over the entire interval 
in which the nodes lie, that is,

(1)

we use n low-degree, e.g., cubic, polynomials

one over each subinterval between adjacent nodes, hence from to then from
to and so on. From this we compose an interpolation function called a spline,

by fitting these polynomials together into a single continuous curve passing through the
data points, that is,

g(x),x2,x1

q1x1,x0q0

q0(x),  q1(x),  Á ,  qn�1(x),

a � x0 � x1 � Á � xn � b,

a � x � bPn

SEC. 19.4 Spline Interpolation 821
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(x)

f (x)

0 5–5

y

x

 f (x)

 P
2
(x)

 P
4
(x)

 P
8
(x)

4

4

4

–4

–4

–4

Fig. 434. Runge’s example ƒ(x) � 1/(1 � x2) and interpolating polynomial P10(x)

Fig. 435. Piecewise linear function ƒ(x) and interpolation polynomials of increasing degrees

(2)

Note that when then when and so
on, according to our construction of g.

Thus spline interpolation is piecewise polynomial interpolation.
The simplest ’s would be linear polynomials. However, the curve of a piecewise linear

continuous function has corners and would be of little interest in general—think of
designing the body of a car or a ship.

We shall consider cubic splines because these are the most important ones in applications.
By definition, a cubic spline interpolating given data is a continuous
function on the interval that has continuous first and second
derivatives and satisfies the interpolation condition (2); furthermore, between adjacent nodes,

is given by a polynomial of degree 3 or less.
We claim that there is such a cubic spline. And if in addition to (2) we also require that

(3) gr(x0) � k0,   gr(xn) � kn

qj (x)g(x)

a � x0 � x � xn � b

Á , (xn, fn)(x0, f0),g(x)

qj

x1 � x � x2,g(x) � q1(x)x0 � x � x1,g(x) � q0(x)

g(x0) � f (x0) � f0,  g(x1) � f (x1) � f1, Á ,  g(xn) � f (xn) � fn.
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(given tangent directions of at the two endpoints of the interval then we
have a uniquely determined cubic spline. This is the content of the following existence
and uniqueness theorem, whose proof will also suggest the actual determination of splines.
(Condition (3) will be discussed after the proof.)

T H E O R E M  1 Existence and Uniqueness of Cubic Splines

Let with given (arbitrarily spaced) [see (1)] and
given Let and be any given numbers. Then there
is one and only one cubic spline corresponding to (1) and satisfying (2)
and (3).

P R O O F By definition, on every subinterval given by , the spline must agree
with a polynomial of degree not exceeding 3 such that

(4)

For the derivatives we write

(5)

with and given and to be determined later. Equations (4) and (5) are
four conditions for each By direct calculation, using the notation

we can verify that the unique cubic polynomial satisfying (4)
and (5) is

(6)

Differentiating twice, we obtain

(7)

(8)

By definition, has continuous second derivatives. This gives the conditions

( j � 1, Á , n � 1).qj�1s (x j) � qjs(x j)

g(x)

qjs(x j�1) � 6cj
2f (x j) � 6cj

2f (x j�1) � 2cjk j � 4cjk j�1.

qjs(x j) � �6cj
2f (x j) � 6cj

2f (x j�1) � 4cjk j � 2cjk j�1

 � k j�1cj
2(x � x j)

2(x � x j�1).

 � k jcj
2(x � x j)(x � x j�1)2

 � f (x j�1)cj
2(x � x j)

2[1 � 2cj(x � x j�1)]

 qj(x) � f (x j)cj
2(x � x j�1)2[1 � 2cj(x � x j)]

qj(x) ( j � 0, 1, Á , n � 1)

( j � 0, 1, Á , n � 1)cj �
1
hj

 �
1

x j�1 � x j
(6*)

qj(x).
k1, Á , kn�1knk0

( j � 0, 1, Á , n � 1) qjr(x j) � k j,    qjr(x j�1) � k j�1

( j � 0, 1, Á , n � 1). qj(x j) � f (x j),    qj(x j�1) � f (x j�1)

qj(x)
g(x)x j � x � x j�1Ij

g(x)
knk0fj � f (x j), j � 0, 1, Á , n.

x j(x0, f0), (x1, f1), Á , (xn, fn)

a � x � b),g(x)
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If we use (8) with j replaced by and (7), these equations become

(9)

where and and as before.
This linear system of equations has a unique solution since the coefficient
matrix is strictly diagonally dominant (that is, in each row the (positive) diagonal entry is
greater than the sum of the other (positive) entries). Hence the determinant of the matrix
cannot be zero (as follows from Theorem 3 in Sec. 20.7), so that we may determine unique
values of the first derivative of at the nodes. This proves the theorem.

Storage and Time Demands in solving (9) are modest, since the matrix of (9) is sparse
(has few nonzero entries) and tridiagonal (may have nonzero entries only on the diagonal
and on the two adjacent “parallels” above and below it). Pivoting (Sec. 7.3) is not necessary
because of that dominance. This makes splines efficient in solving large problems with
thousands of nodes or more. For some literature and some critical comments, see American
Mathematical Monthly 105 (1998), 929–941.

Condition (3) includes the clamped conditions

(10)

in which the tangent directions and at the ends are given. Other conditions
of practical interest are the free or natural conditions

(11)

(geometrically: zero curvature at the ends, as for the draftman’s spline), giving a natural
spline. These names are motivated by Fig. 293 in Problem Set 12.3.

Determination of Splines. Let and be given. Obtain by solving the
linear system (9). Recall that the spline to be found consists of n cubic polynomials

We write these polynomials in the form

(12)

where Using Taylor’s formula, we obtain

by (2),

by (5),

(13) by (7),

 aj3 �
1
6

  qjt(x j) �
2
hj

3  ( fj � fj�1) �
1
hj

2  (k j�1 � k j)

 aj2 �
1
2

  qjs(x j) �
3
hj

2  ( fj�1 � fj) �
1
hj

  (k j�1 � 2k j)

 aj1 � qjr(x j) � k j

 aj0 � qj(x j) � fj

j � 0, Á , n � 1.

qj(x) � aj0 � aj1(x � x j) � aj2(x � x j)
2 � aj3(x � x j)

3

q0, Á , qn�1.
g(x)

k1, Á , kn�1knk0

gs(x0) � 0,  gs(xn) � 0

f r(xn)f r(x0)

gr(x0) � f r(x0),  gr(xn) � f r(xn),

�g(x)k1, Á , kn�1

k1, Á , kn�1n � 1
j � 1, Á , n � 1,�fj�1 � f (x j�1) � f (x j)�fj � f (x j) � f (x j�1)

cj�1k j�1 � 2(cj�1 � cj)k j � cjk j�1 � 3[cj�1
2 �fj � cj

2�fj�1]

n � 1j � 1,
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with obtained by calculating from (12) and equating the result to (8),
that is,

and now subtracting from this as given in (13) and simplifying.

Note that for equidistant nodes of distance we can write in 
and have from (9) simply

(14)

E X A M P L E  1 Spline Interpolation. Equidistant Nodes

Interpolate on the interval by the cubic spline corresponding to the nodes 
and satisfying the clamped conditions 

Solution. In our standard notation the given data are 
We have and so that our spline consists of polynomials

We determine the from (14) (equidistance!) and then the coefficients of the spline from (13). Since 
the system (14) is a single equation (with and 

Here (the value of at the ends) and the values of the derivative at the
ends and 1. Hence

From (13) we can now obtain the coefficients of namely, and

Similarly, for the coefficients of we obtain from (13) the values and

This gives the polynomials of which the spline consists, namely,

Figure 436 shows and this spline. Do you see that we could have saved over half of our work by using
symmetry? �

f (x)

g(x) � b q0(x) � 1 � 4 (x � 1) � 5 (x � 1)2 � 2 (x � 1)3 � �x2 � 2x3 if �1 � x � 0

q1(x) � �x2 � 2x3 if 0 � x � 1.

g(x)

 a13 � 2( f1 � f2) � (k2 � k1) � 2(0 � 1) � (4 � 0) � 2.

 a12 � 3( f2 � f1) � (k2 � 2k1) � 3(1 � 0) � (4 � 0) � �1

a10 � f1 � 0, a11 � k1 � 0,q1

 a03 �
2

13
 ( f0 � f1) �

1

12
 (k1 � k0) � 2(1 � 0) � (0 � 4) � �2.

 a02 �
3

12
 ( f1 � f0) �

1

1
 (k1 � 2k0) � 3(0 � 1) � (0 � 8) � 5

a00 � f0 � 1, a01 � k0 � �4,q0,

�4 � 4k1 � 4 � 3(1 � 1) � 0,  k1 � 0.

�1
4x3k0 � �4, k2 � 4,x4f0 � f2 � 1

k0 � 4k1 � k2 � 3( f2 � f0).

h � 1)j � 1
n � 2,k j

(0 � x � 1). q1(x) � a10 � a11x � a12x2 � a13x3

(�1 � x � 0), q0(x) � a00 � a01(x � 1) � a02(x � 1)2 � a03(x � 1)3

n � 2n � 2,h � 1
f0 � f (�1) � 1, f1 � f (0) � 0, f2 � f (1) � 1.

gr(�1) � f r(�1), gr(1) � f r(1).x1 � 0, x2 � 1
x0 � �1,g(x)�1 � x � 1f (x) � x4

( j � 1, Á , n � 1).k j�1 � 4k j � k j�1 �
3
h

  ( fj�1 � fj�1)

(6*)cj � c � 1>hhj � h

2aj2

qjs(x j�1) � 2aj2 � 6aj3hj �
6
hj

2  ( fj � fj�1) �
2
hj

  (k j � 2k j�1),

qjs(x j�1)aj3
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E X A M P L E  2 Natural Spline. Arbitrarily Spaced Nodes

Find a spline approximation and a polynomial approximation for the curve of the cross section of the circular-
shaped Shrine of the Book in Jerusalem shown in Fig. 437.

SEC. 19.4 Spline Interpolation 825

1

–1 1

f (x)

g(x)
x

Fig. 436. Function ƒ(x) � x4 and cubic spline g(x) in Example 1

–6 –5 –4 –3 –2 –1 0 1

1

2

3

Fig. 437. Shrine of the Book in Jerusalem (Architects F. Kissler and A. M. Bartus)

Solution. Thirteen points, about equally distributed along the contour (not along the x-axis!), give these data:

xj �5.8 �5.0 �4.0 �2.5 �1.5 �0.8 0 0.8 1.5 2.5 4.0 5.0 5.8

ƒj 0 1.5 1.8 2.2 2.7 3.5 3.9 3.5 2.7 2.2 1.8 1.5 0

The figure shows the corresponding interpolation polynomial of 12th degree, which is useless because of its
oscillation. (Because of roundoff your software will also give you small error terms involving odd powers of x.)
The polynomial is

The spline follows practically the contour of the roof, with a small error near the nodes and 0.8. The spline
is symmetric. Its six polynomials corresponding to positive x have the following coefficients of their
representations (12). (Note well that (12) is in terms of powers of , not x!)

j x-interval aj0 aj1 aj2 aj3

0 0.0...0.8 3.9 0.00 �0.61 �0.015
1 0.8...1.5 3.5 �1.01 �0.65 0.66
2 1.5...2.5 2.7 �0.95 0.73 �0.27
3 2.5...4.0 2.2 �0.32 �0.091 0.084
4 4.0...5.0 1.8 �0.027 0.29 �0.56
5 5.0...5.8 1.5 �1.13 �1.39 0.58

x � x j

�0.8

� 0.000055595x10 � 0.00000071867x12.

P12(x) � 3.9000 � 0.65083x2 � 0.033858x4 � 0.011041x6 � 0.0014010x8
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1. WRITING PROJECT. Splines. In your own words,
and using as few formulas as possible, write a short
report on spline interpolation, its motivation, a
comparison with polynomial interpolation, and its
applications.

2–9 VERIFICATIONS. DERIVATIONS.
COMPARISONS

2. Individual polynomial Show that in (6)
satisfies the interpolation condition (4) as well as the
derivative condition (5).

3. Verify the differentiations that give (7) and (8) from (6).

4. System for derivatives. Derive the basic linear system
(9) for as indicated in the text.

5. Equidistant nodes. Derive (14) from (9).

6. Coefficients. Give the details of the derivation of 
and in (13).

7. Verify the computations in Example 1.

8. Comparison. Compare the spline g in Example 1 with
the quadratic interpolation polynomial over the whole
interval. Find the maximum deviations of g and 
from f. Comment.

9. Natural spline condition. Using the given coefficients,
verify that the spline in Example 2 satisfies 
at the ends.

10–16 DETERMINATION OF SPLINES
Find the cubic spline for the given data with and

as given.

10.

11. If we started from the piecewise linear function in
Fig. 438, we would obtain in Prob. 10 as the spline
satisfying 
Find and sketch or graph the corresponding interpolation
polynomial of 4th degree and compare it with the spline.
Comment.

gr(2) � f r(2) � 0.gr(�2) � f r(�2) � 0,
g(x)

k0 � k4 � 0
f (0) � 1,f (�2) � f (�1) � f (1) � f (2) � 0,

kn

k0g(x)

gs(x) � 0

p2

aj3

aj2

k1, Á , kn�1

qj(x)qj.

12.

13.

14. ,

15. ,

16. ,
Can you obtain the

answer from that of Prob. 15?

17. If a cubic spline is three times continuously differen-
tiable (that is, it has continuous first, second, and third
derivatives), show that it must be a single polynomial.

18. CAS EXPERIMENT. Spline versus Polynomial. If
your CAS gives natural splines, find the natural splines
when x is integer from to m, and and all
other y equal to 0. Graph each such spline along with
the interpolation polynomial . Do this for to
10 (or more). What happens with increasing m?

19. Natural conditions. Explain the remark after (11).

20. TEAM PROJECT. Hermite Interpolation and Bezier
Curves. In Hermite interpolation we are looking for
a polynomial (of degree or less) such that

and its derivative have given values at 
nodes. (More generally, may be
required to have given values at the nodes.)

(a) Curves with given endpoints and tangents. Let
C be a curve in the xy-plane parametrically represented
by (see Sec. 9.5). Show
that for given initial and terminal points of a curve and
given initial and terminal tangents, say,

A:

B:

we can find a curve C, namely,

(15)

� (2(r0 � r1) � v0 � v1)t 3;

� (3(r1 � r0) � (2v0 � v1))t 2

r (t) � r0 � v0 t

 � [x1r, y1r]
 v1 � [xr(1), yr(1)]

 � [x0r, y0r],
 v0 � [xr(0), yr(0)]

 � [x1, y1]

 r1 � [x (1), y (1)]

 � [x0, y0],

 r0 � [x (0), y (0)]

r (t) � [x (t), y (t)], 0 � t � 1

p(x), pr(x), ps(x), Á

n � 1pr(x)p (x)
2n � 1p(x)

m � 2p2m

y (0) � 1�m

k3 � 0.k0 �f3 � f (6) � 78,
f2 � f (4) � 2f1 � f (2) � �2,f0 � f (0) � 2,

k3 � 0k0 �f3 � f (6) � 80,
f2 � f (4) � 4f1 � f (2) � 0,f0 � f (0) � 4,

k3 � 0k0 �f3 � f (3) � 12,
f2 � f (2) � 8f1 � f (1) � 3,f0 � f (0) � 2,

k3 � �6k0 � 0,f3 � f (3) � 0,
f2 � f (2) � �1,f1 � f (1) � 0,f0 � f (0) � 1,

k3 � �12k0 � 0,f3 � f (6) � 41,
f2 � f (4) � 41,f1 � f (2) � 9,f0 � f (0) � 1,

P R O B L E M  S E T  1 9 . 4

0

21–1

0.5

–2

x

Fig. 438. Spline and interpolation polynomial in
Probs. 10 and 11
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in components,

Note that this is a cubic Hermite interpolation poly-
nomial, and because we have two nodes (the
endpoints of C ). (This has nothing to do with the
Hermite polynomials in Sec. 5.8.) The two points

and

are called guidepoints because the segments and
specify the tangents graphically. A, B, 

determine C, and C can be changed quickly by moving
the points. A curve consisting of such Hermite
interpolation polynomials is called a Bezier curve,
after the French engineer P. Bezier of the Renault

GA, GBBGB

AGA

 � [x1 � x1r, y1 � y1r]
 GB: g1 � r1 � v1

 � [x0 � x0r, y0 � y0r]
 GA: g0 � r0 � v0

n � 1

 � (2( y0 � y1) � y0r � y1r)t 3.

 y (t) � y0 � y0rt � (3( y1 � y0) � (2y0r � y1r))t 2

 � (2(x0 � x1) � x0r � x1r)t 3

 x (t) � x0 � x0rt � (3(x1 � x0) � (2x0r � x1r))t 2
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y

x

0.4

0.2
1

GA(b)

A B

GB(b)

(c)

(b)

GB(c)

GA(c)

Fig. 439. Team Project 20(b) and (c): Bezier curves

Automobile Company, who introduced them in the
early 1960s in designing car bodies. Bezier curves (and
surfaces) are used in computer-aided design (CAD) and
computer-aided manufacturing (CAM). (For more
details, see Ref. [E21] in App. 1.)

(b) Find and graph the Bezier curve and its
guidepoints if 

(c) Changing guidepoints changes C. Moving guide-
points farther away results in C “staying near the
tangents for a longer time.” Confirm this by changing

and in (b) to and (see Fig. 439).

(d) Make experiments of your own. What happens if
you change in (b) to If you rotate the tangents?
If you multiply and by positive factors less than 1?v1v0

�v1.v1

2v12v0v1v0

v1 � [�1
2 , �1

4 13].
v0 � [1

2 , 12 ],B: [1, 0],A: [0, 0],

19.5 Numeric Integration and Differentiation
In applications, the engineer often encounters integrals that are very difficult or even
impossible to solve analytically. For example, the error function, the Fresnel integrals
(see Probs. 16–25 on nonelementary integrals in this section), and others cannot
be evaluated by the usual methods of calculus (see App. 3, (24)–(44) for such
“difficult” integrals). We then need methods from numerical analysis to evaluate such
integrals. We also need numerics when the integrand of the integral to be evaluated
consists of an empirical function, where we are given some recorded values of that
function. Methods that address these kinds of problems are called methods of numeric
integration.

Numeric integration means the numeric evaluation of integrals

where a and b are given and f is a function given analytically by a formula or empirically
by a table of values. Geometrically, J is the area under the curve of f between a and b
(Fig. 440), taken with a minus sign where f is negative.

J � �
b

a

 f (x) dx
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We know that if f is such that we can find a differentiable function F whose derivative
is f, then we can evaluate J directly, i.e., without resorting to numeric integration, by
applying the familiar formula

Your CAS (Mathematica, Maple, etc.) or tables of integrals may be helpful for this purpose.

Rectangular Rule. Trapezoidal Rule
Numeric integration methods are obtained by approximating the integrand f by functions
that can easily be integrated.

The simplest formula, the rectangular rule, is obtained if we subdivide the interval of
integration into n subintervals of equal length and in each
subinterval approximate f by the constant , the value of f at the midpoint of the jth
subinterval (Fig. 441). Then f is approximated by a step function (piecewise constant function),
the n rectangles in Fig. 441 have the areas and the rectangular rule is

(1)

The trapezoidal rule is generally more accurate. We obtain it if we take the same
subdivision as before and approximate f by a broken line of segments (chords) with
endpoints on the curve of f (Fig. 442). Then the area
under the curve of f between a and b is approximated by n trapezoids of areas

1
2 [ f (a) � f (x1)]h,  1

2 [ f (x1) � f (x2)]h,  Á ,   12 [ f (xn�1) � f (b)]h.

[a,  f (a)], [x1,  f (x1)], Á , [b,  f (b)]

ah �
b � a

n b .J � �
b

a

 f (x) dx � h[ f (x1*) � f (x2*) � Á � f (xn*)]

f (x1*)h, Á , f (xn*)h,

x j*f (x j*)
h � (b � a)>na � x � b

[F r(x) � f (x)].J � �
b

a

 f (x) dx � F (b) � F (a)

828 CHAP. 19 Numerics in General

y

xa b

y = f (x)

R

y

xa b

y = f (x)

x
1
* x

2
* xn*Fig. 440. Geometric interpretation

of a definite integral Fig. 441. Rectangular rule

y

xa b

y = f (x)

x
1

x
2

xn – 1

Fig. 442. Trapezoidal rule
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By taking their sum we obtain the trapezoidal rule

(2)

where as in (1). The ’s and a and b are called nodes.

E X A M P L E  1 Trapezoidal Rule

Evaluate by means of (2) with 

Note that this integral cannot be evaluated by elementary calculus, but leads to the error function (see Eq. (35),
App. 3).

Solution. from Table 19.3.

Table 19.3 Computations in Example 1

j xj xj
2 e�xj

2

0 0 0 1.000000
1 0.1 0.01 0.990050
2 0.2 0.04 0.960789
3 0.3 0.09 0.913931
4 0.4 0.16 0.852144
5 0.5 0.25 0.778801
6 0.6 0.36 0.697676
7 0.7 0.49 0.612626
8 0.8 0.64 0.527292
9 0.9 0.81 0.444858

10 1.0 1.00 0.367879

Sums 1.367879 6.778167

Error Bounds and Estimate for the Trapezoidal Rule
An error estimate for the trapezoidal rule can be derived from (5) in Sec. 19.3 with 
by integration as follows. For a single subinterval we have

with a suitable t depending on x, between and Integration over x from to
gives

�
x0�h

x0

 f (x) dx �
h
2

  [ f (x0) � f (x1)] � �
x0�h

x0

 (x � x0)(x � x0 � h)  
f s(t (x))

2
  dx.

x1 � x0 � h
a � x0x1.x0

f (x) � p1(x) � (x � x0)(x � x1)  
f s(t)

2

n � 1

�J � 0.1(0.5 � 1.367879 � 6.778167) � 0.746211

n � 10.J � �
1

0

 e�x2

 dx

x jh � (b � a)>n,

J � �
b

a

 f (x) dx � h c 12  
 
f (a) � f (x1) � f (x2) � Á � f (xn�1) �

1
2

 
 
f (b) d
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Setting and applying the mean value theorem of integral calculus, which we can
use because does not change sign, we find that the right side equals

where is a (suitable, unknown) value between and This is the error for the
trapezoidal rule with often called the local error.

Hence the error of (2) with any n is the sum of such contributions from the n
subintervals; since and we obtain

(3)

with (suitable, unknown) between a and b.
Because of (3) the trapezoidal rule (2) is also written

Error Bounds are now obtained by taking the largest value for say, and the
smallest value, in the interval of integration. Then (3) gives (note that K is negative)

(4)

Error Estimation by Halving h is advisable if is very complicated or unknown, for
instance, in the case of experimental data. Then we may apply the Error Principle of
Sec. 19.1. That is, we calculate by (2), first with h, obtaining, say, and then
with obtaining Now if we replace in (3) with the error is
multiplied by Hence (not exactly because may differ). Together,

Thus Division by 3
gives the error formula for 

(5)

E X A M P L E  2 Error Estimation for the Trapezoidal Rule by (4) and (5)

Estimate the error of the approximate value in Example 1 by (4) and (5).

Solution. (A) Error bounds by (4). By differentiation, Also, if 
so that the minimum and maximum occur at the ends of the interval. We compute and

Furthermore, and (4) gives

.

Hence the exact value of J must lie between

and

Actually, exact to 6D.J � 0.746824,

0.746211 � 0.001667 � 0.747878.0.746211 � 0.000614 � 0.745597

�0.000614 � P � 0.001667

K � �1>1200,M2* � f s(0) � �2.
M2 � f s(1) � 0.735759

0 � x � 1,f t(x) � 0f s(x) � 2(2x2 � 1)e�x2

.

Ph>2 � 1
3  (Jh>2 � Jh).

Jh>2

Jh>2 � Jh � (4 � 1)Ph>2.Jh>2 � Ph>2 � Jh � Ph � Jh � 4Ph>2.
t̂Ph>2 � 1

4 Ph
1
4 .

(1
2 h)2,h2J � Jh>2 � Ph>2.1

2 h,
J � Jh � Ph,

f s

KM2 � P � KM2*  where  K � �  
(b � a)3

12n2 � � 
b � a

12
 h2.

M2*,
M2,f s,

J � �
b

a

 f (x) dx � h c 12  
 
f (a) � f (x1) � Á � f (xn�1) �

1
2

 
 
f (b) d �

b � a
12

  h2f s(t̂ ).(2*)

t̂

P � � 
(b � a)3

12n2   f s(t̂ ) � �  
b � a

12
  h2f s(t̂ )

(b � a)2 � n2h2,h � (b � a)>n, nh3 � n(b � a)3>n3,
P

n � 1,
x1.x0t~

�
h

0

 v(v � h) dv  
f s(t~)

2
 � ah3

3
 �

h3

2
 b  f s(t~)

2
 � � 

h3

12
   f s(t~)(3*)

(x � x0)(x � x0 � h)
x � x0 � v
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(B) Error estimate by (5). in Example 1. Also,

Hence and exact to 6D.

Simpson’s Rule of Integration
Piecewise constant approximation of f led to the rectangular rule (1), piecewise linear
approximation to the trapezoidal rule (2), and piecewise quadratic approximation will lead
to Simpson’s rule, which is of great practical importance because it is sufficiently accurate
for most problems, but still sufficiently simple.

To derive Simpson’s rule, we divide the interval of integration into an even
number of equal subintervals, say, into subintervals of length 
with endpoints see Fig. 443. We now take the first
two subintervals and approximate in the interval by the
Lagrange polynomial through where From (3)
in Sec. 19.3 we obtain

(6)

The denominators in (6) are and respectively. Setting we
have

and we obtain

We now integrate with respect to x from to This corresponds to integrating with
respect to s from to 1. Since the result is

�
x2

x0

 f (x) dx � �
x2

x0

 p2(x) dx � h a1
3

  f0 �
4
3

  f1 �
1
3

  f2b
 

.(7*)

dx � h ds,�1
x2.x0

p2(x) � 1
2 s(s � 1) f0 � (s � 1)(s � 1) f1 � 1

2 
(s � 1)sf2.

x � x2 � x � (x1 � h) � (s � 1)h

x � x1 � sh,  x � x0 � x � (x1 � h) � (s � 1)h

s � (x � x1)>h,2h2,2h2, �h2,

p2(x) �
(x � x1)(x � x2)

(x0 � x1)(x0 � x2)
  f0 �

(x � x0)(x � x2)

(x1 � x0)(x1 � x2)
  f1 �

(x � x0)(x � x1)

(x2 � x0)(x2 � x1)
  f2.

fj � f (x j).(x0, f0), (x1, f1), (x2, f2),p2(x)
x0 � x � x2 � x0 � 2hf (x)

x0 (� a), x1, Á , x2m�1, x2m (� b);
h � (b � a)>(2m),n � 2m

a � x � b

�Jh>2 � Ph>2 � 0.746824,Ph>2 � 1
3 (Jh>2 � Jh) � 0.000153

Jh>2 � 0.05 c a
19

j�1

 e�( j>20)2

�
1

2
  (1 � 0.367879) d � 0.746671.

Jh � 0.746211
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A similar formula holds for the next two subintervals from to and so on. By summing
all these m formulas we obtain Simpson’s rule4

(7)

where and Table 19.4 shows an algorithm for Simpson’s
rule.

Table 19.4 Simpson’s Rule of Integration

ALGORITHM SIMPSON (a, b, m, ƒ0, ƒ1, • • • , ƒ2m)

This algorithm computes the integral from given values ƒj � ƒ(xj) at 
equidistant x0 � a, x1 � x0 � h, • • • , x2m � x0 � 2mh � b by Simpson’s rule (7),
where 

INPUT: a, b, m, ƒ0, • • • , ƒ2m

OUTPUT: Approximate value J� of J

Compute

s1 � ƒ1 � ƒ3 � • • • � ƒ2m�1

s2 � ƒ2 � ƒ4 � • • • � ƒ2m�2

h � (b � a) /2m

OUTPUT J�. Stop.

End SIMPSON

Error of Simpson’s Rule (7). If the fourth derivative exists and is continuous on
the error of (7), call it is

(8)

here is a suitable unknown value between a and b. This is obtained similarly to (3).
With this we may also write Simpson’s rule (7) as

�
b

a

 f (x) dx �
h
3

  ( f0 � 4f1 � Á � f2m) �
b � a
180

  h4f (4)(t̂ ).(7**)

t̂

PS � � 

(b � a)5

180 (2m)4
  f (4)(t̂ ) � �  

b � a
180

  h4f (4)(t̂ );

Ps,a � x � b,
f (4)

J� �
h

3
  (s0 � 4s1 � 2s2)

s0 � f0 � f2m

h � (b � a)>(2m).

J � �b
a

  f (x) dx

fj � f (x j).h � (b � a)>(2m)

�
b

a

 f (x) dx �
h
3

  ( f0 � 4f1 � 2f2 � 4f3 � Á � 2f2m�2 � 4f2m�1 � f2m),

x4,x2

832 CHAP. 19 Numerics in General

4THOMAS SIMPSON (1710–1761), self-taught English mathematician, author of several popular textbooks.
Simpson’s rule was used much earlier by Torricelli, Gregory (in 1668), and Newton (in 1676).
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Error Bounds. By taking for in (8) the maximum and minimum on the interval
of integration we obtain from (8) the error bounds (note that C is negative)

(9)

Degree of Precision (DP) of an integration formula. This is the maximum degree of
arbitrary polynomials for which the formula gives exact values of integrals over any
intervals.

Hence for the trapezoidal rule,

because we approximate the curve of f by portions of straight lines (linear polynomials).
For Simpson’s rule we might expect (why?). Actually,

by (9) because is identically zero for a cubic polynomial. This makes Simpson’s rule
sufficiently accurate for most practical problems and accounts for its popularity.

Numeric Stability with respect to rounding is another important property of Simpson’s
rule. Indeed, for the sum of the roundoff errors of the values in (7) we obtain,
since 

where u is the rounding unit ( if we round off to 6D; see Sec. 19.1). Also
is the sum of the coefficients for a pair of intervals in (7); take in

(7) to see this. The bound is independent of m, so that it cannot increase with
increasing m, that is, with decreasing h. This proves stability.

Newton–Cotes Formulas. We mention that the trapezoidal and Simpson rules are special
closed Newton–Cotes formulas, that is, integration formulas in which is interpolated
at equally spaced nodes by a polynomial of degree for trapezoidal, for
Simpson), and closed means that a and b are nodes and higher
n are used occasionally. From on, some of the coefficients become negative, so
that a positive could make a negative contribution to an integral, which is absurd. For
more on this topic see Ref. [E25] in App. 1.

E X A M P L E  3 Simpson’s Rule. Error Estimate

Evaluate by Simpson’s rule with and estimate the error.

Solution. Since , Table 19.5 gives

J �
0.1

3
  (1.367879 � 4 # 3.740266 � 2 # 3.037901) � 0.746825.

h � 0.1

2m � 10J � �
1

0

 e�x2

dx

fj

n � 8
(a � x0, b � xn). n � 3

n � 2n (n � 1
f (x)

�

(b � a)u
m � 16 � 1 � 4 � 1

u � 1
2 � 10�6

h
3

  ƒ P0 � 4P1 � Á � P2m ƒ �
b � a
3.2m

  6mu � (b � a)u

h � (b � a)>2m,
fj2m � 1Pj

f (4)

DP � 3

DP � 2

DP � 1

CM4 � PS � CM4*  where  C � � 
(b � a)5

180(2m)4 � � 
b � a
180

 h4.

M4*M4f (4)
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Estimate of error. Differentiation gives By considering the derivative 
of we find that the largest value of in the interval of integration occurs at 0 and the smallest value at

Computation gives the values and Since
and we obtain Therefore, from (9),

Hence J must lie between and so that at
least four digits of our approximate value are exact. Actually, the value 0.746825 is exact to 5D because

(exact to 6D).
Thus our result is much better than that in Example 1 obtained by the trapezoidal rule, whereas the number

of operations is nearly the same in both cases. �

J � 0.746824

0.746825 � 0.000005 � 0.746830,0.746825 � 0.000007 � 0.746818

�0.000007 � Ps � 0.000005.

C � �1>1800000 � �0.00000056.b � a � 1,2m � 10
M4* � f (4)(x*) � �7.419.M4 � f (4)(0) � 12x* � (2.5 � 0.5110)1>2.

f (4)f (4)
f (5)f (4)(x) � 4 (4x4 � 12x2 � 3)e�x2

.

834 CHAP. 19 Numerics in General

Table 19.5 Computations in Example 3

j xj xj
2

e�xj
2

0 0 0 1.000000

1 0.1 0.01 0.990050

2 0.2 0.04 0.960789

3 0.3 0.09 0.913931
4 0.4 0.16 0.852144
5 0.5 0.25 0.778801
6 0.6 0.36 0.697676
7 0.7 0.49 0.612626
8 0.8 0.64 0.527292
9 0.9 0.81 0.444858

10 1.0 1.00 0.367879

Sums 1.367879 3.740266 3.037901 

Instead of picking an and then estimating the error by (9), as in Example 3, it is
better to require an accuracy (e.g., 6D) and then determine from (9).

E X A M P L E  4 Determination of in Simpson’s Rule from the Required Accuracy

What n should we choose in Example 3 to get 6D-accuracy?

Solution. Using (which is bigger in absolute value than we get from (9), with and
the required accuracy,

thus .

Hence we should choose Do the computation, which parallels that in Example 3.
Note that the error bounds in (4) or (9) may sometimes be loose, so that in such a case a smaller 

may already suffice.

Error Estimation for Simpson’s Rule by Halving h. The idea is the same as in (5)
and gives

(10)

is obtained by using h and by using and is the error of Jh>2.Ph>2
1
2 h,Jh>2Jh

Ph>2 � 1
15 (Jh>2 � Jh).

�
n � 2m

n � 2m � 20.

m � c 2 � 106 � 12

180 � 24
d

1>4

� 9.55ƒ CM4 ƒ �
12

180(2m)4
�

1

2
� 10�6,

b � a � 1M4*,M4 � 12

n � 2m

n � 2m
n � 2m
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Derivation. In (5) we had as the reciprocal of and resulted from
in (3) by replacing h with In (10) we have as the reciprocal of 

and results from in (8) by replacing h with 

E X A M P L E  5 Error Estimation for Simpson’s Rule by Halving

Integrate from 0 to 2 with and apply (10).

Solution. The exact 5D-value of the integral is Simpson’s rule gives

Hence (10) gives and thus with an
error which is less in absolute value than of the error 0.02979 of Hence the use of (10) was
well worthwhile.

Adaptive Integration
The idea is to adapt step h to the variability of That is, where f varies but little, we can
proceed in large steps without causing a substantial error in the integral, but where f varies
rapidly, we have to take small steps in order to stay everywhere close enough to the curve
of f.

Changing h is done systematically, usually by halving h, and automatically (not “by hand”)
depending on the size of the (estimated) error over a subinterval. The subinterval is halved
if the corresponding error is still too large, that is, larger than a given tolerance TOL
(maximum admissible absolute error), or is not halved if the error is less than or equal to
TOL (or doubled if the error is very small).

Adapting is one of the techniques typical of modern software. In connection with
integration it can be applied to various methods. We explain it here for Simpson’s rule. In
Table 19.6 an asterisk means that for that subinterval, TOL has been reached.

E X A M P L E  6 Adaptive Integration with Simpson’s Rule

Integrate from to 2 by adaptive integration and with Simpson’s rule and 
TOL

Solution. Table 19.6 shows the calculations. Figure 444 shows the integrand and the adapted intervals
used. The first two intervals ([0, 0.5], [0.5, 1.0]) have length 0.5, hence [because we use 
subintervals in Simpson’s rule The next two intervals ([1.00, 1.25], [1.25, 1.50]) have length 0.25
(hence and the last four intervals have length 0.125. Sample computations. For 0.740480 see
Example 5. Formula (10) gives Note that 0.123716 refers to [0, 0.5]
and [0.5, 1], so that we must subtract the value corresponding to [0, 1] in the line before. Etc.

gives 0.0001 for subintervals of length 1, 0.00005 for length 0.5, etc. The value of the
integral obtained is the sum of the values marked by an asterisk (for which the error estimate has become
less than TOL). This gives

The exact 5D-value is . Hence the error is 0.00017. This is about of the absolute value of
that in Example 5. Our more extensive computation has produced a much better result. �

1>200J � 1.25953

J � 0.123716 � 0.528895 � 0.388263 � 0.218483 � 1.25936.

TOL[0, 2] � 0.0002

(0.123716 � 0.122794)>15 � 0.000061.
h � 0.125)

(7**)].
2m � 2h � 0.25

f (x)

[0, 2] � 0.0002.
x � 0f (x) � 1

4 px4 cos 14 px

f (x).

�
Jh>2.

1
10 �0.00283

J � Jh>2 � Ph>2 � 1.26236,Ph>2 � 1
15 (1.22974 � 0.74048) � 0.032617

 � 1
6 [0 � 4 � 0.045351 � 2 � 0.555361 � 4 � 1.521579 � 0] � 1.22974.

 Jh>2 � 1
6  [ f (0) � 4 f (1

2) � 2 f (1) � 4f (3
2) � f (2)]

 Jh � 1
3 3 f (0) � 4 f (1) � f (2)4 � 1

3 (0 � 4 � 0.555360 � 0) � 0.740480,

J � 1.25953.

h � 1f (x) � 1
4 px4 cos 14 px

1
2 h.h41

16 � (1
2)4

15 � 16 � 11
15 

1
2 h.h2

1
4 � (1

2)23 � 4 � 11
3 
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Gauss Integration Formulas 
Maximum Degree of Precision
Our integration formulas discussed so far use function values at predetermined
(equidistant) x-values (nodes) and give exact results for polynomials not exceeding a

836 CHAP. 19 Numerics in General

Table 19.6 Computations in Example 6

Interval Integral Error (10) TOL Comment

[0, 2] 0.740480 0.0002

[0, 1] 0.122794
[1, 2] 1.10695

Sum � 1.22974 0.032617 0.0002 Divide further

[0.0, 0.5] 0.004782
[0.5, 1.0] 0.118934

Sum � 0.123716* 0.000061 0.0001 TOL reached

[1.0, 1.5] 0.528176
[1.5, 2.0] 0.605821

Sum � 1.13300 0.001803 0.0001 Divide further

[1.00, 1.25] 0.200544
[1.25, 1.50] 0.328351

Sum � 0.528895* 0.000048 0.00005 TOL reached

[1.50, 1.75] 0.388235
[1.75, 2.00] 0.218457

Sum � 0.606692 0.000058 0.00005 Divide further

[1.500, 1.625] 0.196244
[1.625, 1.750] 0.192019

Sum � 0.388263* 0.000002 0.000025 TOL reached

[1.750, 1.875] 0.153405
[1.875, 2.000] 0.065078

Sum � 0.218483* 0.000002 0.000025 TOL reached

f (x)

x0

1.5

1.0

0.5

0.50 1 1.5 2

Fig. 444. Adaptive integration in Example 6

c19-b.qxd  11/2/10  8:33 PM  Page 836



certain degree [called the degree of precision; see after (9)]. But we can get much more
accurate integration formulas as follows. We set

(11)

with fixed n, and obtained from by setting 
Then we determine the n coefficients and n nodes so that (11) gives
exact results for polynomials of degree k as high as possible. Since is the
number of coefficients of a polynomial of degree it follows that 

Gauss has shown that exactness for polynomials of degree not exceeding (instead
of for predetermined nodes) can be attained, and he has given the location of the

the jth zero of the Legendre polynomial in Sec. 5.3) and the coefficients which
depend on n but not on and are obtained by using Lagrange’s interpolation polynomial,
as shown in Ref. [E5] listed in App. 1. With these and formula (11) is called a Gauss
integration formula or Gauss quadrature formula. Its degree of precision is as
just explained. Table 19.7 gives the values needed for (For larger n, see 
pp. of Ref. [GenRef1] in App. 1.)916–919

n � 2, Á , 5.
2n � 1,

Aj,tj

f(t),
AjPntj (�

n � 1
2n � 1
k � 2n �1.2n � 1,

n � n � 2n
t1, Á , tnA1, Á , An

x � 1
2 [a(t � 1) � b(t � 1)].x � a, bt � 	1

[ fj � f (tj)]�
1

�1
  
f (t) dt � a

n

j�1

 Aj fj

SEC. 19.5 Numeric Integration and Differentiation 837

Table 19.7 Gauss Integration: Nodes tj and Coefficients Aj

n Nodes tj Coefficients Aj Degree of Precision

�0.5773502692 1
32

0.5773502692 1

�0.7745966692 0.5555555556
3 0 0.8888888889 5

0.7745966692 0.5555555556

�0.8611363116 0.3478548451
�0.3399810436 0.6521451549

4 7
0.3399810436 0.6521451549
0.8611363116 0.3478548451

�0.9061798459 0.2369268851
�0.5384693101 0.4786286705

5 0 0.5688888889 9
0.5384693101 0.4786286705
0.9061798459 0.2369268851

E X A M P L E  7 Gauss Integration Formula with n 3

Evaluate the integral in Example 3 by the Gauss integration formula (11) with 

Solution. We have to convert our integral from 0 to 1 into an integral from to 1. We set 
Then and (11) with and the above values of the nodes and the coefficients yieldsn � 3dx � 1

2 dt,
x � 1

2 (t � 1).�1

n � 3.

�
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(exact to 6D: 0.746825), which is almost as accurate as the Simpson result obtained in Example 3 with a much
larger number of arithmetic operations. With 3 function values (as in this example) and Simpson’s rule we would
get with an error over 30 times that of the Gauss integration.

E X A M P L E  8 Gauss Integration Formula with n 4 and 5

Integrate from to 2 by Gauss. Compare with the adaptive integration in Example 6
and comment.

Solution. gives as needed in (11). For we calculate (6S)

The error is 0.00003 because (6S). Calculating with 10S and gives the same result; so the
error is due to the formula, not rounding. For and 10S we get too large by the amount
0.000000250 because The accuracy is impressive, particularly if we compare the amount
of work with that in Example 6.

Gauss integration is of considerable practical importance. Whenever the integrand f is
given by a formula (not just by a table of numbers) or when experimental measurements
can be set at times (or whatever t represents) shown in Table 19.7 or in Ref. [GenRef1],
then the great accuracy of Gauss integration outweighs the disadvantage of the complicated

and (which may have to be stored). Also, Gauss coefficients are positive for all
n, in contrast with some of the Newton–Cotes coefficients for larger n.

Of course, there are frequent applications with equally spaced nodes, so that Gauss
integration does not apply (or has no great advantage if one first has to get the in (11)
by interpolation).

Since the endpoints and 1 of the interval of integration in (11) are not zeros of 
they do not occur among and the Gauss formula (11) is called, therefore, an
open formula, in contrast with a closed formula, in which the endpoints of the interval
of integration are and [For example, (2) and (7) are closed formulas.]

Numeric Differentiation
Numeric differentiation is the computation of values of the derivative of a function f from
given values of f. Numeric differentiation should be avoided whenever possible. Whereas
integration is a smoothing process and is not very sensitive to small inaccuracies in function
values, differentiation tends to make matters rough and generally gives values of that are
much less accurate than those of f. The difficulty with differentiation is tied in with the
definition of the derivative, which is the limit of the difference quotient, and, in that quotient,
you usually have the difference of a large quantity divided by a small quantity. This can
cause numerical instability. While being aware of this caveat, we must still develop basic
differentiation formulas for use in numeric solutions of differential equations.

We use the notations etc., and may obtain rough approximation
formulas for derivatives by remembering that

f r(x) � lim
h:0

  
f (x � h) � f (x)

h
 .

fjr � f r(xj),  fjs � f s(xj),

f r

tn.t0

t0, Á , tn,
Pn,�1

tj

AjAjtj

tj

�
J � 1.259525935 (10S).

J � 1.259526185,n � 5
n � 4J � 1.25953

 � 0.347855(0.000290309 � 1.02570) � 0.652145(0.129464 � 1.25459) � 1.25950.

 J � A1 f1 � Á � A4 f4 � A1( f1 � f4) � A2( f2 � f3)

n � 4f (t) � 1
4 p(t � 1)4 cos (1

4 p (t � 1)),x � t � 1

x � 0f (x) � 1
4 px4 cos 14 px

�

�1
6 (1 � 4e�0.25 � e�1) � 0.747180,

�
1

2
  c 5

9
  exp  a� 

1

4
 a1 �

B

3

5
b2b �

8

9
  exp  a� 

1

4
 b �

5

9
  exp  a� 

1

4
 a1 �

B

3

5
b2b d � 0.746815

�
1

0

 exp (�x2) dx �
1

2
  �

1

�1
 
exp  a� 

1

4
 (t � 1)2b

 

dt
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This suggests

(12)

Similarly, for the second derivative we obtain

(13) etc.

More accurate approximations are obtained by differentiating suitable Lagrange
polynomials. Differentiating (6) and remembering that the denominators in (6) are 

we have

Evaluating this at we obtain the “three-point formulas”

(a)

(14) (b)

(c)

Applying the same idea to the Lagrange polynomial we obtain similar formulas,
in particular,

(15)

Some examples and further formulas are included in the problem set as well as in 
Ref. [E5] listed in App. 1.

f2r �
1

12h
  ( f0 � 8f1 � 8f3 � f4).

p4(x),

f2r �
1

2h
 ( f0 � 4f1 � 3f2).

f1r �
1

2h
 (�f0 � f2),

f0r �
1

2h
 (�3f0 � 4f1 � f2),

x0, x1, x2,

f r(x) � p2r (x) �
2x � x1 � x2

2h2
  f0 �

2x � x0 � x2

h2
  f1 �

2x � x0 � x1

2h2
  f2.

�h2, 2h2,
2h2,

f1s �
d2f1

h2
�

f2 � 2 f1 � f0

h2
 ,

f1>2r �
df1>2

h
�

f1 � f0
h

 .
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1–6 RECTANGULAR AND TRAPEZOIDAL RULES

1. Rectangular rule. Evaluate the integral in Example
1 by the rectangular rule (1) with subintervals of
length 0.1. Compare with Example 1. (6S-exact:
0.746824)

2. Bounds for (1). Derive a formula for lower and upper
bounds for the rectangular rule. Apply it to Prob. 1.

P R O B L E M  S E T  1 9 . 5

3. Trapezoidal rule. To get a feel for increase in accuracy,
integrate from 0 to 1 by (2) with 

4. Error estimation by halfing. Integrate from
0 to 1 by (2) with and esti-
mate the error for and by (5).

5. Error estimation. Do the tasks in Prob. 4 for
f (x) � sin 12 px.

h � 0.25h � 0.5
h � 1, h � 0.5, h � 0.25

f (x) � x4

0.25, 0.1.h � 1, 0.5,x2
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840 CHAP. 19 Numerics in General

6. Stability. Prove that the trapezoidal rule is stable with
respect to rounding.

7–15 SIMPSON’S RULE

Evaluate the integrals 

by Simpson’s rule with 2m as indicated,

and compare with the exact value known from calculus.

7. 8.

9. 10.

11. 12.

13. Error estimate. Compute the integral J by Simpson’s
rule with and use the value and that in Prob.
11 to estimate the error by (10).

14. Error bounds and estimate. Integrate from 0 to 2
by (7) with and with Give error bounds
for the value and an error estimate by (10).

15. Given TOL. Find the smallest n in computing A (see
Probs. 7 and 8) such that 5S-accuracy is guaranteed
(a) by (4) in the use of (2), (b) by (9) in the use of (7).

16–21 NONELEMENTARY INTEGRALS
The following integrals cannot be evaluated by the usual
methods of calculus. Evaluate them as indicated. Compare
your value with that possibly given by your CAS. is
the sine integral. and are the Fresnel integrals.
See App. A3.1. They occur in optics.

16. by (2), and apply (5).

17. by (7), 

18. Obtain a better value in Prob. 17. Hint. Use (10).

19. by (7), 

20. by (7), 

21. by (7), 

22–25 GAUSS INTEGRATION
Integrate by (11) with 

22. from 0 to 

23. from 0 to 1

24. from 0 to 1.25

25. from 0 to 1exp (�x2)

sin (x2)

xe�x

1
2 pcos x

n � 5:

2m � 10C(1.25)

2m � 10S(1.25)

2m � 10Si (1)

2m � 2, 2m � 4Si (1)

n � 5, n � 10,Si (1)

S(x) � �
x

0

 sin (x*
2

) dx*, C(x) � �
x

0

 cos (x*
2

) dx*

Si(x) � �
x

0

 
sin x*

x*
 dx*,

C(x)S(x)
Si (x)

h � 0.5
h � 0.5.h � 1

e�x

2m � 8

J, 2m � 10J, 2m � 4

B, 2m � 10B, 2m � 4

A, 2m � 10A, 2m � 4

J � �
1

0

 
dx

1 � x2

B � �
0.4

0

 xe�x2

 dx,A � �
2

1

 
dx
x  ,

26. TEAM PROJECT. Romberg Integration (W. Rom-
berg, Norske Videnskab. Trondheim, F rh. 28, Nr. 7,
1955). This method uses the trapezoidal rule and gains
precision stepwise by halving h and adding an error
estimate. Do this for the integral of from

to with as follows.

Step 1. Apply the trapezoidal rule (2) with 
(hence to get an approximation . Halve h
and use (2) to get and an error estimate

If stop. The result is 

Step 2. Show that hence
and go on. Use (2) with to get 

and add to it the error estimate to
get the better Calculate

If stop. The result is 
(Why does come in?) Show that we obtain

so that we can stop. Arrange your
J- and -values in a kind of “difference table.”P

P32 � �0.000266,
24 � 16

J33 � J32 � P32.ƒ P32 ƒ � TOL,

P32 �
1

24 � 1
  (J32 � J22) �

1
15

  (J32 � J22).

J32 � J31 � P31.
P31 � 1

3 (J31 � J21)
J31h>4ƒ P21 ƒ � TOL

P21 � �0.066596,

J22 � J21 � P21.ƒ P21 ƒ � TOL,

P21 �
1

22 � 1
  (J21 � J11).

J21

J11n � 1)
h � 2

TOL � 10�3,x � 2x � 0
f (x) � e�x

�

J22J21

J11

J31
J33J32


31


21


32

If were greater than TOL, you would have to
go on and calculate in the next step from (2) with

then

with

with

with

where (How does this come in?)

Apply the Romberg method to the integral
of from to 2 with

27–30 DIFFERENTIATION

27. Consider for 
Calculate from 

Determine the errors. Compare and
comment.

(15).(14c),
(14a), (14b),f2rx3 � 0.6, x4 � 0.8.

x0 � 0, x1 � 0.2, x2 � 0.4,f (x) � x4

TOL � 10�4.
x � 0f (x) � 1

4 px4 cos 14 px

63 � 26 � 1.

P43 � 1
63 (J43 � J33)J44 � J43 � P43

P42 � 1
15 (J42 � J32)J43 � J42 � P42

P41 � 1
3 (J41 � J31)J42 � J41 � P41

h � 1
4 ;

J41

ƒ P32 ƒ
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28. A “four-point formula” for the derivative is

Apply it to with as in Prob. 27,
determine the error, and compare it with that in the case
of (15).

29. The derivative can also be approximated in
terms of first-order and higher order differences (see
Sec. 19.3):

f r(x)

x1, Á , x4f (x) � x4

f2r �
1

6h
  (�2f1 � 3f2 � 6f3 � f4).

Compute in Prob. 27 from this formula, using
differences up to and including first order, second
order, third order, fourth order.

30. Derive the formula in Prob. 29 from (14) in Sec. 19.3.

f r(0.4)

�
1
3

 ¢3f0 �
1
4

 ¢4f0 � � Á b .
f r(x0) �

1
h

  a¢f0 �
1
2

 ¢2f0

Chapter 19 Review Questions and Problems 841

1. What is a numeric method? How has the computer
influenced numerics?

2. What is an error? A relative error? An error bound?

3. Why are roundoff errors important? State the rounding
rules.

4. What is an algorithm? Which of its properties are
important in software implementation?

5. What do you know about stability?

6. Why is the selection of a good method at least as
important on a large computer as it is on a small one?

7. Can the Newton (–Raphson) method diverge? Is it fast?
Same questions for the bisection method.

8. What is fixed-point iteration?

9. What is the advantage of Newton’s interpolation
formulas over Lagrange’s?

10. What is spline interpolation? Its advantage over
polynomial interpolation?

11. List and compare the integration methods we have
discussed.

12. How did we use an interpolation polynomial in deriving
Simpson’s rule?

13. What is adaptive integration? Why is it useful?

14. In what sense is Gauss integration optimal?

15. How did we obtain formulas for numeric differentiation?

16. Write in
floating-point form with 5S (5 significant digits,
properly rounded).

17. Compute as given
and then rounded stepwise to 3S, 2S, 1S. Comment.
(“Stepwise” means rounding the rounded numbers, not
the given ones.)

18. Compute as given and
then rounded stepwise to 4S, 3S, 2S, 1S. Comment.

19. Let 19.1 and 25.84 be correctly rounded. Find the
shortest interval in which the sum s of the true
(unrounded) numbers must lie.

0.38755>(5.6815 � 0.38419)

(5.346 � 3.644)>(3.444 � 3.055)

�46.9028104, 0.000317399, 54>7, �890>3

C H A P T E R  1 9  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S

20. Do the same task as in Prob. 19 for the difference

21. What is the relative error of in terms of that of ?

22. Show that the relative error of is about twice that
of 

23. Solve in two ways (cf. Sec. 19.1).
Use 4S-arithmetic.

24. Solve Use 5S-arithmetic.

25. Compute the solution of near by
transforming the equation algebraically to the form

and starting from 

26. Solve by Newton’s method, starting from

27. Solve Prob. 25 by bisection (3S-accuracy).

28. Compute from 
by quadratic interpolation.

29. Find the cubic spline for the data 

30. Find the cubic spline q and the interpolation polynomial
p for the data (0, 0), (1, 1), (2, 6), (3, 10), with

and graph p and q on common
axes.

31. Compute the integral of from 0 to 1 by the
trapezoidal rule with What error bounds are
obtained from (4) in Sec. 19.5? What is the actual error
of the result?

32. Compute the integral of from 0 to 1 by
Simpson’s rule with 

33. Solve Prob. 32 by Gauss integration with and

34. Compute for using (14b) in Sec. 19.5
with (a) (b) Compare the accuracy.

35. Compute for using (13) in Sec. 19.5
with (a) (b) h � 0.1.h � 0.2,

f (x) � x3f s(0.2)

h � 0.1.h � 0.2,
f (x) � x3f r(0.2)

n � 5.
n � 3

2m � 4.
cos (x2)

n � 5.
x3

qr(0) � 0, qr(3) � 0

f (2) � 4, k0 � �1, k2 � 5.
f (0) � 0,  f (1) � 0,

sinh 1.0 � 1.175
sinh 0.5 � 0.521,sinh 0,sinh 0.4

x � 0.5.
cos x � x2

x0 � 0.x � g(x)

x � 0x4 � x � 0.1

x2 � 100x � 1 � 0.

x2 � 40x � 2 � 0

a�.
a�2

a�na�
3.2 � 6.29.
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842 CHAP. 19 Numerics in General

In this chapter we discussed concepts that are relevant throughout numeric work as
a whole and methods of a general nature, as opposed to methods for linear algebra
(Chap. 20) or differential equations (Chap. 21).

In scientific computations we use the floating-point representation of numbers
(Sec. 19.1); fixed-point representation is less suitable in most cases.

Numeric methods give approximate values of quantities. The error of is

(1) (Sec. 19.1)

where a is the exact value. The relative error of is Errors arise from rounding,
inaccuracy of measured values, truncation (that is, replacement of integrals by sums,
series by partial sums), and so on.

An algorithm is called numerically stable if small changes in the initial data give
only correspondingly small changes in the final results. Unstable algorithms are
generally useless because errors may become so large that results will be very
inaccurate. The numeric instability of algorithms must not be confused with the
mathematical instability of problems (“ill-conditioned problems,” Sec. 19.2).

Fixed-point iteration is a method for solving equations in which the
equation is first transformed algebraically to an initial guess for the
solution is made, and then approximations are successively computed
by iteration from (see Sec. 19.2)

(2)

Newton’s method for solving equations is an iteration

(3) (Sec. 19.2).

Here is the x-intercept of the tangent of the curve at the point 
This method is of second order (Theorem 2, Sec. 19.2). If we replace in (3) by
a difference quotient (geometrically: we replace the tangent by a secant), we obtain
the secant method; see (10) in Sec. 19.2. For the bisection method (which converges
slowly) and the method of false position, see Problem Set 19.2.

Polynomial interpolation means the determination of a polynomial such
that where and are measured or
observed values, values of a function, etc. is called an interpolation polynomial.
For given data, of degree n (or less) is unique. However, it can be written in
different forms, notably in Lagrange’s form (4), Sec. 19.3, or in Newton’s divided
difference form (10), Sec. 19.3, which requires fewer operations. For regularly
spaced the latter becomes Newton’s forward
difference formula (formula (14) in Sec. 19.3):

x0, x1 � x0 � h, Á , xn � x0 � nh

pn(x)
pn(x)

(x0, f0), Á , (xn, fn)j � 0, Á , npn(x j) � fj,
pn(x)

f r
xn.y � f (x)xn�1

xn�1 � xn �
f (xn)

f r(xn)

f (x) � 0

(n � 0, 1, Á ).xn�1 � g(xn)

x1, x2, Á ,
x0x � g(x),

f (x) � 0

P>a.a�

P � a � a�

a�Pa�

SUMMARY OF CHAPTER 19
Numerics in General
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(4)

where and the forward differences are and

A similar formula is Newton’s backward difference interpolation formula (formula
(18) in Sec. 19.3).

Interpolation polynomials may become numerically unstable as n increases, and
instead of interpolating and approximating by a single high-degree polynomial it is
preferable to use a cubic spline that is, a twice continuously differentiable
interpolation function [thus, which in each subinterval 
consists of a cubic polynomial see Sec. 19.4.

Simpson’s rule of numeric integration is [see (7), Sec. 19.5]

(5)

with equally spaced nodes and
It is simple but accurate enough for many applications. Its degree of

precision is because the error (8), Sec. 19.5, involves A more practical
error estimate is (10), Sec. 19.5,

obtained by first computing with step h, then with step and then taking of
the difference of the results.

Simpson’s rule is the most important of the Newton–Cotes formulas, which are
obtained by integrating Lagrange interpolation polynomials, linear ones for the
trapezoidal rule (2), Sec. 19.5, quadratic for Simpson’s rule, cubic for the three-
eights rule (see the Chap. 19 Review Problems), etc.

Adaptive integration (Sec. 19.5, Example 6) is integration that adjusts
(“adapts”) the step (automatically) to the variability of 

Romberg integration (Team Project 26, Problem Set 19.5) starts from the
trapezoidal rule (2), Sec. 19.5, with etc. and improves results by
systematically adding error estimates.

Gauss integration (11), Sec. 19.5, is important because of its great accuracy
compared to Newton–Cotes’s or n). This is achieved

by an optimal choice of the nodes, which are not equally spaced; see Table 19.7,
Sec. 19.5.

Numeric differentiation is discussed at the end of Sec. 19.5. (Its main application
(to differential equations) follows in Chap. 21.)

DP � n � 1(DP � 2n � 1,

h, h>2, h>4,

f (x).

1
15 h>2,

Ph>2 � 1
15 (Jh>2 � Jh),

h4.DP � 3
fj � f (x j).

x j � x0 � jh, j � 1, Á , 2m, h � (b � a)>(2m),

�
b

a

 f (x) dx �
h
3

 ( f0 � 4f1 � 2f2 � 4f3 � Á � 2f2m�2 � 4f2m�1 � f2m)

qj(x);
x j � x � x j�1g(x j) � fj],

g(x),

(k � 2, 3, Á ).¢
kfj � ¢

k�1fj�1 � ¢
k�1fj

¢fj � fj�1 � fjr � (x � x0)>h

f (x) � pn(x) � f0 � r ¢f0 � Á �
r (r � 1) Á (r � n � 1)

n!
 ¢nf0

Summary of Chapter 19 843
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844

C H A P T E R 2 0

Numeric Linear Algebra

This chapter deals with two main topics. The first topic is how to solve linear systems of
equations numerically. We start with Gauss elimination, which may be familiar to some
readers, but this time in an algorithmic setting with partial pivoting. Variants of this method
(Doolittle, Crout, Cholesky, Gauss–Jordan) are discussed in Sec. 20.2. All these methods
are direct methods, that is, methods of numerics where we know in advance how many
steps they will take until they arrive at a solution. However, small pivots and roundoff
error magnification may produce nonsensical results, such as in the Gauss method. A shift
occurs in Sec. 20.3, where we discuss numeric iteration methods or indirect methods to
address our first topic. Here we cannot be totally sure how many steps will be needed to
arrive at a good answer. Several factors—such as how far is the starting value from our
initial solution, how is the problem structure influencing speed of convergence, how
accurate would we like our result to be—determine the outcome of these methods.
Moreover, our computation cycle may not converge. Gauss–Seidel iteration and Jacobi
iteration are discussed in Sec. 20.3. Section 20.4 is at the heart of addressing the pitfalls
of numeric linear algebra. It is concerned with problems that are ill-conditioned. We learn
to estimate how “bad” such a problem is by calculating the condition number of its matrix.

The second topic (Secs. 20.6–20.9) is how to solve eigenvalue problems numerically.
Eigenvalue problems appear throughout engineering, physics, mathematics, economics,
and many areas. For large or very large matrices, determining the eigenvalues is difficult
as it involves finding the roots of the characteristic equations, which are high-degree
polynomials. As such, there are different approaches to tackling this problem. Some
methods, such as Gerschgorin’s method and Collatz’s method only provide a range in
which eigenvalues lie and thus are known as inclusion methods. Others such as
tridiagonalization and QR-factorization actually find all the eigenvalues. The area is quite
ingeneous and should be fascinating to the reader.

COMMENT. This chapter is independent of Chap. 19 and can be studied immediately
after Chap. 7 or 8.

Prerequisite: Secs. 7.1, 7.2, 8.1.
Sections that may be omitted in a shorter course: 20.4, 20.5, 20.9.
References and Answers to Problems: App. 1 Part E, App. 2.

20.1 Linear Systems: Gauss Elimination
The basic method for solving systems of linear equations by Gauss elimination and back
substitution was explained in Sec. 7.3. If you covered Sec. 7.3, you may wonder why we
cover Gauss elimination again. The reason is that here we cover Gauss elimination in the
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setting of numerics and introduce new material such as pivoting, row scaling, and operation
count. Furthermore, we give an algorithmic representation of Gauss elimination in Table 20.1
that can be readily converted into software. We also show when Gauss elimination runs
into difficulties with small pivots and what to do about it. The reader should pay close
attention to the material as variants of Gauss elimination are covered in Sec. 20.2 and,
furthermore, the general problem of solving linear systems is the focus of the first half of
this chapter.

A linear system of n equations in n unknowns is a set of equations
of the form

(1)

where the coefficients and the are given numbers. The system is called homogeneous
if all the are zero; otherwise it is called nonhomogeneous. Using matrix multiplication
(Sec. 7.2), we can write (1) as a single vector equation

(2)

where the coefficient matrix is the matrix

are column vectors. The following matrix A� is called the augmented matrix of the
system (1):

A solution of (1) is a set of numbers that satisfy all the n equations, and a
solution vector of (1) is a vector x whose components constitute a solution of (1).

The method of solving such a system by determinants (Cramer’s rule in Sec. 7.7) is
not practical, even with efficient methods for evaluating the determinants.

A practical method for the solution of a linear system is the so-called Gauss elimination,
which we shall now discuss ( proceeding independently of Sec. 7.3).

x1, Á , xn

A� � [A b] � Ea11
Á a1n b1

a21
Á a2n b2

# Á # #

an1
Á ann bn

U .

b � E b1

o

bn

UandA � Ea11 a12
Á a1n

a21 a22
Á a2n

# # Á #

an1 an2
Á ann

U , and x � E x1

o

xn

U 
n � nA � [ajk]

Ax � b

bj

bjajk

E1:   a11x1 � Á � a1nxn � b1

E2:   a21x1 � Á � a2nxn � b2

 # # # # # # # # # # # # #

En:   an1x1 � Á � annxn � bn

E1, Á , En

x1, Á , xn
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Gauss Elimination
This standard method for solving linear systems (1) is a systematic process of elimination
that reduces (1) to triangular form because the system can then be easily solved by back
substitution. For instance, a triangular system is

and back substitution gives from the third equation, then

from the second equation, and finally from the first equation

How do we reduce a given system (1) to triangular form? In the first step we eliminate
from equations to in (1). We do this by adding (or subtracting) suitable multi-

ples of to (from) equations and taking the resulting equations, call them
as the new equations. The first equation, is called the pivot equation in

this step, and is called the pivot. This equation is left unaltered. In the second step
we take the new second equation (which no longer contains as the pivot equation
and use it to eliminate from to And so on. After steps this gives a
triangular system that can be solved by back substitution as just shown. In this way we
obtain precisely all solutions of the given system (as proved in Sec. 7.3).

The pivot (in step k) must be different from zero and should be large in absolute
value to avoid roundoff magnification by the multiplication in the elimination. For this
we choose as our pivot equation one that has the absolutely largest in column k on or
below the main diagonal (actually, the uppermost if there are several such equations). This
popular method is called partial pivoting. It is used in CASs (e.g., in Maple).

Partial pivoting distinguishes it from total pivoting, which involves both row and
column interchanges but is hardly used in practice.

Let us illustrate this method with a simple example.

E X A M P L E  1 Gauss Elimination. Partial Pivoting

Solve the system

Solution. We must pivot since has no -term. In Column 1, equation has the largest coefficient.
Hence we interchange and 

 8x2 � 2x3 � �7.

 3x1 � 5x2 � 2x3 � 8

 6x1 � 2x2 � 8x3 � 26

E3,E1

E3x1E1

E1:  8x2 � 2x3 � �7

E2:  3x1 � 5x2 � 2x3 � 8

E3:  6x1 � 2x2 � 8x3 � 26.

ajk

akk

n � 1E*n.E*
3x2

x1)E*
2

a11

E1,E*2, Á , E*n
E2, Á , EnE1

EnE2x1

x1 � 1
3 (8 � 5x2 � 2x3) � 4.

x2 � 1
8 (�7 � 2x3) � �1

x3 � 3
6 � 1

2

 6x3 �   3

 8x2 � 2x3 � �7

 3x1 � 5x2 � 2x3 �   8
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wwö

wwö

wwö

wwö

Step 1. Elimination of
It would suffice to show the augmented matrix and operate on it. We show both the equations and the augmented
matrix. In the first step, the first equation is the pivot equation. Thus

To eliminate from the other equations (here, from the second equation), do:

Subtract times the pivot equation from the second equation.

The result is

Step 2. Elimination of
The largest coefficient in Column 2 is 8. Hence we take the new third equation as the pivot equation, interchanging
equations 2 and 3,

To eliminate from the third equation, do:

Subtract times the pivot equation from the third equation.

The resulting triangular system is shown below. This is the end of the forward elimination. Now comes the back
substitution.

Back substitution. Determination of 
The triangular system obtained in Step 2 is

From this system, taking the last equation, then the second equation, and finally the first equation, we compute
the solution

This agrees with the values given above, before the beginning of the example.

The general algorithm for the Gauss elimination is shown in Table 20.1. To help explain
the algorithm, we have numbered some of its lines. is denoted by for uniformity.
In lines 1 and 2 we look for a possible pivot. [For we can always find one; otherwise

would not occur in (1).] In line 2 we do pivoting if necessary, picking an of greatest
absolute value (the one with the smallest j if there are several) and interchange the

ajkx1

k � 1
aj,n�1,bj

�

 x1 � 1
6 (26 � 2x2 � 8x3) � 4.

 x2 � 1
8 (�7 � 2x3) � �1

 x3 � 1
2

6x1 � 2x2 � 8x3 �   26

8x2 � 2x3 � �7

� 3x3 � �3
2 

   D6 2 8 26

0 8 2 �7

0 0 �3 �3
2 

T .
x3, x2, x1

1
2

x2

D6 2 8 26

0 8 2 �7

0 4 �2 �5

T .6x1 � 2x2 � 8x3 � 26

8x2 � 2x3 � �7

4x2 � 2x3 � �5

x2

D6 2 8 26

0 4 �2 �5

0 8 2 �7

T .6x1 � 2x2 � 8x3 � 26

4x2 � 2x3 � �5

8x2 � 2x3 � �7

3
6 � 1

2 

x1

D6 2 8 26

3 5 2 8

0 8 2 �7

T .6x1 � 2x2 � 8x3 � 26

3x1 � 5x2 � 2x3 � 8

8x2 � 2x3 � �7

x1
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Pivot 6

Eliminate

Pivot 8

Eliminate

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
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corresponding rows. If is greatest, we do no pivoting. in line 4 suggests
multiplier, since these are the factors by which we have to multiply the pivot equation 
in Step k before subtracting it from an equation below from which we want to
eliminate Here we have written and to indicate that after Step 1 these are no
longer the equations given in (1), but these underwent a change in each step, as indicated
in line 5. Accordingly, etc. in all lines refer to the most recent equations, and 
in line 1 indicates that we leave untouched all the equations that have served as pivot
equations in previous steps. For in line 5 we get 0 on the right, as it should be in
the elimination,

In line 3, if the last equation in the triangular system is we have no
solution. If it is we have no unique solution because we then have fewer
equations than unknowns.

E X A M P L E  2 Gauss Elimination in Table 20.1, Sample Computation

In Example 1 we had so that pivoting was necessary. The greatest coefficient in Column 1 was 
Thus in line 2, and we interchanged and Then in lines 4 and 5 we computed and

and then so that the third equation did not change in Step 1. In Step 2 
we had 8 as the greatest coefficient in Column 2, hence We interchanged equations 2 and 3, computed

in line 5, and the This produced the
triangular form used in the back substitution.

If in Step k, we must pivot. If is small, we should pivot because of roundoff
error magnification that may seriously affect accuracy or even produce nonsensical
results.

E X A M P L E  3 Difficulty with Small Pivots

The solution of the system

is We solve this system by the Gauss elimination, using four-digit floating-point arithmetic.
(4D is for simplicity. Make an 8D-arithmetic example that shows the same.)

(a) Picking the first of the given equations as the pivot equation, we have to multiply this equation by
and subtract the result from the second equation, obtaining

Hence and from the first equation, instead of we get

This failure occurs because is small compared with so that a small roundoff error in leads to a
large error in x1.

x2ƒ a12 ƒ ,ƒ a11 ƒ

x1 �
1

0.0004
 (1.406 � 1.402 � 0.9993) �

0.005

0.0004
 � 12.5.

x1 � 10,x2 � �1404>(�1405) � 0.9993,

�1405x2 � �1404.

m � 0.4003>0.0004 � 1001

x1 � 10, x2 � 1.

 0.4003x1 � 1.502x2 � 2.501

 0.0004x1 � 1.402x2 � 1.406

ƒ akk ƒakk � 0

�
a33 � �2 � 1

2 � 2 � �3, a34 � �5 � 1
2 (�7) � �3

2 .m32 � �4
8 � �1

2 

j
~

� 3.
(k � 2)8x2 � 2x3 � �7m31 � 0

6 � 0,

a22 � 5 � 1
2 � 2 � 4,  a23 � 2 � 1

2 � 8 � �2,  a24 � 8 � 1
2 � 26 � �5 ,

m21 � 3
6 � 1

2 E3.E1j
~

� 3
a31.a11 � 0,

0 � b*n � 0,
0 � b*n � 0,

ajk � m jkakk � ajk �
ajk

akk
 akk � 0.

p � k

j � kajk

E*jE*kxk.
E*kE*j

E*k
m jkƒ akk ƒ
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(b) Picking the second of the given equations as the pivot equation, we have to multiply this equation by
and subtract the result from the first equation, obtaining

Hence and from the pivot equation This success occurs because is not very small
compared to so that a small roundoff error in would not lead to a large error in Indeed, for
instance, if we had the value we would still have from the pivot equation the good value

Table 20.1 Gauss Elimination

ALGORITHM GAUSS (A� � [ajk] � [A b])

This algorithm computes a unique solution x � [xj] of the system (1) or indicates that
(1) has no unique solution.

INPUT: Augmented n � (n � 1) matrix where 

OUTPUT: Solution x � [xj] of (1) or message that the system (1) has no
unique solution

For k � 1, • • • , n � 1, do:

1

For j � , • • • , n, do:

If then 

End

If amk � 0 then OUTPUT “No unique solution exists” 
Stop

[Procedure completed unsuccessfully]

2 Else exchange row k and row m

3 If ann � 0 then OUTPUT “No unique solution exists.”
Stop

Else

4 For j � k � 1, • • • , n, do:

5 For p � k � 1, • • • , n � 1, do:

ajp: � ajp � mjkakp

End
End

End

6 [Start back substitution]

For i � n � 1, • • • , 1, do:

7

End
OUTPUT x � [xj]. Stop

End GAUSS

x i �
1
aii

 aai,n�1 � a

n

j�i�1

aijx jb

xn �
an,n�1

ann
 

m jk: �
ajk

akk
 

m � j( ƒ amk ƒ � ƒ ajk ƒ )

k � 1

m � k

aj,n�1 � bjA� � [ajk],

�x1 � (2.501 � 1.505)>0.4003 � 10.01.
x2 � 1.002,

x1.x2ƒ a22 ƒ ,
ƒ a21 ƒx1 � 10.x2 � 1,

1.404x2 � 1.404.

0.0004>0.4003 � 0.0009993
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Error estimates for the Gauss elimination are discussed in Ref. [E5] listed in App. 1.

Row scaling means the multiplication of each Row j by a suitable scaling factor It is
done in connection with partial pivoting to get more accurate solutions. Despite much
research (see Refs. [E9], [E24] in App. 1) and the proposition of several principles, scaling
is still not well understood. As a possibility, one can scale for pivot choice only (not in
the calculation, to avoid additional roundoff) and take as first pivot the entry for which

is largest; here is an entry of largest absolute value in Row j. Similarly in
the further steps of the Gauss elimination.

For instance, for the system

we might pick 4 as pivot, but dividing the first equation by gives the system in
Example 3, for which the second equation is a better pivot equation.

Operation Count
Quite generally, important factors in judging the quality of a numeric method are

Amount of storage

Amount of time number of operations)

Effect of roundoff error

For the Gauss elimination, the operation count for a full matrix (a matrix with relatively
many nonzero entries) is as follows. In Step k we eliminate from equations.
This needs divisions in computing the (line 3) and 
multiplications and as many subtractions (both in line 4). Since we do steps, k
goes from 1 to and thus the total number of operations in this forward
elimination is

(write 

where is obtained by dropping lower powers of n. We see that grows about
proportional to We say that is of order and write

where O suggests order. The general definition of O is as follows. We write

if the quotients and remain bounded (do not trail off to infinity)
as In our present case, and, indeed, because the omitted
terms divided by go to zero as n : 	.n3

f (n)>n3 :  
2
3 h(n) � n3n : 	.

ƒ h(n)>f (n) ƒƒ  f (n)>h(n) ƒ

f (n) � O(h (n))

f (n) � O(n3)

n3f (n)n3.
f (n)2n3>3

 � a

n�1

s�1

 s � 2a

n�1

s�1

 s (s � 1) � 1
2 (n � 1)n � 2

3 (n2 � 1)n � 2
3 n3

n � k � s) f (n) � a

n�1

k�1

 (n � k) � 2a

n�1

k�1

 (n � k)(n � k � 1)

n � 1
n � 1

(n � k)(n � k � 1)m jkn � k
n � kxk

(�

104

 0.4003x1 � 1.502x2 � 2.501

 4.0000x1 � 14020x2 � 14060

Ajƒ aj1 ƒ > ƒ Aj ƒ

aj1

sj.
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In the back substitution of we make multiplications and as many subtractions,
as well as 1 division. Hence the number of operations in the back substitution is

We see that it grows more slowly than the number of operations in the forward elimination
of the Gauss algorithm, so that it is negligible for large systems because it is smaller by
a factor n, approximately. For instance, if an operation takes sec, then the times
needed are:

Algorithm

Elimination 0.7 sec 11 min
Back substitution 0.001 sec 0.1 sec

n � 10000n � 1000

10�9

b(n) � 2a

n

i�1

 (n � i) � n � 2a

n

s�1

  s � n � n(n � 1) � n � n2 � 2n � O(n2).

n � ix i

SEC. 20.1 Linear Systems: Gauss Elimination 851

APPLICATIONS of linear systems see Secs. 7.1 and 8.2.

1–3 GEOMETRIC INTERPRETATION
Solve graphically and explain geometrically.

1.

2.

3.

4–16 GAUSS ELIMINATION
Solve the following linear systems by Gauss elimination,
with partial pivoting if necessary (but without scaling). Show
the intermediate steps. Check the result by substitution. If no
solution or more than one solution exists, give a reason.

4.

5.

6. 25.38x1 � 15.48x2 � 30.60

�14.10x1 � 8.60x2 � �17.00

2x1 � 8x2 � �4

3x1 � x2 � 7

6x1 � x2 � �3

4x1 � 2x2 � 6

7.2x1 � 3.5x2 � 16.0

�14.4x1 � 7.0x2 � 31.0

�5.00x1 � 8.40x2 � 0

10.25x1 � 17.22x2 � 0

x1 � 4x2 � 20.1

3x1 � 5x2 � 5.9

7.

8.

9.

10.

11.

12. 5x1 � 3x2 � x3 � 2

�4x2 � 8x3 � �3

10x1 � 6x2 � 26x3 � 0

3.4x1 � 6.12x2 � 2.72x3 � 0

�x1 � 1.80x2 � 0.80x3 � 0

2.7x1 � 4.86x2 � 2.16x3 � 0

4x1 � 4x2 � 2x3 � 0

3x1 � x2 � 2x3 � 0

3x1 � 7x2 � x3 � 0

6x2 � 13x3 �  137.86

6x1 � 8x3 � �85.88

13x1 � 8x2 � 178.54

5x1 � 3x2 � x3 � 2

�4x2 � 8x3 � �3

10x1 � 6x2 � 26x3 � 0

�3x1 � 6x2 � 9x3 � �46.725

x1 � 4x2 � 3x3 � 19.571

2x1 � 5x2 � 7x3 � �20.073

P R O B L E M  S E T  2 0 . 1
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13.

14.

15.

16.

17. CAS EXPERIMENT. Gauss Elimination. Write a
program for the Gauss elimination with pivoting.
Apply it to Probs. 13–16. Experiment with systems
whose coefficient determinant is small in absolute
value. Also investigate the performance of your
program for larger systems of your choice, including
sparse systems.

18. TEAM PROJECT. Linear Systems and Gauss
Elimination. (a) Existence and uniqueness. Find a
and b such that has (i) a
unique solution, (ii) infinitely many solutions, (iii) no
solutions.

(b) Gauss elimination and nonexistence. Apply the
Gauss elimination to the following two systems and

ax1 � x2 � b, x1 � x2 � 3

3.2x1 � 1.6x2 � �0.8

1.6x1 � 0.8x2 � 2.4x3 � 16.0

2.4x2 � 4.8x3 � 3.6x4 � �39.0

3.6x3 � 2.4x4 � 10.2

2.2x2 � 1.5x3 � 3.3x4 � �9.30

0.2x1 � 1.8x2 � 4.2x4 � 9.24

�x1 � 3.1x2 � 2.5x3 � �8.70

0.5x1 � 3.8x3 � 1.5x4 �   11.94

�47x1 � 4x2 � 7x3 � �118

19x1 � 3x2 � 2x3 � 43

�15x1 � 5x2 � �25

3x2 � 5x3 � 1.20736

3x1 � 4x2 � �2.34066

5x1 � 6x3 � �0.329193

852 CHAP. 20 Numeric Linear Algebra

compare the calculations step by step. Explain why the
elimination fails if no solution exists.

(c) Zero determinant. Why may a computer program
give you the result that a homogeneous linear system
has only the trivial solution although you know its
coefficient determinant to be zero?

(d) Pivoting. Solve System (A) (below) by the Gauss
elimination first without pivoting. Show that for any
fixed machine word length and sufficiently small 
the computer gives and then What
is the exact solution? Its limit as Then solve
the system by the Gauss elimination with pivoting.
Compare and comment.

(e) Pivoting. Solve System (B) by the Gauss elimination
and three-digit rounding arithmetic, choosing (i) the first
equation, (ii) the second equation as pivot equation.
(Remember to round to 3S after each operation before
doing the next, just as would be done on a computer!)
Then use four-digit rounding arithmetic in those two
calculations. Compare and comment.

(A)

(B) 4.03x1 � 2.16x2 � �4.61

6.21x1 � 3.35x2 � �7.19

Px1 � x2 � 1

x1 � x2 � 2

P : 0?
x1 � 0.x2 � 1

P 
 0

x1 � x2 � x3 � 3

4x1 � 2x2 � x3 � 5

9x1 � 5x2 � x3 � 12.

x1 � x2 � x3 � 3

4x1 � 2x2 � x3 � 5

9x1 � 5x2 � x3 � 13

20.2 Linear Systems: LU-Factorization, 
Matrix Inversion

We continue our discussion of numeric methods for solving linear systems of n equations
in n unknowns 

(1)

where is the given coefficient matrix and and
We present three related methods that are modifications of the GaussbT � [b1, Á , bn].

xT � [x1, Á , xn]n � nA � [ajk]

Ax � b

x1, Á , xn,
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elimination, which require fewer arithmetic operations. They are named after Doolittle,
Crout, and Cholesky and use the idea of the LU-factorization of A, which we explain
first.

An LU-factorization of a given square matrix A is of the form

(2)

where L is lower triangular and U is upper triangular. For example,

It can be proved that for any nonsingular matrix (see Sec. 7.8) the rows can be reordered
so that the resulting matrix A has an LU-factorization (2) in which L turns out to be the
matrix of the multipliers of the Gauss elimination, with main diagonal and
U is the matrix of the triangular system at the end of the Gauss elimination. (See Ref.
[E5], pp. 155–156, listed in App. 1.)

The crucial idea now is that L and U in (2) can be computed directly, without solving
simultaneous equations (thus, without using the Gauss elimination). As a count shows,
this needs about operations, about half as many as the Gauss elimination, which
needs about (see Sec. 20.1). And once we have (2), we can use it for solving 
in two steps, involving only about operations, simply by noting that 
may be written

(3) (a) where (b)

and solving first (3a) for y and then (3b) for x. Here we can require that L have main
diagonal as stated before; then this is called Doolittle’s method.1 Both systems
(3a) and (3b) are triangular, so we can solve them as in the back substitution for the Gauss
elimination.

A similar method, Crout’s method,2 is obtained from (2) if U (instead of L) is required
to have main diagonal In either case the factorization (2) is unique.

E X A M P L E  1 Doolittle’s Method

Solve the system in Example 1 of Sec. 20.1 by Doolittle’s method.

Solution. The decomposition (2) is obtained from

A � [ajk] � Da11 a12 a13

a21 a22 a23

a31 a32 a33

T � D3 5 2

0 8 2

6 2 8

T � D1 0 0

m21 1 0

m31 m32 1

T  Du11 u12 u13

0 u22 u23

0 0 u33

T

1, Á , 1.

1, Á , 1

Ux � yLy � b

Ax � LUx � bn2
Ax � b2n3>3

n3>3

1, Á , 1,m jk

A � c2 3

8 5
d � LU � c1 0

4 1
d  c2 3

0 �7
d  .

A � LU
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1MYRICK H. DOOLITTLE (1830–1913). American mathematician employed by the U.S. Coast and Geodetic
Survey Office. His method appeared in U.S. Coast and Geodetic Survey, 1878, 115–120.

2PRESCOTT DURAND CROUT (1907–1984), American mathematician, professor at MIT, also worked at
General Electric.
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by determining the and using matrix multiplication. By going through A row by row we get successively

Thus the factorization (2) is

We first solve determining then then from 
thus (note the interchange in b because of the interchange in A!)

Solution

Then we solve determining then then that is,

Solution

This agrees with the solution in Example 1 of Sec. 20.1.

Our formulas in Example 1 suggest that for general n the entries of the matrices 
(with main diagonal and suggesting “multiplier”) and in the
Doolittle method are computed from

(4)

j � k � 1, Á , n; k � 2.m jk �
1

ukk
  aajk � a

k�1

s�1

 m jsuskb

k � j, Á , n; j � 2ujk � ajk � a

j�1

s�1

 m jsusk

j � 2, Á , nm j1 �
aj1

u11

k � 1, Á , nu1k � a1k

U � [ujk]m jk1, Á , 1
L � [m jk]

�

x � D 4

�1

1
2 

T .D3 5 2

0 8 2

0 0 6

T  Dx1

x2

x3

T � D 8

�7

3

T .
x1,x2,x3 � 3

6 Ux � y,

y � D 8

�7

3

T .D1 0 0

0 1 0

2 �1 1

T  Dy1

y2

y3

T � D 8

�7

26

T .
2y1 � y2 � y3 � 16 � 7 � y3 � 26;y3y2 � �7,y1 � 8,Ly � b,

D3 5 2

0 8 2

6 2 8

T � LU � D1 0 0

0 1 0

2 �1 1

T  D3 5 2

0 8 2

0 0 6

T .

 u33 � 6 m32 � �1 m31 � 2

 � 2 � 2 � 1 � 2 � u33 � 2 � 5 � m32 � 8 � m31 � 3

 a33 � 8 � m31u13 � m32u23 � u33 a32 � 2 � m31u12 � m32u22 a31 � 6 � m31u11

u23 � 2u22 � 8m21 � 0

a23 � 2 � m21u13 � u23a22 � 8 � m21u12 � u22a21 � 0 � m21u11

a13 � 2 � 1 � u13 � u13a12 � 5 � 1 � u12 � u12a11 � 3 � 1 � u11 � u11

ujk,m jk
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Row Interchanges. Matrices, such as

or

have no LU-factorization (try!). This indicates that for obtaining an LU-factorization, row
interchanges of A (and corresponding interchanges in b) may be necessary.

Cholesky’s Method
For a symmetric, positive definite matrix A (thus for all we
can in (2) even choose thus (but cannot impose conditions on the
main diagonal entries). For example,

(5)

The popular method of solving based on this factorization is called
Cholesky’s method.3 In terms of the entries of the formulas for the factorization
are

(6)

If A is symmetric but not positive definite, this method could still be applied, but then
leads to a complex matrix L, so that the method becomes impractical.

E X A M P L E  2 Cholesky’s Method

Solve by Cholesky’s method:

4x1 � 2x2 � 14x3 � 14

2x1 � 17x2 � 5x3 � �101

14x1 � 5x2 � 83x3 � 155.

p � j � 1, Á , n; j � 2.lpj �
1
ljj

  aapj � a

j�1

s�1

 ljslpsb

j � 2, Á , nljj �
B

ajj � a

j�1

s�1

 l js
2

j � 2, Á , nlj1 �
aj1

l11

l11 � 1a11

L � [ljk]
A � LLTAx � b

A � D 4 2 14

2 17 �5

14 �5 83

T � LLT � D 2 0 0

1 4 0

7 �3 5

T  D 2 1 7

0  4 �3

0 0 5

T .
ujk � mkjU � LT,

x � 0)A � AT, xTAx � 0

c0 1

1  0
dc 0  1

1 1
d
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3ANDRÉ-LOUIS CHOLESKY (1875–1918), French military officer, geodecist, and mathematician. Surveyed
Crete and North Africa. Died in World War I. His method was published posthumously in Bulletin Géodésique
in 1924 but received little attention until JOHN TODD (1911–2007) — Irish-American mathematician, numerical
analysist, and early pioneer of computer methods in numerics, professor at Caltech, and close personal friend
and collaborator of ERWIN KREYSZIG, see [E20]—taught Cholesky’s method in his analysis course at King’s
College, London, in the 1940s.
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Solution. From (6) or from the form of the factorization

we compute, in the given order,

This agrees with (5). We now have to solve that is,

Solution

As the second step, we have to solve that is,

Solution

T H E O R E M  1 Stability of the Cholesky Factorization

The Cholesky -factorization is numerically stable (as defined in Sec. 19.1).

P R O O F We have by squaring the third formula in (6) and solving it
for Hence for all (note that for we obtain (the inequality being trivial)

That is, is bounded by an entry of A, which means stability against rounding.

Gauss–Jordan Elimination. Matrix Inversion
Another variant of the Gauss elimination is the Gauss–Jordan elimination, introduced
by W. Jordan in 1920, in which back substitution is avoided by additional computations
that reduce the matrix to diagonal form, instead of the triangular form in the Gauss
elimination. But this reduction from the Gauss triangular to the diagonal form requires
more operations than back substitution does, so that the method is disadvantageous for
solving systems But it may be used for matrix inversion, where the situation is
as follows.

Ax � b.

�l jk
2

l jk
2 � l j1

2 � l j2
2 � Á � l jj

2 � ajj.

k 
 j)ljk � 0ljkajj.
ajj � l j1

2 � l j2
2 � Á � l jj

2

LLT

�x � D 3

�6

1

T .D2 1 7

0 4 �3

0 0 5

T  Dx1

x2

x3

T � D 7

�27

5

T .
Ux � LTx � y,

y � D 7

�27

5

T .D2 0 0

1 4 0

7 �3 5

T  Dy1

y2

y3

T � D 14

�101

155

T .
Ly � b,

 l33 � 2a33 � l 31
2 � l 32

2 � 283 � 72 � (�3)2 � 5.

 l32 �
1

l23

 (a32 � l31l21) �
1

4
 (�5 � 7 # 1) � �3

 l22 � 2a22 � l 21
2 � 117 � 1 � 4

l11 � 1a11 � 2  l21 �
a21

l11

�
2

2
� 1  l31 �

a31

l11

�
14

2
� 7

D 4 2 14

2 17 �5

14 �5 83

T � Dl11 0 0

l21 l22 0

l31 l32 l33

T  Dl11 l21 l31

0 l22 l32

0 0 l33

T
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The inverse of a nonsingular square matrix A may be determined in principle by solving
the n systems

(7)

where is the jth column of the unit matrix.
However, it is preferable to produce by operating on the unit matrix I in the same

way as the Gauss–Jordan algorithm, reducing A to I. A typical illustrative example of this
method is given in Sec. 7.8.

A�1
n � nbj

( j � 1, Á , n)Ax � bj
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1–5 DOOLITTLE’S METHOD
Show the factorization and solve by Doolittle’s method.

1.

2.

3.

4.

5.

6. TEAM PROJECT. Crout’s method factorizes
where L is lower triangular and U is upper

triangular with diagonal entries 

(a) Formulas. Obtain formulas for Crout’s method
similar to (4).

(b) Examples. Solve Prob. 5 by Crout’s method.

(c) Factor the following matrix by the Doolittle,
Crout, and Cholesky methods.

(d) Give the formulas for factoring a tridiagonal
matrix by Crout’s method.

D 1 �4 2

�4 25 4

2 4 24

T

ujj � 1, j � 1, Á , n.
A � LU,

3x1 � 9x2 � 6x3 � 4.6

18x1 � 48x2 � 39x3 � 27.2

9x1 � 27x2 � 42x3 � 9.0

2x1 � x2 � 2x3 � 0

�2x1 � 2x2 � x3 � 0

x1 � 2x2 � 2x3 � 18

5x1 � 4x2 � x3 � 6.8

10x1 � 9x2 � 4x3 � 17.6

10x1 � 13x2 � 15x3 � 38.4

2x1 � 9x2 � 82

3x1 � 5x2 � �62

4x1 � 5x2 � 14

12x1 � 14x2 � 36

(e) When can you obtain Crout’s factorization from
Doolittle’s by transposition?

7–12 CHOLESKY’S METHOD
Show the factorization and solve.

7.

8.

9.

10.

11.

12.

13. Definiteness. Let A, B be and positive definite.
Are positive definite?�A, AT, A � B, A � B

n � n

4x1 � 2x2 � 4x3 � 20

2x1 � 2x2 � 3x3 � 2x4 � 36

4x1 � 3x2 � 6x3 � 3x4 � 60

2x2 � 3x3 � 9x4 � 122

x1 � x2 � 3x3 � 2x4 � 15

�x1 � 5x2 � 5x3 � 2x4 � �35

3x1 � 5x2 � 19x3 � 3x4 � 94

2x1 � 2x2 � 3x3 � 21x4 � 1

4x1 � 2x3 � 1.5

4x2 � x3 � 4.0

2x1 � x2 � 2x3 � 2.5

0.01x1 � 0.03x3 � 0.14

0.16x2 � 0.08x3 � 0.16

0.03x1 � 0.08x2 � 0.14x3 � 0.54

4x1 � 6x2 � 8x3 � 0

6x1 � 34x2 � 52x3 � �160

8x1 � 52x2 � 129x3 � �452

9x1 � 6x2 � 12x3 � 17.4

6x1 � 13x2 � 11x3 � 23.6

12x1 � 11x2 � 26x3 � 30.8

P R O B L E M  S E T  2 0 . 2
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14. CAS PROJECT. Cholesky’s Method. (a) Write a
program for solving linear systems by Cholesky’s
method and apply it to Example 2 in the text, to Probs.
7–9, and to systems of your choice.

(b) Splines. Apply the factorization part of the
program to the following matrices (as they occur in
(9), Sec. 19.4 (with in connection with
splines).

D2 1 0

1  4  1

0 1 2

T ,  E2 1 0 0

1  4 1  0

0 1  4 1

0 0 1 2

U .
cj � 1),
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15–19 INVERSE
Find the inverse by the Gauss–Jordan method, showing the
details.

15. In Prob. 1 16. In Prob. 4

17. In Team Project 6(c) 18. In Prob. 9

19. In Prob. 12

20. Rounding. For the following matrix A find det A.
What happens if you roundoff the given entries to
(a) 5S, (b) 4S, (c) 3S, (d) 2S, (e) lS? What is the
practical implication of your work?

A � D 1
3 

1
4 2

�1
9 1  1

7

4
63 � 3

28  13
49

T

20.3 Linear Systems: Solution by Iteration
The Gauss elimination and its variants in the last two sections belong to the direct methods
for solving linear systems of equations; these are methods that give solutions after an
amount of computation that can be specified in advance. In contrast, in an indirect or
iterative method we start from an approximation to the true solution and, if successful,
obtain better and better approximations from a computational cycle repeated as often as
may be necessary for achieving a required accuracy, so that the amount of arithmetic
depends upon the accuracy required and varies from case to case.

We apply iterative methods if the convergence is rapid (if matrices have large main
diagonal entries, as we shall see), so that we save operations compared to a direct method.
We also use iterative methods if a large system is sparse, that is, has very many zero
coefficients, so that one would waste space in storing zeros, for instance, 9995 zeros per
equation in a potential problem of equations in unknowns with typically only 5
nonzero terms per equation (more on this in Sec. 21.4).

Gauss–Seidel Iteration Method4

This is an iterative method of great practical importance, which we can simply explain in
terms of an example.

E X A M P L E  1 Gauss–Seidel Iteration 

We consider the linear system

(1)

x1 � 0.25x2 � 0.25x3 � 50

�0.25x1 � x2 � 0.25x4 � 50

�0.25x1 � x3 � 0.25x4 � 25

� 0.25x2 � 0.25x3 � x4 � 25.

104104

4PHILIPP LUDWIG VON SEIDEL (1821–1896), German mathematician. For Gauss see footnote 5 in 
Sec. 5.4.
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(Equations of this form arise in the numeric solution of PDEs and in spline interpolation.) We write the system
in the form

(2)

These equations are now used for iteration; that is, we start from a (possibly poor) approximation to the solution,
say and compute from (2) a perhaps better approximationx1

(0) � 100, x2
(0) � 100, x3

(0) � 100, x4
(0) � 100,

x1 � 0.25x2 � 0.25x3 � 50

x2 � 0.25x1 � 0.25x4 � 50

x3 � 0.25x1 � 0.25x4 � 25

x4 � 0.25x2 � 0.25x3 � 25.

SEC. 20.3 Linear Systems: Solution by Iteration 859

+ 50.00 = 100.00

+ 50.00 = 100.00

+ 25.00 = 75.00

+ 25.00 = 68.75

Use “old” values
(“New” values here not yet available)

Use “new” values

(1) =x1 0.25 (0) +x2 0.25 (0)x3

0.25 (1) +x2 0.25 (1)x3

0.25 (1)x1

0.25 (1)x1

0.25 (0)x4

0.25 (0)x4

(1) =x2

(1) =x3

(1) =x4

(3)

These equations (3) are obtained from (2) by substituting on the right the most recent approximation for each
unknown. In fact, corresponding values replace previous ones as soon as they have been computed, so that in
the second and third equations we use (not and in the last equation of (3) we use and (not

and Using the same principle, we obtain in the next step

Further steps give the values

x1
(2) � 0.25x2

(1) � 0.25x3
(1) � 50.00 � 93.750

x2
(2) � 0.25x1

(2) � 0.25x4
(1) � 50.00 � 90.625

x3
(2) � 0.25x1

(2) � 0.25x4
(1) � 25.00 � 65.625

x4
(2) � 0.25x2

(2) � 0.25x3
(2) � 25.00 � 64.062

x3
(0)).x2

(0)
x3

(1)x2
(1)x1

(0)),x1
(1)

x1 x2 x3 x4

89.062 88.281 63.281 62.891
87.891 87.695 62.695 62.598
87.598 87.549 62.549 62.524
87.524 87.512 62.512 62.506
87.506 87.503 62.503 62.502

Hence convergence to the exact solution (verify!) seems rather fast.

An algorithm for the Gauss–Seidel iteration is shown in Table 20.2. To obtain the
algorithm, let us derive the general formulas for this iteration.

We assume that for (Note that this can be achieved if we can
rearrange the equations so that no diagonal coefficient is zero; then we may divide each
equation by the corresponding diagonal coefficient.) We now write

j � 1, Á , n.ajj � 1

�x1 � x2 � 87.5, x3 � x4 � 62.5
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(4)

where I is the unit matrix and L and U are, respectively, lower and upper triangular
matrices with zero main diagonals. If we substitute (4) into we have

Taking Lx and Ux to the right, we obtain, since 

(5)

Remembering from (3) in Example 1 that below the main diagonal we took “new”
approximations and above the main diagonal “old” ones, we obtain from (5) the desired
iteration formulas

“New” “Old”

(6)

where is the mth approximation and is the st
approximation. In components this gives the formula in line 1 in Table 20.2. The matrix
A must satisfy for all j. In Table 20.2 our assumption is no longer required,
but is automatically taken care of by the factor in line 1.1>ajj

ajj � 1ajj � 0

(m � 1)x(m�1) � [x j
(m�1)]x(m) � [x j

(m)]

(ajj � 1)x(m�1) � b � Lx(m�1) � Ux(m)

x � b � Lx � Ux.

Ix � x,

Ax � (I � L � U)x � b.

Ax � b,
n � n

(ajj � 1)A � I � L � U
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Table 20.2 Gauss–Seidel Iteration

ALGORITHM GAUSS–SEIDEL (A, b, x(0), , N)
This algorithm computes a solution x of the system Ax � b given an initial approximation
x(0), where A � [ajk] is an n � n matrix with ajj � 0, j � 1, • • • , n.

INPUT: A, b, initial approximation x(0), tolerance 
 0, maximum number
of iterations N

OUTPUT: Approximate solution [ ] or failure message that x(N) does
not satisfy the tolerance condition

For m � 0, • • • , N � 1, do:
For j � 1, • • • , n, do:

1

End
2 If max

j
�x j

(m�1) � x j
(m)� � �x j

(m�1)� then OUTPUT x(m�1). Stop

[Procedure completed successfully]

End
OUTPUT: “No solution satisfying the tolerance condition obtained after N

iteration steps.” Stop 
[Procedure completed unsuccessfully]

End GAUSS–SEIDEL

P

x j
(m�1) �

1
ajj

  abj � a
j�1

k�1

 ajkxk
(m�1) � a

n

k�j�1

 ajkxk
(m)b

x j
(m)x(m) �

P

P
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Convergence and Matrix Norms
An iteration method for solving is said to converge for an initial if the
corresponding iterative sequence converges to a solution of the given
system. Convergence depends on the relation between and . To get this relation
for the Gauss–Seidel method, we use (6). We first have

and by multiplying by from the left,

(7) where

The Gauss–Seidel iteration converges for every if and only if all the eigenvalues
(Sec. 8.1) of the “iteration matrix” have absolute value less than 1. (Proof in
Ref. [E5], p. 191, listed in App. 1.)

CAUTION! If you want to get C, first divide the rows of A by to have main diagonal
If the spectral radius of C maximum of those absolute values) is small, then

the convergence is rapid.

Sufficient Convergence Condition. A sufficient condition for convergence is

(8)

Here is some matrix norm, such as

(9) (Frobenius norm)

or the greatest of the sums of the in a column of C

(10) (Column “sum” norm)

or the greatest of the sums of the in a row of C

(11) (Row “sum” norm).

These are the most frequently used matrix norms in numerics.
In most cases the choice of one of these norms is a matter of computational convenience.

However, the following example shows that sometimes one of these norms is preferable
to the others.

�C � � max
j
a
n

k�1

 ƒ cjk ƒ

ƒ cjk ƒ

�C � � max
k

 a
n

j�1

 ƒ cjk ƒ

ƒ cjk ƒ

�C � �
B
a
n

j�1

 a
n

k�1

 cjk
2

�C �

�C � � 1.

(�1, Á , 1.
ajj

C � [cjk]
x(0)

C � �(I � L)�1 U.x(m�1) � Cx(m) � (I � L)�1 b

(I � L)�1

(I � L) x(m�1) � b � Ux(m)

x(m�1)x(m)
x(0), x(1), x(2), Á

x(0)Ax � b
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E X A M P L E  2 Test of Convergence of the Gauss–Seidel Iteration

Test whether the Gauss–Seidel iteration converges for the system

written

Solution. The decomposition (multiply the matrix by – why?) is

It shows that

We compute the Frobenius norm of C

and conclude from (8) that this Gauss–Seidel iteration converges. It is interesting that the other two norms would
permit no conclusion, as you should verify. Of course, this points to the fact that (8) is sufficient for convergence
rather than necessary.

Residual. Given a system the residual r of x with respect to this system is
defined by

(12)

Clearly, if and only if x is a solution. Hence for an approximate solution. In
the Gauss–Seidel iteration, at each stage we modify or relax a component of an
approximate solution in order to reduce a component of r to zero. Hence the Gauss–Seidel
iteration belongs to a class of methods often called relaxation methods. More about the
residual follows in the next section.

Jacobi Iteration
The Gauss–Seidel iteration is a method of successive corrections because for each
component we successively replace an approximation of a component by a corresponding
new approximation as soon as the latter has been computed. An iteration method is called
a method of simultaneous corrections if no component of an approximation is used
until all the components of have been computed. A method of this type is the Jacobi
iteration, which is similar to the Gauss–Seidel iteration but involves not using improved
values until a step has been completed and then replacing by at once, directly
before the beginning of the next step. Hence if we write (with as before!)
in the form the Jacobi iteration in matrix notation is

(13) (ajj � 1).x(m�1) � b � (I � A)x(m)

x � b � (I � A)x,
ajj � 1Ax � b

x(m�1)x(m)

x(m)
x(m)

r � 0r � 0

r � b � Ax.

Ax � b,

�

�C � � A14 � 1
4 � 1

16 � 1
16 � 1

64 � 9
64 B1>2 � A50

64 B
1>2 � 0.884 � 1

C � �(I � L)�1 U � � D 1 0 0

�1
2 1 0

�1
4 �1

2 1

T  D0 1
2

1
2

0 0 1
2

0 0 0

T � D0 �1
2 �1

2

0 1
4 �1

4 

0 1
8 

3
8 

T .

D1 1
2

1
2

1
2 1 1

2

1
2

1
2 1

T � I � L � U � I � D0 0 0

1
2 0 0

1
2

1
2 0

T � D0 1
2

1
2

0 0 1
2

0 0 0

T .
1
2

x � 2 � 1
2 y � 1

2 z

y � 2 � 1
2 x � 1

2 z

  z � 2 � 1
2 x � 1

2 y.

2x � y � z � 4

x � 2y � z � 4

x � y � 2z � 4
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This method converges for every choice of if and only if the spectral radius of 
is less than 1. It has recently gained greater practical interest since on parallel processors
all n equations can be solved simultaneously at each iteration step.

For Jacobi, see Sec. 10.3. For exercises, see the problem set.

I � Ax(0)
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1. Verify the solution in Example 1 of the text.

2. Show that for the system in Example 2 the Jacobi
iteration diverges. Hint. Use eigenvalues.

3. Verify the claim at the end of Example 2.

4–10 GAUSS–SEIDEL ITERATION
Do 5 steps, starting from and using 6S in
the computation. Hint. Make sure that you solve each equation
for the variable that has the largest coefficient (why?). Show
the details.

4.

5.

6.

7.

8.

9.

10. 4x1 � 5x3 � 12.5

x1 � 6x2 � 2x3 � 18.5

8x1 � 2x2 � x3 � �11.5

5x1 � x2 � 2x3 �   19

x1 � 4x2 � 2x3 � �2

2x1 � 3x2 � 8x3 �   39

3x1 � 2x2 � x3 � 7

x1 � 3x2 � 2x3 � 4

2x1 � x2 � 3x3 � 7

5x1 � 2x2 � 18

�2x1 � 10x2 � 2x3 � �60

� 2x2 � 15x3 � 128

x2 � 7x3 � 25.5

5x1 � x2 � 0

x1 � 6x2 � x3 � �10.5

10x1 � x2 � x3 � 6

x1 � 10x2 � x3 � 6

x1 � x2 � 10x3 � 6

4x1 � x2 � 21

�x1 � 4x2 � x3 � �45

� x2 � 4x3 � 33

x0 � [1 1 1]T

11. Apply the Gauss–Seidel iteration (3 steps) to the system
in Prob. 5, starting from (a) (b)
Compare and comment.

12. In Prob. 5, compute C (a) if you solve the first equation
for the second for the third for proving
convergence; (b) if you nonsensically solve the third
equation for the first for the second for proving
divergence.

13. CAS Experiment. Gauss–Seidel Iteration. (a) Write
a program for Gauss–Seidel iteration.

(b) Apply the program to starting from
where

For determine the number of
steps to obtain the exact solution to 6S and the
corresponding spectral radius of C. Graph the number
of steps and the spectral radius as functions of t and
comment.

(c) Successive overrelaxation (SOR). Show that by
adding and subtracting on the right, formula (6)
can be written

Anticipation of further corrections motivates the
introduction of an overrelaxation factor to get
the SOR formula for Gauss–Seidel

(14)

intended to give more rapid convergence. A rec-
ommended value is where is
the spectral radius of C in (7). Apply SOR to the matrix
in (b) for and 0.8 and notice the improvement of
convergence. (Spectacular gains are made with larger
systems.)

t � 0.5

rv � 2>(1 � 11 � r),

(ajj � 1)� (U � I)x(m))

x(m�1) � x(m) � v(b � Lx(m�1)

v 
 1

(ajj � 1).
x(m�1) � x(m) � b � Lx(m�1) � (U � I)x(m)

x(m)

t � 0.2, 0.5, 0.8, 0.9

A(t) � D1 t t

t 1 t

t t 1

T ,  b � D22
2

T .
[0 0 0]T,

A(t)x � b,

x3,x2,x1,

x3,x2,x1,

10, 10, 10.0, 0, 0
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20.4 Linear Systems: Ill-Conditioning, Norms
One does not need much experience to observe that some systems are good,
giving accurate solutions even under roundoff or coefficient inaccuracies, whereas others
are bad, so that these inaccuracies affect the solution strongly. We want to see what is
going on and whether or not we can “trust” a linear system. Let us first formulate the two
relevant concepts (ill- and well-conditioned) for general numeric work and then turn to
linear systems and matrices.

A computational problem is called ill-conditioned (or ill-posed) if “small” changes in
the data (the input) cause “large” changes in the solution (the output). On the other hand,
a problem is called well-conditioned (or well-posed ) if “small” changes in the data cause
only “small” changes in the solution.

These concepts are qualitative. We would certainly regard a magnification of inaccuracies
by a factor 100 as “large,” but could debate where to draw the line between “large” and
“small,” depending on the kind of problem and on our viewpoint. Double precision may
sometimes help, but if data are measured inaccurately, one should attempt changing the
mathematical setting of the problem to a well-conditioned one.

Let us now turn to linear systems. Figure 445 explains that ill-conditioning occurs if
and only if the two equations give two nearly parallel lines, so that their intersection point
(the solution of the system) moves substantially if we raise or lower a line just a little.
For larger systems the situation is similar in principle, although geometry no longer helps.
We shall see that we may regard ill-conditioning as an approach to singularity of the
matrix.

Ax � b

864 CHAP. 20 Numeric Linear Algebra

14–17 JACOBI ITERATION
Do 5 steps, starting from Compare with
the Gauss–Seidel iteration. Which of the two seems to
converge faster? Show the details of your work.

14. The system in Prob. 4

15. The system in Prob. 9

16. The system in Prob. 10

17. Show convergence in Prob. 16 by verifying that 
where A is the matrix in Prob. 16 with the rows divided
by the corresponding main diagonal entries, has the
eigenvalues and 0.259795 � 0.246603i.�0.519589

I � A,

x0 � [1 1 1].

18–20 NORMS
Compute the norms (9), (10), (11) for the following (square)
matrices. Comment on the reasons for greater or smaller
differences among the three numbers.

18. The matrix in Prob. 10

19. The matrix in Prob. 5

20. D 2k �k �k

k �2k k

�k �k 2k

T

y

x

γ

y

x

(a) (b)

Fig. 445. (a) Well-conditioned and (b) ill-conditioned 
linear system of two equations in two unknowns
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E X A M P L E  1 An Ill-Conditioned System

You may verify that the system

has the solution whereas the system

has the solution This shows that the system is ill-conditioned because
a change on the right of magnitude produces a change in the solution of magnitude approximately.
We see that the lines given by the equations have nearly the same slope.

Well-conditioning can be asserted if the main diagonal entries of A have large absolute
values compared to those of the other entries. Similarly if and A have maximum
entries of about the same absolute value.

Ill-conditioning is indicated if has entries of large absolute value compared to those
of the solution (about 5000 in Example 1) and if poor approximate solutions may still
produce small residuals.

Residual. The residual r of an approximate solution x of is defined as

(1)

Now so that

(2)

Hence r is small if has high accuracy, but the converse may be false:

E X A M P L E  2 Inaccurate Approximate Solution with a Small Residual

The system

has the exact solution Can you see this by inspection? The very inaccurate approximation
has the very small residual (to 4D)

From this, a naive person might draw the false conclusion that the approximation should be accurate to 3 or 4
decimals.

Our result is probably unexpected, but we shall see that it has to do with the fact that the system is 
ill-conditioned.

Our goal is to show that ill-conditioning of a linear system and of its coefficient matrix A
can be measured by a number, the condition number Other measures for ill-conditioning�(A).

�

r � c2.0001

2.0001
d � c1.0001 1.0000

1.0000 1.0001
d  c2.0000

0.0001
d � c2.0001

2.0001
d � c2.0003

2.0001
d � c�0.0002

0.0000
d  .

x�1 � 2.0000, x�2 � 0.0001
x1 � 1, x2 � 1.

 x1 � 1.0001x2 � 2.0001

 1.0001x1 � x2 � 2.0001

x�

r � A(x � Ax�).

b � Ax,

r � b � Ax�.

Ax � bx�

A�1

A�1

�
5000P,P

x � 0.5 � 5000.5P, y � �0.5 � 4999.5P.

 x � y � 1 � P

 0.9999x � 1.0001y � 1

x � 0.5, y � �0.5,

 x � y � 1

 0.9999x � 1.0001y � 1
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have also been proposed, but is probably the most widely used one. is defined in
terms of norm, a concept of great general interest throughout numerics (and in modern
mathematics in general!). We shall reach our goal in three steps, discussing

1. Vector norms

2. Matrix norms

3. Condition number of a square matrix

Vector Norms
A vector norm for column vectors with n components (n fixed) is a generalized
length or distance. It is denoted by and is defined by four properties of the usual
length of vectors in three-dimensional space, namely,

(a) is a nonnegative real number.

(b) if and only if
(3)

(c) for all k.

(d) (Triangle inequality).

If we use several norms, we label them by a subscript. Most important in connection with
computations is the p-norm defined by

(4)

where p is a fixed number and In practice, one usually takes and, as a
third norm, (the latter as defined below), that is,

(5) (“ -norm”)

(6) (“Euclidean” or “ -norm”)

(7) (“ -norm”).

For the -norm is the usual length of a vector in three-dimensional space. The 
-norm and -norm are generally more convenient in computation. But all three norms

are in common use.

E X A M P L E  3 Vector Norms

If 

In three-dimensional space, two points with position vectors x and have distance 
from each other. For a linear system this suggests that we take as a
measure of inaccuracy and call it the distance between an exact and an approximate
solution, or the error of 

Matrix Norm
If A is an matrix and x any vector with n components, then Ax is a vector with n
components. We now take a vector norm and consider and One can prove (see�Ax�.� x �

n � n

x�.

�x � x��Ax � b,
ƒ x � x� ƒx�

�xT � [2 �3 0 1 �4], then � x �1 � 10, � x �2 � 130, � x �� � 4.

l�l1

l2n � 3

l�� x �� � max
j

 ƒ x j ƒ

l2� x �2 � 2x1
2 � Á � xn

2

l1� x �1 � ƒ x1 ƒ � Á � ƒ xn ƒ

� x ��

p � 1 or 2p � 1.

� x �p � ( ƒ x1 ƒ
p � ƒ x2 ƒ

p � Á � ƒ xn ƒ
p)1>p

� x � y � � � x � � � y �

� kx � � ƒ k ƒ  � x �

x � 0.� x � � 0

� x �

� x �
x � [x j]

�

�(A)�(A)
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Ref. [E17]. pp. 77, 92–93, listed in App. 1) that there is a number c (depending on A)
such that

(8) for all x.

Let Then by (3b) and division gives We obtain the smallest
possible c valid for all x by taking the maximum on the left. This smallest c is
called the matrix norm of A corresponding to the vector norm we picked and is denoted
by Thus

(9)

the maximum being taken over all Alternatively [see (c) in Team Project 24],

(10)

The maximum in (10) and thus also in (9) exists. And the name “matrix norm” is
justified because satisfies (3) with x and y replaced by A and B. (Proofs in Ref. [E17]
pp. 77, 92–93.)

Note carefully that depends on the vector norm that we selected. In particular, one
can show that

for the -norm (5) one gets the column “sum” norm (10), Sec. 20.3,

for the -norm (7) one gets the row “sum” norm (11), Sec. 20.3.

By taking our best possible (our smallest) we have from (8)

(11)

This is the formula we shall need. Formula (9) also implies for two matrices (see
Ref. [E17], p. 98)

(12) thus

See Refs. [E9] and [E17] for other useful formulas on norms.
Before we go on, let us do a simple illustrative computation.

E X A M P L E  4 Matrix Norms

Compute the matrix norms of the coefficient matrix A in Example 1 and of its inverse assuming that we
use (a) the -vector norm, (b) the `-vector norm.

Solution. We use Sec. 7.8, for the inverse and then (10) and (11) in Sec. 20.3. Thus

(a) The -vector norm gives the column “sum” norm (10), Sec. 20.3; from Column 2 we thus obtain
Similarly, � A�1� � 10,000.� A � � ƒ �1.0001 ƒ � ƒ �1.0000 ƒ � 2.0001.

l1

A � B0.9999 �1.0001

1.0000 �1.0000
R ,  A�1 � B�5000.0 5000.5

�5000.0 4999.5
R .

(4*),

l	l1

A�1,

� An� � � A �n .� AB � � � A � �B�,

n � n

� Ax � � � A � � x � .

c � � A �

l	

l1

� A �

� A �

� A � � max
� x ��1  

� Ax � .

x � 0.

(x � 0),�A� � max 
� Ax �

� x �

� A �.

(� 0)
� Ax �>� x � � c.� x � 
 0x � 0.

� Ax � � c� x �
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(b) The -vector norm gives the row “sum” norm (11), Sec. 20.3; thus from
Row 1. We notice that is surprisingly large, which makes the product large (20,001). We shall
see below that this is typical of an ill-conditioned system.

Condition Number of a Matrix
We are now ready to introduce the key concept in our discussion of ill-conditioning, the
condition number of a (nonsingular) square matrix A, defined by

(13)

The role of the condition number is seen from the following theorem.

T H E O R E M  1 Condition Number

A linear system of equations and its matrix A whose condition number (13)
is small are well-conditioned. A large condition number indicates ill-conditioning.

P R O O F and (11) give Let and Then division by 
gives

(14)

Multiplying (2) by from the left and interchanging sides, we have
Now (11) with and r instead of A and x yields

Division by [note that by (3b)] and use of (14) finally gives

(15)

Hence if is small, a small implies a small relative error so
that the system is well-conditioned. However, this does not hold if is large; then a 
small does not necessarily imply a small relative error 

E X A M P L E  5 Condition Numbers. Gauss–Seidel Iteration

has the inverse

Since A is symmetric, (10) and (11) in Sec. 20.3 give the same condition number

We see that a linear system with this A is well-conditioned.Ax � b

�(A) � � A � � A�1 � � 7 # 1
56 # 30 � 3.75.

A�1 �
1

56
   D 12 �2 �2

�2 19 �9

�2 �9 19

T .A � D5 1 1

1 4 2

1 2 4

T
�� x � x��>� x �.� r �>� b �

�(A)
� x � x�  �>� x �,� r �>� b ��(A)

� x � x��

� x �
 �

1

� x �
  � A�1 � � r � �

� A �

� b �
  � A�1� � r � � �(A) 

� r �

� b �
 .

� x � � 0� x �

� x � x�  � � � A�1r � � � A�1 � � r � .

A�1x � x� � A�1r.
A�1r � A(x � x�)

1

� x �
 �

� A �

� b �
 .

� b � � x �x � 0.b � 0� b � � � A � � x �.b � Ax

Ax � b

�(A) � � A � � A�1 � .

�(A)

� A � � A�1�� A�1 �
� A � � 2, � A�1� � 10000.5l	

868 CHAP. 20 Numeric Linear Algebra

c20-a.qxd  11/2/10  8:57 PM  Page 868



For instance, if the Gauss algorithm gives the solution (confirm
this). Since the main diagonal entries of A are relatively large, we can expect reasonably good convergence of
the Gauss–Seidel iteration. Indeed, starting from, say, we obtain the first 8 steps (3D values)

x1 x2 x3

1.000 1.000 1.000
2.400 �1.100 6.950
1.630 �3.882 8.534
1.870 �4.734 8.900
1.967 �4.942 8.979
1.993 �4.988 8.996
1.998 �4.997 8.999
2.000 �5.000 9.000
2.000 �5.000 9.000

E X A M P L E  6 Ill-Conditioned Linear System

Example 4 gives by (10) or (11), Sec. 20.3, for the matrix in Example 1 the very large condition number
This confirms that the system is very ill-conditioned.

Similarly in Example 2, where by Sec. 7.8 and 6D-computation,

so that (10), Sec. 20.3, gives a very large explaining the surprising result in Example 2,

In practice, will not be known, so that in computing the condition number one
must estimate A method for this (proposed in 1979) is explained in Ref. [E9] listed
in App. 1.

Inaccurate Matrix Entries. can be used for estimating the effect of an inaccuracy
of A (errors of measurements of the for instance). Instead of we then have

Multiplying out and subtracting on both sides, we obtain

Multiplication by from the left and taking the second term to the right gives

Applying (11) with and vector instead of A and x, we get

Applying (11) on the right, with and instead of A and x, we obtain

� dx � � � A�1 � � dA� � x � dx � .

x � dxdA

� dx � � � A�1dA(x � dx)� � � A�1 � �dA(x � dx) � .

dA(x � dx)A�1

dx � �A�1dA(x � dx).

A�1

Adx � dA(x � dx) � 0.

Ax � b

(A � dA)(x � dx) � b.

Ax � bajk,dA
dx�(A)

� A�1�.
�(A),A�1

��(A) � (1.0001 � 1.0000)(5000.5 � 5000.0) � 20,002.

�(A),

A�1 �
1

0.0002
  c 1.0001 �1.0000

�1.0000 1.0001
d � c 5000.5 �5.000.0

�5000.0 5000.5
d

(4*),
�(A) � 2.0001 � 10000 � 2 � 10000.5 � 200001.

�

x0 � [1 1 1]T,

x � [2 �5 9]T,b � [14 0 28]T,
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Now by the definition of so that division by shows
that the relative inaccuracy of x is related to that of A via the condition number by the
inequality

(16)

Conclusion. If the system is well-conditioned, small inaccuracies can have
only a small effect on the solution. However, in the case of ill-conditioning, if 
is small, may be large.

Inaccurate Right Side. You may show that, similarly, when A is accurate, an inaccuracy
of b causes an inaccuracy satisfying

(17)

Hence must remain relatively small whenever is small.

E X A M P L E  7 Inaccuracies. Bounds (16) and (17)

If each of the nine entries of A in Example 5 is measured with an inaccuracy of 0.1, then and
(16) gives

thus

By experimentation you will find that the actual inaccuracy is only about of the bound 5.14. This is
typical.

Similarly, if in Example 5, so that (17) gives

hence

but this bound is again much greater than the actual inaccuracy, which is about 0.15.

Further Comments on Condition Numbers. The following additional explanations
may be helpful.

1. There is no sharp dividing line between “well-conditioned” and “ill-conditioned,”
but generally the situation will get worse as we go from systems with small to systems
with larger Now always so that values of 10 or 20 or so give no reason
for concern, whereas say, calls for caution, and systems such as those in
Examples 1 and 2 are extremely ill-conditioned.

2. If is large (or small) in one norm, it will be large (or small, respectively) in
any other norm. See Example 5.

3. The literature on ill-conditioning is extensive. For an introduction to it, see [E9].

This is the end of our discussion of numerics for solving linear systems. In the next section
we consider curve fitting, an important area in which solutions are obtained from linear systems.

�(A)

�(A) � 100,
�(A) � 1,�(A).

�(A)

�

� dx � � 0.0536 � 16 � 0.857
� dx �

� x �
 � 7.5 �

0.3

42
� 0.0536,

db � [0.1 0.1 0.1]T, then � db � � 0.3 and � b � � 42

30%� dx �

� dx � � 0.321 � x � � 0.321 � 16 � 5.14.
� dx �

� x �
 � 7.5 �

3 # 0.1

7
� 0.321

� dA � � 9 � 0.1

�(A)� dx �>� x �

� dx �

� x �
 � �(A) 

� db �

� b �
 .

dxdb

� dx �>� x �
� dA �>� A �

� dA �>� A �

� dx �

� x �
�

� dx �

� x � dx �
� � A�1� � dA � � �(A) 

� dA �

� A �
 .

� x � dx ��(A),� A�1� � �(A)>� A �
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1–6 VECTOR NORMS
Compute the norms (5), (6), (7). Compute a corresponding
unit vector (vector of norm 1) with respect to the -norm.

1.

2.

3.

4.

5.

6.

7. For what will 

8. Show that 

9–16 MATRIX NORMS, 
CONDITION NUMBERS

Compute the matrix norm and the condition number
corresponding to the -vector norm.

9. 10.

11. 12.

13. 14.

15.

16.

17. Verify (11) for taken with the 
-norm and the matrix in Prob. 13.

18. Verify (12) for the matrices in Probs. 9 and 10.

l	

x � [3 15 �4]T

E 21 10.5 7 5.25

10.5 7 5.25 4.2

7 5.25 4.2 3.5

5.25 4.2 3.5 3

U
D�20 0  0

0 0.05  0

 0 0 20

T
D 1 0.01 0

0.01 1 0.01

0 0.01 1

TD�2 4 �1

�2 3 0

7 �12 2

T
c7 6

6 5
dc15 5

0 �15
d

c2.1 4.5

0.5 1.8
dc2 1

0 4
d

l1

� x �	 � � x �2 � � x �1.

� x �1 � � x �2?x � [a b c]

[0 0 0 1 0]

[1 1 1 1 1]

[k2, 4k, k3], k 
 4

[0.2 0.6 �2.1 3.0]

[4 �1 8]

[1 �3 8 0 �6 0]

l	

19–20 ILL-CONDITIONED SYSTEMS
Solve Compare the solutions and
comment. Compute the condition number of A.

19.

20.

21. Residual. For in Prob. 19 guess what the
residual of very poorly approx-
imating might be. Then calculate and
comment.

22. Show that for the matrix norms (10), (11),
Sec. 20.3, and for the Frobenius norm (9),
Sec. 20.3.

23. CAS EXPERIMENT. Hilbert Matrices. The 
Hilbert matrix is

The Hilbert matrix is where
(Similar matrices occur in

curve fitting by least squares.) Compute the condition
number for the matrix norm corresponding to
the vector norm, for (or
further if you wish). Try to find a formula that gives
reasonable approximate values of these rapidly
growing numbers.

Solve a few linear systems of your choice, involving
an 

24. TEAM PROJECT. Norms. (a) Vector norms in our
text are equivalent, that is, they are related by double
inequalities; for instance,

(18)
(a)

(b)

Hence if for some x, one norm is large (or small), the
other norm must also be large (or small). Thus in many
investigations the particular choice of a norm is not
essential. Prove (18).

(b) The Cauchy–Schwarz inequality is

ƒ xTy ƒ � � x �2 � y �2.

1
n � x �1 � � x �	 � � x �1.

� x �	 � � x �1 � n� x �	

Hn.

n � 2, 3, Á , 6l	- (or l1-)
�(Hn)

hjk � 1>( j � k � 1).
Hn � [hjk],n � n

H3 � D1 1
2 

1
3 

1
2 

1
3 

1
4 

1
3 

1
4 

1
5 

T .
3 � 3

�(A) � 1n
�(A) � 1

[�2 4]T,
x� � [�10.0  14.1]T,

Ax � b1

A � c3.0 1.7

1.7 1.0
d , b1 � c4.7

2.7
d , b2 � c4.7

2.71
d

A � c4.50 3.55

3.55 2.80
d , b1 � c5.2

4.1
d , b2 � c5.2

4.0
d

Ax � b1, Ax � b2.
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20.5 Least Squares Method
Having discussed numerics for linear systems, we now turn to an important application,
curve fitting, in which the solutions are obtained from linear systems.

In curve fitting we are given n points (pairs of numbers) and we
want to determine a function such that

approximately. The type of function (for example, polynomials, exponential functions,
sine and cosine functions) may be suggested by the nature of the problem (the underlying
physical law, for instance), and in many cases a polynomial of a certain degree will be
appropriate.

Let us begin with a motivation.
If we require strict equality and use polynomials of

sufficiently high degree, we may apply one of the methods discussed in Sec. 19.3 in
connection with interpolation. However, in certain situations this would not be the
appropriate solution of the actual problem. For instance, to the four points

(1)

there corresponds the interpolation polynomial (Fig. 446), but if we
graph the points, we see that they lie nearly on a straight line. Hence if these values
are obtained in an experiment and thus involve an experimental error, and if the nature
of the experiment suggests a linear relation, we better fit a straight line through
the points (Fig. 446). Such a line may be useful for predicting values to be expected
for other values of x. A widely used principle for fitting straight lines is the method

f (x) � x3 � x � 1

(�1.3, 0.103),  (�0.1, 1.099),  (0.2, 0.808),  (1.3, 1.897)

f (x1) � y1, Á ,  f (xn) � yn

f (x1) � y1, Á ,  f (xn) � yn,

f (x)
(x1, y1), Á , (xn, yn)
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It is very important. (Proof in Ref. [GenRef7] listed
in App. 1.) Use it to prove

(19a)

(19b)

(c) Formula (10) is often more practical than (9).
Derive (10) from (9).

(d) Matrix norms. Illustrate (11) with examples. Give
examples of (12) with equality as well as with strict

1

1n
  � x �1 � � x �2 � � x �1.

� x �2 � � x �1 � 1n � x �2

inequality. Prove that the matrix norms (10), (11) in
Sec. 20.3 satisfy the axioms of a norm

if and only if 

25. WRITING PROJECT. Norms and Their Use in
This Section. Make a list of the most important of the
many ideas covered in this section and write a two-
page report on them.

� A � B � � � A � � � B �.
� kA � � ƒ k ƒ  � A �,

A � 0,� A � � 0

� A � � 0.

2

y

x–1 1

Fig. 446. Approximate fitting of a straight line
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of least squares by Gauss and Legendre. In the present situation it may be formulated
as follows.

Method of Least Squares. The straight line

(2)

should be fitted through the given points so that the sum of the
squares of the distances of those points from the straight line is minimum, where
the distance is measured in the vertical direction (the y-direction).

The point on the line with abscissa has the ordinate Hence its distance from
is (Fig. 447) and that sum of squares is

q depends on a and b. A necessary condition for q to be minimum is

(3)

(where we sum over j from 1 to n). Dividing by 2, writing each sum as three sums, and
taking one of them to the right, we obtain the result

(4)

These equations are called the normal equations of our problem.

 aa  x j � ba  x j
2 � a

 x jyj.

an  � ba  x j � a  yj

 
0q

0b
� �2a  x j ( yj � a � bx j) � 0

 
0q

0a
� �2a ( yj � a � bx j) � 0

q � a

n

j�1

 ( yj � a � bx j)
2.

ƒ yj � a � bx j ƒ(x j, yj)
a � bx j.x j

(x1, y1), Á , (xn, yn)

y � a � bx

SEC. 20.5 Least Squares Method 873

y

xxj

yj – a  – bxj
y = a + bx

a + bxj

( xj, yj )

0
0

Fig. 447. Vetrical distance of a point 
from a straight line y � a � bx

(xj, yj)

E X A M P L E  1 Straight Line

Using the method of least squares, fit a straight line to the four points given in formula (1).

Solution. We obtain

n � 4,  a x j � 0.1,  a x j
2 � 3.43,  a yj � 3.907,  a x jyj � 2.3839.
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Hence the normal equations are

The solution (rounded to 4D) is and we obtain the straight line (Fig. 446)

Curve Fitting by Polynomials of Degree m
Our method of curve fitting can be generalized from a polynomial to a
polynomial of degree m

(5)

where Then q takes the form

and depends on parameters Instead of (3) we then have 
conditions

(6)

which give a system of normal equations.
In the case of a quadratic polynomial

(7)

the normal equations are (summation from 1 to n)

(8)

The derivation of (8) is left to the reader.

E X A M P L E  2 Quadratic Parabola by Least Squares

Fit a parabola through the data 

Solution. For the normal equations we need 
Hence these equations are

 120b0 � 800b1 � 5664b2 � 696.

 20b0 � 120b1 � 800b2 � 104

 5b0 � 20b1 � 120b2 � 23

gx j
2yj � 696.gx jyj � 104,gyj � 23,

gx j
4 � 5664,gx j

3 � 800,gx j
2 � 120,gx j � 20,n � 5,

(0, 5), (2, 4), (4, 1), (6, 6), (8, 7).

b0a  x j
2 � b1a  x j

3 � b2a  x j
4 � a

 x j
2yj.

b0a  x j  � b1a  x j
2 � b2a  x j

3 � a
 x jyj

b0n  � b1a  x j � b2a  x j
2  � a

 yj

p(x) � b0 � b1x � b2x2

m � 1

0q

0b0
� 0,  Á ,   

0q

0bm
� 0

m � 1b0, Á , bm.m � 1

q � a

n

j�1

 ( yj � p(x j))
2

m � n � 1.

p(x) � b0 � b1x � Á � bmxm

y � a � bx

�y � 0.9601 � 0.6670x.

a � 0.9601, b � 0.6670,

 0.1a � 3.43b � 2.3839.

 4a � 0.10b � 3.9070
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Solving them we obtain the quadratic least squares parabola (Fig. 448)

�y � 5.11429 � 1.41429x � 0.21429x2.

SEC. 20.5 Least Squares Method 875

y

x0 2 4 6 8

2

4

6

8

Fig. 448. Least squares parabola in Example 2

For a general polynomial (5) the normal equations form a linear system of equations in
the unknowns When its matrix M is nonsingular, we can solve the system
by Cholesky’s method (Sec. 20.2) because then M is positive definite (and symmetric).
When the equations are nearly linearly dependent, the normal equations may become
ill-conditioned and should be replaced by other methods; see [E5], Sec. 5.7, listed in
App. 1.

The least squares method also plays a role in statistics (see Sec. 25.9).

b0, Á , bm.

1–6 FITTING A STRAIGHT LINE
Fit a straight line to the given points by least squares.
Show the details. Check your result by sketching the points
and the line. Judge the goodness of fit.

1.

2. How does the line in Prob. 1 change if you add a point
far above it, say, ? Guess first.

3.

4. Hooke’s law Estimate the spring modulus k
from the force F [lb] and the elongation s [cm], where

5. Average speed. Estimate the average speed of a
car traveling according to (s distance
traveled, t [hr] time) from 

6. Ohm’s law  Estimate R from 

7. Derive the normal equations (8).

(10, 530).(6, 314),(4, 206),
(i, U) � (2, 104),U � Ri.

(12, 410).(11, 310),
(10, 220),(t, s) � (9, 140),�

�s � v � t [km]
vav

(20, 6.3).
(10, 3.2),(6, 1.9),(4, 1.3),(2, 0.7),(F, s) � (1, 0.3),

F � ks.

(0, 1.8), (1, 1.6), (2, 1.1), (3, 1.5), (4, 2.3)

(1, 3)

(0, 2), (2, 0), (3, �2), (5, �3)

(x, y)

8–11 FITTING A QUADRATIC PARABOLA
Fit a parabola (7) to the points Check by sketching.

8.

9.

10. Worker’s time on duty,
reaction time,

11. The data in Prob. 3. Plot the points, the line, and the
parabola jointly. Compare and comment.

12. Cubic parabola. Derive the formula for the normal
equations of a cubic least squares parabola.

13. Fit curves (2) and (7) and a cubic parabola by least squares
to 

Graph these curves and the points on common
axes. Comment on the goodness of fit.

14. TEAM PROJECT. The least squares approximation
of a function on an interval by a
function

Fm(x) � a0y0(x) � a1 y1(x) � Á � am ym(x)

a � x � bf (x)

(3, 68).
(2, 22),(1, 4),(0, 4),(�1, �4),(x, y) � (�2, �30),

(5, 2.70)(4, 2.35),
(3, 1.90),(2, 1.78),(t, y) � (1, 2.0),

y [sec] � His>hert [hr] �

(7, �2)(6, 0)(5, 1),(3, 0),(2, �3),

(3, 8)(2, 4),(1, 3),(�1, 5),

(x, y).

P R O B L E M  S E T  2 0 . 5
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where are given functions, requires the
determination of the coefficients such that

(9)

becomes minimum. This integral is denoted by
and is called the -norm of

(L suggesting Lebesgue5). A necessary condition
for that minimum is given by 

(a) Show that this
leads to normal equations 

where

(10)

bj � �
b

a

 f (x)yj(x) dx.

hjk � �
b

a

 yj(x)yk(x) dx,

a
m

k�0

 hjkak � bj

( j � 0, Á , m)m � 1
j � 0, Á , m [the analog of (6)].

0� f � Fm�2>0aj � 0,
f � Fm

L2� f � Fm�� f � Fm�2,

�
b

a

 [ f (x) � Fm(x)]2 dx

a0, Á , am

y0(x), Á , ym(x)
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(b) Polynomial. What form does (10) take if
What is the

coefficient matrix of (10) in this case when the interval
is 

(c) Orthogonal functions. What are the solutions of
(10) if are orthogonal on the interval

(For the definition, see Sec. 11.5. See also
Sec. 11.6.)

15. CAS EXPERIMENT. Least Squares versus Inter-
polation. For the given data and for data of your
choice find the interpolation polynomial and the least
squares approximations (linear, quadratic, etc.).
Compare and comment.

(a)

(b)

(c) Choose five points on a straight line, e.g., 
Move one point 1 unit upward and

find the quadratic least squares polynomial. Do this for
each point. Graph the five polynomials on common
axes. Which of the five motions has the greatest effect?

(1, 1), Á , (4, 4).
(0, 0),

(4, 0)(3, 0),(2, 0),(1, 0),
(0, 1),(�1, 0),(�2, 0),(�3, 0),(�4, 0),

(�2, 0), (�1, 0), (0, 1), (1, 0), (2, 0)

a � x � b?
y0(x), Á , ym(x)

0 � x � 1?

Fm(x) � a0 � a1x � Á � amxm?

20.6 Matrix Eigenvalue Problems: Introduction
We now come to the second part of our chapter on numeric linear algebra. In the first
part of this chapter we discussed methods of solving systems of linear equations, which
included Gauss elimination with backward substitution. This method is known as a direct
method since it gives solutions after a prescribed amount of computation. The Gauss
method was modified by Doolittle’s method, Crout’s method, and Cholesky’s method,
each requiring fewer arithmetic operations than Gauss. Finally we presented indirect
methods of solving systems of linear equations, that is, the Gauss–Seidel method and the
Jacobi iteration. The indirect methods require an undetermined number of iterations. That
number depends on how far we start from the true solution and what degree of accuracy
we require. Moreover, depending on the problem, convergence may be fast or slow or our
computation cycle might not even converge. This led to the concepts of ill-conditioned
problems and condition numbers that help us gain some control over difficulties inherent
in numerics.

The second part of this chapter deals with some of the most important ideas and numeric
methods for matrix eigenvalue problems. This very extensive part of numeric linear algebra
is of great practical importance, with much research going on, and hundreds, if not
thousands, of papers published in various mathematical journals (see the references in
[E8], [E9], [E11], [E29]). We begin with the concepts and general results we shall need
in explaining and applying numeric methods for eigenvalue problems. (For typical models
of eigenvalue problems see Chap. 8.)

5HENRI LEBESGUE (1875–1941), great French mathematician, creator of a modern theory of measure and
integration in his famous doctoral thesis of 1902.
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An eigenvalue or characteristic value (or latent root) of a given matrix 
is a real or complex number such that the vector equation

(1)

has a nontrivial solution, that is, a solution which is then called an eigenvector or
characteristic vector of A corresponding to that eigenvalue The set of all eigenvalues
of A is called the spectrum of A. Equation (1) can be written

(2)

where I is the unit matrix. This homogeneous system has a nontrivial solution if
and only if the characteristic determinant is 0 (see Theorem 2 in Sec. 7.5).
This gives (see Sec. 8.1)

T H E O R E M  1 Eigenvalues

The eigenvalues of A are the solutions of the characteristic equation

(3)

Developing the characteristic determinant, we obtain the characteristic polynomial of A,
which is of degree n in Hence A has at least one and at most n numerically different
eigenvalues. If A is real, so are the coefficients of the characteristic polynomial. By familiar
algebra it follows that then the roots (the eigenvalues of A) are real or complex conjugates
in pairs.

To give you some orientation of the underlying approaches of numerics for eigenvalue
problems, note the following. For large or very large matrices it may be very difficult to
determine the eigenvalues, since, in general, it is difficult to find the roots of characteristic
polynomials of higher degrees. We will discuss different numeric methods for finding
eigenvalues that achieve different results. Some methods, such as in Sec. 20.7, will give
us only regions in which complex eigenvalues lie (Geschgorin’s method) or the intervals
in which the largest and smallest real eigenvalue lie (Collatz method). Other methods
compute all eigenvalues, such as the Householder tridiagonalization method and the
QR-method in Sec. 20.9.

To continue our discussion, we shall usually denote the eigenvalues of A by

with the understanding that some (or all) of them may be equal.
The sum of these n eigenvalues equals the sum of the entries on the main diagonal of

A, called the trace of A; thus

(4) trace A � a

n

j�1

 ajj � a

n

k�1

 lk.

l1, l2, Á , ln

l.

det (A � lI) � 5a11 � l a12
Á a1n

a21 a22 � l Á a2n

# # Á #

an1 an2
Á ann � l

5 � 0.

l

det (A � lI)
n � n

(A � lI)x � 0

l.
x � 0,

Ax � lx

l

A � [ajk]n � n
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c20-a.qxd  11/2/10  8:57 PM  Page 877



Also, the product of the eigenvalues equals the determinant of A,

(5)

Both formulas follow from the product representation of the characteristic polynomial,
which we denote by 

If we take equal factors together and denote the numerically distinct eigenvalues of A by
then the product becomes

(6)

The exponent is called the algebraic multiplicity of The maximum number of
linearly independent eigenvectors corresponding to is called the geometric multiplicity
of It is equal to or smaller than 

A subspace S of or (if A is complex) is called an invariant subspace of A if
for every v in S the vector Av is also in S. Eigenspaces of A (spaces of eigenvectors;
Sec. 8.1) are important invariant subspaces of A.

An matrix B is called similar to A if there is a nonsingular matrix T such that

(7)

Similarity is important for the following reason.

T H E O R E M  2 Similar Matrices

Similar matrices have the same eigenvalues. If x is an eigenvector of A, then
is an eigenvector of B in (7) corresponding to the same eigenvalue. (Proof

in Sec. 8.4.)

Another theorem that has various applications in numerics is as follows.

T H E O R E M  3 Spectral Shift

If A has the eigenvalues then with arbitrary k has the eigenvalues

This theorem is a special case of the following spectral mapping theorem.

T H E O R E M  4 Polynomial Matrices

If is an eigenvalue of A, then

is an eigenvalue of the polynomial matrix

q(A) � as A
s � as�1As�1 � Á � a1A � a0I.

q(l) � asl
s � as�1l

s�1 � Á � a1l � a0

l

l1 � k, Á , ln � k.
A � k Il1, Á , ln,

y � T�1x

B � T�1AT.

n � nn � n

C nRn
m j.lj.

lj

lj.m j

f (l) � (�1)n(l � l1)m1(l � l2)m2 Á (l � lr)
mr.

l1, Á , lr (r � n),

f (l) � (�1)n(l � l1)(l � l2) Á (l � ln).

f (l),

det A � l1l2
Á ln.
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P R O O F implies etc. Thus

The eigenvalues of important special matrices can be characterized as follows.

T H E O R E M  5 Special Matrices

The eigenvalues of Hermitian matrices ( i.e., hence of real symmetric matrices
( i.e., are real. The eigenvalues of skew-Hermitian matrices (i.e.,
hence of real skew-symmetric matrices (i.e., are pure imaginary or 0. The
eigenvalues of unitary matrices (i.e., hence of orthogonal matrices (i.e.,

have absolute value 1. (Proofs in Secs. 8.3 and 8.5.)

The choice of a numeric method for matrix eigenvalue problems depends essentially on
two circumstances, on the kind of matrix (real symmetric, real general, complex, sparse,
or full) and on the kind of information to be obtained, that is, whether one wants to know
all eigenvalues or merely specific ones, for instance, the largest eigenvalue, whether
eigenvalues and eigenvectors are wanted, and so on. It is clear that we cannot enter into
a systematic discussion of all these and further possibilities that arise in practice, but we
shall concentrate on some basic aspects and methods that will give us a general
understanding of this fascinating field.

AT � A�1),
A 

T
� A�1),

AT � �A),
A 

T
� �A),AT � A),

A 
T

� A),

� � asl
sx � as�1l

s�1x � Á � q(l) x.

 � asA
sx � as�1As�1x � Á

 q(A)x � (asA
s � as�1As�1 � Á ) x

A2x � Alx � lAx � l2x, A3x � l3x,Ax � lx

SEC. 20.7 Inclusion of Matrix Eigenvalues 879

20.7 Inclusion of Matrix Eigenvalues
The whole of numerics for matrix eigenvalues is motivated by the fact that, except for a
few trivial cases, we cannot determine eigenvalues exactly by a finite process because these
values are the roots of a polynomial of nth degree. Hence we must mainly use iteration.

In this section we state a few general theorems that give approximations and error
bounds for eigenvalues. Our matrices will continue to be real (except in formula (5) below),
but since (nonsymmetric) matrices may have complex eigenvalues, complex numbers will
play a (very modest) role in this section.

The important theorem by Gerschgorin gives a region consisting of closed circular disks
in the complex plane and including all the eigenvalues of a given matrix. Indeed, for each

the inequality (1) in the theorem determines a closed circular disk in the
complex -plane with center and radius given by the right side of (1); and Theorem 1
states that each of the eigenvalues of A lies in one of these n disks.

T H E O R E M  1 Gerschgorin’s Theorem6

Let be an eigenvalue of an arbitrary matrix Then for some
integer j we have

(1) ƒ ajj � l ƒ � ƒ aj1 ƒ � ƒ aj2 ƒ � Á � ƒ aj, j�1 ƒ � ƒ aj, j�1 ƒ � Á � ƒ ajn ƒ .

(1 � j � n)
A � [ajk].n � nl

ajjl

j � 1, Á , n

6SEMYON ARANOVICH GERSCHGORIN (1901–1933), Russian mathematician.
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P R O O F Let x be an eigenvector corresponding to an eigenvalue of A. Then

(2) or

Let be a component of x that is largest in absolute value. Then we have 
for The vector equation (2) is equivalent to a system of n equations for the
n components of the vectors on both sides. The jth of these n equations with j as just
indicated is

Division by (which cannot be zero; why?) and reshuffling terms gives

By taking absolute values on both sides of this equation, applying the triangle inequality
(where a and b are any complex numbers), and observing that

because of the choice of j (which is crucial!), we obtain (1),
and the theorem is proved.

E X A M P L E  1 Gerschgorin’s Theorem

For the eigenvalues of the matrix

we get the Gerschgorin disks (Fig. 449)

Center 0, radius 1, Center 5, radius 1.5, Center 1, radius 1.5.

The centers are the main diagonal entries of A. These would be the eigenvalues of A if A were diagonal. We
can take these values as crude approximations of the unknown eigenvalues (3D-values) 

(verify this); then the radii of the disks are corresponding error bounds.
Since A is symmetric, it follows from Theorem 5, Sec. 20.6, that the spectrum of A must actually lie in the

intervals and 
It is interesting that here the Gerschgorin disks form two disjoint sets, namely, which contains two

eigenvalues, and which contains one eigenvalue. This is typical, as the following theorem shows. �D2,
D1 ´ D3,

[3.5, 6.5].[�1, 2.5]

l2 � 5.305, l3 � 0.904
l1 � �0.209,

D3:D2:D1:

A � D0 1
2 

1
2 

1
2 5 1

1
2 1 1

T

�

ƒ x1>x j ƒ � 1, Á , ƒ xn>x j ƒ � 1,
ƒ a � b ƒ � ƒ a ƒ � ƒ b ƒ

ajj � l � �aj1 

x1

x j
 � Á � aj, j�1 

x j�1

x j
 � aj, j�1 

x j�1

x j
 � Á � ajn 

xn

x j
 .

x j

aj1x1 � Á � aj, j�1x j�1 � (ajj � l)x j � aj, j�1x j�1 � Á � ajnxn � 0.

m � 1, Á , n.
ƒ xm>x j ƒ � 1x j

(A � lI)x � 0.Ax � lx

l
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Fig. 449. Gerschgorin disks in Example 1
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T H E O R E M  2 Extension of Gerschgorin’s Theorem

If p Gerschgorin disks form a set S that is disjoint from the other disks of a
given matrix A, then S contains precisely p eigenvalues of A (each counted with its
algebraic multiplicity, as defined in Sec. 20.6).

Idea of Proof. Set where B is the diagonal matrix with entries and
apply Theorem 1 to with real t growing from 0 to 1.

E X A M P L E  2 Another Application of Gerschgorin’s Theorem. Similarity

Suppose that we have diagonalized a matrix by some numeric method that left us with some off-diagonal entries
of size say,

What can we conclude about deviations of the eigenvalues from the main diagonal entries?

Solution. By Theorem 2, one eigenvalue must lie in the disk of radius centered at 4 and two
eigenvalues (or an eigenvalue of algebraic multiplicity 2) in the disk of radius centered at 2. Actually,
since the matrix is symmetric, these eigenvalues must lie in the intersections of these disks and the real axis,
by Theorem 5 in Sec. 20.6.

We show how an isolated disk can always be reduced in size by a similarity transformation. The matrix

is similar to A. Hence by Theorem 2, Sec. 20.6, it has the same eigenvalues as A. From Row 3 we get the
smaller disk of radius Note that the other disks got bigger, approximately by a factor of And in
choosing T we have to watch that the new disks do not overlap with the disk whose size we want to decrease.

For further interesting facts, see the book [E28].

By definition, a diagonally dominant matrix is an matrix such that

(3)

where we sum over all off-diagonal entries in Row j. The matrix is said to be strictly
diagonally dominant if in (3) for all j. Use Theorem 1 to prove the following basic
property.

T H E O R E M  3 Strict Diagonal Dominance

Strictly diagonally dominant matrices are nonsingular.

�

j � 1, Á , nƒ ajj ƒ � a
k�j

 ƒ ajk ƒ

n 	 nA � [ajk]

�

105.2 � 10�10.

 � D 2 10�5 1

10�5 2 1

10�10 10�10 4

T
 B � T�1AT � D1 0 0

0 1 0

0 0 10�5

T D 2 10�5 10�5

10�5 2 10�5

10�5 10�5 4

T D1 0 0

0 1 0

0 0 105

T

2 � 10�5
2 � 10�5

A � D 2 10�5 10�5

10�5 2 10�5

10�5 10�5 4

T .
10�5,

�At � B � tC
ajj,A � B � C,

n � p

c20-b.qxd  11/2/10  9:25 PM  Page 881



Further Inclusion Theorems
An inclusion theorem is a theorem that specifies a set which contains at least one
eigenvalue of a given matrix. Thus, Theorems 1 and 2 are inclusion theorems; they even
include the whole spectrum. We now discuss some famous theorems that yield further
inclusions of eigenvalues. We state the first two of them without proofs (which would
exceed the level of this book).

T H E O R E M  4 Schur’s Theorem7

Let be a matrix. Then for each of its eigenvalues

(4) (Schur’s inequality).

In (4) the second equality sign holds if and only if A is such that

(5)

Matrices that satisfy (5) are called normal matrices. It is not difficult to see that Hermitian,
skew-Hermitian, and unitary matrices are normal, and so are real symmetric, skew-symmetric,
and orthogonal matrices.

E X A M P L E  3 Bounds for Eigenvalues Obtained from Schur’s Inequality

For the matrix

we obtain from Schur’s inequality You may verify that the eigenvalues are 30, 25,
and 20. Thus in fact, A is not normal.

The preceding theorems are valid for every real or complex square matrix. Other theorems
hold for special classes of matrices only. Famous is the following one, which has various
applications, for instance, in economics.

T H E O R E M  5 Perron’s Theorem8

Let A be a real matrix whose entries are all positive. Then A has a positive
real eigenvalue of multiplicity 1. The corresponding eigenvector can be
chosen with all components positive. (The other eigenvalues are less than in
absolute value.)

r

l � r
n 	 n

�302 � 252 � 202 � 1925 
 1949;
ƒl ƒ � 11949 � 44.1475.

A � D26 �2 2

2 21 4

4 2 28

T

ATA � AAT.

ƒlm ƒ
2 � a

n

i�1

 ƒli ƒ
2 � a

n

j�1

 a

n

k�1

 ƒ ajk ƒ
2

l1, Á , ln,n 	 nA � [ajk]
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7ISSAI SCHUR (1875–1941), German mathematician, also known by his important work in group theory.
8OSKAR PERRON (1880–1975) and GEORG FROBENIUS (1849–1917), German mathematicians, known

for their work in potential theory, ODEs (Sec. 5.4), and group theory.
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For a proof see Ref. [B3], vol. II, pp. 53–62. The theorem also holds for matrices with
nonnegative real entries (“Perron–Frobenius Theorem”8) provided A is irreducible, that
is, it cannot be brought to the following form by interchanging rows and columns; here
B and F are square and 0 is a zero matrix.

Perron’s theorem has various applications, for instance, in economics. It is interesting
that one can obtain from it a theorem that gives a numeric algorithm:

T H E O R E M  6 Collatz Inclusion Theorem9

Let be a real matrix whose elements are all positive. Let x be any
real vector whose components are positive, and let be the
components of the vector Then the closed interval on the real axis bounded
by the smallest and the largest of the n quotients contains at least one
eigenvalue of A.

P R O O F We have or

(6)

The transpose satisfies the conditions of Theorem 5. Hence has a positive eigenvalue
and, corresponding to this eigenvalue, an eigenvector u whose components are all

positive. Thus and by taking the transpose we obtain From this
and (6) we have

or written out

Since all the components are positive, it follows that

(7)
that is, for at least one j,

and
that is, for at least one j.

Since A and have the same eigenvalues, is an eigenvalue of A, and from (7) the
statement of the theorem follows. �

lAT

qj � lyj � lx j � 0,

qj � lyj � lx j � 0,

uj

a
n

j�1

 uj(yj � lx j) � 0.

uT(y � Ax) � uTy � uTAx � uTy � luTx � uT(y � lx) � 0

uTA � luT.ATu � lu
ujl

ATAT

y � Ax � 0.

Ax � y

qj � yj>x j

y � Ax.
y1, Á , ynx1, Á , xn

n 	 nA � [ajk]

cB C

0 F
d
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9LOTHAR COLLATZ (1910–1990), German mathematician known for his work in numerics.
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E X A M P L E  4 Bounds for Eigenvalues from Collatz’s Theorem. Iteration

For a given matrix A with positive entries we choose an and iterate, that is, we compute 
In each step, taking and we compute an inclusion interval

by Collatz’s theorem. This gives (6S)

and the intervals etc. These intervals
have length

j 1 2 3 10 15 20

Length 0.32 0.113622 0.0539835 0.0004217 0.0000132 0.0000004

Using the characteristic polynomial, you may verify that the eigenvalues of A are 0.72, 0.36, 0.09, so that those
intervals include the largest eigenvalue, 0.72. Their lengths decreased with j, so that the iteration was worthwhile.
The reason will appear in the next section, where we discuss an iteration method for eigenvalues. �

0.5 � l � 0.82, 0.3186>0.50 � 0.6372 � l � 0.5481>0.73 � 0.750822,

Á , x19 � D0.00216309

0.00108155

0.00216309

T , x20 � D0.00155743

0.000778713

0.00155743

T
A � D0.49 0.02 0.22

0.02 0.28 0.20

0.22 0.20 0.40

T , x0 � D11
1

T , x1 � D0.73

0.50

0.82

T , x2 � D0.5481

0.3186

0.5886

T ,
y � Axj � xj�1x � xjx2 � Ax1, Á , x20 � Ax19.

x1 � Ax0,x � x0
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1–6 GERSCHGORIN DISKS

Find and sketch disks or intervals that contain the
eigenvalues. If you have a CAS, find the spectrum and
compare.

1. 2.

3. 4.

5. 6.

7. Similarity. In Prob. 2, find such that the radius
of the Gerschgorin circle with center 5 is reduced by a
factor 

8. By what integer factor can you at most reduce the
Gerschgorin circle with center 3 in Prob. 6?

1>100.

T�TAT

D 10 0.1 �0.2

   0.1 6 0

  �0.2 0 3

TD 2 i 1 � i

�i 3 0

1 � i 0 8

T
D1 0 1

0 4 3

1 3 12

TD 0 0.4 �0.1

�0.4 0 0.3

0.1 �0.3 0

T
D 5 10�2 10�2

10�2 8 10�2

10�2 10�2 9

TD 5 2 4

�2 0 2

2 4 7

T

9. If a symmetric matrix has been
diagonalized except for small off-diagonal entries of
size what can you say about the eigenvalues?

10. Optimality of Gerschgorin disks. Illustrate with a
matrix that an eigenvalue may very well lie on

a Gerschgorin circle, so that Gerschgorin disks can
generally not be replaced with smaller disks without
losing the inclusion property.

11. Spectral radius � Using Theorem 1, show that
cannot be greater than the row sum norm of A.

12–16 SPECTRAL RADIUS

Use (4) to obtain an upper bound for the spectral radius:

12. In Prob. 4 13. In Prob. 1

14. In Prob. 6 15. In Prob. 3

16. In Prob. 5

17. Verify that the matrix in Prob. 5 is normal.

18. Normal matrices. Show that Hermitian, skew-
Hermitian, and unitary matrices (hence real symmetric,
skew-symmetric, and orthogonal matrices) are normal.
Why is this of practical interest?

19. Prove Theorem 3 by using Theorem 1.

20. Extended Gerschgorin theorem. Prove Theorem 2.
Hint. Let 
and let t increase continuously from 0 to 1.

A � B � C, B � diag (ajj), At � B � tC,

r(A)
(A).

2 	 2

10�5,

A � [ajk]n 	 n

P R O B L E M  S E T 2 0 . 7
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SEC. 20.8 Power Method for Eigenvalues 885

20.8 Power Method for Eigenvalues
A simple standard procedure for computing approximate values of the eigenvalues of an

matrix is the power method. In this method we start from any vector
with n components and compute successively

For simplifying notation, we denote by x and by y, so that 
The method applies to any matrix A that has a dominant eigenvalue (a such

that is greater than the absolute values of the other eigenvalues). If A is symmetric, it
also gives the error bound (2), in addition to the approximation (1).

T H E O R E M  1 Power Method, Error Bounds

Let A be an real symmetric matrix. Let be any real vector with n
components. Furthermore, let

Then the quotient

(1) (Rayleigh10 quotient)

is an approximation for an eigenvalue of A (usually that which is greatest in
absolute value, but no general statements are possible).

Furthermore, if we set so that is the error of q, then

(2)

P R O O F denotes the radicand in (2). Since by (1), we have

(3)

Since A is real symmetric, it has an orthogonal set of n real unit eigenvectors 
corresponding to the eigenvalues respectively (some of which may be equal).
(Proof in Ref. [B3], vol. 1, pp. 270–272, listed in App. 1.) Then x has a representation of
the form

x � a1z1 � Á � anzn .

l1, Á , ln,
z1, Á , zn

(y � qx)T(y � qx) � m2 � 2qm1 � q2m0 � m2 � q2m0 � d2m0 .

m1 � qm0d2

ƒ P ƒ � d �
B

m2

m0
� q2 .

Pq � l � P,

l

q �  

m1

m0

y � Ax,  m0 � xTx,  m1 � xTy,  m2 � yTy.

x (� 0)n 	 n

ƒl ƒ

ln 	 n
y � Ax.xsxs�1

x1 � Ax0,  x2 � Ax1,  Á ,  xs � Axs�1.

x0 (� 0)
A � [ajk]n 	 n

10LORD RAYLEIGH (JOHN WILLIAM STRUTT) (1842–1919), great English physicist and mathematician,
professor at Cambridge and London, known for his important contributions to various branches of applied
mathematics and theoretical physics, in particular, the theory of waves, elasticity, and hydrodynamics. In 1904
he received a Nobel Prize in physics.
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Now etc., and we obtain

and, since the are orthogonal unit vectors,

(4)

It follows that in (3),

Since the are orthogonal unit vectors, we thus obtain from (3)

(5)

Now let be an eigenvalue of A to which q is closest, where c suggests “closest.” Then
for From this and (5) we obtain the inequality

Dividing by taking square roots, and recalling the meaning of gives

This shows that is a bound for the error of the approximation q of an eigenvalue of
A and completes the proof.

The main advantage of the method is its simplicity. And it can handle sparse matrices
too large to store as a full square array. Its disadvantage is its possibly slow convergence.
From the proof of Theorem 1 we see that the speed of convergence depends on the ratio
of the dominant eigenvalue to the next in absolute value (2:1 in Example 1, below).

If we want a convergent sequence of eigenvectors, then at the beginning of each step
we scale the vector, say, by dividing its components by an absolutely largest one, as in
Example 1, as follows.

E X A M P L E  1 Application of Theorem 1. Scaling

For the symmetric matrix A in Example 4, Sec. 20.7, and we obtain from (1) and (2) and the
indicated scaling

x5 � D0.990663

0.504682

1

T ,  x10 � D0.999707

0.500146

1

T ,  x15 � D0.999991

0.500005

1

T .
A � D0.49 0.02 0.22

0.02 0.28 0.20

0.22 0.20 0.40

T , x0 � D11
1

T , x1 � D0.890244

0.609756

1

T , x2 � D0.931193

0.541284

1

T
x0 � [1 1 1]T

�

Pd

d �
B

m2

m0
� q2 � ƒlc � q ƒ .

d2m0,

d2m0 � (lc � q)2(a1
2 � Á � an

2) � (lc � q)2m0.

j � 1, Á , n.(lc � q)2 � (lj � q)2
lc

d2m0 � (y � qx)T(y � qx) � a1
2(l1 � q)2 � Á � an

2(ln � q)2 .

zj

y � qx � a1(l1 � q)z1 � Á � an(ln � q)zn .

m0 � xTx � a1
2 � Á � an

2 .

zj

y � Ax � a1l1z1 � Á � anlnzn

Az1 � l1z1,
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Here scaled to etc. The dominant eigenvalue is
0.72, an eigenvector The corresponding q and are computed each time before the next scaling.
Thus in the first step,

This gives the following values of and the error (calculations with 10D, rounded to 6D):

j 1 2 5 10

q 0.683333 0.716048 0.719944 0.720000

0.134743 0.038887 0.004499 0.000141

0.036667 0.003952 0.000056

The error bounds are much larger than the actual errors. This is typical, although the bounds cannot be improved;
that is, for special symmetric matrices they agree with the errors.

Our present results are somewhat better than those of Collatz’s method in Example 4 of Sec. 20.7, at the
expense of more operations.

Spectral shift, the transition from A to shifts every eigenvalue by Although
finding a good k can hardly be made automatic, it may be helped by some other method
or small preliminary computational experiments. In Example 1, Gerschgorin’s theorem
gives for the whole spectrum (verify!). Shifting by might be too
much (then so let us try 

E X A M P L E  2 Power Method with Spectral Shift

For with A as in Example 1 we obtain the following substantial improvements (where the index 1
refers to Example 1 and the index 2 to the present example).

j 1 2 5 10

1 0.134743 0.038887 0.004499 0.000141

2 0.134743 0.034474 0.000693 1.8 � 10�6

1 0.036667 0.003952 0.000056 5 � 10�8

2 0.036667 0.002477 1.3 � 10�6 9 � 10�12 �P

P

d

d

A � 0.2I

�0.2.�0.42 � l � 0.42),
�0.4�0.02 � l � 0.82

�k.A � kI,

�

5 � 10�8
P

d

P � 0.72 � qq, d,

d � am2

m0
 � q2b1>2 � a (Ax0)TAx0

x0
T x0

 � q2b1>2 � a1.4553
3

 � q2b1>2 � 0.134743.

q �
m1

m0
�

x0
T Ax0

x0
T x0

�
2.05

3
� 0.683333

d[1 0.5 1]T.
x1 � [0.73>0.82 0.5>0.82 1]T,Ax0 � [0.73 0.5 0.82]T,
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1–4 POWER METHOD WITHOUT SCALING

Apply the power method without scaling (3 steps), using
or Give Rayleigh quotients and

error bounds. Show the details of your work.

1. 2. c 7 �3

�3 �1
dc9 4

4 3
d

[1 1 1]T.x0 � [1, 1]T 3. 4.

5–8 POWER METHOD WITH SCALING

Apply the power method (3 steps) with scaling, using
or as applicable. Give[1 1 1 1]T,x0 � [1 1 1]T

D 3.6 �1.8 1.8

�1.8 2.8 �2.6

1.8 �2.6 2.8

TD 2 �1 1

�1 3 2

1 2 3

T
P R O B L E M  S E T 2 0 . 8
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20.9 Tridiagonalization and QR-Factorization
We consider the problem of computing all the eigenvalues of a real symmetric matrix

discussing a method widely used in practice. In the first stage we reduce the
given matrix stepwise to a tridiagonal matrix, that is, a matrix having all its nonzero
entries on the main diagonal and in the positions immediately adjacent to the main diagonal
(such as in Fig. 450, Third Step). This reduction was invented by A. S. Householder11

(J. Assn. Comput. Machinery 5 (1958), 335–342). See also Ref. [E29] in App. 1.
This Householder tridiagonalization will simplify the matrix without changing its

eigenvalues. The latter will then be determined (approximately) by factoring the tridiago-
nalized matrix, as discussed later in this section.

A3

A � 3ajk4,

11ALSTON SCOTT HOUSEHOLDER (1904–1993), American mathematician, known for his work  in
numerical analysis and mathematical biology. He was head of the mathematics division at Oakridge National
Laboratory and later professor at the University of Tennessee. He was both president of ACM (Association for
Computing Machinery) 1954–1956 and SIAM (Society for Industrial and Applied Mathematics) 1963–1964.

Rayleigh quotients and error bounds. Show the details of
your work.

5. The matrix in Prob. 3

6.

7.

8.

9. Prove that if x is an eigenvector, then in (2).
Give two examples.

10. Rayleigh quotient. Why does q generally approximate
the eigenvalue of greatest absolute value? When will
q be a good approximation?

11. Spectral shift, smallest eigenvalue. In Prob. 3 set
(as perhaps suggested by the diagonal

entries) and see whether you may get a sequence of q’s
converging to an eigenvalue of A that is smallest (not
largest) in absolute value. Use Do
8 steps. Verify that A has the spectrum {0, 3, 5}.

x0 � [1 1 1]T.

B � A � 3I

d � 0

E2 4 0 1

4 1 2 8

0 2 5 2

1 8 2 0

U
E5 1 0 0

1 3 1 0

0 1 3 1

0 0 1 5

U
D4 2 3

2 7 6

3 6 4

T
12. CAS EXPERIMENT. Power Method with

Scaling. Shifting. (a) Write a program for 
matrices that prints every step. Apply it to the
(nonsymmetric!) matrix (20 steps), starting from

(b) Experiment in (a) with shifting. Which shift do you
find optimal?

(c) Write a program as in (a) but for symmetric matrices
that prints vectors, scaled vectors, q, and Apply it to
the matrix in Prob. 8.

(d). Optimality of �. Consider and 

take Show that for all steps 

and the eigenvalues are so that the interval
cannot be shortened (by omitting 

without losing the inclusion property. Experiment with
other ’s.

(e) Find a (nonsymmetric) matrix for which in (2) is
no longer an error bound.

(f) Experiment systematically with speed of conver-
gence by choosing matrices with the second greatest
eigenvalue (i) almost equal to the greatest, (ii) some-
what different, (iii) much different.

d

x0

�1)[q � d, q � d]
�1,

q � 0, d � 1x0 � c 3

�1
d  .

A � c0.6 0.8

0.8 �0.6
d

d.

A � D 15 12 3

18 44 18

�19 �36 �7

T .
[1 1 1]T.

n 	 n
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Householder’s Tridiagonalization Method11

An real symmetric matrix being given, we reduce it by successive
similarity transformations (see Sec. 20.6) involving matrices to tridiagonal
form. These matrices are orthogonal and symmetric. Thus and similarly
for the others. These transformations produce, from the given , the matrices

in the form

(1)

The transformations (1) create the necessary zeros, in the first step in Row 1 and Column 1,
in the second step in Row 2 and Column 2, etc., as Fig. 450 illustrates for a matrix.
B is tridiagonal.

5 	 5

A1 � P1A0P1

A2 � P2A1P2

# # # # # # # # # # #

B � An�2 � Pn�2An�3Pn�2.

.

A1 � 3a(1)
jk 4, A2 � 3a(2)

jk 4, Á , An�2 � 3a(n�2)
jk 4

A0 � A � 3ajk4
P �1

1 � P1
T � P1

P1, Á , Pn�2

n � 2A � 3ajk4n 	 n

*
*

*
*
*
*
*

*
*
*
*

*
*
*
*

*
* *
*
*

*
*

*
* *

*
*
*

*
*
*

*
*
*

*
*

*
*
*

*
*
*

*
*
*

*
*

First Step Second Step Third Step
A

1
 = P

1
AP

1
A

2 = P
2 

A
1
P

2
A

3
 = P

3
A

2
P

3

Fig. 450. Householder’s method for a matrix. 
Positions left blank are zeros created by the method.

5 	 5

How do we determine ? Now, all these are of the form

(2)

where I is the unit matrix and is a unit vector with its first r components
0; thus

(3)

where the asterisks denote the other components (which will be nonzero in general).

v1 � G
0

*

*

o

*

W ,  v2 � G
0

0

*

o

*

W ,  Á ,  vn�2 � G
0

0

o

*

*

W

vr � [vjr]n 	 n

(r � 1, Á , n � 2)Pr � I � 2vrvr
T

PrP1, P2, Á , Pn�2
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Step 1. has the components

(a)

(4) (b)

where

(c)

where and and With this we
compute by (2) and then by (1). This was the first step.

Step 2. We compute by (4) with all subscripts increased by 1 and the replaced
by the entries of just computed. Thus [see also (3)]

(4*)

where

With this we compute by (2) and then by (1).

Step 3. We compute by with all subscripts increased by 1 and the replaced
by the entries of and so on.

E X A M P L E  1 Householder Tridiagonalization

Tridiagonalize the real symmetric matrix

Solution. Step 1. We compute from (4c). Since we have 
in (4b) and get from (4) by straightforward computation

sgn a21 � �1a21 � 4 � 0,S2
1 � 42 � 12 � 12 � 18

A � A0 � E6 4 1 1

4 6 1 1

1 1 5 2

1 1 2 5

U .

A2,a(2)
jk

a(1)
jk(4*)v3

A2P2

S2 � 2a(1)2

32 � a(1)2

42 � Á � a(1)2

n2 .

j � 4, 5, Á , n vj2 �
a(1)

j2  sgn a(1)
32

2v32S2
 

 v32 �
B

1
2

  a1 �
ƒ a(1)

32 ƒ

S2
 b

 v12 � v22 � 0

A1a(1)
jk ,

ajkv2

A1P1

sgn a21 � �1 if a21 
 0.sgn a21 � �1 if a21 � 0S1 � 0,

S1 � 2a2
21 � a2

31 �  Á  � a2
n1

j � 3, 4, Á , nvj1 �
aj1 sgn a21

2v21S1

v21 �
R

1
2

 a1 �
ƒ a21 ƒ

S1
b

v11 � 0

v1
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From this and (2),

From the first line in (1) we now get

Step 2. From we compute and

From this and (2),

The second line in (1) now gives

This matrix B is tridiagonal. Since our given matrix has order we needed steps to accomplish
this reduction, as claimed. (Do you see that we got more zeros than we can expect in general?)

B is similar to A, as we now show in general. This is essential because B thus has the same spectrum as A,
by Theorem 2 in Sec. 20.6.

B Similar to A. We assert that B in (1) is similar to The matrix is symmetric;
indeed,

P T
r � (I � 2vrvr

T )T � IT � 2(vrvr
T)T � I � 2vrvr

T � Pr

PrA � A0.

�

n � 2 � 2n � 4,

B2 � A2 � P2A1P2 � E 6 �118 0 0

�118 7 12  0

0 12 6 0

0 0 0 3

U .

P2 � E1 0 0 0

0 1 0 0

0 0 �1>12 �1>12

0 0 �1>12 �1>12

U .

v2 � E00
v32

v42

U � E00
0.92387953

0.38268343

U .
S2

2 � 2(4*)

A1 � P1A0P1 � E 6 �118 0 0

�118 7 �1 �1

0 �1 9
2 

3
2 

0 �1 3
2 

9
2 

U .

P1 � E1 0 0 0

0 �0.94280904 �0.23570227 �0.23570227

0 �0.23570227 0.97140452 �0.02859548

0 �0.23570227 �0.02859548 0.97140452

U .

v1 � E0v21

v31

v41

U � E00.98559856

0.11957316

0.11957316

U .
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Also, is orthogonal because is a unit vector, so that and thus

Hence and from (1) we now obtain

where This proves our assertion. 

QR-Factorization Method
In 1958 H. Rutishauser12 of Switzerland proposed the idea of using the LU-factorization
(Sec. 20.2; he called it LR-factorization) in solving eigenvalue problems. An improved
version of Rutishauser’s method (avoiding breakdown if certain submatrices become
singular, etc.; see Ref. [E29]) is the QR-method, independently proposed by the American
J. G. F. Francis (Computer J. 4 (1961–62), 265–271, 332–345) and the Russian V. N.
Kublanovskaya (Zhurnal Vych. Mat. i Mat. Fiz. 1 (1961), 555–570). The QR-method uses
the factorization QR with orthogonal Q and upper triangular R. We discuss the QR-method
for a real symmetric matrix. (For extensions to general matrices see Ref. [E29] in App. 1.)

In this method we first transform a given real symmetric matrix A into a
tridiagonal matrix by Householder’s method. This creates many zeros and thus
reduces the amount of further work. Then we compute stepwise according to
the following iteration method.

Step 1. Factor with orthogonal and upper triangular Then compute

Step 2. Factor Then compute 
General Step 

(5)
(a) Factor

(b)

Here is orthogonal and upper triangular. The factorization (5a) will be explained
below.

Similar to B. Convergence to a Diagonal Matrix. From (5a) we have 
Substitution into (5b) gives

(6) Bs�1 � RsQs � Q�1
s BsQs.

Rs � Q�1
s Bs.Bs�1

RsQs

Compute Bs�1 � RsQs.

Bs � QsRs.

s � 1.
B2 � R1Q1.B1 � Q1R1.

B1 � R0Q0.
R0.Q0B0 � Q0R0

B1, B2, Á

B0 � B
n 	 n

�P � P1P2
Á Pn�2 .

 � P�1AP

 � P�1
n�2P�1

n�3
Á P�1

1 AP1
Á Pn�3Pn�2

 Á � Pn�2Pn�3
Á P1AP1

Á Pn�3Pn�2

 B � Pn�2An�3Pn�2 � Á

P�1
r � P T

r � Pr

 � I � 4vrvr
T � 4vr(vr

Tvr)vr
T � I.

 PrP
T

r � P 2
r � (I � 2vrvr

T)2 � I � 4vrvr
T � 4vrvr

Tvrvr
T

v T
r vr � 1vrPr
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12HEINZ RUTISHAUSER (1918–1970). Swiss mathematician, professor at ETH Zurich. Known for his
pioneering work in numerics and computer science.
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Thus is similar to Hence is similar to for all s. By Theorem 2, Sec.
20.6, this implies that has the same eigenvalues as B.

Also, is symmetric. This follows by induction. Indeed, is symmetric.
Assuming to be symmetric, that is, and using (since is
orthogonal), we get from (6) the symmetry,

If the eigenvalues of B are different in absolute value, say, 
then

where D is diagonal, with main diagonal entries (Proof in Ref. [E29] listed
in App. 1.)

How to Get the QR-Factorization, say, The tridiagonal matrix
B has generally nonzero entries below the main diagonal. These are

We multiply B from the left by a matrix such that 
has We multiply this by a matrix such that has 
etc. After such multiplications we are left with an upper triangular matrix 
namely,

(7)

These matrices are very simple. has the submatrix

suitable)

in Rows and j and Columns and j; everywhere else on the main diagonal the
matrix has entries 1; and all its other entries are 0. (This submatrix is the matrix of a
plane rotation through the angle see Team Project 30, Sec. 7.2.) For instance, if 
writing we have

These are orthogonal. Hence their product in (7) is orthogonal, and so is the inverse
of this product. We call this inverse Then from (7),

(8)

where, with 

(9) Q0 � (CnCn�1
Á C3C2)�1 � C2

TC3
T Á Cn�1

TCn
T.

Cj
�1 � Cj

T,

B0 � Q0R0

Q0.
Cj

C2 � E c2 s2 0 0

�s2 c2 0 0

0 0 1 0

0 0 0 1

U , C3 � E1 0 0 0

0 c3 s3 0

0 �s3 c3 0

0 0 0 1

U , C4 � E1 0 0 0

0 1 0 0

0 0 c4 s4

0 0 �s4 c4

U .
cj � cos uj, sj � sin uj,

n � 4,uj;
Cj

j � 1j � 1

(ujc cos uj sin uj

�sin uj  cos uj
d
2 � 2CjCjn � n

CnCn�1
Á C3C2B0 � R0.

R0,n � 1
b32

(3) � 0,C3C2B � [b jk
(3)]C3b21

(2) � 0.
C2B � [b jk

(2)]C2b21, b32, Á , bn,n�1.
n � 1

B � B0 � [bjk] � Q0R0.

l1, l2, Á , ln.

lim
s:�

 Bs � D

ƒl1 ƒ � ƒl2 ƒ �  Á  � ƒln ƒ ,

B T
s�1 � (Q T

s BsQs)
T � Q T

s B T
s Qs � Q T

s BsQ s � Bs�1.

QsQ�1
s � Q T

sB T
s � Bs,Bs

B0 � BBs�1

Bs�1

B0 � BBs�1Bs.Bs�1
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This is our QR-factorization of From it we have by (5b) with 

(10)

We do not need explicitly, but to get from (10), we first compute then
etc. Similarly in the further steps that produce 

Determination of cos �jj and sin �jj . We finally show how to find the angles of rotation.
and in must be such that in the product

Now is obtained by multiplying the second row of by the first column of B,

Hence and

(11)

Similarly for The next example illustrates all this.

E X A M P L E  2 QR-Factorization Method

Compute all the eigenvalues of the matrix

Solution. We first reduce A to tridiagonal form. Applying Householder’s method, we obtain (see Example 1)

A2 � E 6 �118 0 0

�118 7 12 0

0 12 6 0

0 0 0 3

U .

A � E6 4 1 1

4 6 1 1

1 1 5 2

1 1 2 5

U .

u3, u4, Á .

 sin u2 �
tan u2

21 � tan2 u2
�

b21>b11

21 � (b21>b11)2
 .

 cos u2 �
1

21 � tan2 u2
�

1

21 � (b21>b11)2

tan u2 � s2>c2 � b21>b11,

b21
(2) � �s2b11 � c2b21 � �(sin u2)b11 � (cos u2)b21 � 0.

C2b21
(2)

C2B � E c2 s2 0 Á

�s2 c2 0 Á

# # # Á

# # # Á

U  Eb11 b12 b13
Á

b21 b22 b23
Á

# # # Á

# # # Á

U .
b21

(2) � 0C2sin u2cos u2

B2, B3, Á .(R0C2
T)C3

T,
R0C2

T,B1Q0

B1 � R0Q0 � R0C2
TC3

T Á Cn�1
TCn

T.

s � 0B0.
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From the characteristic determinant we see that hence A, has the eigenvalue 3. (Can you see this directly
from ?) Hence it suffices to apply the QR-method to the tridiagonal matrix

Step 1. We multiply B from the left by

and then by

Here gives (11) and With
these values we compute

In we get from the values and
This gives

From this we compute

which is symmetric and tridiagonal. The off-diagonal entries in are still large in absolute value. Hence we
have to go on.

Step 2. We do the same computations as in the first step, with replaced by and and changed
accordingly, the new angles being and We obtain

and from this

We see that the off-diagonal entries are somewhat smaller in absolute value than those of but still much too
large for the diagonal entries to be good approximations of the eigenvalues of B.

B1,

B2 � D 10.87987988 �0.79637918 0

�0.79637918 5.44738664 1.50702500

0 1.50702500 2.67273348

T .

R1 � D10.53565375 �2.80232241 �0.39114588

0 4.08329584 3.98824028

0 0 3.06832668

T
u3 � 0.513415589.u2 � �0.196291533

C3C2B1B0 � B

B1

B1 � R0C2
TC3

T � D 10.33333333 �2.05480467 0

�2.05480467 4.03508772 2.00553251

0 2.00553251 4.63157895

T

R0 � C3C2B � D7.34846923 �7.50555350 �0.81649658

0 3.55902608 3.44378413

0 0 5.04714615

T .
sin u3 � 0.39735971.

cos u3 � 0.91766294(�sin u3) # 3.26598632 � (cos u3) # 1.41421356 � 0C3

C2B � D7.34846923 �7.50555350 �0.81649658

0 3.26598632 1.15470054

0 1.41421356 6.00000000

T .
sin u2 � �0.57735027.cos u2 � 0.81649658(�sin u2) # 6 � (cos u2)(�118) � 0

C3 � D1 0 0

0 cos u3 sin u3

0 �sin u3 cos u3

T .C2BC2 � D cos u2 sin u2 0

�sin u2 cos u2 0

0 0 1

T

B0 � B � D 6 �118 0

�118 7 12

0 12 6

T .
3 	 3A2

A2,
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Further Steps. We list the main diagonal entries and the absolutely largest off-diagonal entry, which is
in all steps. You may show that the given matrix A has the spectrum 11, 6, 3, 2.

Step j b11
( j) b22

( j) b33
( j) max j�k �b jk

(J)�

3 10.9668929 5.94589856 2.08720851 0.58523582
5 10.9970872 6.00181541 2.00109738 0.12065334
7 10.9997421 6.00024439 2.00001355 0.03591107
9 10.9999772 6.00002267 2.00000017 0.01068477 �

Looking back at our discussion, we recognize that the purpose of applying Householder’s
tridiagonalization before the QR-factorization method is a substantial reduction of cost in
each QR-factorization, in particular if A is large.

Convergence acceleration and thus further reduction of cost can be achieved by a
spectral shift, that is, by taking instead of with a suitable Possible choices
of are discussed in Ref. [E29], p. 510.k s

k s.BsBs � ksI

ƒ b12
( j)

ƒ � ƒ b21
( j)

ƒ
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1–5 HOUSEHOLDER TRIDIAGONALIZATION

Tridiagonalize. Show the details.

1.

2.

3.

4. E5 4 1 1

4 5 1 1

1 1 4 2

1 1 2 4

U
D7 2 3

2 10 6

3 6 7

T
D0 1 1

1 0 1

1 1 0

T
D0.98 0.04 0.44

0.04 0.56 0.40

0.44 0.40 0.80

T 5.

6–9 QR-FACTORIZATION

Do three QR-steps to find approximations of the eigen-
values of:

6. The matrix in the answer to Prob. 1

7. The matrix in the answer to Prob. 3

8. 9.

10. CAS EXPERIMENT. QR-Method. Try to find out
experimentally on what properties of a matrix the speed
of decrease of off-diagonal entries in the QR-method
depends. For this purpose write a program that first
tridiagonalizes and then does QR-steps. Try the
program out on the matrices in Probs. and 4.
Summarize your findings in a short report.

1, 3,

D140 10 0

10 70 2

0 2 �30

TD 14.2 �0.1 0

�0.1 �6.3 0.2

0 0.2 2.1

T

E 3 52 10 42

52 59 44 80

10 44 39 42

42 80 42 35

U
P R O B L E M  S E T 2 0 . 9

1. What are the main problem areas in numeric linear
algebra?

2. When would you apply Gauss elimination and when
Gauss–Seidel iteration?

C H A P T E R  2 0  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S

3. What is pivoting? Why and how is it done?

4. What happens if you apply Gauss elimination to a
system that has no solutions?

5. What is Cholesky’s method? When would you apply it?
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Chapter 20 Review Questions and Problems 897

6. What do you know about the convergence of the
Gauss–Seidel iteration?

7. What is ill-conditioning? What is the condition number
and its significance?

8. Explain the idea of least squares approximation.

9. What are eigenvalues of a matrix? Why are they
important? Give typical examples.

10. How did we use similarity transformations of matrices
in designing numeric methods?

11. What is the power method for eigenvalues? What are
its advantages and disadvantages?

12. State Gerschgorin’s theorem from memory. Give typical
applications.

13. What is tridiagonalization and QR? When would you
apply it?

14–17 GAUSS ELIMINATION

Solve

14.

15.

16.

17.

18–20 INVERSE MATRIX

Compute the inverse of:

18.

19. D15 20 10

20 35 15

10 15 90

T
D2.0 0.1 3.3

1.6 4.4 0.5

0.3 �4.3 2.8

T

42x1 � 74x2 � 36x3 � 96

�46x1 � 12x2 � 2x3 � 82

3x1 � 25x2 � 5x3 � 19

5x1 � x2 � 3x3 � 17

� 5x2 � 15x3 � �10

2x1 � 3x2 � 9x3 � 0

8x2 � 6x3 �  23.6

10x1 � 6x2 � 2x3 �  68.4

12x1 � 14x2 � 4x3 � �6.2

3x2 � 6x3 � 0

4x1 � x2 � 2x3 � 16

�5x1 � 2x2 � 4x3 � �20

20.

21–23 GAUSS–SEIDEL ITERATION

Do 3 steps without scaling, starting from

21.

22.

23.

24–26 VECTOR NORMS

Compute the -norms of the vectors.

24.

25.

26.

27–30 MATRIX NORM

Compute the matrix norm corresponding to the -vector
norm for the coefficient matrix:

27. In Prob. 15

28. In Prob. 17

29. In Prob. 21

30. In Prob. 22

31–33 CONDITION NUMBER

Compute the condition number (corresponding to the 
-vector norm) of the coefficient matrix:

31. In Prob. 19

32. In Prob. 18

33. In Prob. 21

34–35 FITTING BY LEAST SQUARES

Fit and graph:

34. A straight line to 

35. A quadratic parabola to the data in Prob. 34.

(3, 3)
(�1, 0), (0, 2), (1, 2), (2, 3),

/�

/�

[0 0 0 �1 0]T

[8 �21 13 0]T

[0.2 �8.1 0.4 0 0 �1.3 2]T

/1-, /2-, and /�

10x1 � x2 � x3 � 17

2x1 � 20x2 � x3 � 28

3x1 � x2 � 25x3 � 105

0.2x1 � 4.0x2 � 0.4x3 � 32.0

0.5x1 � 0.2x2 � 2.5x3 � �5.1

7.5x1 � 0.1x2 � 1.5x3 � �12.7

4x1 � x2 � 22.0

4x2 � x3 �   13.4

�x1 � 4x3 � �2.4

[1 1 1]T.

D5 1 1

1 6 0

1 0 8

T
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Main tasks are the numeric solution of linear systems (Secs. 20.1–20.4), curve fitting
(Sec. 20.5), and eigenvalue problems (Secs. 20.6–20.9).

Linear systems with written out

(1)

can be solved by a direct method (one in which the number of numeric operations
can be specified in advance, e.g., Gauss’s elimination) or by an indirect or iterative
method (in which an initial approximation is improved stepwise).

The Gauss elimination (Sec. 20.1) is direct, namely, a systematic elimination
process that reduces (1) stepwise to triangular form. In Step 1 we eliminate from
equations to by subtracting from then from

etc. Equation is called the pivot equation in this step and the pivot. In
Step 2 we take the new second equation as pivot equation and eliminate , etc. If
the triangular form is reached, we get from the last equation, then from
the second last, etc. Partial pivoting interchange of equations) is necessary if
candidates for pivots are zero, and advisable if they are small in absolute value.

Doolittle’s, Crout’s, and Cholesky’s methods in Sec. 20.2 are variants of the
Gauss elimination. They factor (L lower triangular, U upper triangular)
and solve by solving for y and then for x.

In the Gauss–Seidel iteration (Sec. 20.3) we make 
(by division) and write thus which
suggests the iteration formula

(2)

in which we always take the most recent approximate ’s on the right. If 
where then this process converges. Here, denotes any
matrix norm (Sec. 20.3).

�C �C � �(I � L)�1U,
�C� � 1,x j

x(m�1) � b � Lx(m�1) � Ux(m)

x � b � (L � U)x,Ax � (I � L � U)x � b;
a11 � a22 � Á � ann � 1

Ux � yLy � bAx � LUx � b
A � LU

(�
xn�1xn

x2

a11E1E3,
(a31>a11) E1E2,(a21>a11) E1EnE2

x1

E1:  a11x1 � Á � a1nxn � b1

E2:  a21x1 � Á � a2nxn � b2

Á Á Á Á Á Á Á Á Á Á

En:  an1x1 � Á � annxn � bn

A � [ajk],Ax � b

SUMMARY OF CHAPTER 20
Numeric Linear Algebra

36–39 EIGENVALUES

Find and graph three circular disks that must contain all the
eigenvalues of the matrix:

36. In Prob. 18

37. In Prob. 19

38. In Prob. 20

39. Of the coefficients in Prob. 14

40. Power method. Do 4 steps with scaling for the matrix
in Prob. 19, starting for and computing the
Rayliegh quotients and error bounds.

[1 1 1]
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If the condition number of A is large, then the system 
is ill-conditioned (Sec. 20.4), and a small residual does not imply
that is close to the exact solution.

The fitting of a polynomial through given data
(points in the xy-plane) by the method of least squares is
discussed in Sec. 20.5 (and in statistics in Sec. 25.9). If , the least squares
polynomial will be the same as an interpolating polynomial (uniqueness).

Eigenvalues (values for which has a solution , called an
eigenvector) can be characterized by inequalities (Sec. 20.7), e.g. in Gerschgorin’s
theorem, which gives n circular disks which contain the whole spectrum (all
eigenvalues) of A, of centers and radii (sum over k from 1 to n, 

Approximations of eigenvalues can be obtained by iteration, starting from an
and computing In this power

method (Sec. 20.8) the Rayleigh quotient

(3)

gives an approximation of an eigenvalue (usually that of the greatest absolute value)
and, if A is symmetric, an error bound is

(4)

Convergence may be slow but can be improved by a spectral shift.
For determining all the eigenvalues of a symmetric matrix A it is best to first

tridiagonalize A and then to apply the QR-method (Sec. 20.9), which is based on a
factorization with orthogonal Q and upper triangular R and uses similarity
transformations.

A � QR

ƒ P ƒ �
B

(Ax)TAx
xTx

 � q2.

(x � xn)q �
(Ax)T)x

xTx

x1 � Ax0, x2 � Ax1, Á , xn � Axn�1.x0 � 0

k � j).S ƒ ajk ƒajj

x � 0Ax � lxll

m � n
(x1, y1), Á , (xn, yn)

p(x) � b0 � b1x � Á � bmxm

�x
r � b � A�x

Ax � bk(A) � �˛A˛� �˛A�1�

Summary of Chapter 20 899
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C H A P T E R 2 1

Numerics for ODEs and PDEs

Ordinary differential equations (ODEs) and partial differential equations (PDEs) play a
central role in modeling problems of engineering, mathematics, physics, aeronautics,
astronomy, dynamics, elasticity, biology, medicine, chemistry, environmental science,
economics, and many other areas. Chapters 1–6 and 12 explained the major approaches
to solving ODEs and PDEs analytically. However, in your career as an engineer, applied
mathematicians, or physicist you will encounter ODEs and PDEs that cannot be solved
by those analytic methods or whose solutions are so difficult that other approaches are
needed. It is precisely in these real-world projects that numeric methods for ODEs and
PDEs are used, often as part of a software package. Indeed, numeric software has become
an indispensable tool for the engineer.

This chapter is evenly divided between numerics for ODEs and numerics for PDEs.
We start with ODEs and discuss, in Sec. 21.1, methods for first-order ODEs. The main
initial idea is that we can obtain approximations to the solution of such an ODE at points
that are a distance h apart by using the first two terms of Taylor’s formula from calculus.
We use these approximations to construct the iteration formula for a method known as
Euler’s method. While this method is rather unstable and of little practical use, it serves
as a pedagogical tool and a starting point toward understanding more sophisticated methods
such as the Runge–Kutta method and its variant the Runga–Kutta–Fehlberg (RKF) method,
which are popular and useful in practice. As is usual in mathematics, one tends to
generalize mathematical ideas. The methods of Sec. 21.1 are one-step methods, that is,
the current approximation uses only the approximation from the previous step. Multistep
methods, such as the Adams–Bashforth methods and Adams–Moulton methods, use values
computed from several previous steps. We conclude numerics for ODEs with applying
Runge–Kutta–Nyström methods and other methods to higher order ODEs and systems of
ODEs.

Numerics for PDEs are perhaps even more exciting and ingenious than those for ODEs.
We first consider PDEs of the elliptic type (Laplace, Poisson). Again, Taylor’s formula
serves as a starting point and lets us replace partial derivatives by difference quotients.
The end result leads to a mesh and an evaluation scheme that uses the Gauss–Seidel
method (here also know as Liebmann’s method). We continue with methods that use grids
to solve Neuman and mixed problems (Sec. 21.5) and conclude with the important
Crank–Nicholson method for parabolic PDEs in Sec. 21.6.

Sections 21.1 and 21.2 may be studied immediately after Chap. 1 and Sec. 21.3
immediately after Chaps. 2–4, because these sections are independent of Chaps. 19 and 20.

Sections 21.4–21.7 on PDEs may be studied immediately after Chap. 12 if students
have some knowledge of linear systems of algebraic equations.

Prerequisite: Secs. 1.1–1.5 for ODEs, Secs. 12.1–12.3, 12.5, 12.10 for PDEs.
References and Answers to Problems: App. 1 Part E (see also Parts A and C), App. 2.
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21.1 Methods for First-Order ODEs
Take a look at Sec. 1.2, where we briefly introduced Euler’s method with an example.
We shall develop Euler’s method more rigorously. Pay close attention to the derivation
that uses Taylor’s formula from calculus to approximate the solution to a first-order ODE
at points that are a distance h apart. If you understand this approach, which is typical for
numerics for ODEs, then you will understand other methods more easily.

From Chap. 1 we know that an ODE of the first order is of the form 
and can often be written in the explicit form An initial value problem for
this equation is of the form

(1)

where and are given and we assume that the problem has a unique solution on some
open interval containing 

In this section we shall discuss methods of computing approximate numeric values of
the solution of (1) at the equidistant points on the x-axis

where the step size h is a fixed number, for instance, 0.2 or 0.1 or 0.01, whose choice we
discuss later in this section. Those methods are step-by-step methods, using the same
formula in each step. Such formulas are suggested by the Taylor series

(2)

Formula (2) is the key idea that lets us develop Euler’s method and its variant called—
you guessed it—improved Euler method, also known as Heun’s method. Let us start by
deriving Euler’s method.

For small h the higher powers in (2) are very small. Dropping all of them
gives the crude approximation

and the corresponding Euler method (or Euler–Cauchy method)

(3)

discussed in Sec. 1.2. Geometrically, this is an approximation of the curve of by a
polygon whose first side is tangent to this curve at (see Fig. 8 in Sec. 1.2).

Error of the Euler Method. Recall from calculus that Taylor’s formula with
remainder has the form

y(x � h) � y(x) � hyr(x) � 1
2 h2ys(�)

x0

y(x)

(n � 0, 1, Á )yn�1 � yn � hf (xn, yn)

 � y(x) � hf (x, y)

 y(x � h) � y(x) � hyr(x)

h2, h3, Á

y(x � h) � y(x) � hyr(x) �
h2

2
 ys(x) � Á .

x1 � x0 � h,   x2 � x0 � 2h,   x3 � x0 � 3h,   Á

y(x)

x0.a � x � b
y0x0

yr � f (x, y),  y(x0) � y0

yr � f (x, y).
F(x, y, yr) � 0

SEC. 21.1 Methods for First-Order ODEs 901
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(where It shows that, in the Euler method, the truncation error in each
step or local truncation error is proportional to written where O suggests order
(see also Sec. 20.1). Now, over a fixed x-interval in which we want to solve an ODE, the
number of steps is proportional to Hence the total error or global error is proportional
to For this reason, the Euler method is called a first-order method. In
addition, there are roundoff errors in this and other methods, which may affect the
accuracy of the values more and more as n increases.

Automatic Variable Step Size Selection in Modern Software. The idea of
adaptive integration, as motivated and explained in Sec. 19.5, applies equally well to the
numeric solution of ODEs. It now concerns automatically changing the step size h depending
on the variability of determined by

Accordingly, modern software automatically selects variable step sizes so that the error
of the solution will not exceed a given maximum size TOL (suggesting tolerance). Now for
the Euler method, when the step size is the local error at is about 
We require that this be equal to a given tolerance TOL,

(4) (a) (b)

must not be zero on the interval on which the solution is wanted.
Let K be the minimum of on J and assume that Minimum 
corresponds to maximum by (4). Thus, We can
insert this into (4b), obtaining by straightforward algebra

(5) where

For other methods, automatic step size selection is based on the same principle.

Improved Euler Method. Predictor, Corrector. Euler’s method is generally much
too inaccurate. For a large h (0.2) this is illustrated in Sec. 1.2 by the computation for

(6)

And for small h the computation becomes prohibitive; also, roundoff in so many steps
may result in meaningless results. Clearly, methods of higher order and precision are
obtained by taking more terms in (2) into account. But this involves an important practical
problem. Namely, if we substitute into (2), we have

Now y in f depends on x, so that we have as shown in and even much more
cumbersome. The general strategy now is to avoid the computation of these derivatives
and to replace it by computing f for one or several suitably chosen auxiliary values of

“Suitably” means that these values are chosen to make the order of the method as(x, y).

f s,  ft(4*)f r

y(x � h) � y(x) � hf � 1
2 h2f r � 1

6 h3 f s � Á .(2*)

yr � f (x, y(x))

yr � y � x,  y(0) � 0.

�(xn) �
B

K

ƒ ys(�n) ƒ

 .hn � �(xn)H

12 TOL � H1K.h � H � 12 TOL>K
ƒ ys(x) ƒK � 0.ƒ ys(x) ƒ

J: x0 � x � xNys(x)

hn �
B

2 TOL

ƒ ys(�n) ƒ

 .1
2 hn

2
ƒ ys(�n) ƒ � TOL,  thus

1
2 

hn
2 

ƒ ys(�n) ƒ .xnh � hn,

hn

ys � f r� fx � fyyr� fx � fy f.(4*)

yr � f

y1, y2, Á

h2(1>h) � h1.
1>h.

O(h2),h2,
x � � � x � h).
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high as possible (to have high accuracy). Let us discuss two such methods that are of
practical importance, namely, the improved Euler method and the (classical) Runge–Kutta
method.

In each step of the improved Euler method we compute two values, first the predictor

(7a)

which is an auxiliary value, and then the new y-value, the corrector

(7b)

Hence the improved Euler method is a predictor–corrector method: In each step we predict
a value (7a) and then we correct it by (7b).

In algorithmic form, using the notations in (7a) and 
in (7b), we can write this method as shown in Table 21.1.

Table 21.1 Improved Euler Method (Heun’s Method)

ALGORITHM EULER (ƒ, x0, y0, h, N )

This algorithm computes the solution of the initial value problem 
at equidistant points here ƒ is such
that this problem has a unique solution on the interval [x0, xN] (see Sec. 1.6).

INPUT: Initial values x0, y0, step size h, number of steps N

OUTPUT: Approximation yn�1 to the solution  at 
where n � 0, • • • , N � 1

For do:

j
j
j
j
j OUTPUT 

End
Stop

End EULER

xn�1, yn�1

yn�1 � yn � 1
2 

(k1 � k2)

k2 � hf (xn�1, yn � k1)

k1 � hf (xn, yn)

xn�1 � xn � h

n � 0, 1, Á , N � 1

xn�1 � x0 � (n � 1)h,y(xn�1)

x1 � x0 � h, x2 � x0 � 2h, Á , xN � x0 � Nh;
yr� f (x, y), y(x0) � y0

y*n�1)
(xn�1,k2 � hf k1 � hf (xn, yn)

yn�1 � yn � 1
2 h 3 f (xn, yn) � f (xn�1, y*n�1)4.

y*n�1 � yn � hf (xn, yn),

SEC. 21.1 Methods for First-Order ODEs 903

E X A M P L E  1 Improved Euler Method. Comparison with Euler Method.

Apply the improved Euler method to the initial value problem (6), choosing as in Sec. 1.2.

Solution. For the present problem we have in Table 21.1

yn�1 � yn �
0.2

2
 (2.2xn � 2.2yn � 0.2) � yn � 0.22(xn � yn) � 0.02.

 k2 � 0.2(xn � 0.2 � yn � 0.2(xn � yn))

 k1 � 0.2(xn � yn)

h � 0.2
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Table 21.2 shows that our present results are much more accurate than those for Euler’s method in Table 21.1 but
at the cost of more computations.

Table 21.2 Improved Euler Method for (6) . Errors

Exact Values Error of Error of
n xn yn (4D) Improved Euler Euler

0 0.0 0.0000 0.0000 0.0000 0.000
1 0.2 0.0200 0.0214 0.0014 0.021
2 0.4 0.0884 0.0918 0.0034 0.052
3 0.6 0.2158 0.2221 0.0063 0.094
4 0.8 0.4153 0.4255 0.0102 0.152
5 1.0 0.7027 0.7183 0.0156 0.230

Error of the Improved Euler Method. The local error is of order and the global
error of order so that the method is a second-order method.

P R O O F Setting and using (after (6)), we have

(8a)

Approximating the expression in the brackets in (7b) by and again using the
Taylor expansion, we obtain from (7b)

(8b)

(where etc.). Subtraction of (8b) from (8a) gives the local error

Since the number of steps over a fixed x-interval is proportional to the global error 
is of order so that the method is of second order.

Since the Euler method was an attractive pedagogical tool to teach the beginning of
solving first-order ODEs numerically but had its drawbacks in terms of accuracy and could
even produce wrong answers, we studied the improved Euler method and thereby
introduced the idea of a predictor–corrector method. Although improved Euler is better
than Euler, there are better methods that are used in industrial settings. Thus the practicing
engineer has to know about the Runga–Kutta methods and its variants.

Runge–Kutta Methods (RK Methods)
A method of great practical importance and much greater accuracy than that of the
improved Euler method is the classical Runge–Kutta method of fourth order, which we

�h3>h � h2,
1>h,

h3

6
 f�sn �

h3

4
 f�sn � Á � � 

h3

12
  f�sn � Á .

r � d>dxn,

 � hf�n � 1
2 h2 f�rn � 1

4 h3 f�sn � Á

 � 1
2 h 3 f�n � ( f�n � h f�rn � 1

2 
h2 f�sn � Á )4

 yn�1 � yn � 1
2 h 3 f�n � f�n�14

f�n � f�n�1

y(xn � h) � y(xn) � h f�n � 1
2 h2 f

�rn � 1
6 h3 f

�sn � Á .

(2*)f�n � f (xn, y(xn))

h2,
h3

�

904 CHAP. 21 Numerics for ODEs and PDEs
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call briefly the Runge–Kutta method.1 It is shown in Table 21.3. We see that in each
step we first compute four auxiliary quantities and then the new value 
The method is well suited to the computer because it needs no special starting procedure,
makes light demand on storage, and repeatedly uses the same straightforward compu-
tational procedure. It is numerically stable.

Note that, if f depends only on x, this method reduces to Simpson’s rule of integration
(Sec. 19.5). Note further that depend on n and generally change from step
to step.

k1, Á , k4

yn�1.k1, k2, k3, k4

Table 21.3 Classical Runge–Kutta Method of Fourth Order

ALGORITHM RUNGE–KUTTA (ƒ, x0, y0, h, N ).

This algorithm computes the solution of the initial value problem y� � ƒ(x, y), y(x0) � y0

at equidistant points

(9)

here ƒ is such that this problem has a unique solution on the interval [x0, xN] (see Sec. 1.7).

INPUT: Function ƒ, initial values x0, y0, step size h, number of steps N

OUTPUT: Approximation yn�1 to the solution y(xn�1) at 
where 

For do:

j
j
j
j
j
j
j OUTPUT 

End

Stop

End RUNGE–KUTTA

xn�1, yn�1

 yn�1 � yn � 1
6 (k1 � 2k2 � 2k3 � k4)

 xn�1 � xn � h

 k4 � hf (xn � h, yn � k3)

 k3 � hf (xn � 1
2 h, yn � 1

2 k2)

 k2 � hf (xn � 1
2 h, yn � 1

2 k1)

 k1 � hf (xn, yn)

n � 0, 1, Á , N � 1

n � 0, 1, Á , N � 1
xn�1 � x0 � (n � 1) h,

x1 � x0 � h, x2 � x0 � 2h, Á , xN � x0 � Nh;

1Named after the German mathematicians KARL RUNGE (Sec. 19.4) and WILHELM KUTTA (1867–1944).
Runge [Math. Annalen 46 (1895), 167–178], the German mathematician KARL HEUN (1859–1929) [Zeitschr.
Math. Phys. 45 (1900), 23–38], and Kutta [Zeitschr. Math. Phys. 46 (1901), 435–453] developed various similar
methods. Theoretically, there are infinitely many fourth-order methods using four function values per step. The
method in Table 21.3 is most popular from a practical viewpoint because of its “symmetrical” form and its
simple coefficients. It was given by Kutta.
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E X A M P L E  2 Classical Runge–Kutta Method

Apply the Runge–Kutta method to the initial value problem in Example 1, choosing as before, and
computing five steps.

Solution. For the present problem we have Hence

Table 21.4 shows the results and their errors, which are smaller by factors and than those for the two
Euler methods. See also Table 21.5. We mention in passing that since the present are simple,
operations were saved by substituting into then into etc.; the resulting formula is shown in
Column 4 of Table 21.4. Keep in mind that we have four function evaluations at each step. �

k3,k2k2,k1

k1, Á , k4

104103

 k3 � 0.2 (xn � 0.1 � yn � 0.5k2),   k4 � 0.2(xn � 0.2 � yn � k3).

 k1 � 0.2(xn � yn),   k2 � 0.2(xn � 0.1 � yn � 0.5k1),

f (x, y) � x � y.

h � 0.2,

906 CHAP. 21 Numerics for ODEs and PDEs

Table 21.4 Runge–Kutta Method Applied to (4)

0.2214(xn � yn) Exact Values (6D) 106 
 Error
n xn yn � 0.0214 y � ex � x � 1 of yn

0 0.0 0 0.021400 0.000000 0
1 0.2 0.021400 0.070418 0.021403 3
2 0.4 0.091818 0.130289 0.091825 7
3 0.6 0.222107 0.203414 0.222119 12
4 0.8 0.425521 0.292730 0.425541 20
5 1.0 0.718251 0.718282 31

Table 21.5 Comparison of the Accuracy of the Three Methods under Consideration 
in the Case of the Initial Value Problem (4), with h � 0.2

Error

Euler Improved Euler Runge–Kuttax y � ex � x � 1

(Table 21.1) (Table 21.3) (Table 21.5)

0.2 0.021403 0.021 0.0014 0.000003
0.4 0.091825 0.052 0.0034 0.000007
0.6 0.222119 0.094 0.0063 0.000011
0.8 0.425541 0.152 0.0102 0.000020
1.0 0.718282 0.230 0.0156 0.000031

Error and Step Size Control. 
RKF (Runge–Kutta–Fehlberg)
The idea of adaptive integration (Sec. 19.5) has analogs for Runge–Kutta (and other)
methods. In Table 21.3 for RK (Runge–Kutta), if we compute in each step approximations
y� and y�� with step sizes h and 2h, respectively, the latter has error per step equal to 
times that of the former; however, since we have only half as many steps for 2h, the actual
factor is so that, say,

and thus y(h) � y(2h) � P
(2h) � P

(h) � (16 � 1)P(h).P
(2h) � 16P

(h)

25>2 � 16,

25 � 32
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Hence the error for step size h is about

(10)

where y� � y�� as said before. Table 21.6 illustrates (10) for the initial value
problem

(11)

the step size and We see that the estimate is close to the actual
error. This method of error estimation is simple but may be unstable.

0 � x � 0.4.h � 0.1

yr � (y � x � 1)2 � 2,  y(0) � 1,

� y(h) � y(2h),

P � 1
15 

( y� � y��)

P � P
(h)

SEC. 21.1 Methods for First-Order ODEs 907

Table 21.6 Runge–Kutta Method Applied to the Initial Value Problem (11) 
and Error Estimate (10). Exact Solution y � tan x � x � 1

y� y�� Error Actual Exact
x

(Step size h) (Step size 2h) Estimate (10) Error Solution (9D)

0.0 1.000000000 1.000000000 0.000000000 0.000000000 1.000000000
0.1 1.200334589 0.000000083 1.200334672
0.2 1.402709878 1.402707408 0.000000165 0.000000157 1.402710036
0.3 1.609336039 0.000000210 1.609336250
0.4 1.822792993 1.822788993 0.000000267 0.000000226 1.822793219

RKF. E. Fehlberg [Computing 6 (1970), 61–71] proposed and developed error control
by using two RK methods of different orders to go from to The
difference of the computed y-values at gives an error estimate to be used for step
size control. Fehlberg discovered two RK formulas that together need only six function
evaluations per step. We present these formulas here because RKF has become quite
popular. For instance, Maple uses it (also for systems of ODEs).

Fehlberg’s fifth-order RK method is

(12a)

with coefficient vector 

(12b)

His fourth-order RK method is

(13a)

with coefficient vector

(13b) g* � 3 25
216 0 1408

2565
2197
4104 �1

54 .

y*n�1 � yn � g*
1k1 � Á � g*

5k5

g � 3 16
135 0 6656

12,825
28,561
56,430 � 9

50
2
554 .

g � 3g1
Á g64,

yn�1 � yn � g1k1 � Á � g6k6

xn�1

(xn�1, yn�1).(xn, yn)
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908 CHAP. 21 Numerics for ODEs and PDEs

In both formulas we use only six different function evaluations altogether, namely,

(14)

The difference of (12) and (13) gives the error estimate

(15)

E X A M P L E  3 Runge–Kutta–Fehlberg

For the initial value problem (11) we obtain from (12)–(14) with in the first step the 12S-values

and the error estimate

The exact 12S-value is Hence the actual error of is smaller than that
in Table 21.6 by a factor of 200.

Table 21.7 summarizes essential features of the methods in this section. It can be shown
that these methods are numerically stable (definition in Sec. 19.1). They are one-step
methods because in each step we use the data of just one preceding step, in contrast to
multistep methods where in each step we use data from several preceding steps, as we
shall see in the next section.

�
�4.4 � 10�10,y1y(0.1) � 1.20033467209.

P1 � y1 � y*1 � 0.00000000304.

 y1 � 1.20033467253

 y*1 � 1.20033466949

 k5 � 0.201006676700  k6 � 0.200250418651

 k3 � 0.200140756867  k4 � 0.200856926154

 k1 � 0.200000000000  k2 � 0.200062500000

h � 0.1

Pn�1 � yn�1 � y*n�1 � 1
360 k1 � 128

4275 k3 � 2197
75,240 k4 � 1

50 k5 � 2
55 k6.

� 11
40 k5).� 1859

4104 k4� 3544
2565 k3�   ˛2k2 k6 � hf (xn � 1

2 h,  yn �   

8
27 k1

� 845
4104 k4)� 3680

513  k3�   ˛8k2 k5 � hf (xn � h,  yn �   
439
216 k1

� 7296
2197 k3)� 7200

2197 k2 k4 � hf (xn � 12
13 h,  yn � 1932

2197 k1

�    9
32 k2) k3 � hf (xn � 3

8 h,  yn �    3
32 k1

 k2 � hf (xn � 1
4 h,  yn �   14 k1)

 k1 � hf (xn, yn)

Table 21.7 Methods Considered and Their Order (� Their Global Error)

Function Evaluation
Method

per Step
Global Error Local Error

Euler 1 O(h) O(h2)
Improved Euler 2 O(h2) O(h3)
RK (fourth order) 4 O(h4) O(h5)
RKF 6 O(h5) O(h6)
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Backward Euler Method. Stiff ODEs
The backward Euler formula for numerically solving (1) is

(16)

This formula is obtained by evaluating the right side at the new location 
this is called the backward Euler scheme. For known it gives implicitly, so it
defines an implicit method, in contrast to the Euler method (3), which gives 
explicitly. Hence (16) must be solved for How difficult this is depends on f in (1).
For a linear ODE this provides no problem, as Example 4 (below) illustrates. The method
is particularly useful for “stiff” ODEs, as they occur quite frequently in the study of
vibrations, electric circuits, chemical reactions, etc. The situation of stiffness is roughly
as follows; for details, see, for example, [E5], [E25], [E26] in App. 1.

Error terms of the methods considered so far involve a higher derivative. And we ask
what happens if we let h increase. Now if the error (the derivative) grows fast but the desired
solution also grows fast, nothing will happen. However, if that solution does not grow fast,
then with growing h the error term can take over to an extent that the numeric result becomes
completely nonsensical, as in Fig. 451. Such an ODE for which h must thus be restricted
to small values, and the physical system the ODE models, are called stiff. This term is
suggested by a mass–spring system with a stiff spring (spring with a large k; see Sec. 2.4).
Example 4 illustrates that implicit methods remove the difficulty of increasing h in the case
of stiffness: It can be shown that in the application of an implicit method the solution remains
stable under any increase of h, although the accuracy decreases with increasing h.

E X A M P L E  4 Backward Euler Method. Stiff ODE

The initial value problem

has the solution (verify!)

The backward Euler formula (16) is

Noting that taking the term to the left, and dividing, we obtain

( )

The numeric results in Table 21.8 show the following.

Stability of the backward Euler method for and also for with an error increase by about a
factor 4 for 

Stability of the Euler method for but instability for (Fig. 451),

Stability of RK for but instability for 

This illustrates that the ODE is stiff. Note that even in the case of stability the approximation of the solution
near is poor.

Stiffness will be considered further in Sec. 21.3 in connection with systems of ODEs.

�x � 0

h � 0.2.h � 0.1

h � 0.1h � 0.05

h � 0.2,
h � 0.2h � 0.05

yn�1 �
yn � h320 (xn � h)2 � 2 (xn � h)4

1 � 20h
 .16*

�20yn�1xn�1 � xn � h,

yn�1 � yn � hf (xn�1, yn�1) � yn � h (�20yn�1 � 20xn�1
2 � 2xn�1).

y � e�20x � x2.

yr � f (x, y) � �20hy � 20x2 � 2x, y(0) � 1

yn�1.
yn�1

yn�1yn

(xn�1, yn�1);

(n � 0, 1, Á ).yn�1 � yn � hf (xn�1, yn�1)

SEC. 21.1 Methods for First-Order ODEs 909
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Table 21.8 Backward Euler Method (BEM) for Example 6. Comparison with Euler and RK

BEM BEM Euler Euler RK RK
x

h � 0.05 h � 0.2 h � 0.05 h � 0.1 h � 0.1 h � 0.2
Exact

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.000 1.00000
0.1 0.26188 0.00750 �1.00000 0.34500 0.14534
0.2 0.10484 0.24800 0.03750 1.04000 0.15333 5.093 0.05832
0.3 0.10809 0.08750 �0.92000 0.12944 0.09248
0.4 0.16640 0.20960 0.15750 1.16000 0.17482 25.48 0.16034
0.5 0.25347 0.24750 �0.76000 0.25660 0.25004
0.6 0.36274 0.37792 0.35750 1.36000 0.36387 127.0 0.36001
0.7 0.49256 0.48750 �0.52000 0.49296 0.49001
0.8 0.64252 0.65158 0.63750 1.64000 0.64265 634.0 0.64000
0.9 0.81250 0.80750 �0.20000 0.81255 0.81000
1.0 1.00250 1.01032 0.99750 2.00000 1.00252 3168 1.00000

1–4 EULER METHOD
Do 10 steps. Solve exactly. Compute the error. Show
details.

1.

2.

3.

4.

5–10 IMPROVED EULER METHOD
Do 10 steps. Solve exactly. Compute the error. Show
details.

5.

6.

7.

8. Logistic population model.
h � 0.1

yr � y � y2, y(0) � 0.2,

yr � xy2 � 0, y(0) � 1, h � 0.1

yr � 2 (1 � y2), y(0) � 0, h � 0.05

yr � y, y(0) � 1, h � 0.1

yr � (y � x)2, y(0) � 0, h � 0.1

yr � (y � x)2, y(0) � 0, h � 0.1

yr � 1
2 p21 � y2, y(0) � 0, h � 0.1

yr � 0.2y � 0, y(0) � 5, h � 0.2

9. Do Prob. 7 using Euler’s method with and com-
pare the accuracy.

10. Do Prob. 7 using the improved Euler method, 20 steps
with Compare.

11–17 CLASSICAL RUNGE–KUTTA METHOD
OF FOURTH ORDER

Do 10 steps. Compare as indicated. Show details.

11. Compare with
Prob. 7. Apply the error estimate (10) to 

12. Compare with
Prob. 8.

13.

14.

15.

16. Do Prob. 15 with 5 steps, and compare the
errors with those in Prob. 15.

h � 0.2,

yr � y tan x � sin 2x, y(0) � 1, h � 0.1

yr � (1 � x�1)y, y(1) � 1, h � 0.1

yr � 1 � y2, y(0) � 0, h � 0.1

yr � y � y2, y(0) � 0.2, h � 0.1.

y10.
yr � xy2 � 0, y(0) � 1, h � 0.1.

h � 0.05.

h � 0.1

P R O B L E M  S E T  2 1 . 1

Fig. 451. Euler method with h � 0.1 for the stiff 
ODE in Example 4 and exact solution  

y

x0 0.2 0.4 0.6 0.8 1.0

–1.0

1.0

2.0
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17.

18. Kutta’s third-order method is defined by 
with and as in RK 

(Table 21.3) and 
Apply this method to (4) in (6). Choose and
do 5 steps. Compare with Table 21.5.

19. CAS EXPERIMENT. Euler–Cauchy vs. RK. Con-
sider the initial value problem

(17)

(solution: where is
the Fresnel integral (38) in App. 3.1).
(a) Solve (17) by Euler, improved Euler, and RK
methods for with step Compare the
errors for and comment.x � 1, 3, 5

h � 0.2.0 � x � 5

S(x)y � 1>32.5 � S(x)4 � 0.01x2

y(0) � 0.4
yr � (y � 0.01x2)2 sin (x2) � 0.02x,

h � 0.2
k3

* � hf (xn�1, yn � k1 � 2k2).
k2k1yn � 1

6 (k1 � 4k2 � k3
*)

yn�1 �

yr � 4x3y2, y(0) � 0.5, h � 0.1 (b) Graph solution curves of the ODE in (17) for
various positive and negative initial values.
(c) Do a similar experiment as in (a) for an initial
value problem that has a monotone increasing or
monotone decreasing solution. Compare the behavior
of the error with that in (a). Comment.

20. CAS EXPERIMENT. RKF. (a) Write a program for
RKF that gives the estimate (10), and, if the
solution is known, the actual error 
(b) Apply the program to Example 3 in the text
(10 steps, ).
(c) in (b) gives a relatively good idea of the size
of the actual error. Is this typical or accidental? Find
out, by experimentation with other problems, on
what properties of the ODE or solution this might
depend.

Pn

h � 0.1

Pn.
xn, yn,

21.2 Multistep Methods
In a one-step method we compute using only a single step, namely, the previous
value . One-step methods are “self-starting,” they need no help to get going because
they obtain from the initial value etc. All methods in Sec. 21.1 are one-step.

In contrast, a multistep method uses, in each step, values from two or more previous
steps. These methods are motivated by the expectation that the additional information will
increase accuracy and stability. But to get started, one needs values, say, in
a 4-step method, obtained by Runge–Kutta or another accurate method. Thus, multistep
methods are not self-starting. Such methods are obtained as follows.

Adams–Bashforth Methods
We consider an initial value problem

(1)

as before, with f such that the problem has a unique solution on some open interval
containing We integrate from to This gives

Now comes the main idea. We replace by an interpolation polynomial (see
Sec. 19.3), so that we can later integrate. This gives approximations of and

of 

(2) yn�1 � yn � �
xn�1

xn

p(x) dx.

y(xn),yn

y(xn�1)yn�1

p(x)f (x, y(x))

�
xn�1

xn

yr(x) dx � y(xn�1) � y(xn) � �
xn�1

xn

f (x, y(x)) dx.

xn�1 � xn � h.xnyr� f (x, y)x0.

yr � f (x, y),  y(x0) � y0

y0, y1, y2, y3

y0,y1

yn

yn�1
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Different choices of will now produce different methods. We explain the principle
by taking a cubic polynomial, namely, the polynomial that at (equidistant)

has the respective values

(3)

This will lead to a practically useful formula. We can obtain from Newton’s
backward difference formula (18), Sec. 19.3:

where

We integrate over x from to thus over r from 0 to 1. Since

we have

The integral of is and that of is We thus obtain

(4)

It is practical to replace these differences by their expressions in terms of f :

We substitute this into (4) and collect terms. This gives the multistep formula of the
Adams–Bashforth method2 of fourth order

(5) yn�1 � yn �
h

24
 (55fn � 59fn�1 � 37fn�2 � 9fn�3).

 �3fn � fn � 3fn�1 � 3fn�2 � fn�3.

 �2fn � fn � 2fn�1 � fn�2

 �fn � fn � fn�1

�
xn�1

xn

p3 dx � h�
1

0

p3 dr � h afn �
1
2

  �fn �
5

12
  �2fn �

3
8

  �3fnb
 

.

3
8 .1

6 r(r � 1)(r � 2)5
12 

1
2 r(r � 1)

dx � h dr.x � xn � hr,

xn�1 � xn � h,xnp3(x)

r �
x � xn

h
 .

p3(x) � fn � r�fn � 1
2 r(r � 1)�2fn � 1

6 r(r � 1)(r � 2)�3fn

p3 (x)

 fn�3 � f (xn�3, yn�3).

 fn�2 � f (xn�2, yn�2)

 fn�1 � f (xn�1, yn�1)

 fn � f (xn, yn)

xn,  xn�1,  xn�2,  xn�3

p3(x)
p(x)

912 CHAP. 21 Numerics for ODEs and PDEs

2Named after JOHN COUCH ADAMS (1819–1892), English astronomer and mathematician, one of the
predictors of the existence of the planet Neptune (using mathematical calculations), director of the Cambridge
Observatory; and FRANCIS BASHFORTH (1819–1912), English mathematician.
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It expresses the new value [approximation of the solution y of (1) at ] in terms
of 4 values of f computed from the y-values obtained in the preceding 4 steps. The local
truncation error is of order as can be shown, so that the global error is of order 
hence (5) does define a fourth-order method.

Adams–Moulton Methods
Adams–Moulton methods are obtained if for in (2) we choose a polynomial that
interpolates at (as opposed to used before; this
is the main point). We explain the principle for the cubic polynomial that interpolates
at (Before we had ) Again using (18) in
Sec. 19.3 but now setting we have

We now integrate over x from to as before. This corresponds to integrating over
r from to 0. We obtain

Replacing the differences as before gives

(6)

This is usually called an Adams–Moulton formula.3 It is an implicit formula because
appears on the right, so that it defines only implicitly, in

contrast to (5), which is an explicit formula, not involving on the right. To use (6)
we must predict a value , for instance, by using (5), that is,

(7a)

The corrected new value is then obtained from (6) with replaced by
and the other f ’s as in (6); thus,

(7b)

This predictor–corrector method (7a), (7b) is usually called the Adams–Moulton
method of fourth order. It has the advantage over RK that (7) gives the error estimate

as can be shown. This is the analog of (10) in Sec. 21.1.

Pn�1 � 1
15 (yn�1 � y*n�1),

yn�1 � yn �
h

24
  (9f *n�1 � 19fn � 5fn�1 � fn�2).

f *n�1 � f (xn�1, y*n�1)
fn�1yn�1

y*n�1 � yn �
h

24
  (55fn � 59fn�1 � 37fn�2 � 9fn�3).

y*n�1

yn�1

yn�1fn�1 � f (xn�1, yn�1)

yn�1 � yn � �
xn�1

xn

�p3(x) dx � yn �
h

24
  (9fn�1 � 19fn � 5fn�1 � fn�2).

�
xn�1

xn

�p3(x) dx � h afn�1 �
1
2

  �fn�1 �
1

12
  �2fn�1 �

1
24

  �3fn�1b
 

.

�1
xn�1xn

�p3(x) � fn�1 � r�fn�1 � 1
2 r(r � 1)�2fn�1 � 1

6 r(r � 1)(r � 2)�3fn�1.

r � (x � xn�1)>h,
xn, xn�1, xn�2, xn�3.xn�1, xn, xn�1, xn�2.

�p3 (x)
xn, xn�1, Áxn�1, xn, xn�1, Áf (x, y(x))

p (x)

h4;h5,

xn�1yn�1

SEC. 21.2 Multistep Methods 913

3FOREST RAY MOULTON (1872–1952), American astronomer at the University of Chicago. For ADAMS
see footnote 2.
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914 CHAP. 21 Numerics for ODEs and PDEs

Sometimes the name Adams–Moulton method is reserved for the method with several
corrections per step by (7b) until a specific accuracy is reached. Popular codes exist for
both versions of the method.

Getting Started. In (5) we need Hence from (3) we see that we must first
compute by some other method of comparable accuracy, for instance, by RK or
by RKF. For other choices see Ref. [E26] listed in App. 1.

E X A M P L E  1 Adams–Bashforth Prediction (7a), Adams–Moulton Correction (7b)

Solve the initial value problem

(8)

by (7a), (7b) on the interval choosing 

Solution. The problem is the same as in Examples 1 and 2, Sec. 21.1, so that we can compare the results.
We compute starting values by the classical Runge–Kutta method. Then in each step we predict
by (7a) and make one correction by (7b) before we execute the next step. The results are shown and compared
with the exact values in Table 21.9. We see that the corrections improve the accuracy considerably. This is
typical.

Table 21.9 Adams–Moulton Method Applied to the Initial Value Problem (8); 
Predicted Values Computed by (7a) and Corrected Values by (7b)

Starting Predicted Corrected Exact 106 � Error
n xn yn yn* yn Values of yn

0 0.0 0.000000 0.000000 0
1 0.2 0.021400 0.021403 3
2 0.4 0.091818 0.091825 7
3 0.6 0.222107 0.222119 12
4 0.8 0.425361 0.425529 0.425541 12
5 1.0 0.718066 0.718270 0.718282 12
6 1.2 1.119855 1.120106 1.120117 11
7 1.4 1.654885 1.655191 1.655200 9
8 1.6 2.352653 2.353026 2.353032 6
9 1.8 3.249190 3.249646 3.249647 1

10 2.0 4.388505 4.389062 4.389056 �6

Comments on Comparison of Methods. An Adams–Moulton formula is generally
much more accurate than an Adams–Bashforth formula of the same order. This justifies
the greater complication and expense in using the former. The method (7a), (7b) is
numerically stable, whereas the exclusive use of (7a) might cause instability. Step size
control is relatively simple. If use interpolation to
generate “old” results at half the current step size and then try as the new step.

Whereas the Adams–Moulton formula (7a), (7b) needs only 2 evaluations per step,
Runge–Kutta needs 4; however, with Runge–Kutta one may be able to take a step size
more than twice as large, so that a comparison of this kind (widespread in the literature)
is meaningless.

For more details, see Refs. [E25], [E26] listed in App. 1.

h>2
ƒ Corrector � Predictor ƒ � TOL,

�

y1, y2, y3

h � 0.2.0 � x � 2,

yr � x � y,  y(0) � 0

y1, y2, y3

f0, f1, f2, f3.

c21-a.qxd  11/3/10  2:44 PM  Page 914



SEC. 21.3 Methods for Systems and Higher Order ODEs 915

21.3 Methods for Systems 
and Higher Order ODEs

Initial value problems for first-order systems of ODEs are of the form

(1)

in components

y1r � f1(x, y1, Á , ym), y1(x0) � y10

y2r � f2(x, y1, Á , ym), y2(x0) � y20

Á Á Á Á Á Á Á Á Á Á Á

ymr � fm(x, y1, Á , ym).  ym(x0) � ym0.

yr� f (x, y),  y(x0) � y0,

1–10 ADAMS–MOULTON METHOD
Solve the initial value problem by Adams–Moulton (7a), (7b),
10 steps with 1 correction per step. Solve exactly and compute
the error. Use RK where no starting values are given.

1.

2.

3.

4. Do Prob. 2 by RK, 5 steps, Compare the errors.

5. Do Prob. 3 by RK, 5 steps, Compare the errors.

6.
10 steps

7.

8.

9.

10.

11. Do and show the calculations leading to (4)–(7) in the
text.

12. Quadratic polynomial. Apply the method in the text
to a polynomial of second degree. Show that this leads
to the predictor and corrector formulas

 yn�1 � yn �
h

12
 (5fn�1 � 8fn � fn�1).

 y*
n�1 � yn �

h
12

 (23fn � 16fn�1 � 5fn�2),

yr � x>y, y(1) � 3, h � 0.2

yr � 3x2
 (1 � y), y(0) � 0, h � 0.05

yr � 1 � 4y2, y(0) � 0, h � 0.1

yr � 3y � 12y2, y(0) � 0.2, h � 0.1

yr � (y � x � 1)2 � 2, y(0) � 1, h � 0.1,

h � 0.2.

h � 0.2.

0.202710, 0.309336)
yr � 1 � y2, y(0) � 0, h � 0.1, (0.100335,

yr � 2xy, y(0) � 1, h � 0.1

1.349858)
yr � y, y(0) � 1, h � 0.1, (1.105171, 1.221403,

13. Using Prob. 12, solve (10 steps,
RK starting values). Compare with the exact

solution and comment.

14. How much can you reduce the error in Prob. 13 by
halfing h (20 steps, )? First guess, then
compute.

15. CAS PROJECT. Adams–Moulton. (a) Accurate
starting is important in (7a), (7b). Illustrate this in
Example 1 of the text by using starting values from
the improved Euler–Cauchy method and compare the
results with those in Table 21.8.

(b) How much does the error in Prob. 11 decrease
if you use exact starting values (instead of RK
values)?

(c) Experiment to find out for what ODEs poor
starting is very damaging and for what ODEs it
is not.

(d) The classical RK method often gives the same
accuracy with step 2h as Adams–Moulton with step
h, so that the total number of function evaluations is
the same in both cases. Illustrate this with Prob. 8.
(Hence corresponding comparisons in the literature
in favor of Adams–Moulton are not valid. See also
Probs. 6 and 7.)

h � 0.05

h � 0.1,
yr � 2xy, y(0) � 1

P R O B L E M  S E T  2 1 . 2

c21-a.qxd  11/3/10  2:44 PM  Page 915



Here, f is assumed to be such that the problem has a unique solution on some open
x-interval containing Our discussion will be independent of Chap. 4 on systems.

Before explaining solution methods it is important to note that (1) includes initial value
problems for single mth-order ODEs,

(2)

and initial conditions as special cases.
Indeed, the connection is achieved by setting

(3)

Then we obtain the system

(4)

and the initial conditions 

Euler Method for Systems
Methods for single first-order ODEs can be extended to systems (1) simply by writing vector
functions y and f instead of scalar functions y and f, whereas x remains a scalar variable.

We begin with the Euler method. Just as for a single ODE, this method will not be
accurate enough for practical purposes, but it nicely illustrates the extension principle.

E X A M P L E  1 Euler Method for a Second-Order ODE. Mass–Spring System

Solve the initial value problem for a damped mass–spring system

by the Euler method for systems with step for x from 0 to 1 (where x is time).

Solution. The Euler method (3), Sec. 21.1, generalizes to systems in the form

(5)

in components

and similarly for systems of more than two equations. By (4) the given ODE converts to the system

 y2r � f2(x, y1, y2) � �2y2 � 0.75y1.

 y1r � f1(x, y1, y2) � y2

 y2,n�1 � y2,n � h f2(xn, y1,n, y2,n)

 y1,n�1 � y1,n � h f1(xn, y1,n, y2,n)

yn�1 � yn � hf(xn, yn),

h � 0.2

ys � 2yr � 0.75y � 0,  y(0) � 3,  yr(0) � �2.5

y1(x0) � K1, y2(x0) � K2, Á , ym(x0) � Km.

y1r � y2

y2r � y3

o

ym�1r � ym

ymr � f (x, y1, Á , ym)

y1 � y,  y2 � yr,  y3 � ys, Á , ym � y(m�1).

y(x0) � K1, yr(x0) � K2, Á , y(m�1)(x0) � Km

y(m) � f (x, y, yr, ys, Á , y(m�1))

x0.
y(x)

916 CHAP. 21 Numerics for ODEs and PDEs
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Hence (5) becomes

The initial conditions are The calculations are shown in Table 21.10.
As for single ODEs, the results would not be accurate enough for practical purposes. The example merely serves
to illustrate the method because the problem can be readily solved exactly,

thus �yr � y2 � �e�0.5x � 1.5e�1.5x.y � y1 � 2e�0.5x � e�1.5x,

y(0) � y1 (0) � 3, yr(0) � y2 (0) � �2.5.

 y2,n�1 � y2,n � 0.2(�2y2,n � 0.75y1,n).

 y1,n�1 � y1,n � 0.2y2,n

SEC. 21.3 Methods for Systems and Higher Order ODEs 917

Table 21.10 Euler Method for Systems in Example 1 (Mass–Spring System)

y1 Exact Error y2 Exact Error
n xn y1,n (5D) �1 � y1 � y1,n

y2,n (5D) �2 � y2 � y2,n

0 0.0 3.00000 3.00000 0.00000 �2.50000 �2.50000 0.00000
1 0.2 2.50000 2.55049 0.05049 �1.95000 �2.01606 �0.06606
2 0.4 2.11000 2.18627 0.76270 �1.54500 �1.64195 �0.09695
3 0.6 1.80100 1.88821 0.08721 �1.24350 �1.35067 �0.10717
4 0.8 1.55230 1.64183 0.08953 �1.01625 �1.12211 �0.10586
5 1.0 1.34905 1.43619 0.08714 �0.84260 �0.94123 �0.09863

Runge–Kutta Methods for Systems
As for Euler methods, we obtain RK methods for an initial value problem (1) simply by
writing vector formulas for vectors with m components, which, for , reduce to the
previous scalar formulas.

Thus, for the classical RK method of fourth order in Table 21.3, we obtain

(6a) (Initial values)

and for each step we obtain the 4 auxiliary quantities

(6b)

and the new value [approximation of the solution at 

(6c)

E X A M P L E  2 RK Method for Systems. Airy’s Equation. Airy Function Ai(x)

Solve the initial value problem

ys � xy,  y(0) � 1>(32>3 �  (2
3)) � 0.35502805,  yr(0) � �1>(31>3 �  (1

3)) � �0.25881940

yn�1 � yn � 1
6 (k1 � 2k2 � 2k3 � k4).

xn�1 � x0 � (n � 1)h]y(x)

k1 � h f (xn,    yn)

k2 � h f (xn � 1
2 h, yn � 1

2 k1)

k3 � h f (xn � 1
2 h, yn � 1

2 k2)

k4 � h f (xn � h,    yn � k3)

n � 0, 1, Á , N � 1

y(x0) � y0

m � 1
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by the Runge–Kutta method for systems with do 5 steps. This is Airy’s equation,4 which arose in
optics (see Ref. [A13], p. 188, listed in App. 1). is the gamma function (see App. A3.1). The initial conditions
are such that we obtain a standard solution, the Airy function a special function that has been thoroughly
investigated; for numeric values, see Ref. [GenRef1], pp. 446, 475.

Solution. For setting we obtain the system (4)

Hence in (1) has the components We now write (6) in components.
The initial conditions (6a) are In (6b) we have fewer subscripts by
simply writing so that etc. Then (6b) takes the form

For example, the second component of b is obtained as follows. has the second component 
Now in the first argument is

The second argument in b is

and the first component of this is

Together,

Similarly for the other components in Finally,

Table 21.11 shows the values of the Airy function and of its derivative as well
as of the (rather small!) error of �y(x).

yr(x) � y2 (x)Ai(x)y(x) � y1 (x)

yn�1 � yn � 1
6 (a � 2b � 2c � d).(6c*)

(6b*).

xy1 � (xn � 1
2 h)(y1,n � 1

2 a1).

y1 � y1,n � 1
2 a1.

y � yn � 1
2 a,

x � xn � 1
2 h.

b (� k2)
f2(x, y) � xy1.f (x, y)

 d � h c y2,n � c2

(xn � h)(y1,n � c1)
d  .

 c � h c y2,n � 1
2 b2

(xn � 1
2 h)(y1,n � 1

2 b1)
d

 b � h c y2,n � 1
2 a2

(xn � 1
2 h)(y1,n � 1

2 a1)
d

(6b*)

 a � h c y2,n

xny1,n

d
a � [a1 a2]T,k1 � a, k2 � b, k3 � c, k4 � d,

y1,0 � 0.35502805,  y2,0 � �0.25881940.
f1 (x, y) � y2,  f2 (x, y) � xy1.f � [ f1 f2]T

 y2r � xy1.

 y1r � y2

y1 � y, y2 � y1r � yrys � xy,

Ai(x),


h � 0.2;

918 CHAP. 21 Numerics for ODEs and PDEs

4Named after Sir GEORGE BIDELL AIRY (1801–1892), English mathematician, who is known for his work
in elasticity and in PDEs.
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Runge–Kutta–Nyström Methods (RKN Methods)
RKN methods are direct extensions of RK methods (Runge–Kutta methods) to second-order
ODEs as given by the Finnish mathematician E. J. Nyström [Acta Soc. Sci.
fenn., 1925, L, No. 13]. The best known of these uses the following formulas, where

(N the number of steps):

(7a)
where 

where 

From this we compute the approximation of at 

(7b)

and the approximation of the derivative needed in the next step,

(7c)

RKN for ODEs Not Containing Then in (7), which makes
the method particularly advantageous and reduces (7a)–(7c) to

E X A M P L E  3 RKN Method. Airy’s Equation. Airy Function Ai(x)

For the problem in Example 2 and as before we obtain from simply and

Table 21.12 shows the results. The accuracy is the same as in Example 2, but the work was much less. �

k2 � k3 � 0.1 (xn � 0.1)(yn � 0.1ynr � 0.05k1),  k4 � 0.1 (xn � 0.2)(yn � 0.2ynr � 0.2k2).

k1 � 0.1xnyn(7*)h � 0.2

 yn�1r � ynr � 1
3 

(k1 � 4k2 � k4).

 yn�1 � yn � h( ynr � 1
3 (k1 � 2k2))

 k4 � 1
2 hf (xn � h, yn � h (ynr � k2))(7*)

 k2 � 1
2 hf (xn � 1

2 h, yn � 1
2 h (ynr � 1

2 k1)) � k3

 k1 � 1
2 hf (xn, yn)

k2 � k3yr.ys� f (x, y)

yn�1r � ynr � 1
3 

(k1 � 2k2 � 2k3 � k4).

yr(xn�1)yn�1r

yn�1 � yn � h (ynr � 1
3 

(k1 � k2 � k3)),

xn�1 � x0 � (n � 1)h,y(xn�1)yn�1

L � h( ynr � k3). k4 � 1
2 hf (xn � h, yn  � L, ynr � 2k3)

 k3 � 1
2 hf (xn � 1

2 h, yn � K, ynr � k2)

K � 1
2 h( ynr � 1

2 k1) k2 � 1
2 hf (xn � 1

2 h, yn � K, ynr � k1)

 k1 � 1
2 hf (xn, yn, ynr )

n � 0, 1, Á , N � 1

ys� f (x, y, yr),
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Table 21.11 RK Method for Systems: Values y1,n(xn) of the Airy Function Ai(x) 
in Example 2

n xn y1,n(xn) y1(xn) Exact (8D) 108 � Error of y1 y2,n(xn)

0 0.0 0.35502805 0.35502805 0 �0.25881940
1 0.2 0.30370303 0.30370315 12 �0.25240464
2 0.4 0.25474211 0.25474235 24 �0.23583073
3 0.6 0.20979973 0.20980006 33 �0.21279185
4 0.8 0.16984596 0.16984632 36 �0.18641171
5 1.0 0.13529207 0.13529242 35 �0.15914687
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Our work in Examples 2 and 3 also illustrates that usefulness of methods for ODEs in the
computation of values of “higher transcendental functions.”

Backward Euler Method for Systems. Stiff Systems
The backward Euler formula (16) in Sec. 21.1 generalizes to systems in the form

(8)

This is again an implicit method, giving implicitly for given Hence (8) must be
solved for For a linear system this is shown in the next example. This example also
illustrates that, similar to the case of a single ODE in Sec. 21.1, the method is very useful
for stiff systems. These are systems of ODEs whose matrix has eigenvalues of very
different magnitudes, having the effect that, just as in Sec. 21.1, the step in direct methods,
RK for example, cannot be increased beyond a certain threshold without losing stability.

and in Example 4, but larger differences do occur in applications.)

E X A M P L E  4 Backward Euler Method for Systems of ODEs. Stiff Systems

Compare the backward Euler method (8) with the Euler and the RK methods for numerically solving the initial
value problem

converted to a system of first-order ODEs.

Solution. The given problem can easily be solved, obtaining

so that we can compute errors. Conversion to a system by setting [see (4)] gives

The coefficient matrix

has the characteristic determinant

whose value is Hence the eigenvalues are and as claimed above.
The backward Euler formula is

�10�1l2 � 11l � 10 � (l � 1)(l � 10).

2 �l 1

�10 �l � 11
2A � c 0 1

�10 �11
d

 y2r � �10y1 � 11y2 � 10x � 11    y2(0) � �10.

 y1r � y2   y1(0) � 2

y � y1, yr � y2

y � e�x � e�10x � x

yr(0) � �10y(0) � 2,ys � 11yr � 10y � 10x � 11,

�10(l � �1

l

yn�1.
yn.yn�1

(n � 0, 1, Á ).yn�1 � yn � h f (xn�1, yn�1)

920 CHAP. 21 Numerics for ODEs and PDEs

Table 21.12 Runge–Kutta–Nyström Method Applied to Airy’s Equation, 
Computation of the Airy Function y � Ai(x)

108 � Error
xn yn y	n y(x) Exact (8D)

of yn

0.0 0.35502805 �0.25881940 0.35502805 0
0.2 0.30370304 �0.25240464 0.30370315 11
0.4 0.25474211 �0.23583070 0.25474235 24
0.6 0.20979974 �0.21279172 0.20980006 32
0.8 0.16984599 �0.18641134 0.16984632 33
1.0 0.13529218 �0.15914609 0.13529242 24
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Reordering terms gives the linear system in the unknowns 

The coefficient determinant is and Cramer’s rule (in Sec. 7.6) gives the solution

yn�1 �
1

D
 c (1 � 11h)y1,n � hy2,n � 10h2xn � 11h2 � 10h3

       �10hy1,n � y2,n � 10hxn � 11h � 10h2
d  .

D � 1 � 11h � 10h2,

 10hy1,n�1 �  (1 � 11h)y2,n�1 � y2,n � 10h (xn � h) � 11h.

 y1,n�1 �  hy2,n�1 � y1,n

y1,n�1 and y2,n�1

yn�1 � c y1,n�1

y2,n�1

d � c y1,n

y2,n

d � h c y2,n�1

�10y1,n�1 � 11y2,n�1 � 10xn�1 � 11
d  .
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Table 21.13 Backward Euler Method (BEM) for Example 4. Comparison with Euler and RK

BEM BEM Euler Euler RK RK
x h � 0.2 h � 0.4 h � 0.1 h � 0.2 h � 0.2 h � 0.3

Exact

0.0 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
0.2 1.36667 1.01000 0.00000 1.35207 1.15407
0.4 1.20556 1.31429 1.56100 2.04000 1.18144 1.08864
0.6 1.21574 1.13144 0.11200 1.18585 3.03947 1.15129
0.8 1.29460 1.35020 1.23047 2.20960 1.26168 1.24966
1.0 1.40599 1.34868 0.32768 1.37200 1.36792
1.2 1.53627 1.57243 1.48243 2.46214 1.50257 5.07569 1.50120
1.4 1.67954 1.62877 0.60972 1.64706 1.64660
1.6 1.83272 1.86191 1.78530 2.76777 1.80205 1.80190
1.8 1.99386 1.95009 0.93422 1.96535 8.72329 1.96530
2.0 2.16152 2.18625 2.12158 3.10737 2.13536 2.13534

Table 21.13 shows the following.

Stability of the backward Euler method for and 0.4 (and in fact for any h; try ) with decreasing
accuracy for increasing h

Stability of the Euler method for but instability for 

Stability of RK for but instability for 

Figure 452 shows the Euler method for an interesting case with initial jumping (for about ) but
later monotone following the solution curve of See also CAS Experiment 15. �y � y1.

x � 3h � 0.18,

h � 0.3h � 0.2

h � 0.2h � 0.1

h � 5.0h � 0.2

y

x0 1 2 3 4

1.0

2.0

3.0

4.0

Fig. 452. Euler method with h � 0.18 in Example 4
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1–6 EULER FOR SYSTEMS AND 
SECOND-ORDER ODEs

Solve by the Euler’s method. Graph the solution in the
-plane. Calculate the errors.

1.

2. Spiral. 

3.

4.

5.

6.

7–10 RK FOR SYSTEMS
Solve by the classical RK.

7. The ODE in Prob. 5. By what factor did the error
decrease?

8. The system in Prob. 2

9. The system in Prob. 1

10. The system in Prob. 4

11. Pendulum equation 
steps. How

does your result fit into Fig. 93 in Sec. 4.5?

12. Bessel Function 
5 steps.

(This gives the standard solution in Fig. 110 in
Sec. 5.4.)

J0 (x)
h � 0.5,0.765198, yr(1) � �0.440051,

y(1) �xys � yr � xy � 0,J0 .

h � 0.2, 20as a system,yr(p) � 1,
ys � sin y � 0, y(p) � 0,

h � 0.1, 10 steps
y1r � y1, y2r � �y2, y1(0) � 2, y2(0) � 2,

5 steps
ys � y � x, y(0) � 1, yr(0) � �2, h � 0.1,

0, h � 0.1, 5 stepsy2 (0) �
y1r � �3y1 � y2, y2r � y1 � 3y2, y1(0) � 2,

5 steps
ys � 1

4 y � 0, y(0) � 1, yr(0) � 0, h � 0.2,

y2(0) � 4, h � 0.2, 5 steps
y1(0) � 0,y2r � �y1 � y2,y1r � �y1 � y2,

h � 0.1, 10 stepsy2(0) � 0,
y1(0) � 3,y1r � 2y1 � 4y2, y2r � y1 � 3y2,

y1y2

13. Verify the formulas and calculations for the Airy
equation in Example 2 of the text.

14. RKN. The classical RK for a first-order ODE extends
to second-order ODEs (E. J. Nyström, Acta fenn.
No 13, 1925). If the ODE is not
containing then

Apply this RKN (Runge–Kutta–Nyström) method to
the Airy ODE in Example 2 with as before, to
obtain approximate values of 

15. CAS EXPERIMENT. Backward Euler and
Stiffness. Extend Example 3 as follows.

(a) Verify the values in Table 21.13 and show them
graphically as in Fig. 452.

(b) Compute and graph Euler values for h near the
“critical” to determine more exactly when
instability starts.

(c) Compute and graph RK values for values of h
between 0.2 and 0.3 to find h for which the RK
approximation begins to increase away from the exact
solution.

(d) Compute and graph backward Euler values for
large h; confirm stability and investigate the error
increase for growing h. 

h � 0.18

Ai(x).
h � 0.2

 yn�1r � ynr � 1
8 

(k1 � 4k2 � k4).

 yn�1 � yn � h( ynr � 1
3 

(k1 � 2k2))

 k4 � 1
2 

hf (xn � h, yn � h( ynr � k2))

 k2 � 1
2 hf (xn � 1

2 h, yn � 1
2 h( ynr � 1

2 k1)) � k3

 k1 � 1
2 hf (xn, yn)

yr,
ys � f (x, y),

P R O B L E M  S E T  2 1 . 3

21.4 Methods for Elliptic PDEs
We have arrived at the second half of this chapter, which is devoted to numerics for
partial differential equations (PDEs). As we have seen in Chap.12, there are many
applications to PDEs, such as in dynamics, elasticity, heat transfer, electromagnetic
theory, quantum mechanics, and others. Selected because of their importance in
applications, the PDEs covered here include the Laplace equation, the Poisson equation,
the heat equation, and the wave equation. By covering these equations based on their
importance in applications we also selected equations that are important for theoretical
considerations. Indeed, these equations serve as models for elliptic, parabolic, and
hyperbolic PDEs. For example, the Laplace equation is a representative example of an
elliptic type of PDE, and so forth.
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Recall, from Sec. 12.4, that a PDE is called quasilinear if it is linear in the highest
derivatives. Hence a second-order quasilinear PDE in two independent variables x, y is of the
form

(1)

u is an unknown function of x and y (a solution sought). F is a given function of the
indicated variables.

Depending on the discriminant the PDE (1) is said to be of

elliptic type if (example: Laplace equation)

parabolic type if (example: heat equation)

hyperbolic type if (example: wave equation).

Here, in the heat and wave equations, y is time t. The coefficients a, b, c may be functions
of x, y, so that the type of (1) may be different in different regions of the xy-plane. This
classification is not merely a formal matter but is of great practical importance because
the general behavior of solutions differs from type to type and so do the additional
conditions (boundary and initial conditions) that must be taken into account.

Applications involving elliptic equations usually lead to boundary value problems in a
region R, called a first boundary value problem or Dirichlet problem if u is prescribed
on the boundary curve C of R, a second boundary value problem or Neumann problem
if (normal derivative of u) is prescribed on C, and a third or mixed problem
if u is prescribed on a part of C and on the remaining part. C usually is a closed curve
(or sometimes consists of two or more such curves).

Difference Equations 
for the Laplace and Poisson Equations
In this section we develop numeric methods for the two most important elliptic PDEs that
appear in applications. The two PDEs are the Laplace equation

(2)

and the Poisson equation

(3)

The starting point for developing our numeric methods is the idea that we can replace
the partial derivatives of these PDEs by corresponding difference quotients. Details are
as follows:

To develop this idea, we start with the Taylor formula and obtain

(4)
(a)

(b) u(x � h, y) � u(x, y) � hux(x, y) � 1
2 h2uxx(x, y) � 1

6 h3uxxx(x, y) � Á .

u(x � h, y) � u(x, y) � hux(x, y) � 1
2 h2uxx(x, y) � 1

6 h3uxxx(x, y) � Á

�2u � uxx � uyy � f (x, y).

�2u � uxx � uyy � 0

un

un � 0u>0n

ac � b2 � 0

ac � b2 � 0

ac � b2 � 0

ac � b2,

auxx � 2buxy � cuyy � F(x, y, u, ux, uy).
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We subtract (4b) from (4a), neglect terms in and solve for Then

(5a)

Similarly,

and

By subtracting, neglecting terms in and solving for we obtain

(5b)

We now turn to second derivatives. Adding (4a) and (4b) and neglecting terms in
we obtain Solving for 

we have

(6a)

Similarly,

(6b)

We shall not need (see Prob. 1)

(6c)

Figure 453a shows the points in (5) and (6).
We now substitute (6a) and (6b) into the Poisson equation (3), choosing to obtain

a simple formula:

(7)

This is a difference equation corresponding to (3). Hence for the Laplace equation (2)
the corresponding difference equation is

(8)

h is called the mesh size. Equation (8) relates u at to u at the four neighboring points
shown in Fig. 453b. It has a remarkable interpretation: u at equals the mean of the(x, y)

(x, y)

u(x � h, y) � u(x, y � h) � u(x � h, y) � u(x, y � h) � 4u(x, y) � 0.

u(x � h, y) � u(x, y � h) � u(x � h, y) � u(x, y � h) � 4u(x, y) � h2f (x, y).

k � h
(x � h, y), (x � h, y), Á

� u(x � h, y � k) � u(x � h, y � k)4.

uxy(x, y) �
1

4hk
  3u(x � h, y � k) � u(x � h, y � k)

uyy(x, y) �
1

k2
  3u(x, y � k) � 2u(x, y) � u(x, y � k)4.

uxx(x, y) �
1

h2
  3u(x � h, y) � 2u(x, y) � u(x � h, y)4.

uxxu(x � h, y) � u(x � h, y) � 2u(x, y) � h2uxx(x, y).h4, h5, Á ,

uy(x, y) �
1
2k

  3u(x, y � k) � u(x, y � k)4 .

uyk3, k4, Á ,

u(x, y � k) � u(x, y) � kuy(x, y) � 1
2 k2uyy(x, y) � Á .

u(x, y � k) � u(x, y) � kuy(x, y) � 1
2 k2uyy(x, y) � Á

ux(x, y) �
1

2h
 3u(x � h, y) � u(x � h, y)4.

ux.h3, h4, Á ,

924 CHAP. 21 Numerics for ODEs and PDEs
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values of u at the four neighboring points. This is an analog of the mean value property
of harmonic functions (Sec. 18.6).

Those neighbors are often called E (East), N (North), W (West), S (South). Then Fig. 453b
becomes Fig. 453c and (7) is

(7*) u(E) � u(N) � u(W) � u(S) � 4u(x, y) � h2f (x, y).

k

k

h h
(x + h, y)

(x, y + k)

(x, y – k)

(x – h, y)
(x, y)

(a)  Points in (5) and (6)

h

h

h h
(x + h, y)

(x, y + h)

(x, y – h)

(x – h, y)
(x, y)

(b)  Points in (7) and (8)

h

h

h h
E

N

S

W
(x, y)

(c)  Notation in (7*)

Fig. 453. Points and notation in (5)–(8) and (7*)

Our approximation of in (7) and (8) is a 5-point approximation with the
coefficient scheme or stencil (also called pattern, molecule, or star)

(9) We may now write (7) as

Dirichlet Problem
In numerics for the Dirichlet problem in a region R we choose an h and introduce a square
grid of horizontal and vertical straight lines of distance h. Their intersections are called
mesh points (or lattice points or nodes). See Fig. 454.

Then we approximate the given PDE by a difference equation [(8) for the Laplace
equation], which relates the unknown values of u at the mesh points in R to each other
and to the given boundary values (details in Example 1). This gives a linear system of
algebraic equations. By solving it we get approximations of the unknown values of u at
the mesh points in R.

We shall see that the number of equations equals the number of unknowns. Now comes
an important point. If the number of internal mesh points, call it p, is small, say, 
then a direct solution method may be applied to that linear system of equations
in p unknowns. However, if p is large, a storage problem will arise. Now since each
unknown u is related to only 4 of its neighbors, the coefficient matrix of the system is a
sparse matrix, that is, a matrix with relatively few nonzero entries (for instance, 500 of
10,000 when ). Hence for large p we may avoid storage difficulties by using an
iteration method, notably the Gauss–Seidel method (Sec. 20.3), which in PDEs is also

p � 100

p � 100
p � 100,

u � h2f (x, y).d 1

1 �4 1

1

td 1

1 �4 1

1

t .
h2�2u
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called Liebmann’s method (note the strict diagonal dominance). Remember that in this
method we have the storage convenience that we can overwrite any solution component
(value of u) as soon as a “new” value is available.

Both cases, large p and small p, are of interest to the engineer, large p if a fine grid is
used to achieve high accuracy, and small p if the boundary values are known only rather
inaccurately, so that a coarse grid will do it because in this case it would be meaningless
to try for great accuracy in the interior of the region R.

We illustrate this approach with an example, keeping the number of equations small,
for simplicity. As convenient notations for mesh points and corresponding values of the
solution (and of approximate solutions) we use (see also Fig. 454)

(10) uij � u(ih, jh).Pij � (ih, jh),

926 CHAP. 21 Numerics for ODEs and PDEs

y

x5h0

P
12

P
22

Pij

P
11

P
21

P
31

Fig. 454. Region in the xy-plane covered by a grid of mesh h, 
also showing mesh points P11 � (h, h), Á , Pij � (ih, jh), Á

With this notation we can write (8) for any mesh point in the form

(11)

Remark. Our current discussion and the example that follows illustrate what we may
call the reuseability of mathematical ideas and methods. Recall that we applied the
Gauss–Seidel method to a system of ODEs in Sec. 20.3 and that we can now apply it
again to elliptic PDEs. This shows that engineering mathematics has a structure and
important mathematical ideas and methods will appear again and again in different
situations. The student should find this attractive in that previous knowledge can be
reapplied.

E X A M P L E  1 Laplace Equation. Liebmann’s Method

The four sides of a square plate of side 12 cm, made of homogeneous material, are kept at constant temperature
and as shown in Fig. 455a. Using a (very wide) grid of mesh 4 cm and applying Liebmann’s method

(that is, Gauss–Seidel iteration), find the (steady-state) temperature at the mesh points.

Solution. In the case of independence of time, the heat equation (see Sec. 10.8)

reduces to the Laplace equation. Hence our problem is a Dirichlet problem for the latter. We choose the grid
shown in Fig. 455b and consider the mesh points in the order We use (11) and, in each equation,
take to the right all the terms resulting from the given boundary values. Then we obtain the system

P11, P21, P12, P22.

ut � c2(uxx � uyy)

100°C0°C

ui�1, j � ui, j�1 � ui�1, j � ui, j�1 � 4uij � 0.

Pij
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(12)

In practice, one would solve such a small system by the Gauss elimination, finding 

More exact values (exact to 3S) of the solution of the actual problem [as opposed to its model (12)] are 88.1
and 61.9, respectively. (These were obtained by using Fourier series.) Hence the error is about which is
surprisingly accurate for a grid of such a large mesh size h. If the system of equations were large, one would
solve it by an indirect method, such as Liebmann’s method. For (12) this is as follows. We write (12) in the
form (divide by and take terms to the right)

These equations are now used for the Gauss–Seidel iteration. They are identical with (2) in Sec. 20.3, where
and the iteration is explained there, with 100, 100, 100, 100 chosen as

starting values. Some work can be saved by better starting values, usually by taking the average of the boundary
values that enter into the linear system. The exact solution of the system is 
as you may verify.

u12 � u22 � 62.5,u11 � u21 � 87.5,

u11 � x1, u21 � x2, u12 � x3, u22 � x4,

 u22 � 0.25u21 � 0.25u12 � 25.

 u12 � 0.25u11 � 0.25u22 � 25

 u21 � 0.25u11 � 0.25u22 � 50

 u11 � 0.25u21 � 0.25u12 � 50

�4

1%,

u12 � u22 � 62.5.
u11 � u21 � 87.5,

 u21 �  u12 �  4u22 � �100.

 u11 � 4u12 �  u22 � �100

 �u11 �  4u21  � u22 � �200

 �4u11 �  u21 �  u12  � �200

0 12

R

12

y

x0

u = 100

u = 0

u = 100 u = 100

u = 100

P
02

P
12

P
22

P
01

P
11

P
21

P
10

P
20

(a)  Given problem (b)  Grid and mesh points

u = 100

u = 0

Fig. 455. Example 1

Remark. It is interesting to note that, if we choose mesh and consider the 
internal mesh points (i.e., mesh points not on the boundary) row by row in the order

then the system of equations has the coefficient matrix

(13) A � S T . Here B � S T
1

�4

�4

1

•

1

•

1

•

1

�4

�4

1

I

B

B

I

•

I

•

I

•

I

B

B

I

(n � 1)2 � (n � 1)2

P11, P21, Á , Pn�1,1, P12, P22, Á , Pn�2,2, Á ,

(n � 1)2h � L>n (L � side of R)
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is an matrix. (In (12) we have internal mesh points, two submatrices
B, and two submatrices I.) The matrix A is nonsingular. This follows by noting that the off-diagonal entries in
each row of A have the sum 3 (or 2), whereas each diagonal entry of A equals so that nonsingularity is
implied by Gerschgorin’s theorem in Sec. 20.7 because no Gerschgorin disk can include 0.

A matrix is called a band matrix if it has all its nonzero entries on the main diagonal
and on sloping lines parallel to it (separated by sloping lines of zeros or not). For example,
A in (13) is a band matrix. Although the Gauss elimination does not preserve zeros between
bands, it does not introduce nonzero entries outside the limits defined by the original
bands. Hence a band structure is advantageous. In (13) it has been achieved by carefully
ordering the mesh points.

ADI Method
A matrix is called a tridiagonal matrix if it has all its nonzero entries on the main
diagonal and on the two sloping parallels immediately above or below the diagonal. (See
also Sec. 20.9.) In this case the Gauss elimination is particularly simple.

This raises the question of whether, in the solution of the Dirichlet problem for the
Laplace or Poisson equations, one could obtain a system of equations whose coefficient
matrix is tridiagonal. The answer is yes, and a popular method of that kind, called the
ADI method (alternating direction implicit method ) was developed by Peaceman and
Rachford. The idea is as follows. The stencil in (9) shows that we could obtain a tridiagonal
matrix if there were only the three points in a row (or only the three points in a column).
This suggests that we write (11) in the form

(14a)

so that the left side belongs to y-Row j only and the right side to x-Column i. Of course,
we can also write (11) in the form

(14b)

so that the left side belongs to Column i and the right side to Row j. In the ADI method
we proceed by iteration. At every mesh point we choose an arbitrary starting value 
In each step we compute new values at all mesh points. In one step we use an iteration
formula resulting from (14a) and in the next step an iteration formula resulting from (14b),
and so on in alternating order.

In detail: suppose approximations have been computed. Then, to obtain the next
approximations we substitute the on the right side of (14a) and solve for the

on the left side; that is, we use

(15a)

We use (15a) for a fixed j, that is, for a fixed row j, and for all internal mesh points in
this row. This gives a linear system of N algebraic equations ( number of internal
mesh points per row) in N unknowns, the new approximations of u at these mesh points.
Note that (15a) involves not only approximations computed in the previous step but also
given boundary values. We solve the system (15a) ( j fixed!) by Gauss elimination. Then
we go to the next row, obtain another system of N equations and solve it by Gauss, and
so on, until all rows are done. In the next step we alternate direction, that is, we compute

N �

ui�1, j
(m�1) � 4uij

(m�1) � ui�1, j
(m�1) � �ui, j�1

(m) � ui, j�1
(m) .

uij
(m�1)

uij
(m)uij

(m�1),
uij

(m)

uij
(0).

ui, j�1 � 4uij � ui, j�1 � �ui�1, j � ui�1, j

ui�1, j � 4uij � ui�1, j � �ui, j�1 � ui, j�1

�
�4,

n � 3, (n � 1)2 � 4(n � 1) � (n � 1)

928 CHAP. 21 Numerics for ODEs and PDEs
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the next approximations column by column from the and the given boundary
values, using a formula obtained from (14b) by substituting the on the right:

(15b)

For each fixed i, that is, for each column, this is a system of M equations (M number
of internal mesh points per column) in M unknowns, which we solve by Gauss elimination.
Then we go to the next column, and so on, until all columns are done.

Let us consider an example that merely serves to explain the entire method.

E X A M P L E  2 Dirichlet Problem. ADI Method

Explain the procedure and formulas of the ADI method in terms of the problem in Example 1, using the same
grid and starting values 100, 100, 100, 100.

Solution. While working, we keep an eye on Fig. 455b and the given boundary values. We obtain first
approximations from (15a) with We write boundary values contained in (15a) without
an upper index, for better identification and to indicate that these given values remain the same during the
iteration. From (15a) with we have for (first row) the system

The solution is For (second row) we obtain from (15a) the system

The solution is 

Second approximations are now obtained from (15b) with by using the first
approximations just computed and the boundary values. For (first column) we obtain from (15b) the system

 u11
(2) �  4u12

(2) �  u13 � �u02 � u22
(1).( j � 2)

 u10 �  4u11
(2) �  u12

(2)  � �u01 � u21
(1)( j � 1)

i � 1
m � 1u11

(2), u21
(2), u12

(2), u22
(2)

u12
(1) � u22

(1) � 66.667.

 u12
(1) �  4u22

(1) �  u32 � �u21
(0) � u23.(i � 2)

 u02 �  4u12
(1) �  u22

(1)  � �u11
(0) � u13(i � 1)

j � 2u11
(1) � u21

(1) � 100.

 u11
(1) �  4u21

(1) �  u31 � �u20 � u22
(0).(i � 2)

 u01 �  4u11
(1) �  u21

(1)  � �u10 � u12
(0)(i � 1)

j � 1m � 0

m � 0.u11
(1), u21

(1), u12
(1), u22

(1)

�

ui, j�1
(m�2) � 4uij

(m�2) � ui, j�1
(m�2) � �ui�1, j

(m�1) � ui�1, j
(m�1).

uij
(m�1)

uij
(m�1)uij

(m�2)

The solution is For (second column) we obtain from (15b) the system

The solution is 
In this example, which merely serves to explain the practical procedure in the ADI method, the accuracy of

the second approximations is about the same as that of two Gauss–Seidel steps in Sec. 20.3 (where
as the following table shows.

Method u11 u21 u12 u22

ADI, 2nd approximations 91.11 91.11 64.44 64.44
Gauss–Seidel, 2nd approximations 93.75 90.62 65.62 64.06
Exact solution of (12) 87.50 87.50 62.50 62.50

�

u11 � x1, u21 � x2, u12 � x3, u22 � x4),

u21
(2) � 91.11, u22

(2) � 64.44.

 u21
(2) �  4u22

(2) �  u23 � �u12
(1) � u32.( j � 2)

 u20 �  4u21
(2) �  u22

(2)  � �u11
(1) � u31( j � 1)

i � 2u11
(2) � 91.11, u12

(2) � 64.44,
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1. Derive (5b), (6b), and (6c).

2. Verify the calculations in Example 1 of the text. Find
out experimentally how many steps you need to obtain
the solution of the linear system with an accuracy of 3S.

3. Use of symmetry. Conclude from the boundary values
in Example 1 that and Show
that this leads to a system of two equations and solve it.

4. Finer grid of inner points. Solve Example 1,
choosing (instead of and the
same starting values.

5–10 GAUSS ELIMINATION, GAUSS–SEIDEL
ITERATION

Fig. 456. Problems 5–10

y

x

3

2

1

0
3210

P
12

P
22

P
11

P
21

h � 12
3 � 4)h � 12

4 � 3
3 � 3

u22 � u12.u21 � u11

For the grid in Fig. 456 compute the potential at the
four internal points by Gauss and by 5 Gauss–Seidel
steps with starting values 100, 100, 100, 100 (showing
the details of your work) if the boundary values on the
edges are:

5. on the other
three edges.

6. on the left, on the lower edge, on
the right, on the upper edge.

7. on the upper and lower edges, on the left and
right. Sketch the equipotential lines.

8. on the upper and lower edges, 110 on the left
and right.

9. on the upper edge, 0 on the other edges,
10 steps.

10. on the lower edge, on the right,
on the upper edge, on the left.

Verify the exact solution and
determine the error.

x4 � 6x2y2 � y4
y4x4 � 54x2 � 81

81 � 54y2 � y4u � x4

u � sin 13 px

u � 220

�U0U0

x3 � 27x
27 � 9y2x3u � 0

u (1, 0) � 60, u (2, 0) � 300, u � 100

P R O B L E M  S E T 2 1 . 4

Improving Convergence. Additional improvement of the convergence of the ADI
method results from the following interesting idea. Introducing a parameter p, we can also
write (11) in the form

(16)
(a)

(b)

This gives the more general ADI iteration formulas

(17)
(a)

(b)

For this is (15). The parameter p may be used for improving convergence. Indeed,
one can show that the ADI method converges for positive p, and that the optimum value
for maximum rate of convergence is

(18)

where K is the larger of and (see above). Even better results can be achieved
by letting p vary from step to step. More details of the ADI method and variants are
discussed in Ref. [E25] listed in App. 1.

N � 1M � 1

p0 � 2 sin  
p

K
 

p � 2,

ui, j�1
(m�2) � (2 � p)uij

(m�2) � ui, j�1
(m�2) � �ui�1, j

(m�1) � (2 � p)uij
(m�1) � ui�1, j

(m�1).

ui�1, j
(m�1) � (2 � p)uij

(m�1) � ui�1, j
(m�1) � �ui, j�1

(m) � (2 � p)uij
(m) � ui, j�1

(m)

ui, j�1 � (2 � p)uij � ui, j�1 � �ui�1, j � (2 � p)uij � ui�1, j .

ui�1, j � (2 � p)uij � ui�1, j � �ui, j�1 � (2 � p)uij � ui, j�1
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11. Find the potential in Fig. 457 using (a) the coarse
grid, (b) the fine grid and Gauss elimination.
Hint. In (b), use symmetry; take as boundary
value at the two points at which the potential has a
jump.

Fig. 457. Region and grids in Problem 11

12. Influence of starting values. Do Prob. 9 by Gauss–
Seidel, starting from 0. Compare and comment.

13. For the square let the boundary
temperatures be on the horizontal and on the
vertical edges. Find the temperatures at the interior
points of a square grid with 

14. Using the answer to Prob. 13, try to sketch some
isotherms.

h � 1.

50°C0°C
0 	 x 	 4, 0 	 y 	 4

u = 110 V

u = –110 V

u = 110 V

u = –110 V

u = –110 V

u = 110 V

P
12

P
11

u � 0
5 � 3,

15. Find the isotherms for the square and grid in Prob. 13
if on the horizontal and on the
vertical edges. Try to sketch some isotherms.

16. ADI. Apply the ADI method to the Dirichlet problem
in Prob. 9, using the grid in Fig. 456, as before and
starting values zero.

17. What in (18) should we choose for Prob. 16? Apply
the ADI formulas (17) with that value of to Prob. 16,
performing 1 step. Illustrate the improved convergence
by comparing with the corresponding values 0.077,
0.308 after the first step in Prob. 16. (Use the starting
values zero.)

18. CAS PROJECT. Laplace Equation. (a) Write a
program for Gauss–Seidel with 16 equations in 16
unknowns, composing the matrix (13) from the indicated

submatrices and including a transformation of
the vector of the boundary values into the vector b of

(b) Apply the program to the square grid in 
with and on the upper and

lower edges, on the left edge and 
on the right edge. Solve the linear system also by Gauss
elimination. What accuracy is reached in the 20th
Gauss–Seidel step?

u � �10u � 110
u � 220h � 10 	 y 	 5

0 	 x 	 5,

Ax � b.

4 � 4

p0

p0

�sin 14 pyu � sin 14 px

21.5 Neumann and Mixed Problems. 
Irregular Boundary

We continue our discussion of boundary value problems for elliptic PDEs in a region R
in the xy-plane. The Dirichlet problem was studied in the last section. In solving Neumann
and mixed problems (defined in the last section) we are confronted with a new situation,
because there are boundary points at which the (outer) normal derivative of
the solution is given, but u itself is unknown since it is not given. To handle such points
we need a new idea. This idea is the same for Neumann and mixed problems. Hence we
may explain it in connection with one of these two types of problems. We shall do so and
consider a typical example as follows.

E X A M P L E  1 Mixed Boundary Value Problem for a Poisson Equation

Solve the mixed boundary value problem for the Poisson equation

�2u � uxx � uyy � f (x, y) � 12xy

un � 0u>0n
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y

x

1.0

0
0 1.5

u = 0

u = 0

u = 3y3

un = 6x

P
01

P
11

P
21

P
02

P
12

P
22

P
13

P
23

P
32

P
31

P
10

P
20

1.0

0.5

0

0 0.5 1.0 1.5

un = 3 u = 3

u = 0u = 0

u = 0

u = 0

u = 0.375

un = 6

R

(a) Region R and boundary values (b) Grid (h = 0.5)

Fig. 458. Mixed boundary value problem in Example 1

Solution. We use the grid shown in Fig. 458b, where We recall that (7) in Sec. 21.4 has the right
side From the formulas and given on the boundary we compute
the boundary data

(1)

and are internal mesh points and can be handled as in the last section. Indeed, from (7), Sec. 21.4, with
and and from the given boundary values we obtain two equations corresponding to

and as follows (with resulting from the left boundary).

(2a)

The only difficulty with these equations seems to be that they involve the unknown values and of u at
and on the boundary, where the normal derivative is given, instead of u; but we

shall overcome this difficulty as follows.
We consider and The idea that will help us here is this. We imagine the region R to be extended

above to the first row of external mesh points (corresponding to and we assume that the Poisson
equation also holds in the extended region. Then we can write down two more equations as before (Fig. 458b)

(2b)

On the right, 1.5 is at and 3 is at and 0 (at and 3 (at ) are given boundary
values. We remember that we have not yet used the boundary condition on the upper part of the boundary of
R, and we also notice that in (2b) we have introduced two more unknowns But we can now use that
condition and get rid of by applying the central difference formula for From (1) we then obtain
(see Fig. 458b)

hence

hence

Substituting these results into (2b) and simplifying, we have

 2u21 �  u12 �  4u22 � 3 � 3 � 6 � �6.

 2u11 � 4u12 �  u22 � 1.5 � 3 � �1.5

u23 � u21 � 6. 6 �
0u22

0y
 �

u23 � u21

2h
 � u23 � u21,

u13 � u11 � 3 3 �
0u12

0y
 �

u13 � u11

2h
 � u13 � u11,

du>dy.u13, u23

u13, u23.

P32P02)(1, 1)12xyh2(0.5, 1)12xyh2

 u21 �  u12 �  4u22  � u23 � 3 � 3 � 0.

 u11 � 4u12 �  u22 �  u13  � 1.5 � 0 � 1.5

y � 1.5),
P22.P12

un � 0u>0n � 0u>0yP22P12

u22u12

 u11 �  4u21  � u22 � 12 (1 � 0.5) � 1
4 � 0.375 � 1.125.

 �4u11 �  u21 �  u12  � 12 (0.5 � 0.5) � 1
4 � 0 � 0.75

�0P21,P11

h2f (x, y) � 3xyh2 � 0.25
P21P11

u31 � 0.375,  u32 � 3,  
0u12

0n
 �

0u12

0y
 � 6 � 0.5 � 3.  

0u22

0n
 �

0u22

0y
 � 6 � 1 � 6.

un � 6xu � 3y3h2f (x, y) � 0.52 � 12xy � 3xy.
h � 0.5.

shown in Fig. 458a.
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Together with (2a) this yields, written in matrix form,

(3)

(The entries 2 come from and and so do and on the right). The solution of (3) (obtained by
Gauss elimination) is as follows; the exact values of the problem are given in parentheses.

Irregular Boundary
We continue our discussion of boundary value problems for elliptic PDEs in a region R
in the xy-plane. If R has a simple geometric shape, we can usually arrange for certain
mesh points to lie on the boundary C of R, and then we can approximate partial derivatives
as explained in the last section. However, if C intersects the grid at points that are not
mesh points, then at points close to the boundary we must proceed differently, as follows.

The mesh point O in Fig. 459 is of that kind. For O and its neighbors A and P we obtain
from Taylor’s theorem

(4)

(a)

(b)

We disregard the terms marked by dots and eliminate Equation (4b) times a plus
equation (4a) gives

uA � auP � (1 � a) uO �
1
2

  a (a � 1) h2 
0

2uO

0x2   .

0uO>0x.

 uP �  uO �  h 
0uO

0x
�

1

2
  h2  

0
2uO

0x2 � Á .

 uA �  uO �  ah 
0uO

0x
�

1

2
 (ah)2  

0
2uO

0x2 � Á

� u11 � 0.077 (exact 0.125)   u21 � 0.191 (exact 0.25).

 u12 � 0.866 (exact 1)   u22 � 1.812 (exact 2)

�6�3u23,u13

E�4 1 1 0

1 �4 0 1

2 0 �4 1

0 2 1 �4

U Eu11

u21

u12

u22

U � E0.75

1.125

1.5 � 3

0 � 6

U � E 0.75

1.125

�1.5

�6

U .

bh

h

ah

O

B

AP

Q
C

Fig. 459. Curved boundary C of a region R, a mesh point O near C, 
and neighbors A, B, P, Q

We solve this last equation algebraically for the derivative, obtaining

0
2uO

0x2  �
2
h2   c 1

a (1 � a)
  uA �

1
1 � a

  uP �
1
a   uO d  .
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Similarly, by considering the points O, B, and Q,

By addition,

(5)

For example, if instead of the stencil (see Sec. 21.4)

we now have

because etc. The sum of all five terms still being zero (which is useful
for checking).

Using the same ideas, you may show that in the case of Fig. 460.

(6)

a formula that takes care of all conceivable cases.

�2uO �
2

h2 c uA

a(a � p)
 �

uB

b(b � q)
 �

uP

p(p � a)
 �

uQ

q(q � b)
 �

ap � bq

abpq
 uO d

 

,

1>[a (1 � a)] � 4
3 ,

d 4
3

2
3 �4 4

3

2
3

t .d 1

1 �4 1

1

t
a � 1

2 , b � 1
2 ,

�2uO �
2

h2   c uA

a(1 � a)
 �

uB

b(1 � b)
 �

uP

1 � a
 �

uQ

1 � b
 �

(a � b)uO

ab
 d  .

0
2uO

0y2  �
2
h2 c 1

b(1 � b)
 uB �

1
1 � b

 uQ �
1
b

 uO d
 

.
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bh

qh

ahph O

B

AP

Q

Fig. 460. Neighboring points A, B, P, Q of a 
mesh point O and notations in formula (6)

E X A M P L E  2 Dirichlet Problem for the Laplace Equation. Curved Boundary

Find the potential u in the region in Fig. 461 that has the boundary values given in that figure; here the curved
portion of the boundary is an arc of the circle of radius 10 about (0,0). Use the grid in the figure.

Solution. u is a solution of the Laplace equation. From the given formulas for the boundary values 
we compute the values at the points where we need them; the result is shown in the figure.

For and we have the usual regular stencil, and for and we use (6), obtaining

(7) P11, P12: 

1c1 �4 1

1

s 0.5

 ,  P21: c0.6 �2.5 0.9

0.5

s,  P22: 

0.9c0.6 �3 0.9

0.6

s .
P22P21P12P11

u � 512 � 24y2, Á

u � x3,
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We use this and the boundary values and take the mesh points in the usual order Then we
obtain the system

In matrix form,

(8)

Gauss elimination yields the (rounded) values

Clearly, from a grid with so few mesh points we cannot expect great accuracy. The exact solution of the PDE
(not of the difference equation) having the given boundary values is and yields the values

In practice one would use a much finer grid and solve the resulting large system by an indirect method. �

u11 � �54,  u21 � 54,  u12 � �297,  u22 � �432.

u � x3 � 3xy2

u11 � �55.6,  u21 � 49.2,  u12 � �298.5,  u22 � �436.3.

E�4 1 1 0

0.6 �2.5 0 0.5

1 0 �4 1

0 0.6 0.6 �3

U  Eu11

u21

u12

u22

U � E �27

�374.4

702

1159.2

U .
0.6u21 � 0.6u12 � 3u22 �  0.9 # 352 � 0.9 # 936 �  1159.2

u11 � 4u12 � u22 �  702 � 0 � 702

0.6u11 � 2.5u21 � 0.5u22 �  �0.9 # 296 � 0.5 # 216 �  �374.4

�4u11 � u21 � u12 � 0 � 27 � �27

P11, P21, P12, P22.
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y

x

u = 296

u = 512 – 24y2

u = 4x3 – 300x

u = x3 

u = x3 – 243x

u = –352

u = –702

u = –936

u = 0
u = 0

u = 0

u = 27
u = 
216

9

6

3

0
0 3 6 8

P
21

P
11

P
22

P
12

Fig. 461. Region, boundary values of the potential, and grid in Example 2

1–7 MIXED BOUNDARY VALUE PROBLEMS

1. Check the values for the Poisson equation at the end
of Example 1 by solving (3) by Gauss elimination.

2. Solve the mixed boundary value problem for the
Poisson equation in the region and
for the boundary conditions shown in Fig. 462, using
the indicated grid.

�2u � 2 (x2 � y2)

Fig. 462. Problems 2 and 6

P R O B L E M  S E T  2 1 . 5

y

x

P
12

P
22

P
11

P
21

3

2

1

0
0 1 2 3

u = 9x2

ux = 6y2u = 0

u = 0
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3. CAS EXPERIMENT. Mixed Problem. Do Example
1 in the text with finer and finer grids of your choice
and study the accuracy of the approximate values by
comparing with the exact solution Verify the
latter.

4. Solve the mixed boundary value problem for the
Laplace equation in the rectangle in Fig. 458a
(using the grid in Fig. 458b) and the boundary
conditions on the left edge, on the right
edge, on the lower edge, and on
the upper edge.

5. Do Example 1 in the text for the Laplace equation
(instead of the Poisson equation) with grid and
boundary data as before.

6. Solve for the grid in Fig. 462
and on the other
three sides of the square.

7. Solve Prob. 4 when on the upper edge and
on the other edges.

8–16 IRREGULAR BOUNDARY

8. Verify the stencil shown after (5).

9. Derive (5) in the general case.

10. Derive the general formula (6) in detail.

11. Derive the linear system in Example 2 of the text.

12. Verify the solution in Example 2.

13. Solve the Laplace equation in the region and for the
boundary values shown in Fig. 463, using the
indicated grid. (The sloping portion of the boundary
is y � 4.5 � x.)

u � 110
un � 110

uy(1, 3) � uy(2, 3) � 1
2 1243, u � 0

�2u � �p2y sin 13 px

u � x2 � 1u � x2
ux � 3ux � 0

�2u � 0

u � 2xy3.
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Fig. 463. Problem 13

14. If, in Prob. 13, the axes are grounded what
constant potential must the other portion of the
boundary have in order to produce 220 V at 

15. What potential do we have in Prob. 13 if V
on the axes and on the other portion of the
boundary?

16. Solve the Poisson equation in the region and
for the boundary values shown in Fig. 464, using the
grid also shown in the figure.

�2u � 2

u � 0
u � 100

P11?

(u � 0),

y

x

P
12

P
22

P
11

P
21

3

2

1

0
0 1 2 3

u = 0

u = x2 – 1.5x

u = 9 – 3y
u = 0

u = 3x

Fig. 464. Problem 16
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u = y2 – 1.5y

u = y2 – 3y

u = 0

1.5

21.6 Methods for Parabolic PDEs
The last two sections concerned elliptic PDEs, and we now turn to parabolic PDEs. Recall
that the definitions of elliptic, parabolic, and hyperbolic PDEs were given in Sec. 21.4.
There it was also mentioned that the general behavior of solutions differs from type to
type, and so do the problems of practical interest. This reflects on numerics as follows.

For all three types, one replaces the PDE by a corresponding difference equation, but
for parabolic and hyperbolic PDEs this does not automatically guarantee the convergence
of the approximate solution to the exact solution as the mesh in fact, it does not
even guarantee convergence at all. For these two types of PDEs one needs additional
conditions (inequalities) to assure convergence and stability, the latter meaning that small
perturbations in the initial data (or small errors at any time) cause only small changes at
later times.

In this section we explain the numeric solution of the prototype of parabolic PDEs, the
one-dimensional heat equation

(c constant).ut � c2uxx

h : 0;
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This PDE is usually considered for x in some fixed interval, say, and time
and one prescribes the initial temperature ( f given) and boundary

conditions at and for all for instance, We may
assume and this can always be accomplished by a linear transformation of
x and t (Prob. 1). Then the heat equation and those conditions are

(1)

(2) (Initial condition)

(3) (Boundary conditions).

A simple finite difference approximation of (1) is [see (6a) in Sec. 21.4; j is the number
of the time step]

(4)

Figure 465 shows a corresponding grid and mesh points. The mesh size is h in the x-direction
and k in the t-direction. Formula (4) involves the four points shown in Fig. 466. On the left
in (4) we have used a forward difference quotient since we have no information for negative
t at the start. From (4) we calculate which corresponds to time row in terms
of the three other u that correspond to time row j. Solving (4) for we have

(5)

Computations by this explicit method based on (5) are simple. However, it can be shown
that crucial to the convergence of this method is the condition

(6) r �
k
h2 	

1
2

 .

r �
k

h2
 .ui, j�1 � (1 � 2r)uij � r(ui�1, j � ui�1, j),

ui, j�1,
j � 1,ui, j�1,

1
k

 (ui, j�1 � uij) �
1
h2 (ui�1, j � 2uij � ui�1, j).

u(0, t) � u(1, t) � 0

u(x, 0) � f (x)

0 	 x 	 1, t 
 0ut � uxx

L � 1;c � 1
u(0, t) � 0, u(L, t) � 0.t 
 0,x � Lx � 0

u(x, 0) � f (x)t 
 0,
0 	 x 	 L,

SEC. 21.6 Methods for Parabolic PDEs 937

t

x

( j = 3)

( j = 2)u = 0
u = 0

u = f (x)

( j = 1)

10
0

k h

Fig. 465. Grid and mesh points corresponding to (4), (5)

h h

k

(i, j + 1)

(i, j)

(i – 1, j) (i + 1, j)

Fig. 466. The four points in (4) and (5)
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938 CHAP. 21 Numerics for ODEs and PDEs

That is, should have a positive coefficient in (5) or (for be absent from (5).
Intuitively, (6) means that we should not move too fast in the t-direction. An example is
given below.

Crank–Nicolson Method
Condition (6) is a handicap in practice. Indeed, to attain sufficient accuracy, we have
to choose h small, which makes k very small by (6). For example, if then

Accordingly, we should look for a more satisfactory discretization of the
heat equation.

A method that imposes no restriction on is the Crank–Nicolson (CN)
method,5 which uses values of u at the six points in Fig. 467. The idea of the method
is the replacement of the difference quotient on the right side of (4) by times the
sum of two such difference quotients at two time rows (see Fig. 467). Instead of (4)
we then have

(7)

Multiplying by 2k and writing as before, we collect the terms corresponding to
time row on the left and the terms corresponding to time row j on the right:

(8)

How do we use (8)? In general, the three values on the left are unknown, whereas the
three values on the right are known. If we divide the x-interval in (1) into n
equal intervals, we have internal mesh points per time row (see Fig. 465, where

Then for and formula (8) gives a linear system of 
equations for the unknown values in the first time row in terms
of the initial values and the boundary values 
Similarly for and so on; that is, for each time row we have to solve such a
linear system of equations resulting from (8).

Although is no longer restricted, smaller r will still give better results. In
practice, one chooses a k by which one can save a considerable amount of work, without

r � k>h2
n � 1

j � 1, j � 2,
u01(� 0), un1 (� 0).u00, u10, Á , un0

u11, u21, Á , un�1,1n � 1
n � 1i � 1, Á , n � 1,j � 0n � 4).

n � 1
0 	 x 	 1

(2 � 2r)ui, j�1 � r(ui�1, j�1 � ui�1, j�1 � (2 � 2r)uij � r(ui�1, j � ui�1, j).

j � 1
r � k>h2

 �
1

2h2
 (ui�1, j�1 � 2ui, j�1 � ui�1, j�1).

 
1
k

 (ui, j�1 � uij) �
1

2h2 (ui�1, j  � 2uij  � ui�1, j)

1
2 

r � k>h2

k 	 0.005.
h � 0.1,

r � 1
2 )uij

5JOHN CRANK (1916–2006), English mathematician and physicist at Courtaulds Fundamental Research
Laboratory, professor at Brunel University, England. Student of Sir WILLIAM LAWRENCE BRAGG
(1890–1971), Australian British physicist, who with his father, Sir WILLIAM HENRY BRAGG (1862–1942)
won the Nobel Prize in physics in 1915 for their fundamental work in X-ray crystallography. (This is the only
case where a father and a son shared the Nobel Prize for the same research. Furthermore, W. L. Bragg is the
youngest Nobel laureate ever.) PHYLLIS NICOLSON (1917–1968), English mathematician, professor at the
University of Leeds, England.
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E X A M P L E  1 Temperature in a Metal Bar. Crank–Nicolson Method, Explicit Method

Consider a laterally insulated metal bar of length 1 and such that in the heat equation. Suppose that the
ends of the bar are kept at temperature and the temperature in the bar at some instant—call it —
is Applying the Crank–Nicolson method with and find the temperature in
the bar for Compare the results with the exact solution. Also apply (5) with an r satisfying (6),
say, and with values not satisfying (6), say, and 

Solution by Crank–Nicolson. Since formula (8) takes the form (9). Since and
we have Hence we have to do 5 steps. Figure 468 shows the grid. We shall need

the initial values

Also, and (Recall that means u at in Fig. 468, etc.) In each time row in Fig.
468 there are 4 internal mesh points. Hence in each time step we would have to solve 4 equations in 4
unknowns. But since the initial temperature distribution is symmetric with respect to and at
both ends for all t, we have in the first time row and similarly for the other rows. This
reduces each system to 2 equations in 2 unknowns. By (9), since and for these
equations are

The solution is Similarly, for time row we have the system

 (i � 2)  �u12 � 3u22 � u11 � u21 � 1.045313.

 (i � 1)   4u12 � u22 � u01 � u21 � 0.646039

j � 1u11 � 0.399274, u21 � 0.646039.

 (i � 2)   �u11 � 4u21 � u21 � u10 � u20 � 1.538842.

 (i � 1)   4u11 � u21 � u00 � u20 � 0.951057

j � 0u01 � 0,u31 � u21

u31 � u21, u41 � u11

u � 0x � 0.5,

P10u10u40 � u10.u30 � u20

u10 � sin 0.2p � 0.587785,  u20 � sin 0.4p � 0.951057.

k � h2 � 0.04.r � k>h2 � 1,
h � 0.2r � 1,

r � 2.5.r � 1r � 0.25,
0 	 t 	 0.2.

u(x, t)r � 1,h � 0.2f (x) � sin px.
t � 0u � 0°C

c2 � 1

h h

k

Time row j + 1

Time row j

Fig. 467. The six points in the Crank–Nicolson formulas (7) and (8)
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Fig. 468. Grid in Example 1

making r too large. For instance, often a good choice is (which would be impossible
in the previous method). Then (8) becomes simply

(9) 4ui, j�1 � ui�1, j�1 � ui�1, j�1 � ui�1, j � ui�1, j.

r � 1
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The solution is and so on. This gives the temperature distribution
(Fig. 469):

t

0.00 0 0.588 0.951 0.951 0.588 0
0.04 0 0.399 0.646 0.646 0.399 0
0.08 0 0.271 0.439 0.439 0.271 0
0.12 0 0.184 0.298 0.298 0.184 0
0.16 0 0.125 0.202 0.202 0.125 0
0.20 0 0.085 0.138 0.138 0.085 0

x � 1x � 0.8x � 0.6x � 0.4x � 0.2x � 0

u12 � 0.271221, u22 � 0.438844,

940 CHAP. 21 Numerics for ODEs and PDEs

u(x, t)

x

t = 0

t = 0.04

t = 0.08

0

0.5

0.5
0

1

1

Fig. 469. Temperature distribution in the bar in Example 1

Comparison with the exact solution. The present problem can be solved exactly by separating
variables (Sec. 12.5); the result is

(10)

Solution by the explicit method (5) with For and we have
Hence we have to perform 4 times as many steps as with the Crank–Nicolson

method! Formula (5) with is

(11)

We can again make use of the symmetry. For we need (see p. 939),
and compute

Of course we can omit the boundary terms from the formulas. For we compute

and so on. We have to perform 20 steps instead of the 5 CN steps, but the numeric values show that the accuracy
is only about the same as that of the Crank–Nicolson values CN. The exact 3D-values follow from (10).

 u22 � 0.25(u11 � 3u21) � 0.778094

 u12 � 0.25(2u11 � u21) � 0.480888

j � 1u01 � 0, u02 � 0, Á

 u21 � 0.25(u10 � 2u20 � u30) � 0.25(u10 � 3u20) � 0.860239.

 u11 � 0.25(u00 � 2u10 � u20) � 0.531657

u20 � u30 � 0.951057
u00 � 0, u10 � 0.587785j � 0

ui, j�1 � 0.25(ui�1, j � 2uij � ui�1, j).

r � 0.25
k � rh2 � 0.25 � 0.04 � 0.01.

r � k>h2 � 0.25h � 0.2r � 0.25.

u(x, t) � sin px e�p2t.
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t
CN By (11) Exact CN By (11) Exact

0.04 0.399 0.393 0.396 0.646 0.637 0.641
0.08 0.271 0.263 0.267 0.439 0.426 0.432
0.12 0.184 0.176 0.180 0.298 0.285 0.291
0.16 0.125 0.118 0.121 0.202 0.191 0.196
0.20 0.085 0.079 0.082 0.138 0.128 0.132

Failure of (5) with r violating (6). Formula (5) with and —which violates (6)—is

and gives very poor values; some of these are

ui, j�1 � ui�1, j � uij � ui�1, j

r � 1h � 0.2

x � 0.4x � 0.2

SEC. 21.6 Methods for Parabolic PDEs 941

t Exact Exact

0.04 0.363 0.396 0.588 0.641
0.12 0.139 0.180 0.225 0.291
0.20 0.053 0.082 0.086 0.132

x � 0.4x � 0.2

t Exact Exact

0.1 0.0265 0.2191 0.0429 0.3545
0.3 0.0001 0.0304 0.0001 0.0492.

x � 0.4x � 0.2

Formula (5) with an even larger (and as before) gives completely nonsensical results; some of
these are

h � 0.2r � 2.5

�

1. Nondimensional form. Show that the heat equation
u�t� � c2u�x�x�, 0 	 x� 	 L, can be transformed to the
“nondimensional” standard form ut � uxx, 0 	 x 	 1,
by setting x � x�/L, t � c2 t�/L2, u � u�/u0, where is
any constant temperature.

2. Difference equation. Derive the difference approxi-
mation (4) of the heat equation.

3. Explicit method. Derive (5) by solving (4) for 

4. CAS EXPERIMENT. Comparison of Methods.

(a) Write programs for the explicit and the Crank—
Nicolson methods.

(b) Apply the programs to the heat problem of a
laterally insulated bar of length 1 with 
and for all t, using 

for the explicit method (20 steps), 
and (9) for the Crank–Nicolson method (5 steps).
Obtain exact 6D-values from a suitable series and
compare.

(c) Graph temperature curves in (b) in two figures
similar to Fig. 299 in Sec. 12.7.

h � 0.2k � 0.01
h � 0.2,u(0, t) � u(1, t) � 0

u(x, 0) � sin px

ui, j�1.

u0

(d) Experiment with smaller h (0.1, 0.05, etc.) for both
methods to find out to what extent accuracy increases
under systematic changes of h and k.

EXPLICIT METHOD

5. Using (5) with and solve the heat
problem (1)–(3) to find the temperature at in a
laterally insulated bar of length 10 ft and initial
temperature 

6. Solve the heat problem (1)–(3) by the explicit method
with and 8 time steps, when 
if if Compare
with the 3S-values 0.108, 0.175 for 

obtained from the series (2 terms) in
Sec. 12.5.

7. The accuracy of the explicit method depends on
Illustrate this for Prob. 6, choosing (and
as before). Do 4 steps. Compare the values for
and 0.08 with the 3S-values in Prob. 6, which

are 0.156, 0.254 (t � 0.04), 0.105, 0.170 (t � 0.08).
t � 0.04
h � 0.2

r � 1
2 r (	 1

2).

x � 0.2, 0.4
t � 0.08,

1
2 	 x 	 1.0 	 x � 1

2 , f (x) � 1 � x
f (x) � xk � 0.01,h � 0.2

f (x) � x(1 � 0.1x).

t � 2
k � 0.5,h � 1

P R O B L E M  S E T  2 1 . 6
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942 CHAP. 21 Numerics for ODEs and PDEs

8. In a laterally insulated bar of length 1 let the initial
temperature be if 
if Let (1) and (3) hold. Apply the explicit
method with 5 steps. Can you expect
the solution to satisfy for all t?

9. Solve Prob. 8 with if 
if the other data

being as before.

10. Insulated end. If the left end of a laterally insulated
bar extending from to is insulated, the
boundary condition at is 
Show that, in the application of the explicit method
given by (5), we can compute by the formula

Apply this with and to determine the
temperature in a laterally insulated bar extending
from to 1 if the left end is insulated
and the right end is kept at temperature 
Hint. Use 0 � 0u0j>0x � (u1j � u�1j)>2h.

g(t) � sin 50
3  pt.

u(x, 0) � 0,x � 0
u(x, t)

r � 0.25h � 0.2

u0j�1 � (1 � 2r)u0j � 2ru1j.

u0j�1

un(0, t) � ux(0, t) � 0.x � 0
x � 1x � 0

0.2 � x 	 1,f (x) � 0.25(1 � x)
0 	 x 	 0.2,f (x) � x

u(x, t) � u(1 � x, t)
h � 0.2, k � 0.01,

0.5 	 x 	 1.
0 	 x � 0.5, f (x) � 1 � xf (x) � x

CRANK–NICOLSON METHOD

11. Solve Prob. 9 by (9) with 2 steps. Compare
with exact values obtained from the series in Sec. 12.5
(2 terms) with suitable coefficients.

12. Solve the heat problem (1)–(3) by Crank–Nicolson
for with and when

if if 
Compare with the exact values for obtained
from the series (2 terms) in Sec. 12.5.

13–15

Solve (1)–(3) by Crank–Nicolson with (5 steps),
where:

13. if if

14. (Compare with Prob. 15.)

15. f (x) � x(1 � x), h � 0.2

f (x) � x(1 � x), h � 0.1.

0.25 	 x 	 1, h � 0.2
0 	 x � 0.25,  f (x) � 1.25(1 � x)f (x) � 5x

r � 1

t � 0.20

1
2 	 x 	 1.0 	 x � 1

2, f (x) � 1 � xf (x) � x
k � 0.04h � 0.20 	 t 	 0.20

h � 0.2,

21.7 Method for Hyperbolic PDEs
In this section we consider the numeric solution of problems involving hyperbolic PDEs.
We explain a standard method in terms of a typical setting for the prototype of a hyperbolic
PDE, the wave equation:

(1)

(2) (Given initial displacement)

(3) (Given initial velocity)

(4) (Boundary conditions).

Note that an equation and another x-interval can be reduced to the form (1)
by a linear transformation of x and t. This is similar to Sec. 21.6, Prob. 1.

For instance, (1)–(4) is the model of a vibrating elastic string with fixed ends at 
and (see Sec. 12.2). Although an analytic solution of the problem is given in (13),
Sec. 12.4, we use the problem for explaining basic ideas of the numeric approach that are
also relevant for more complicated hyperbolic PDEs.

Replacing the derivatives by difference quotients as before, we obtain from (1) [see (6)
in Sec. 21.4 with 

(5)

where h is the mesh size in x, and k is the mesh size in t. This difference equation relates
5 points as shown in Fig. 470a. It suggests a rectangular grid similar to the grids for

1

k2
 (ui, j�1 � 2uij � ui, j�1) �

1

h2
 (ui�1, j � 2uij � ui�1, j)

y � t]

x � 1
x � 0

utt � c2uxx

u(0, t) � u(1, t) � 0

ut(x, 0) � g(x) 

u(x, 0) � f (x)

0 	 x 	 1, t 
 0utt � uxx
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parabolic equations in the preceding section. We choose Then drops
out and we have

(6) (Fig. 470b).

It can be shown that for the present explicit method is stable, so that from
(6) we may expect reasonable results for initial data that have no discontinuities. (For a
hyperbolic PDE the latter would propagate into the solution domain—a phenomenon that
would be difficult to deal with on our present grid. For unconditionally stable implicit
methods see [E1] in App. 1.)

0 � r* 	 1

ui, j�1 � ui�1, j � ui�1, j � u1, j�1

uijr* � k2>h2 � 1.

SEC. 21.7 Method for Hyperbolic PDEs 943

(a) Formula (5) (b) Formula (6)

Time row j + 1

Time row j

Time row j – 1

k

k
h h

Fig. 470. Mesh points used in (5) and (6)

Equation (6) still involves 3 time steps , whereas the formulas in the
parabolic case involved only 2 time steps. Furthermore, we now have 2 initial conditions.
So we ask how we get started and how we can use the initial condition (3). This can be
done as follows.

From we derive the difference formula

(7) hence

where . For that is, equation (6) is

Into this we substitute as given in (7). We obtain 
and by simplification

(8)

This expresses in terms of the initial data. It is for the beginning only. Then use (6).

E X A M P L E  1 Vibrating String, Wave Equation

Apply the present method with to the problem (1)–(4), where

Solution. The grid is the same as in Fig. 468, Sec. 21.6, except for the values of t, which now are 
(instead of The initial values are the same as in Example 1, Sec. 21.6. From (8)
and we have

ui1 � 1
2 (ui�1,0 � ui�1,0).

g(x) � 0
u00, u10, Á0.04, 0.08, Á ).

0.2, 0.4, Á

g(x) � 0.f (x) � sin px,

h � k � 0.2

ui1

ui1 � 1
2 (ui�1,0 � ui�1,0) � kgi,

ui1 � ui�1,0 � ui�1,0 � ui1 � 2kgiui,�1

ui1 � ui�1,0 � ui�1,0 � ui,�1.

j � 0,t � 0,gi � g(ih)

ui,�1 � ui1 � 2kgi
1
2k

 (ui1 � ui,�1) � gi,

ut(x, 0) � g(x)

j � 1, j, j � 1
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From this we compute, using 

and by symmetry as in Sec. 21.6, Example 1. From (6) with we now compute,
using 

and by symmetry; and so on. We thus obtain the following values of the displacement
of the string over the first half-cycle:

t

0.0 0 0.588 0.951 0.951 0.588 0
0.2 0 0.476 0.769 0.769 0.476 0
0.4 0 0.182 0.294 0.294 0.182 0
0.6 0 �0.182 �0.294 �0.294 �0.182 0
0.8 0 �0.476 �0.769 �0.769 �0.476 0
1.0 0 �0.588 �0.951 �0.951 �0.588 0

These values are exact to 3D (3 decimals), the exact solution of the problem being (see Sec. 12.3)

The reason for the exactness follows from d’Alembert’s solution (4), Sec. 12.4. (See Prob. 4, below.)

This is the end of Chap. 21 on numerics for ODEs and PDEs, a field that continues to
develop rapidly in both applications and theoretical research. Much of the activity in the
field is due to the computer serving as an invaluable tool for solving large-scale and
complicated practical problems as well as for testing and experimenting with innovative
ideas. These ideas could be small or major improvements on existing numeric algorithms
or testing new algorithms as well as other ideas.

�

u(x, t) � sin px cos pt.

x � 1x � 0.8x � 0.6x � 0.4x � 0.2x � 0

u(x, t)
u32 � u22, u42 � u12

 (i � 2)  u22 � u11 � u31 � u20 � 0.475528 � 0.769421 � 0.951057 � 0.293892,

 (i � 1)  u12 � u01 � u21 � u10 � 0.769421 � 0.587785 � 0.181636

u01 � u02 � Á � 0,
j � 1u31 � u21, u41 � u11

(i � 2) u21 � 1
2 (u10 � u30) � 1

2 � 1.538842 � 0.769421

(i � 1) u11 � 1
2 (u00 � u20) � 1

2 � 0.951057 � 0.475528

u10 � u40 � sin 0.2p � 0.587785, u20 � u30 � 0.951057,

944 CHAP. 21 Numerics for ODEs and PDEs

VIBRATING STRING

1–3 Using the present method, solve (1)–(4) with
for the given initial deflection and initial

velocity 0 on the given t-interval.

1. if if 

2.

3. f (x) � 0.2(x � x2), 0 	 t 	 2

f (x) � x2 � x3, 0 	 t 	 2

0 	 t 	 1

1
5 	 x 	 1,0 � x � 1

5 , f (x) � 1
4 (1 � x)f (x) � x

f (x)h � k � 0.2

4. Another starting formula. Show that (12) in Sec. 12.4
gives the starting formula

(where one can evaluate the integral numerically if
necessary). In what case is this identical with (8)?

5. Nonzero initial displacement and speed. Illustrate the
starting procedure when both f and g are not identically

ui,1 �
1
2

 (ui�1,0 � ui�1,0) �
1
2

 �
xi�k

xi�k

g(s) ds

P R O B L E M  S E T  2 1 . 7
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zero, say, 
time steps.

6. Solve (1)–(3) time steps) subject to

7. Zero initial displacement. If the string governed by the
wave equation (1) starts from its equilibrium position with
initial velocity what is its displacement
at time and (Use the
present method with Use (8). Compare
with the exact values obtained from (12) in Sec. 12.4.)

h � 0.2, k � 0.2.
x � 0.2, 0.4, 0.6, 0.8?t � 0.4

g(x) � sin px,

f (x) � x2, g(x) � 2x, ux(0, t) � 2t, u(1, t) � (1 � t)2.
(h � k � 0.2, 5

2h � k � 0.1,
g(x) � x(1 � x),f (x) � 1 � cos 2px,

Chapter 21 Review Questions and Problems 945

1. Explain the Euler and improved Euler methods
in geometrical terms. Why did we consider these
methods?

2. How did we obtain numeric methods from the Taylor
series?

3. What are the local and the global orders of a method?
Give examples.

4. Why did we compute auxiliary values in each Runge–
Kutta step? How many?

5. What is adaptive integration? How does its idea extend
to Runge–Kutta?

6. What are one-step methods? Multistep methods? The
underlying ideas? Give examples.

7. What does it mean that a method is not self-starting?
How do we overcome this problem?

8. What is a predictor–corrector method? Give an
important example.

9. What is automatic step size control? When is it needed?
How is it done in practice?

10. How do we extend Runge–Kutta to systems of ODEs?

11. Why did we have to treat the main types of PDEs in
separate sections? Make a list of types of problems and
numeric methods.

12. When and how did we use finite differences? Give as
many details as you can remember without looking
into the text.

13. How did we approximate the Laplace and Poisson
equations?

14. How many initial conditions did we prescribe for the
wave equation? For the heat equation?

15. Can we expect a difference equation to give the exact
solution of the corresponding PDE?

16. In what method for PDEs did we have convergence
problems?

17. Solve by Euler’s method, 10 steps,

18. Do Prob. 17 with 10 steps. Compute the errors.
Compare the error for with that in Prob. 17.

19. Solve by the improved Euler
method, 10 steps.

20. Solve by the improved
Euler method, 10 steps with Determine the
errors.

21. Solve Prob. 19 by RK with 5 steps. Compute
the error. Compare with Prob. 19.

22. Fair comparison. Solve  
for (a) by the Euler method with
(b) by the improved Euler method with

and (c) by RK with Verify that the
exact solution is Compute and
compare the errors. Why is the comparison fair?

23. Apply the Adams–Moulton method to 
starting with

24. Apply the A–M method to 
starting with 

25. Apply Euler’s method for systems to 
5 steps.

26. Apply Euler’s method for systems to 
10 steps.

Sketch the solution.

27. Apply Runge–Kutta for systems to 
5 steps. Determine the

errors.

28. Apply Runge–Kutta for systems to 

3 steps.
h � 0.05,y2(0) � �3,y1(0) � �3,y2r � y1 � 6y2,

y1r � 6y1 � 9y2,

h � 0.2,yr(0) � 1,y(0) � 0,
ys � y � 2ex,

h � 0.2,y2(0) � 0,y1(0) � 2,y2r � �4y1,
y1r � y2,

y(0) � 1, yr(0) � 0, h � 0.1,
ys � x2y,

4.08413.
4.02279,4.00271,x � 0, Á , 1,h � 0.2,

y(0) � 4,yr � (x � y � 4)2,

0.389416, 0.564637.0.198668,
x � 0, Á , 1,h � 0.2,y(0) � 0,

yr � 21 � y2,

y � (ln x)2 � ln x.
h � 0.4.h � 0.2,

h � 0.1,
1 	 x 	 1.8y(1) � 0

yr � 2x�11y � ln x � x�1,

h � 0.1,

h � 0.1.
yr � y � (x � 1)2, y(0) � 3

h � 0.1,
yr � 1 � y2, y(0) � 0

x � 0.1
h � 0.01,

h � 0.1.
yr � y, y(0) � 1

C H A P T E R  2 1  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S

8. Compute approximate values in Prob. 7, using a finer
grid and notice the increase in
accuracy.

9. Compute u in Prob. 5 for and 
using the formula in Prob. 8, and compare

the values.

10. Show that from d’Alembert’s solution (13) in Sec.12.4
with it follows that (6) in the present section
gives the exact value ui, j�1 � u(ih, ( j � 1)h).

c � 1

0.2, Á , 0.9,
x � 0.1,t � 0.1

k � 0.1),(h � 0.1,
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946 CHAP. 21 Numerics for ODEs and PDEs

29. Find rough approximate values of the electrostatic
potential at in Fig. 471 that lie in a field
between conducting plates (in Fig. 471 appearing as
sides of a rectangle) kept at potentials 0 and 220 V as
shown. (Use the indicated grid.)

P13P12,P11,
by the method in Sec. 21.7 with 

and for 

32–34 POTENTIAL

Find the potential in Fig. 472, using the given grid and the
boundary values:

32.

33.
elsewhere on the boundary

34. on the upper and left sides, on the lower
and right sides

u � 0u � 70

u(P10) � u(P30) � 960, u(P20) � �480, u � 0

u(P02) � u(P42) � u(P14) � u(P24) � u(P34) � 0

u(P10) � u(P30) � �400, u(P20) � 1600,

u(P01) � u(P03) � u(P41) � u(P43) � 200,

t � 0.3.k � 0.1
h � 0.1u(1, t) � 0

35. Solve 
by Crank–

Nicolson with 5 time steps.h � 0.2, k � 0.04,
u(0, t) � u(1, t) � 0u(x, 0) � x2(1 � x),

ut � uxx (0 	 x 	 1, t 
 0),

30. A laterally insulated homogeneous bar with ends at
and has initial temperature 0. Its left end

is kept at 0, whereas the temperature at the right end
varies sinusoidally according to

Find the temperature in the bar [solution of (1)
in Sec. 21.6] by the explicit method with and

(one period, that is, 

31. Find the solution of the vibrating string problem
u(0, t) �ut � 0,u(x, 0) � x(1 � x),utt � uxx,

0 	 t 	 0.24).r � 0.5
h � 0.2

u(x, t)

u(t, 1) � g(t) � sin 25
3  pt.

x � 1x � 0

Fig. 471. Problem 29

y

x

u = 0

u = 220 V

u = 0

u = 0

4

2

0
0 1 2

P
13

P
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P
11

Fig. 472. Problems 32–34
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In this chapter we discussed numerics for ODEs (Secs. 21.1–21.3) and PDEs (Secs.
21.4–21.7). Methods for initial value problems

(1)

involving a first-order ODE are obtained by truncating the Taylor series

y(x � h) � y(x) � hyr(x) �
h2

2
 ys(x) � Á

yr � f (x, y),  y(x0) � y0

SUMMARY OF CHAPTER 21
Numerics for ODEs and PDEs
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where, by (1), etc. Truncating after the term
we get the Euler method, in which we compute step by step

(2)

Taking one more term into account, we obtain the improved Euler method. Both
methods show the basic idea but are too inaccurate in most cases.

Truncating after the term in we get the important classical Runge–Kutta
(RK) method of fourth order. The crucial idea in this method is the replacement
of the cumbersome evaluation of derivatives by the evaluation of at
suitable points thus in each step we first compute four auxiliary quantities
(Sec. 21.1)

(3a)

and then the new value

(3b)

Error and step size control are possible by step halving or by RKF
(Runge–Kutta–Fehlberg).

The methods in Sec. 21.1 are one-step methods since they get from the
result of a single step. A multistep method (Sec. 21.2) uses the values of

of several steps for computing Integrating cubic interpolation
polynomials gives the Adams–Bashforth predictor (Sec. 21.2)

(4a)

where and an Adams–Moulton corrector (the actual new value)

(4b)

where Here, to get started, must be computed by
the Runge–Kutta method or by some other accurate method.

Section 19.3 concerned the extension of Euler and RK methods to systems

This includes single mth-order ODEs, which are reduced to systems. Second-order
equations can also be solved by RKN (Runge–Kutta–Nyström) methods. These are
particularly advantageous for with f not containing yr.ys� f (x, y)

yr � f (x, y),  thus  yjr � fj(x, y1, Á , ym),  j � 1, Á , m.

y1, y2, y3f *n�1 � f (xn�1, y*n�1).

yn�1 � yn � 1
24 h(9f *n�1 � 19fn � 5fn�1 � fn�2),

fj � f (x j, yj),

y*n�1 � yn � 1
24 h(55fn � 59fn�1 � 37fn�2 � 9fn�3)

yn�1.yn, yn�1, Á

yn

yn�1

yn�1 � yn � 1
6 (k1 � 2k2 � 2k3 � k4).

 k4 � hf (xn � h, yn � k3)

 k3 � hf (xn � 1
2 h, yn � 1

2 k2)

 k2 � hf (xn � 1
2 h, yn � 1

2 k1)

 k1 � hf (xn, yn)

(x, y);
f (x, y)

h4,

(n � 0, 1, Á ).yn�1 � yn � hf (xn, yn)

hyr,
yr � f, ys � f r � 0f>0x � (0f>0y)yr,

Summary of Chapter 21 947
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Numeric methods for PDEs are obtained by replacing partial derivatives by
difference quotients. This leads to approximating difference equations, for the
Laplace equation to

(5) (Sec. 21.4)

for the heat equation to

(6) (Sec. 21.6)

and for the wave equation to

(7) (Sec. 21.7);

here h and k are the mesh sizes of a grid in the x- and y-directions, respectively,
where in (6) and (7) the variable y is time t.

These PDEs are elliptic, parabolic, and hyperbolic, respectively. Corresponding
numeric methods differ, for the following reason. For elliptic PDEs we have
boundary value problems, and we discussed for them the Gauss–Seidel method
(also known as Liebmann’s method ) and the ADI method (Secs. 21.4, 21.5). For
parabolic PDEs we are given one initial condition and boundary conditions, and
we discussed an explicit method and the Crank–Nicolson method (Sec. 21.6). For
hyperbolic PDEs, the problems are similar but we are given a second initial
condition (Sec. 21.7).

1

k2
 (ui, j�1 � 2ui, j � ui, j�1) �

1

h2
 (ui�1, j � 2uij � ui�1, j)

1
k

 (ui, j�1 � uij) �
1

h2
 (ui�1, j � 2uij � ui�1, j)

ui�1, j � ui, j�1 � ui�1, j � ui, j�1 � 4uij � 0

948 CHAP. 21 Numerics for ODEs and PDEs
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CHAPTER 22 Unconstrained Optimization. Linear Programming

CHAPTER 23 Graphs. Combinatorial Optimization

949

P A R T  F

Optimization,
Graphs

The material of Part F is particularly useful in modeling large-scale real-world problems.
Just as it is in numerics in Part E, where the greater availability of quality software and
computing power is a deciding factor in the continued growth of the field, so it is also in
the fields of optimization and combinatorial optimization. Problems, such as optimizing
production plans for different industries (microchips, pharmaceuticals, cars, aluminum,
steel, chemicals), optimizing usage of transportation systems (usage of runways in airports,
tracks of subways), efficiency in running of power plants, optimal shipping (delivery
services, shipping of containers, shipping goods from factories to warehouses and from
warehouses to stores), designing optimal financial portfolios, and others are all examples
where the size of the problem usually requires the use of optimization software. More
recently, environmental concerns have put new aspects into the picture, where an important
concern, added to these problems, is the minimization of environmental impact. The main
task becomes to model these problems correctly. The purpose of Part F is to introduce
the main ideas and methods of unconstrained and constrained optimization (Chap. 22),
and graphs and combinatorial optimization (Chap. 23).

Chapter 22 introduces unconstrained optimization by the method of steepest descent and
constrained optimization by the versatile simplex method. The simplex method (Secs.
22.3, 22.4) is very useful for solving many linear optimization problems (also called linear
programming problems).

Graphs let us model problems in transportation logistics, efficient use of communication
networks, best assignment of workers to jobs, and others. We consider shortest path problems
(Secs. 22.2, 22.3), shortest spanning trees (Secs. 23.4, 23.5), flow problems in networks (Secs.
23.6, 23.7), and assignment problems (Sec. 23.8). We discuss algorithms of Moore, Dijkstra
(both for shortest path), Kruskal, Prim (shortest spanning trees), and Ford–Fulkerson (for flow).
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C H A P T E R 2 2

Unconstrained Optimization.
Linear Programming

Optimization is a general term used to describe types of problems and solution techniques
that are concerned with the best (“optimal”) allocation of limited resources in projects. The
problems are called optimization problems and the methods optimization methods. Typical
problems are concerned with planning and making decisions, such as selecting an optimal
production plan. A company has to decide how many units of each product from a choice
of (distinct) products it should make. The objective of the company may be to maximize
overall profit when the different products have different individual profits. In addition, the
company faces certain limitations (constraints). It may have a certain number of machines,
it takes a certain amount of time and usage of these machines to make a product, it requires
a certain number of workers to handle the machines, and other possible criteria. To solve
such a problem, you assign the first variable to number of units to be produced of the first
product, the second variable to the second product, up to the number of different (distinct)
products the company makes. When you multiply these, for example, by the price, you
obtain a linear function called the objective function. You also express the constraints in
terms of these variables, thereby obtaining several inequalities, called the constraints.
Because the variables in the objective function also occur in the constraints, the objective
function and the constraints are tied mathematically to each other and you have set up a
linear optimization problem, also called a linear programming problem.

The main focus of this chapter is to set up (Sec. 22.2) and solve (Secs. 22.3, 22.4) such
linear programming problems. A famous and versatile method for doing so is the simplex
method. In the simplex method, the objective function and the constraints are set up in
the form of an augmented matrix as in Sec. 7.3, however, the method of solving such
linear constrained optimization problems is a new approach.

The beauty of the simplex method is that it allows us to scale problems up to thousands
or more constraints, thereby modeling real-world situations. We can start with a small
model and gradually add more and more constraints. The most difficult part is modeling
the problem correctly. The actual task of solving large optimization problems is done by
software implementations for the simplex method or perhaps by other optimization methods.

Besides optimal production plans, problems in optimal shipping, optimal location of
warehouses and stores, easing traffic congestion, efficiency in running power plants are
all examples of applications of optimization. More recent applications are in minimizing
environmental damages due to pollutants, carbon dioxide emissions, and other factors.
Indeed, new fields of green logistics and green manufacturing are evolving and naturally
make use of optimization methods.

Prerequisite: a modest working knowledge of linear systems of equations.
References and Answers to Problems: App. 1 Part F, App. 2.
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22.1 Basic Concepts. 
Unconstrained Optimization: 
Method of Steepest Descent

In an optimization problem the objective is to optimize (maximize or minimize) some
function f. This function f is called the objective function. It is the focal point or goal of
our optimization problem.

For example, an objective function f to be maximized may be the revenue in a production
of TV sets, the rate of return of a financial portfolio, the yield per minute in a chemical
process, the mileage per gallon of a certain type of car, the hourly number of customers
served in a bank, the hardness of steel, or the tensile strength of a rope.

Similarly, we may want to minimize f if f is the cost per unit of producing certain
cameras, the operating cost of some power plant, the daily loss of heat in a heating system,

emissions from a fleet of trucks for freight transport, the idling time of some lathe,
or the time needed to produce a fender.

In most optimization problems the objective function f depends on several variables

These are called control variables because we can “control” them, that is, choose their values.
For example, the yield of a chemical process may depend on pressure and temperature
The efficiency of a certain air-conditioning system may depend on temperature air

pressure moisture content cross-sectional area of outlet and so on.
Optimization theory develops methods for optimal choices of which maximize

(or minimize) the objective function f, that is, methods for finding optimal values of 
In many problems the choice of values of is not entirely free but is subject

to some constraints, that is, additional restrictions arising from the nature of the problem
and the variables.

For example, if is production cost, then and there are many other variables
(time, weight, distance traveled by a salesman, etc.) that can take nonnegative values only.
Constraints can also have the form of equations (instead of inequalities).

We first consider unconstrained optimization in the case of a function 
We also write and for convenience.

By definition, f has a minimum at a point in a region R (where f is defined) if

for all x in R. Similarly, f has a maximum at in R if

for all x in R. Minima and maxima together are called extrema.
Furthermore, f is said to have a local minimum at if

for all x in a neighborhood of say, for all x satisfying

where and is sufficiently small.r � 0X0 � (X1, Á , Xn)

ƒ x � X0 ƒ � [(x1 � X1)2 � Á � (xn � Xn)2]1>2 � r,

X0,

f (x) � f (X0)

X0

f (x) � f (X0)

X0

f (x) � f (X0)

x � X0

f (x),x � (x1, Á , xn)
f (x1, Á , xn).

x1 � 0,x1

x1, Á , xn

x1, Á , xn.
x1, Á , xn,

x4,x3,x2,
x1,x2.

x1

x1, Á , xn.

CO2
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Similarly, f has a local maximum at if for all x satisfying 
If f is differentiable and has an extremum at a point in the interior of a region R

(that is, not on the boundary), then the partial derivatives must be zero
at These are the components of a vector that is called the gradient of f and denoted
by grad f or . (For this agrees with Sec. 9.7.) Thus

(1)

A point at which (1) holds is called a stationary point of f.
Condition (1) is necessary for an extremum of f at in the interior of R, but is not

sufficient. Indeed, if , then for condition (1) is and, for
instance, satisfies at where f has no extremum but a
point of inflection. Similarly, for we have and f does not have an
extremum but has a saddle point at 0. Hence, after solving (1), one must still find out
whether one has obtained an extremum. In the case the conditions 

guarantee a local minimum at and the conditions a
local maximum, as is known from calculus. For there exist similar criteria. However,
in practice, even solving (1) will often be difficult. For this reason, one generally prefers
solution by iteration, that is, by a search process that starts at some point and moves
stepwise to points at which f is smaller (if a minimum of f is wanted) or larger (in the
case of a maximum).

The method of steepest descent or gradient method is of this type. We present it here
in its standard form. (For refinements see Ref. [E25] listed in App. 1.)

The idea of this method is to find a minimum of by repeatedly computing minima
of a function of a single variable t, as follows. Suppose that f has a minimum at 
and we start at a point x. Then we look for a minimum of f closest to x along the straight
line in the direction of which is the direction of steepest descent direction
of maximum decrease) of f at x. That is, we determine the value of t and the correspond-
ing point

(2)

at which the function

(3)

has a minimum. We take this as our next approximation to 

E X A M P L E  1 Method of Steepest Descent

Determine a minimum of

(4)

starting from and applying the method of steepest descent.

Solution. Clearly, inspection shows that has a minimum at 0. Knowing the solution gives us a better
feel of how the method works. We obtain and from this

 g(t) � f (z (t)) � (1 � 2t)2x1
2 � 3 (1 � 6t)2x2

2 .

 z(t) � x � t	f (x) � (1 � 2t)x1i � (1 � 6t)x2 j

	f (x) � 2x1i � 6x2 j
f (x)

x0 � (6, 3) � 6i � 3j

f (x) � x1
2 � 3x2

2 ,

X0.z(t)

g(t) � f (z(t))

z(t) � x � t	f (x)

(��	f (x),

X0g(t)
f (x)

n � 1
yr(X0) � 0, ys(X0) � 0X0ys(X0) � 0

yr(X0) � 0,n � 1

	f (0) � 0,f (x) � x1x2

x � X0 � 0yr � 3x2 � 0y � x3
yr � f r(X0) � 0;y � f (x),n � 1

X0

X0

	f (X0) � 0.

n � 3	f
X0.

0f>0x1, Á , 0f>0xn

X0

ƒ x � X0 ƒ � r.f (x) � f (X0)X0

952 CHAP. 22 Unconstrained Optimization. Linear Programming
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We now calculate the derivative

set and solve for t, finding

Starting from we compute the values in Table 22.1, which are shown in Fig. 473.
Figure 473 suggests that in the case of slimmer ellipses (“a long narrow valley”), convergence would be

poor. You may confirm this by replacing the coefficient 3 in (4) with a large coefficient. For more sophisticated
descent and other methods, some of them also applicable to vector functions of vector variables, we refer to the
references listed in Part F of App. 1; see also [E25]. �

x0 � 6i � 3j,

t �
x1

2 � 9x2
2

2x1
2 � 54x2

2
 .

gr(t) � 0,

gr(t) � 2 (1 � 2t)x1
2(�2) � 6 (1 � 6t)x2

2(�6),

SEC. 22.1 Basic Concepts. Unconstrained Optimization 953
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Fig. 473. Method of steepest descent in Example 1

Table 22.1 Method of Steepest Descent, Computations in Example 1

n x t

0 6.000 3.000 0.210 0.581 �0.258
1 3.484 �0.774 0.310 0.381 �0.857
2 1.327 0.664 0.210 0.581 �0.258
3 0.771 �0.171 0.310 0.381 �0.857
4 0.294 0.147 0.210 0.581 �0.258
5 0.170 �0.038 0.310 0.381 �0.857
6 0.065 0.032

1 � 6t1 � 2t

1. Orthogonality. Show that in Example 1, successive
gradients are orthogonal (perpendicular). Why?

2. What happens if you apply the method of steepest
descent to First guess, then calculate.

3–9 STEEPEST DESCENT

Do steepest descent steps when:
3. steps

4.
stepsx0 � (3, 4), 5

f (x) � x1
2 � 0.5x2

2 � 5.0x1 � 3.0x2 � 24.95,

f (x) � 2x1
2 � x2

2 � 4x1 � 4x2, x0 � 0, 3

f (x) � x1
2 � x2

2?

P R O B L E M  S E T  2 2 . 1

5. First guess, then
compute.

6. steps. First guess,
then compute. Sketch the path. What if 

7. Show that 2 steps give
times a factor, What can you

conclude from this about the speed of convergence?

8. steps. Sketch your path.
Predict the outcome of further steps.

9. stepsf (x) � 0.1x1
2 � x2

2 � 0.02x1, x0 � (3, 3), 5

f (x) � x1
2 � x2, x0 � (1, 1); 3

�4c2>(c2 � 1)2.(c, 1)
f (x) � x1

2 � cx2
2, x0 � (c, 1).

x0 � (2, 1)?
f (x) � x1

2 � x2
2, x0 � (1, 2), 5

f (x) � ax1 � bx2, a 
 0, b 
 0.
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10. CAS EXPERIMENT. Steepest Descent. (a) Write a
program for the method.

(b) Apply your program to exper-
imenting with respect to speed of convergence depending
on the choice of x0.

f (x) � x1
2 � 4x2

2,

954 CHAP. 22 Unconstrained Optimization. Linear Programming

(c) Apply your program to and to
Graph level curves and

your path of descent. (Try to include graphing directly
in your program.)

f (x) � x1
4 � x2

4, x0 � (2, 1).
f (x) � x1

2 � x2
4

22.2 Linear Programming
Linear programming or linear optimization consists of methods for solving optimization
problems with constraints, that is, methods for finding a maximum (or a minimum)

of a linear objective function

satisfying the constraints. The latter are linear inequalities, such as or
etc. (examples below). Problems of this kind arise frequently, almost daily, for

instance, in production, inventory management, bond trading, operation of power plants,
routing delivery vehicles, airplane scheduling, and so on. Progress in computer technology
has made it possible to solve programming problems involving hundreds or thousands or
more variables. Let us explain the setting of a linear programming problem and the idea
of a “geometric” solution, so that we shall see what is going on.

E X A M P L E  1 Production Plan

Energy Savers, Inc., produces heaters of types S and L. The wholesale price is per heater for S and for
L. Two time constraints result from the use of two machines and On one needs 2 min for an S heater
and 8 min for an L heater. On one needs 5 min for an S heater and 2 min for an L heater. Determine production
figures and for S and L, respectively (number of heaters produced per hour), so that the hourly revenue

is maximum.

Solution. Production figures and must be nonnegative. Hence the objective function (to be maximized)
and the four constraints are

(0)

(1) min time on machine 

(2) min time on machine 

(3)

(4)

Figure 474 shows (0)–(4) as follows. Constancy lines

are marked (0). These are lines of constant revenue. Their slope is To increase z we must
move the line upward (parallel to itself), as the arrow shows. Equation (1) with the equality sign is marked (1).
It intersects the coordinate axes at (set and (set The arrow
marks the side on which the points lie that satisfy the inequality in (1). Similarly for Eqs. (2)–(4). The
blue quadrangle thus obtained is called the feasibility region. It is the set of all feasible solutions, meaning

(x1, x2)
x1 � 0).x2 � 60>8 � 7.5x2 � 0)x1 � 60>2 � 30

�40>88 � �5>11.

z � const

 x2 � 0.

 x1 � 0

M25x1 � 2x2 � 60

M1 2x1 � 8x2 � 60

 z � 40x1 � 88x2

x2x1

z � f (x) � 40x1 � 88x2

x2x1

M2

M1M2.M1

$88$40

x1 � 0,
3x1 � 4x2 � 36,

z � f (x) � a1x1 � a2x2 � Á � anxn

x � (x1, Á , xn)
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solutions that satisfy all four constraints. The figure also lists the revenue at O, A, B, C. The optimal solution
is obtained by moving the line of constant revenue up as much as possible without leaving the feasibility region
completely. Obviously, this optimum is reached when that line passes through B, the intersection (10, 5) of (1)
and (2). We see that the optimal revenue

is obtained by producing twice as many S heaters as L heaters. �

zmax � 40 � 10 � 88 � 5 � $840
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O

x
2

x
1

20

10

10 20 30

BC

A

(2)

(3)

(4)

(1)

(0) z = const

(0) z
max  = 840

(0) z = 0

O:  z = 0
A:  z = 40 . 12 = 480
B:  z = 40 . 10 + 88 . 5 = 840
C:  z = 88 . 7.5 = 660 
 

Fig. 474. Linear programming in Example 1

Note well that the problem in Example 1 or similar optimization problems cannot be
solved by setting certain partial derivatives equal to zero, because crucial to such problems
is the region in which the control variables are allowed to vary.

Furthermore, our “geometric” or graphic method illustrated in Example 1 is confined
to two variables However, most practical problems involve much more than two
variables, so that we need other methods of solution.

Normal Form of a Linear Programming Problem
To prepare for general solution methods, we show that constraints can be written more
uniformly. Let us explain the idea in terms of (1),

This inequality implies (and conversely), that is, the quantity

is nonnegative. Hence, our original inequality can now be written as an equation

where

x3 � 0.

2x1 � 8x2 � x3 � 60,

x3 � 60 � 2x1 � 8x2

60 � 2x1 � 8x2 � 0

2x1 � 8x2 � 60.

x1, x2.
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is a nonnegative auxiliary variable introduced for converting inequalities to equations.
Such a variable is called a slack variable, because it “takes up the slack” or difference
between the two sides of the inequality.

E X A M P L E  2 Conversion of Inequalities by the Use of Slack Variables

With the help of two slack variables we can write the linear programming problem in Example 1 in the
following form. Maximize

subject to the constraints

We now have variables and (linearly independent) equations, so that two of the four variables,
for example, determine the others. Also note that each of the four sides of the quadrangle in Fig. 474
now has an equation of the form 

OA:

AB:

BC:

CO:

A vertex of the quadrangle is the intersection of two sides. Hence at a vertex, of the
variables are zero and the others are nonnegative. Thus at A we have and so on.

Our example suggests that a general linear optimization problem can be brought to the
following normal form. Maximize

(5)

subject to the constraints

(6)

with all nonnegative. (If a multiply the equation by Here include
the slack variables (for which the ’s in f are zero). We assume that the equations in (6)
are linearly independent. Then, if we choose values for of the variables, the system
uniquely determines the others. Of course, since we must have

this choice is not entirely free.

x1 � 0, Á , xn � 0,

n � m
cj

x1, Á , xn�1.)bj � 0,bj

a11x1 � Á � a1nxn � b1

a21x1 � Á � a2nxn � b2

Á Á Á Á Á Á Á Á

am1x1 � Á � amnxn � bm

x i � 0   (i � 1, Á , n)

f � c1x1 � c2x2 � Á � cnxn

�x2 � 0, x4 � 0,
n � m � 4 � 2 � 2

x1 � 0,

x3 � 0,

x4 � 0,

x2 � 0,

x i � 0:
x1, x2,

m � 2n � 4

x i � 0  (i � 1, Á , 4).

 5x1 � 2x2 � x4 � 60

2x1 � 8x2 � x3    � 60

f � 40x1 � 88x2

x3, x4

x3
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Our problem also includes the minimization of an objective function f since this
corresponds to maximizing and thus needs no separate consideration.

An n-tuple that satisfies all the constraints in (6) is called a feasible point
or feasible solution. A feasible solution is called an optimal solution if, for it, the objective
function f becomes maximum, compared with the values of f at all feasible solutions.

Finally, by a basic feasible solution we mean a feasible solution for which at least
of the variables are zero. For instance, in Example 2 we have 
and the basic feasible solutions are the four vertices O, A, B, C in Fig. 474. Here

B is an optimal solution (the only one in this example).
The following theorem is fundamental.

T H E O R E M  1 Optimal Solution

Some optimal solution of a linear programming problem (5), (6) is also a basic
feasible solution of (5), (6).

For a proof, see Ref. [F5], Chap. 3 (listed in App. 1). A problem can have many optimal
solutions and not all of them may be basic feasible solutions; but the theorem guarantees
that we can find an optimal solution by searching through the basic feasible solutions 

only. This is a great simplification; but since there are different ways

of equating of the n variables to zero, considering all these possibilities, dropping
those which are not feasible and then searching through the rest would still involve very
much work, even when n and m are relatively small. Hence a systematic search is needed.
We shall explain an important method of this type in the next section.

n � m

a n

n � m
 b � a n

m
 b

m � 2,
n � 4,x1, Á , xnn � m

(x1, Á , xn)
�f
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1–6 REGIONS, CONSTRAINTS

Describe and graph the regions in the first quadrant of
the -plane determined by the given inequalities.

1.

2.

3.

4. �x1 � x2 � 5

2x1 � x2 � 10

x2 � 4

10x1 � 15x2 � 150

�0.5x1 � x2 � 2

x1 � x2 � 2

�x1 � 5x2 � 5

2x1 � x2 � 6

8x1 � 10x2 � 80

x1 � 2x2 � �3

x1 � 3x2 � �6

x1 � x2 � 6

x1x2

P R O B L E M  S E T 2 2 . 2

5.

6.

7. Location of maximum. Could we find a profit
whose maximum is at an

interior point of the quadrangle in Fig. 474? Give
reason for your answer.

8. Slack variables. Why are slack variables always
nonnegative? How many of them do we need?

9. What is the meaning of the slack variables in
Example 2 in terms of the problem in Example 1?

10. Uniqueness. Can we always expect a unique solution
(as in Example 1)?

x3, x4

f (x1, x2) � a1x1 � a2x2

x1 � x2 � 2

3x1 � 5x2 � 15

2x1 � x2 � �2

�x1 � 2x2 � 10

�x1 � x2 � 0

x1 � x2 � 5

�2x1 � x2 � 16
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11–16 MAXIMIZATION, MINIMIZATION

Maximize or minimize the given objective function f
subject to the given constraints.
11. Maximize in the region in Prob. 5.

12. Minimize in the region in Prob. 4.

13. Maximize in the region in Prob. 5.

14. Minimize in the region in Prob. 3.

15. Maximize subject to 

16. Maximize subject to 

17. Maximum profit. United Metal, Inc., produces alloys
(special brass) and (yellow tombac). contains

copper and zinc. (Ordinary brass contains
about copper and zinc.) contains 
copper and zinc. Net profits are per ton of

and per ton of The daily copper supply is
45 tons. The daily zinc supply is 30 tons. Maximize
the net profit of the daily production.

18. Maximum profit. The DC Drug Company produces
two types of liquid pain killer, N (normal) and S
(Super). Each bottle of N requires 2 units of drug A, 1
unit of drug B, and 1 unit of drug C. Each bottle of S
requires 1 unit of A, 1 unit of B, and 3 units of C. The
company is able to produce, each week, only 1400 units
of A, 800 units of B, and 1800 units of C. The profit
per bottle of N and S is and respectively.
Maximize the total profit.

$15,$11

B2.$100B1

$12025%
75%B235%65%

50%50%
B1B2B1

x2 � 5.x2 � 0, �x1 � x2 � �1, x1 � x2 � 6,
x1 � 0,f � �10x1 � 2x2

x1 � x2 � �3, x2 � 6, 2x1 � 3x2 � 0.12,
4x1 � 3x2 �  f � 20x1 � 30x2

f � 5x1 � 25x2

f � 5x1 � 25x2

f � 45.0x1 � 22.5x2

f � 30x1 � 10x2
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19. Maximum output. Giant Ladders, Inc., wants to
maximize its daily total output of large step ladders by
producing of them by a process and by a
process where requires 2 hours of labor and
4 machine hours per ladder, and requires 3 hours of
labor and 2 machine hours. For this kind of work, 1200
hours of labor and 1600 hours on the machines are, at
most, available per day. Find the optimal and 

20. Minimum cost. Hardbrick, Inc., has two kilns. Kiln
I can produce 3000 gray bricks, 2000 red bricks, and
300 glazed bricks daily. For Kiln II the corresponding
figures are 2000, 5000, and 1500. Daily operating costs
of Kilns I and II are and respectively. Find
the number of days of operation of each kiln so that
the operation cost in filling an order of 18,000 gray,
34,000 red, and 9000 glazed bricks is minimized.

21. Maximum profit. Universal Electric, Inc., manufactures
and sells two models of lamps, and the profit being

and respectively. The process involves two
workers and who are available for this kind
of work 100 and 80 hours per month, respectively.

assembles in 20 min and in 30 min. paints
in 20 min and in 10 min. Assuming that all lamps

made can be sold without difficulty, determine production
figures that maximize the profit.

22. Nutrition. Foods A and B have 600 and 500 calories,
contain 15 g and 30 g of protein, and cost and 
per unit, respectively. Find the minimum cost diet of at
least 3900 calories containing at least 150 g of protein.

$2.10$1.80

L2L1

W2L2L1W1

W2W1

$100,$150
L2,L1

$600,$400

x2.x1

P2

P1P2,
x2P1x1

22.3 Simplex Method
From the last section we recall the following. A linear optimization problem (linear
programming problem) can be written in normal form; that is:

Maximize

(1)

subject to the constraints

(2) . . . . . . . . . . . . . . . . . . . . . 

x i � 0    (i � 1, Á , n).

am1x1 � Á � amnxn � bm

a21x1 � Á � a2nxn � b2

a11x1 � Á � a1nxn � b1

z � f (x) � c1x1 � Á � cnxn
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For finding an optimal solution of this problem, we need to consider only the basic feasible
solutions (defined in Sec. 22.2), but there are still so many that we have to follow a
systematic search procedure. In 1948 G. B. Dantzig1 published an iterative method, called
the simplex method, for that purpose. In this method, one proceeds stepwise from one
basic feasible solution to another in such a way that the objective function f always
increases its value. Let us explain this method in terms of the example in the last section.

In its original form the problem concerned the maximization of the objective function

subject to

Converting the first two inequalities to equations by introducing two slack variables 
we obtained the normal form of the problem in Example 2. Together with the objective
function (written as an equation ) this normal form is

(3)

where This is a linear system of equations. To find an optimal solution
of it, we may consider its augmented matrix (see Sec. 7.3)

z x1 x2 x3 x4 b

(4) T0 � Y Z
0

60

60

|
|
|
|
|
|
|
|

0

0

1

0

1

0

|
|
|
|
|
|
|
|

�88

8

2

�40

2

5

|
|
|
|
|
|
|
|

1

0

0

x1 � 0, Á , x4 � 0.

z � 40x1 � 88x2 � 0

2x1 � 8x2� x3 � 60

5x1 � 2x2 � x4 � 60

z � 40x1 � 88x2 � 0

x3, x4,

2x1 � 8x2 � 60

5x1 � 2x2 � 60

x1 � 0

x2 � 0.

z � 40x1 � 88x2
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1GEORGE BERNARD DANTZIG (1914–2005), American mathematician, who is one of the pioneers of
linear programming and inventor of the simplex method. According to Dantzig himself (see G. B. Dantzig,
Linear programming: The story of how it began, in J. K. Lenestra et al., History of Mathematical Programming:
A Collection of Personal Reminiscences. Amsterdam: Elsevier, 1991, pp. 19–31), he was particularly fascinated
by Wassilly Leontief’s input–output model (Sec. 8.2) and invented his famous method to solve large-scale
planning (logistics) problems. Besides Leontief, Dantzig credits others for their pioneering work in linear
programming, that is, JOHN VON NEUMANN (1903–1957), Hungarian American mathematician, Institute for
Advanced Studies, Princeton University, who made major contributions to game theory, computer science,
functional analysis, set theory, quantum mechanics, ergodic theory, and other areas, the Nobel laureates LEONID
VITALIYEVICH KANTOROVICH (1912–1986), Russian economist, and TJALLING CHARLES
KOOPMANS (1910–1985), Dutch–American economist, who shared the 1975 Nobel Prize in Economics for
their contributions to the theory of optimal allocation of resources. Dantzig was a driving force in establishing
the field of linear programming and became professor of transportation sciences, operations research, and
computer science at Stanford University. For his work see R. W. Cottle (ed.), The Basic George B. Dantzig.
Palo Alto, CA: Stanford University Press, 2003.

– – – – – – – – – – – – – – – – – – – – – – – – – –
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This matrix is called a simplex tableau or simplex table (the initial simplex table). These
are standard names. The dashed lines and the letters

are for ease in further manipulation.
Every simplex table contains two kinds of variables By basic variables we mean

those whose columns have only one nonzero entry. Thus in (4) are basic variables
and are nonbasic variables.

Every simplex table gives a basic feasible solution. It is obtained by setting the nonbasic
variables to zero. Thus (4) gives the basic feasible solution

with obtained from the second row and from the third.
The optimal solution (its location and value) is now obtained stepwise by pivoting,

designed to take us to basic feasible solutions with higher and higher values of z until the
maximum of z is reached. Here, the choice of the pivot equation and pivot are quite
different from that in the Gauss elimination. The reason is that are restricted
to nonnegative values.

Step 1. Operation : Selection of the Column of the Pivot
Select as the column of the pivot the first column with a negative entry in Row 1. In (4)
this is Column 2 (because of the ).

Operation : Selection of the Row of the Pivot. Divide the right sides [60 and 60 in
(4)] by the corresponding entries of the column just selected 
Take as the pivot equation the equation that gives the smallest quotient. Thus the pivot
is 5 because is smallest.

Operation : Elimination by Row Operations. This gives zeros above and below the
pivot (as in Gauss–Jordan, Sec. 7.8).

With the notation for row operations as introduced in Sec. 7.3, the calculations in Step 1
give from the simplex table in (4) the following simplex table (augmented matrix),
with the blue letters referring to the previous table.

z x1 x2 x3 x4 b

(5) T1 � Y Z

We see that basic variables are now and nonbasic variables are Setting the
latter to zero, we obtain the basic feasible solution given by 

This is A in Fig. 474 (Sec. 22.2). We thus have moved from with to
with the greater The reason for this increase is our elimination of az � 480.A: (12, 0)

z � 0O: (0, 0)

x1 � 60>5 � 12,  x2 � 0,  x3 � 36>1 � 36,  x4 � 0,  z � 480.

T1,
x2, x4.x1, x3

Row 1 � 8 Row 3

Row 2 � 0.4 Row 3

480

36

60

|
|
|
|
|
|
|
|

8

�0.4

1 

0

1

0

|
|
|
|
|
|
|
|

�72

7.2

2

0

0

5

|
|
|
|
|
|
|
|

1

0

0

T0

O3

60>5

(60>2 � 30, 60>5 � 12).
O2

�40

O1

x1, x2, x3, x4

x4x3

x1 � 0,  x2 � 0,  x3 � 60>1 � 60,  x4 � 60>1 � 60,  z � 0

x1, x2

x3, x4

x j.

z, x1, Á , b
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term with a negative coefficient. Hence elimination is applied only to negative
entries in Row 1 but to no others. This motivates the selection of the column of the pivot.

We now motivate the selection of the row of the pivot. Had we taken the second row
of instead (thus 2 as the pivot), we would have obtained (verify!), but this
line of constant revenue lies entirely outside the feasibility region in Fig. 474.
This motivates our cautious choice of the entry 5 as our pivot because it gave the smallest
quotient 

Step 2. The basic feasible solution given by (5) is not yet optimal because of the negative
entry in Row 1. Accordingly, we perform the operations again, choosing a
pivot in the column of 

Operation . Select Column 3 of in (5) as the column of the pivot (because 

Operation . We have Select 7.2 as the pivot (because

Operation . Elimination by row operations gives

z x1 x2 x3 x4 b

(6) T2 � W X

We see that now are basic and nonbasic. Setting the latter to zero, we obtain
from the basic feasible solution

This is B in Fig. 474 (Sec. 22.2). In this step, z has increased from 480 to 840, due to the
elimination of Since contains no more negative entries in Row 1, we
conclude that is the maximum possible revenue.
It is obtained if we produce twice as many S heaters as L heaters. This is the solution of
our problem by the simplex method of linear programming.

Minimization. If we want to minimize (instead of maximize), we take as the
columns of the pivots those whose entry in Row 1 is positive (instead of negative). In
such a Column k we consider only positive entries and take as pivot a for which

is smallest (as before). For examples, see the problem set.bj>tjk

tjktjk

z � f (x)

�

z � f (10, 5) � 40 � 10 � 88 � 5 � 840
T2�72 in T1.

x1 � 50>5 � 10,  x2 � 36>7.2 � 5,  x3 � 0,  x4 � 0,  z � 840.

T2

x3, x4x1, x2

Row 1 � 10 Row 2

Row 3 � �
7

2

.2
� Row 2

840

36

50

|
|
|
|
|
|
|
|
|

4

�0.4

�
0

1

.9
�

10

1

� �
3

1

.6
�

|
|
|
|
|
|
|
|
|

0

7.2

0

0

0

5

|
|
|
|
|
|
|
|
|

1

0

0

O3

5 � 30).
36>7.2 � 5 and 60>2 � 30.O2

�72 � 0).T1O1

�72.
O1 to O3�72

(60>5 � 12).

z � 1200
z � 1200T0

(�40x1)
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1. Verify the calculations in Example 1 of the text.

2–14 SIMPLEX METHOD

Write in normal form and solve by the simplex method,
assuming all to be nonnegative.x j

P R O B L E M  S E T  2 2 . 3

2. The problem in the example in the text with the
constraints interchanged.

3. Maximize subject to 
4x1 � 3x2 � 60, 10x1 � 2x2 � 120.

3x1 � 4x2 � 60,f � 3x1 � 2x2
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4. Maximize the daily output in producing chairs by
Process and chairs by Process subject to

(machine hours), 
(labor).

5. Minimize subject to 

6. Prob. 19 in Sec. 22.2.

7. Suppose we produce AA batteries by Process
by Process furthermore A batteries by

Process by Process Let the profit for 100
batteries be for AA and for A. Maximize the
total profit subject to the constraints

(Material)

(Labor).

8. Maximize the daily profit in producing metal frames
(profit per frame) and frames (profit 

per frame) subject to (material),
(machine hours), (labor).

9. Maximize subject to 
6x3 � 12.

4x1 � 3x2 �f � 2x1 � x2 � 3x3

3x1 � x2 � 24x1 � x2 � 10
x1 � 3x2 � 18

$50F2x2$90F1

x1

3x1 � 6x2 � 12x3 � 24x4 � 180

 12x1 � 8x2 � 6x3 � 4x4 � 120

$20$10
P4.P3 and x4

x3P2,P1 and x2

x1

� 5, 2x1 � 5x2 � 10.
�2x1 � 10x2f � 5x1 � 20x2

5x1 � 4x2 � 6503x1 � 4x2 � 550
P2x2P1

x1
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10. Minimize subject to 

11. Prob. 22 in Problem Set 22.2.

12. Maximize subject to 

13. Maximize subject to 

14. Maximize subject to 

15. CAS PROJECT. Simple Method. (a) Write a program
for graphing a region R in the first quadrant of the 

-plane determined by linear constraints.

(b) Write a program for maximizing 
in R.

(c) Write a program for maximizing 
subject to linear constraints.

(d) Apply your programs to problems in this problem
set and the previous one.

Á � anxn

z � a1x1 �

z � a1x1 � a2x2

x1x2

3x1 � 6x2 � 126.
� 105,5x1 � 3x2f � 2x1 � 3x2

5x3 � 39.
x1 � x2 �2x2 � x3 � 54, 3x1 � 8x2 � 2x3 � 59,

8x1 �f � 34x1 � 29x2 � 32x3

x3 � 4.8, 10x1 � x3 � 9.9, x2 � x3 � 0.2.
x1 � x2 �f � 2x1 � 3x2 � x3

� 30.4x2 � 5x3 � 60, 2x1 � x2 � 20, 2x1 � 3x3

3x1 �f � 4x1 � 10x2 � 20x3

22.4 Simplex Method: Difficulties
In solving a linear optimization problem by the simplex method, we proceed stepwise
from one basic feasible solution to another. By so doing, we increase the value of the
objective function f. We continue this stepwise procedure, until we reach an optimal
solution. This was all explained in Sec. 22.3. However, the method does not always proceed
so smoothly. Occasionally, but rather infrequently in practice, we encounter two kinds of
difficulties. The first one is the degeneracy and the second one concerns difficulties in
starting.

Degeneracy
A degenerate feasible solution is a feasible solution at which more than the usual number

of variables are zero. Here n is the number of variables (slack and others) and m
the number of constraints (not counting the conditions). In the last section, 
and and the occurring basic feasible solutions were nondegenerate; 
variables were zero in each such solution.

In the case of a degenerate feasible solution we do an extra elimination step in which
a basic variable that is zero for that solution becomes nonbasic (and a nonbasic variable
becomes basic instead). We explain this in a typical case. For more complicated cases
and techniques (rarely needed in practice) see Ref. [F5] in App. 1.

E X A M P L E  1 Simplex Method, Degenerate Feasible Solution

AB Steel, Inc., produces two kinds of iron by using three kinds of raw material (scrap iron and
two kinds of ore) as shown. Maximize the daily profit.

R1, R2, R3I1, I2

n � m � 2m � 2,
n � 4x j � 0

n � m
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Raw Material Needed
Raw per Ton Raw Material Available

Material
Iron I1 Iron I2

per Day (tons)

2 1 16
1 1 8
0 1 3.5

Net profit
$150 $300

per ton

Solution. Let and denote the amount (in tons) of iron and respectively, produced per day. Then
our problem is as follows. Maximize

(1)

subject to the constraints and

By introducing slack variables we obtain the normal form of the constraints

(2)

As in the last section we obtain from (1) and (2) the initial simplex table

z x1 x2 x3 x4 x5 b

(3) T0 � W X .

We see that are nonbasic variables and are basic. With we have from (3) the basic
feasible solution

This is in Fig. 475. We have variables constraints, and variables equal to
zero in our solution, which thus is nondegenerate.

Step 1 of Pivoting
Operation : Column Selection of Pivot. Column 2 (since

Operation : Row Selection of Pivot. is not possible. Hence we could choose
Row 2 or Row 3. We choose Row 2. The pivot is 2.

16>2 � 8, 8>1 � 8; 3.5>0O2

�150 � 0).O1

n � m � 2x j, m � 3n � 5O: (0, 0)

x1 � 0,  x2 � 0,  x3 � 16>1 � 16,  x4 � 8>1 � 8,  x5 � 3.5>1 � 3.5,  z � 0.

x1 � x2 � 0x3, x4, x5x1, x2

0

16

8

3.5

|
|
|
|
|
|
|
|
|

0

0

0

1

0

0

1

0

0

1

0

0

|
|
|
|
|
|
|
|
|

�300

1

1

1

�150

2

1

0

|
|
|
|
|
|
|
|
|

1

0

0

0

x i � 0    (i � 1, Á , 5).

2x1 � x2 � x3 � 16

x1 � x2  � x4 � 8

x2 � x5 � 3.5

x3, x4, x5

 x2 � 3.5  (raw material R3).

 x1 � x2 � 8  (raw material R2)

 2x1 � x2 � 16  (raw material R1)

x1 � 0, x2 � 0

z � f (x) � 150x1 � 300x2

I2,I1x2x1

R3

R2

R1
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Operation : Elimination by Row Operations. This gives the simplex table

z x1 x2 x3 x4 x5 b

(4) T1 � W X

We see that the basic variables are and the nonbasic are Setting the nonbasic variables to zero,
we obtain from the basic feasible solutionT1

x2, x3.x1, x4, x5

Row 1 � 75 Row 2

Row 3 � 1_
2 Row 2

Row 4

1200

16

0

3.5

|
|
|
|
|
|
|
|
|

0

0

0

1

0

0

1

0

75

1

�1_
2

0

|
|
|
|
|
|
|
|
|

�225

1

1_
2

1

0

2

0

0

|
|
|
|
|
|
|
|
|

1

0

0

0

O3
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x
2

x
1O

f = 0

f = 1725

3.5
C B

A

8

x
4
 = 0 x

3
 = 0

x
5
 = 0

Fig. 475. Example 1, where A is degenerate

This is in Fig. 475. This solution in degenerate because (in addition to 
geometrically: the straight line also passes through A. This requires the next step, in which will
become nonbasic.

Step 2 of Pivoting
Operation : Column Selection of Pivot. Column 3 (since 

Operation : Row Selection of Pivot. Hence must serve as the pivot.

Operation : Elimination by Row Operations. This gives the following simplex table.

z x1 x2 x3 x4 x5 b

(5) T2 � W X

We see that the basic variables are and the nonbasic are Hence has become nonbasic, as
intended. By equating the nonbasic variables to zero we obtain from the basic feasible solution

This is still in Fig. 475 and z has not increased. But this opens the way to the maximum, which we
reach in the next step.

A: (8, 0)

x1 � 16>2 � 8,  x2 � 0>12 � 0,  x3 � 0,  x4 � 0,  x5 � 3.5>1 � 3.5,  z � 1200.

T2

x4x3, x4.x1, x2, x5

Row 1 � 450 Row 3

Row 2 � 2 Row 3

Row 4 � 2 Row 3

1200

16

0

3.5

|
|
|
|
|
|
|
|
|

0

0

0

1

450

�2

1

�2

�150

2

�1_
2

1

|
|
|
|
|
|
|
|
|

0

0

1_
2

0

0

2

0

0

|
|
|
|
|
|
|
|
|

1

0

0

0

O3

1
2 16>1 � 16, 0>12 � 0.O2

�225 � 0).O1

x4x4 � 0
x2 � 0, x3 � 0);x4 � 0A: (8, 0)

x1 � 16>2 � 8,  x2 � 0,  x3 � 0,  x4 � 0>1 � 0,  x5 � 3.5>1 � 3.5,  z � 1200.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Step 3 of Pivoting
Operation : Column Selection of Pivot. Column 4 (since

Operation : Row Selection of Pivot. We can take 1 as the pivot.
(With as the pivot we would not leave A. Try it.)

Operation : Elimination by Row Operations. This gives the simplex table

z x1 x2 x3 x4 x5 b

(6) T3 � W X

We see that basic variables are and nonbasic Equating the latter to zero we obtain from the
basic feasible solution

This is in Fig. 475. Since Row 1 of has no negative entries, we have reached the maximum daily
profit This is obtained by using 4.5 tons of iron and
3.5 tons of iron 

Difficulties in Starting
As a second kind of difficulty, it may sometimes be hard to find a basic feasible solution
to start from. In such a case the idea of an artificial variable (or several such variables)
is helpful. We explain this method in terms of a typical example.

E X A M P L E  2 Simplex Method: Difficult Start, Artificial Variable

Maximize

(7)

subject to the constraints and (Fig. 476)

Solution. By means of slack variables we achieve the normal form of the constraints

(8)

x i � 0 (i � 1, Á , 5).

z � 2x1 � x2 � 0

x1 � 1
2 x2 � x3 � 1

x1 � x2 � x4 � 2

x1 � x2 � x5 � 4

 x1 � x2 � 4.

 x1 � x2 � 2

 x1 � 1
2 x2 � 1

x1 � 0, x2 � 0

z � f (x) � 2x1 � x2

�I2.
I1zmax � f (4.5, 3.5) � 150 � 4.5 � 300 � 3.5 � $1725.

T3B: (4.5, 3.5)

x1 � 9>2 � 4.5,  x2 � 1.75>12 � 3.5,  x3 � 3.5>1 � 3.5,  x4 � 0,  x5 � 0,  z � 1725.

T3x4, x5.x1, x2, x3

Row 1 � 150 Row 4

Row 2 � 2 Row 4

Row 3 � 1_
2 Row 4

1725

9

1.75

3.5

|
|
|
|
|
|
|
|
|

150

�2

1_
2

1

150

2

0

�2

0

0

0

1

|
|
|
|
|
|
|
|
|

0

0

1_
2

0

0

2

0

0

|
|
|
|
|
|
|
|
|

1

0

0

0

O3

�1
2 

16>2 � 8, 0>(�1
2 ) � 0, 3.5>1 � 3.5.O2

�150 � 0).O1
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Note that the first slack variable is negative (or zero), which makes nonnegative within the feasibility region
(and negative outside). From (7) and (8) we obtain the simplex table

z x1 x2 x3 x4 x5 b

W X .

are nonbasic, and we would like to take as basic variables. By our usual process of equating
the nonbasic variables to zero we obtain from this table

indicates that lies outside the feasibility region. Since we cannot proceed immediately.
Now, instead of searching for other basic variables, we use the following idea. Solving the second equation in
(8) for we have

To this we now add a variable on the right,x6

x3 � �1 � x1 � 1
2 x2.

x3,

x3 � 0,(0, 0)x3 � 0

x1 � 0,  x2 � 0,  x3 � 1>(�1) � �1,  x4 � 2
1 � 2,  x5 � 4

1 � 4,  z � 0.

x3, x4, x5x1, x2

0

1

2

4

|
|
|
|
|
|
|
|
|

0

0

0

1

0

0

1

0

0

�1

0

0

|
|
|
|
|
|
|
|
|

�1

�1_
2

�1

1

�2

1

1

1

|
|
|
|
|
|
|
|
|

1

0

0

0

x3
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x
2

x
1

2

1

0
10 2 3

B

A

C

f = 7

Fig. 476. Feasibility region in Example 2

(9)

is called an artificial variable and is subject to the constraint 
We must take care that (which is not part of the given problem!) will disappear eventually. We shall see

that we can accomplish this by adding a term with very large M to the objective function. Because of
(7) and (9) (solved for this gives the modified objective function for this “extended problem”

(10)

We see that the simplex table corresponding to (10) and (8) is

ẑ x1 x2 x3 x4 x5 x6 b

T0 � U V .

�M

1

2

4

1

|
|
|
|
|
|
|
|
|
|
|

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

M

�1

0

0

�1

|
|
|
|
|
|
|
|
|
|
|

�1 � 1_
2M

�1_
2

�1

1

�1_
2

�2 � M

1

1

1

1

|
|
|
|
|
|
|
|
|
|
|

1

0

0

0

0

ẑ � z � Mx6 � 2x1 � x2 � Mx6 � (2 � M)x1 � (1 � 1
2 M)x2 � Mx3 � M.

x6)
�Mx6

x6

x6 � 0.x6

x3 � �1 � x1 � 1
2 x2 � x6.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
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The last row of this table results from (9) written as We see that we can now start,
taking as the basic variables and as the nonbasic variables. Column 2 has a negative first
entry. We can take the second entry (1 in Row 2) as the pivot. This gives

ẑ x1 x2 x3 x4 x5 x6 b

T1 � U V .

This corresponds to (point A in Fig. 476), We can now drop
Row 5 and Column 7. In this way we get rid of as wanted, and obtain

z x1 x2 x3 x4 x5 b

x6,
x3 � 0, x4 � 1, x5 � 3, x6 � 0.x1 � 1, x2 � 0

2

1

1

3

0

|
|
|
|
|
|
|
|
|
|
|

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

�2

�1

1

1

0

|
|
|
|
|
|
|
|
|
|
|

�2

�1_
2

�1_
2

3_
2

0

0

1

0

0

0

|
|
|
|
|
|
|
|
|
|
|

1

0

0

0

0

x1, x2, x3x4, x5, x6

x1 � 1
2 x2 � x3 � x6 � 1.
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T2 � W X .

In Column 3 we choose as the next pivot. We obtain

z x1 x2 x3 x4 x5 b

T3 � W X .

This corresponds to (this is B in Fig. 476), In Column 4 we choose 
as the pivot, by the usual principle. This gives

z x1 x2 x3 x4 x5 b

T4 � W X .

This corresponds to (point C in Fig. 476), This is the maximum

We have reached the end of our discussion on linear programming. We have presented
the simplex method in great detail as this method has many beautiful applications and
works well on most practical problems. Indeed, problems of optimization appear in civil
engineering, chemical engineering, environmental engineering, management science,
logistics, strategic planning, operations management, industrial engineering, finance, and
other areas. Furthermore, the simplex method allows your problem to be scaled up from
a small modeling attempt to a larger modeling attempt, by adding more constraints and

�fmax � f (3, 1) � 7.
x3 � 3

2 , x4 � 0, x5 � 0.x1 � 3, x2 � 1

7

3

2

3_
2

|
|
|
|
|
|
|
|
|

3_
2

1_
2

1_
3

3_
4

1_
2

1_
2

1

�3_
4

0

0

4_
3

0

|
|
|
|
|
|
|
|
|

0

0

0

3_
2

0

1

0

0

|
|
|
|
|
|
|
|
|

1

0

0

0

4
3 x3 � 0, x4 � 2, x5 � 0.x1 � 2, x2 � 2

6

2

2

3

|
|
|
|
|
|
|
|
|

4_
3

1_
3

1_
3

1

0

0

1

0

�2_
3

�2_
3

4_
3

1

|
|
|
|
|
|
|
|
|

0

0

0

3_
2

0

1

0

0

|
|
|
|
|
|
|
|
|

1

0

0

0

3
2

2

1

1

3

|
|
|
|
|
|
|
|
|

0

0

0

1

0

0

1

0

�2

�1

1

1

|
|
|
|
|
|
|
|
|

�2

�1_
2

�1_
2

3_
2

0

1

0

0

|
|
|
|
|
|
|
|
|

1

0

0

0

– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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variables, thereby making your model more realistic. The area of optimization is an active
field of development and research and optimization methods, besides the simplex method,
are being explored and experimented with.

968 CHAP. 22 Unconstrained Optimization. Linear Programming

1. Maximize subject to 

2. Do Prob. 1 with the last two constraints interchanged.

3. Maximize the daily output in producing steel sheets
by process and steel sheets by process subject
to the constraints of labor hours, machine hours, and
raw material supply:

4. Maximize subject to 

5. Do Prob. 4 with the last two constraints interchanged.
Comment on the resulting simplification.

� 60, 2x1 � x2 � 30, 4x1 � 4x2 � 60.
2x1 � 8x2z � 300x1 � 500x2

5x1 � 3x2 � 160.

3x1 � 2x2 � 180,  4x1 � 6x2 � 200,

PBx2PA

x1

� 6, 0 � x2 � 3, 7x1 � 14x2 � 84.
0 � x1z � f1(x) � 7x1 � 14x2

P R O B L E M  S E T 2 2 . 4

6. Maximize the total output (pro-
duction from three distinct processes) subject to input
constraints (limitation of time available for production)

7. Maximize subject to 
and 

8. Using an artificial variable, minimize subject
to 

9. Maximize 
x3 � 0, x1 � 2x2 � 4x3 � 2, x1 � 2x2 � 2x3 � 5.

f � 2x1 � 3x2 � 2x3, x1 � 0, x2 � 0,

x1 � x2 � 2, �2x1 � 3x2 � 1, 5x1 � 4x2 � 50.
f � 4x1 � x2

� x4 � 1.
x1 � x3 � x5 � 1, x2 � x3( j � 1, Á , 5)

x j � 0f � 5x1 � 8x2 � 4x3

7x1 � 4x2 �   x3 � 12.

 5x1 � 6x2 � 7x3 � 12,

f � x1 � x2 � x3

1. What is unconstrained optimization? Constraint optimiza-
tion? To which one do methods of calculus apply?

2. State the idea and the formulas of the method of steepest
descent.

3. Write down an algorithm for the method of steepest descent.

4. Design a “method of steepest ascent” for determining
maxima.

5. What is the method of steepest descent for a function
of a single variable?

6. What is the basic idea of linear programming?

7. What is an objective function? A feasible solution?

8. What are slack variables? Why did we introduce them?

9. What happens in Example 1 of Sec. 22.1 if you replace
with ? Start from

Do 5 steps. Is the convergence faster or
slower?

10. Apply the method of steepest descent to 
5 steps. Start from 

11. In Prob. 10, could you start from and do 5 steps?

12. Show that the gradients in Prob. 11 are orthogonal. Give
a reason.

13–16 Graph or sketch the region in the first quadrant
of the -plane determined by the following inequalities.

13.

0.8x1 � x2 � 6

 x1 � 2x2 � �2

x1x2

[0 0]T

x0 � [2 4]T.x2
2 � 18x1 � 4x2,

f (x) � 9x1
2 �

x0 � [6 3]T.
f (x) � x1

2 � 5x2
2f (x) � x1

2 � 3x2
2

14.

15.

16.

17–20 Maximize or minimize as indicated.

17. Maximize subject to 

18. Maximize subject to 

19. Minimize subject to 

20. A factory produces two kinds of gaskets, with
net profit of and respectively, Maximize the
total daily profit subject to the constraints number
of gaskets produced per day):

(Machine hours),

(Labor). 200x1 � 20x2 � 6300

 40x1 � 40x2 � 1800

Gj

(x j �
$30,$60

G1, G2,

2x1 � x2 � 14, x1 � x2 � 9, �x1 � 3x2 � 15.
x1 � x2 � 4,f � 2x1 � 10x2

2x2 � x2 � 10, x2 � 4.
x1 � 2x2 � 10,f � x1 � x2

x2 � 6, x2 � 4.
x1 � 5, x1 �f � 10x1 � 20x2

x1 � 15

2x1 � 3x2 � �12

x1 � x2 �   2

�x1 � x2 � 2

 x2 � 3

 x1 � x2 � 5

x1 � x2 �     8

2x1 � x2 �   12

x1 � 2x2 � �4

C H A P T E R  2 2  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S
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Summary of Chapter 22 969

In optimization problems we maximize or minimize an objective function
depending on control variables whose domain is either unrestricted
(“unconstrained optimization,” Sec. 22.1) or restricted by constraints in the form
of inequalities or equations or both (“constrained optimization,” Sec. 22.2).

If the objective function is linear and the constraints are linear inequalities in
then by introducing slack variables we can write the

optimization problem in normal form with the objective function given by

(1)

(where and the constraints given by

(2)

In this case we can then apply the widely used simplex method (Sec. 22.3), a
systematic stepwise search through a very much reduced subset of all feasible
solutions. Section 22.4 shows how to overcome difficulties with this method.

a11x1 � a12x2 � Á � a1nxn � b1

Á Á Á Á Á Á Á Á Á Á

Á Á Á Á Á Á Á Á Á Á

am1x1 � am2x2 � Á � amnxn � bm

x1 � 0, Á , xn � 0.

cm�1 � Á � cn � 0)

f1 � c1x1 � Á � cnxn

xm�1, Á , xnx1, Á , xm,

x1, Á , xm

z � f (x)

SUMMARY OF CHAPTER 22
Unconstrained Optimization. Linear Programming
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C H A P T E R 2 3

Graphs.
Combinatorial Optimization

Many problems in electrical engineering, civil engineering, operations research, industrial
engineering, management, logistics, marketing, and economics can be modeled by graphs
and directed graphs, called digraphs. This is not surprising as they allow us to model
networks, such as roads and cables, where the nodes may be cities or computers. The
task then is to find the shortest path through the network or the best way to connect
computers. Indeed, many researchers who made contributions to combinatorial
optimization and graphs, and whose names lend themselves to fundamental algorithms
in this chapter, such as Fulkerson, Kruskal, Moore, and Prim, all worked at Bell
Laboratories in New Jersey, the major R&D facilities of the huge telephone and
telecommunication company AT&T. As such, they were interested in methods of
optimally building computer networks and telephone networks. The field has progressed
into looking for more and more efficient algorithms for very large problems.

Combinatorial optimization deals with optimization problems that are of a pronounced
discrete or combinatorial nature. Often the problems are very large and so a direct search
may not be possible. Just like in linear programming (Chap. 22), the computer is an
indispensible tool and makes solving large-scale modeling problems possible. Because
the area has a distinct flavor, different from ODEs, linear algebra, and other areas, we
start with the basics and gradually introduce algorithms for shortest path problems (Secs.
22.2, 22.3), shortest spanning trees (Secs. 23.4, 23.5), flow problems in networks (Secs.
23.6, 23.7), and assignment problems (Sec. 23.8).

Prerequisite: none.
References and Answers to Problems: App. 1 Part F, App. 2.

23.1 Graphs and Digraphs
Roughly, a graph consists of points, called vertices, and lines connecting them, called
edges. For example, these may be four cities and five highways connecting them, as in
Fig. 477. Or the points may represent some people, and we connect by an edge those who
do business with each other. Or the vertices may represent computers in a network and
the edge connections between them. Let us now give a formal definition.
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D E F I N I T I O N Graph

A graph G consists of two finite sets (sets having finitely many elements), a set V
of points, called vertices, and a set E of connecting lines, called edges, such that
each edge connects two vertices, called the endpoints of the edge. We write

Excluded are isolated vertices (vertices that are not endpoints of any edge), loops
(edges whose endpoints coincide), and multiple edges (edges that have both
endpoints in common). See Fig. 478.

CAUTION! Our three exclusions are practical and widely accepted, but not uniformly.
For instance, some authors permit multiple edges and call graphs without them simple
graphs.

We denote vertices by letters, or or simply by numbers (as
in Fig. 477). We denote edges by or by their two endpoints; for instance,

in Fig. 477.
An edge is called incident with the vertex (and conversely); similarly, 

is incident with The number of edges incident with a vertex v is called the degree of v.
Two vertices are called adjacent in G if they are connected by an edge in G (that is, if they
are the two endpoints of some edge in G).

We meet graphs in different fields under different names: as “networks” in electrical
engineering, “structures” in civil engineering, “molecular structures” in chemistry,
“organizational structures” in economics, “sociograms,” “road maps,” “telecommunication
networks,” and so on.

Digraphs (Directed Graphs)
Nets of one-way streets, pipeline networks, sequences of jobs in construction work, flows
of computation in a computer, producer–consumer relations, and many other applications
suggest the idea of a “digraph” directed graph), in which each edge has a direction
(indicated by an arrow, as in Fig. 479).

(�

vj.
(vi, vj)vi(vi, vj)

e1 � (1, 4), e2 � (1, 2)
e1, e2, Á

1, 2, Áv1, v2, Áu, v, Á

�

G � (V, E ).
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4

e
3
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1

e
2

Loop

Double edge

Isolated
vertex

Fig. 477. Graph consisting of 
4 vertices and 5 edges

Fig. 478. Isolated vertex, loop, double
edge. (Excluded by definition.)

c23-a.qxd  11/3/10  3:34 PM  Page 971



D E F I N I T I O N Digraph (Directed Graph)

A digraph is a graph in which each edge has a direction from
its “initial point” i to its “terminal point” j.

Two edges connecting the same two points i, j are now permitted, provided they have
opposite directions, that is, they are and Example. (1, 4) and (4, 1) in Fig. 479.

A subgraph or subdigraph of a given graph or digraph respectively, is a
graph or digraph obtained by deleting some of the edges and vertices of G, retaining the
other edges of G (together with their pairs of endpoints). For instance, (together
with the vertices 1, 2, 4) form a subgraph in Fig. 477, and (together with the
vertices 1, 3, 4) form a subdigraph in Fig. 479.

Computer Representation of Graphs and Digraphs
Drawings of graphs are useful to people in explaining or illustrating specific situations.
Here one should be aware that a graph may be sketched in various ways; see Fig. 480.
For handling graphs and digraphs in computers, one uses matrices or lists as appropriate
data structures, as follows.

e3, e4, e5

e1, e3

G � (V, E ),
(  j, i).(i, j)

e � (i, j)G � (V, E )
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Fig. 479. Digraph
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7

8

(a) (b) (c)

Fig. 480. Different sketches of the same graph

Adjacency Matrix of a Graph G: Matrix with entries 

Thus if and only if two vertices i and j are adjacent in G. Here, by definition, no
vertex is considered to be adjacent to itself; thus, A is symmetric, (Why?)

The adjacency matrix of a graph is generally much smaller than the so-called incidence
matrix (see Prob. 18) and is preferred over the latter if one decides to store a graph in a
computer in matrix form.

aij � aji.aii � 0.
aij � 1

aij � b 

1 if G has an edge (i, j),

0 else.

A � [aij]

c23-a.qxd  11/3/10  3:34 PM  Page 972



E X A M P L E  1 Adjacency Matrix of a Graph

Vertex 1 2 3 4

W X

Adjacency Matrix of a Digraph G: Matrix with entries

This matrix A need not be symmetric. (Why?)

E X A M P L E  2 Adjacency Matrix of a Digraph

To vertex 1 2 3 4

W X

Lists. The vertex incidence list of a graph shows, for each vertex, the incident edges.
The edge incidence list shows for each edge its two endpoints. Similarly for a digraph;
in the vertex list, outgoing edges then get a minus sign, and in the edge list we now have
ordered pairs of vertices.

E X A M P L E  3 Vertex Incidence List and Edge Incidence List of a Graph

This graph is the same as in Example 1, except for notation.

�

0 1 0 0

1 0 0 1

0 1 0 0

0 0 0 0

From vertex 1

2

3

4

1 2

3 4

aij � b 

1 if G has a directed edge (i, j),

0 else.

A � [aij]

�

0 1 0 1

1 0 1 1

0 1 0 1

1 1 1 0

Vertex 1

2

3

4

1 2

3 4
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e
1
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e
5 e

2
e

3

Vertex Incident Edges

e3, e4, e5v4

e2, e4v3

e1, e2, e3v2

e1, e5v1

Edge Endpoints

v1, v4e5

v3, v4e4

v2, v4e3

v2, v3e2

v1, v2e1

�
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974 CHAP. 23 Graphs. Combinatorial Optimization

1. Explain how the following can be regarded as a graph
or a digraph: a family tree, air connections between
given cities, trade relations between countries, a tennis
tournament, and memberships of some persons in some
committees.

2. Sketch the graph consisting of the vertices and edges
of a triangle. Of a pentagon. Of a tetrahedron.

3. How would you represent a net of two-way and one-
way streets by a digraph?

4. Worker can do jobs worker job 
and worker jobs Represent this by a
graph.

5. Find further situations that can be modeled by a graph
or diagraph.

ADJACENCY MATRIX

6. Show that the adjacency matrix of a graph is symmetric.

7. When will the adjacency matrix of a digraph be
symmetric?

8–13 Find the adjacency matrix of the given graph or
digraph.

8. 9.
1 3

2

e
2

e
3

e
1

1 2

3 4 5

e
1

e
2

e
3

e
6

e
4

e
5

e
7

J2, J3, J4.W3

J3,W2J1, J3, J4,W1

10. 11.

12. 13.

14–15 Sketch the graph for the given adjacency matrix.

14. 15.

16. Complete graph. Show that a graph G with n vertices
can have at most edges, and G has exactly

edges if G is complete, that is, if every pair
of vertices of G is joined by an edge. (Recall that loops
and multiple edges are excluded.)

n(n � 1)>2
n(n � 1)>2

E0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

UE0 1 0 1

1 0 1 0

0 1 0 0

1 0 0 0

U

e
1

e
2

e
3

e
4

e
5

3

21
1 2 3

4 5

e
4

e
1

e
2

e
3

1 4

2 3

e
4

e
3

e
5

e
6

e
1

e
2

3 4

21

P R O B L E M  S E T  2 3 . 1

Sparse graphs are graphs with few edges (far fewer than the maximum possible number
where n is the number of vertices). For these graphs, matrices are not efficient.

Lists then have the advantage of requiring much less storage and being easier to handle;
they can be ordered, sorted, or manipulated in various other ways directly within the
computer. For instance, in tracing a “walk” (a connected sequence of edges with pairwise
common endpoints), one can easily go back and forth between the two lists just discussed,
instead of scanning a large column of a matrix for a single 1.

Computer science has developed more refined lists, which, in addition to the actual
content, contain “pointers” indicating the preceding item or the next item to be scanned
or both items (in the case of a “walk”: the preceding edge or the subsequent one). For
details, see Refs. [E16] and [F7].

This section was devoted to basic concepts and notations needed throughout this chapter,
in which we shall discuss some of the most important classes of combinatorial optimization
problems. This will at the same time help us to become more and more familiar with
graphs and digraphs.

n(n � 1)>2,
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SEC. 23.2 Shortest Path Problems. Complexity 975

17. In what case are all the off-diagonal entries of the
adjacency matrix of a graph G equal to one?

18. Incidence matrix B of a graph. The definition is
where

Find the incidence matrix of the graph in Prob. 8.

bjk � b 

1 if vertex j is an endpoint of edge ek,

0 otherwise.

B � [bjk],

19. Incidence matrix of a digraph. The definition is
where

Find the incidence matrix of the digraph in Prob. 11.

20. Make the vertex incidence list of the digraph in Prob. 11.

b
�

jk � d�1 if edge ek leaves vertex j,

1 if edge ek enters vertex j,

0 otherwise.

B� � [bjk],
B�

23.2 Shortest Path Problems. Complexity
The rest of this chapter is devoted to the most important classes of problems of
combinatorial optimization that can be represented by graphs and digraphs. We selected
these problems because of their importance in applications, and present their solutions
in algorithmic form. Although basic ideas and algorithms will be explained and
illustrated by small graphs, you should keep in mind that real-life problems may often
involve many thousands or even millions of vertices and edges. Think of computer
networks, telephone networks, electric power grids, worldwide air travel, and companies
that have offices and stores in all larger cities. You can also think of other ideas for
networks related to the Internet, such as electronic commerce (networks of buyers and
sellers of goods over the Internet) and social networks and related websites, such as
Facebook. Hence reliable and efficient systematic methods are an absolute necessity—
solutions by trial and error would no longer work, even if “nearly optimal” solutions
were acceptable.

We begin with shortest path problems, as they arise, for instance, in designing shortest
(or least expensive, or fastest) routes for a traveling salesman, for a cargo ship, etc. Let
us first explain what we mean by a path.

In a graph we can walk from a vertex along some edges to some other
vertex Here we can

(A) make no restrictions, or

(B) require that each edge of G be traversed at most once, or

(C) require that each vertex be visited at most once.

In case (A) we call this a walk. Thus a walk from to is of the form

(1)

where some of these edges or vertices may be the same. In case (B), where each edge
may occur at most once, we call the walk a trail. Finally, in case (C), where each vertex
may occur at most once (and thus each edge automatically occurs at most once), we call
the trail a path.

We admit that a walk, trail, or path may end at the vertex it started from, in which case
we call it closed; then in (1).vk � v1

(v1, v2), (v2, v3), Á , (vk�1, vk),

vkv1

vk.
v1G � (V, E)
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A closed path is called a cycle. A cycle has at least three edges (because we do not
have double edges; see Sec. 23.1). Figure 481 illustrates all these concepts.

976 CHAP. 23 Graphs. Combinatorial Optimization

1WILLIAM ROWAN HAMILTON (1805–1865), Irish mathematician, known for his work in dynamics.

1 2

4 35

Fig. 481. Walk, trail, path, cycle 

1 � 2 � 3 � 2 is a walk (not a trail). 
4 � 1 � 2 � 3 � 4 � 5 is a trail (not a path). 
1 � 2 � 3 � 4 � 5 is a path (not a cycle). 
1 � 2 � 3 � 4 � 1 is a cycle.

Shortest Path
To define the concept of a shortest path, we assume that is a weighted graph,
that is, each edge in G has a given weight or length Then a shortest path

(with fixed is a path (1) such that the sum of the lengths of its edges

etc.) is minimum (as small as possible among all paths from
Similarly, a longest path is one for which that sum is maximum.

Shortest (and longest) path problems are among the most important optimization problems.
Here, “length” (often also called “cost” or “weight”) can be an actual length measured
in miles or travel time or fuel expenses, but it may also be something entirely different.

For instance, the traveling salesman problem requires the determination of a shortest
Hamiltonian1 cycle in a graph, that is, a cycle that contains all the vertices of the graph.

In more detail, the traveling salesman problem in its most basic and intuitive form can
be stated as follows. You have a salesman who has to drive by car to his customers. He
has to drive to n cities. He can start at any city and after completion of the trip he has to
return to that city. Furthermore, he can only visit each city once. All the cities are linked by
roads to each other, so any city can be visited from any other city directly, that is, if he
wants to go from one city to another city, there is only one direct road connecting those two
cities. He has to find the optimal route, that is, the route with the shortest total mileage for
the overall trip. This is a classic problem in combinatorial optimization and comes up in
many different versions and applications. The maximum number of possible paths to be
examined in the process of selecting the optimal path for n cities is because,
after you pick the first city, you have choices for the second city, choices for
the third city, etc. You get a total of (see Sec. 24.4). However, since the mileage
does not depend on the direction of the tour (e.g., for (four cities 1, 2, 3, 4), the tour
1–2–3–4–1 has the same mileage as 1–4–3–2–1, etc., so that we counted all the tours twice!),
the final answer is Even for a small number of cities, say the maximum
number of possible paths is very large. Use your calculator or CAS to see for yourself! This
means that this is a very difficult problem for larger n and typical of problems in
combinatorial optimization, in that you want a discrete solution but where it might become
nearly impossible to explicitly search through all the possibilities and therefore some
heuristics (rules of thumbs, shortcuts) might be used, and a less than optimal answer suffices.

n � 15,(n � 1)!>2.

n � 4
(n � 1)!

n � 2n � 1
(n � 1)!>2,

lij

v1 : vkv1 to vk).
(l12 � length of (v1, v2),

l12 � l23 � l34 � Á � lk�1,k

v1 and vk)v1 : vk

lij � 0.(vi, vj)
G � (V, E)
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A variation of the traveling salesman problem is the following. By choosing the “most
profitable” route , a salesman may want to maximize where is his expected
commission minus his travel expenses for going from town i to town j.

In an investment problem, i may be the day an investment is made, j the day it matures,
and the resulting profit, and one gets a graph by considering the various possibilities
of investing and reinvesting over a given period of time.

Shortest Path If All Edges Have Length 
Obviously, if all edges have length l, then a shortest path is one that has the
smallest number of edges among all paths in a given graph G. For this problem
we discuss a BFS algorithm. BFS stands for Breadth First Search. This means that in
each step the algorithm visits all neighboring (all adjacent) vertices of a vertex reached,
as opposed to a DFS algorithm (Depth First Search algorithm), which makes a long trail
(as in a maze). This widely used BFS algorithm is shown in Table 23.1.

We want to find a shortest path in G from a vertex s (start) to a vertex t (terminal). To
guarantee that there is a path from s to t, we make sure that G does not consist of separate
portions. Thus we assume that G is connected, that is, for any two vertices v and w there
is a path in G. (Recall that a vertex v is called adjacent to a vertex u if there is
an edge in G.)

Table 23.1 Moore’s2 BFS for Shortest Path (All Lengths One)
Proceedings of the International Symposium for Switching Theory, Part II. pp. 285–292. Cambridge: Harvard
University Press, 1959.

ALGORITHM MOORE [G � (V, E ), s, t]

This algorithm determines a shortest path in a connected graph G � (V, E) from a vertex
s to a vertex t.

INPUT: Connected graph G � (V, E), in which one vertex is denoted by s and
one by t, and each edge (i, j) has length li j � 1. Initially all vertices are
unlabeled.

OUTPUT: A shortest path s * t in G � (V, E)

1. Label s with 0.
2. Set i � 0.
3. Find all unlabeled vertices adjacent to a vertex labeled i.
4. Label the vertices just found with i � 1.
5. If vertex t is labeled, then “backtracking” gives the shortest path

k (� label of t), k � 1, k � 2, • • • , 0

OUTPUT k, k � 1, k � 2, • • • , 0. Stop
Else increase i by 1. Go to Step 3.

End MOORE

(u, v)
v : w

v1 : vk

v1 : vk

l � 1

lij

lijSlij,v1 : vk

SEC. 23.2 Shortest Path Problems. Complexity 977

2EDWARD FORREST MOORE (1925–2003), American mathematician and computer scientist, who did
pioneering work in theoretical computer science (automata theory, Turing machines).
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E X A M P L E  1 Application of Moore’s BFS Algorithm

Find a shortest path in the graph G shown in Fig. 482.

Solution. Figure 482 shows the labels. The blue edges form a shortest path (length 4). There is another
shortest path (Can you find it?) Hence in the program we must introduce a rule that makes backtracking
unique because otherwise the computer would not know what to do next if at some step there is a choice (for
instance, in Fig. 482 when it got back to the vertex labeled 2). The following rule seems to be natural.

Backtracking rule. Using the numbering of the vertices from 1 to n (not the labeling!), at each step, if a
vertex labeled i is reached, take as the next vertex that with the smallest number (not label!) among all the
vertices labeled �i � 1.

s : t.

s : t

978 CHAP. 23 Graphs. Combinatorial Optimization

3

1
1

2

3

3

2 4
0

2 1

2

3
4

s

t

Fig. 482. Example 1, given graph and result of labeling

Complexity of an Algorithm
Complexity of Moore’s algorithm. To find the vertices to be labeled 1, we have to scan
all edges incident with s. Next, when we have to scan all edges incident with vertices
labeled 1, etc. Hence each edge is scanned twice. These are 2m operations  

This is a function Whether it is 2m or or 12m is not so essential;
it is essential that is proportional to m (not for example); it is of the “order” m.
We write for any function simply for any function simply

and so on; here, O suggests order. The underlying idea and practical aspect are
as follows.

In judging an algorithm, we are mostly interested in its behavior for very large problems
(large m in the present case), since these are going to determine the limits of the
applicability of the algorithm. Thus, the essential item is the fastest growing term

etc.) since it will overwhelm the others when m is large enough.
Also, a constant factor in this term is not very essential; for instance, the difference between
two algorithms of orders, say, is generally not very essential and can be
made irrelevant by a modest increase in the speed of computers. However, it does make
a great practical difference whether an algorithm is of order m or or of a still higher
power And the biggest difference occurs between these “polynomial orders” and
“exponential orders,” such as 

For instance, on a computer that does operations per second, a problem of size
will take 0.3 sec with an algorithm that requires operations, but 13 days with

an algorithm that requires operations. But this is not our only reason for regarding
polynomial orders as good and exponential orders as bad. Another reason is the gain in
using a faster computer. For example, let two algorithms be Then, since

an increase in speed by a factor 1000 has the effect that per hour we can
do problems 1000 and 31.6 times as big, respectively. But since with an
algorithm that is all we gain is a relatively modest increase of 10 in problem size
because 29.97 � 2m � 2m�9.97.

O(2m),
1000 � 29.97,

1000 � 31.62,
O(m) and O(m2).

2m
m5m � 50

109

2m.
mp.

m2

5m2 and 8m2

(am2 in am2 � bm � d,

O(m2),
am2 � bm � dO(m),am � b

m2,c(m)
5m � 3c(m).edges of G).

(m � number of
i � 1,
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SEC. 23.2 Shortest Path Problems. Complexity 979

SHORTEST PATHS, MOORE’S BFS 
(All edges length one)

1–4 Find a shortest path and its length by
Moore’s algorithm. Sketch the graph with the labels and
indicate P by heavier lines as in Fig. 482.

1. 2. s

t

s

t

P: s : t

3. 4.

5. Moore’s algorithm. Show that if vertex v has label
then there is a path of length k.

6. Maximum length. What is the maximum number of
edges that a shortest path between any two vertices in
a graph with n vertices can have? Give a reason. In a
complete graph with all edges of length 1?

s : vl(v) � k,

s
t

s

t

P R O B L E M  S E T  2 3 . 2

The symbol O is quite practical and commonly used whenever the order of growth is
essential, but not the specific form of a function. Thus if a function is of the form

we say that is of the order and write

For instance,

We want an algorithm to be “efficient,” that is, “good” with respect to

(i) Time (number of computer operations), or

(ii) Space (storage needed in the internal memory)

or both. Here suggests “complexity” of Two popular choices for are

(Worst case)

(Average case)

In problems on graphs, the “size” will often be m (number of edges) or n (number of
vertices). For Moore’s algorithm, in both cases. Hence the complexity of
Moore’s algorithm is of order 

For a “good” algorithm we want that does not grow too fast. Accordingly,
we call efficient if for some integer that is, may contain
only powers of m (or functions that grow even more slowly, such as ln m), but no
exponential functions. Furthermore, we call polynomially bounded if is efficient
when we choose the “worst case” These conventional concepts have intuitive
appeal, as our discussion shows.

Complexity should be investigated for every algorithm, so that one can also compare
different algorithms for the same task. This may often exceed the level in this chapter;
accordingly, we shall confine ourselves to a few occasional comments in this direction.

c�(m).
��

c�k � 0;c�(m) � O(mk)�
c�(m)�,

O(m).
 � 2mc�(m)

c�(m) � average time � takes for a problem of size m.

c�(m) � longest time � takes for a problem of size m,

c��.c�

c�(m)

�

am � b � O(m),  am2 � bm � d � O(m2),  5 � 2m � 3m2 � O(2m).

g(m) � O(h(m)).

h(m)g(m)

(k � 0, constant),g(m) � kh(m) � more slowly growing terms

g(m)
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980 CHAP. 23 Graphs. Combinatorial Optimization

7. Nonuniqueness. Find another shortest path from s to
t in Example 1 of the text.

8. Moore’s algorithm. Call the length of a shortest path
the distance of v from s. Show that if v has

distance l, it has label 

9. CAS PROBLEM. Moore’s Algorithm. Write a
computer program for the algorithm in Table 23.1. Test
the program with the graph in Example 1. Apply it to
Probs. 1–3 and to some graphs of your own choice.

10–12 HAMILTONIAN CYCLE
10. Find and sketch a Hamiltonian cycle in the graph of a

dodecahedron, which has 12 pentagonal faces and 20
vertices (Fig. 483). This is a problem Hamilton himself
considered.

l(v) � l.
s : v

14. Show that the length of a shortest postman trail is the
same for every starting vertex.

15–17 EULER GRAPHS
15. An Euler graph G is a graph that has a closed Euler

trail. An Euler trail is a trail that contains every edge
of G exactly once. Which subgraph with four edges of
the graph in Example 1, Sec. 23.1, is an Euler graph?

16. Find four different closed Euler trails in Fig. 485.

Fig. 483. Problem 10

11. Find and sketch a Hamiltonian cycle in Prob. 1.

12. Does the graph in Prob. 4 have a Hamiltonian cycle?

13–14 POSTMAN PROBLEM
13. The postman problem is the problem of finding a

closed walk (s the post office) in a graph G
with edges of length such that every edge
of G is traversed at least once and the length of W is
minimum. Find a solution for the graph in Fig. 484 by
inspection. (The problem is also called the Chinese
postman problem since it was published in the journal
Chinese Mathematics 1 (1962), 273–277.)

lij � 0(i, j)
W: s : s

23.3 Bellman’s Principle. Dijkstra’s Algorithm
We continue our discussion of the shortest path problem in a graph G. The last section
concerned the special case that all edges had length 1. But in most applications the edges
(i, j) will have any lengths and we now turn to this general case, which is of
greater practical importance. We write for any edge (i, j) that does not exist in G
(setting for any number a, as usual).

We consider the problem of finding shortest paths from a given vertex, denoted by 1
and called the origin, to all other vertices 2, 3, n of G. We let denote the length
of a shortest path in G.Pj: 1 : j

Lj
Á ,

� � a � �
lij � �

lij � 0,

17. Is the graph in Fig. 484 an Euler graph. Give reason.

18–20 ORDER
18. Show that and 

19. Show that 

20. If we switch from one computer to another that is 100
times as fast, what is our gain in problem size per hour
in the use of an algorithm that is 
O(em)?

O(m5),O(m2),O(m),

O(em).
21 � m2 � O(m), 0.02em � 100m2 �

O(mp).
kO(mp) �O(m3) � O(m3) � O(m3)

1 3 5

2 4

Fig. 485. Problem 16

1 6

2 5

3 4
4

1 3

2 5

2 4

s

Fig. 484. Problem 13
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T H E O R E M  1 Bellman’s Minimality Principle or Optimality Principle3

If is a shortest path from 1 to j in G and (i, j) is the last edge of (Fig. 486),
then [obtained by dropping (i, j) from is a shortest path 1 : i.Pj]Pi: 1 : i

PjPj: 1 : j

SEC. 23.3 Bellman’s Principle. Dijkstra’s Algorithm 981

1 i
j

Pi

Fig. 486. Paths P and in Bellman’s minimality principlePi

3RICHARD BELLMAN (1920–1984), American mathematician, known for his work in dynamic programming.
4EDSGER WYBE DIJKSTRA (1930–2002), Dutch computer scientist, 1972 recipient of the ACM Turing

Award. His algorithm appeared in Numerische Mathematik 1 (1959), 269–271.

P R O O F Suppose that the conclusion is false. Then there is a path that is shorter than
Hence, if we now add (i, j) to , we get a path that is shorter than This

contradicts our assumption that is shortest.

From Bellman’s principle we can derive basic equations as follows. For fixed j we may
obtain various paths by taking shortest paths for various i for which there is in
G an edge (i, j), and add (i, j) to the corresponding These paths obviously have lengths

We can now take the minimum over i, that is, pick an i for
which is smallest. By the Bellman principle, this gives a shortest path It
has the length

(1)

These are the Bellman equations. Since by definition, instead of we can
simply write These equations suggest the idea of one of the best-known algorithms
for the shortest path problem, as follows.

Dijkstra’s Algorithm for Shortest Paths
Dijkstra’s4 algorithm is shown in Table 23.2, where a connected graph G is a graph in
which, for any two vertices v and w in G, there is a path The algorithm is a
labeling procedure. At each stage of the computation, each vertex v gets a label, either

(PL) a permanent label length of a shortest path 

or

(TL) a temporary label upper bound for the length of a shortest path 1 : v.L�v�

1 : vLv�

v : w.

mini.
mini�jlii � 0

j � 2, Á , n.
 Lj � min

i� j  
(Li � lij),

 L1 � 0

1 : j.Li � lij

Li � lij (Li � length of Pi).
Pi.

Pi1 : j

�Pj

Pj.1 : jPi*Pi.
Pi*: 1 : i
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We denote by �� and �� the sets of vertices with a permanent label and with a temporary
label, respectively. The algorithm has an initial step in which vertex 1 gets the permanent
label and the other vertices get temporary labels, and then the algorithm alternates
between Steps 2 and 3. In Step 2 the idea is to pick k “minimally.” In Step 3 the idea is
that the upper bounds will in general improve (decrease) and must be updated accordingly.
Namely, the new temporary label of vertex j will be the old one if there is no
improvement or it will be if there is.

Table 23.2 Dijkstra’s Algorithm for Shortest Paths

ALGORITHM DIJKSTRA [G � (V, E), V � {1, • • • , n}, for all (i, j) in E ]

Given a connected graph G � (V, E) with vertices 1, • • • , n and edges (i, j) having
lengths this algorithm determines the lengths of shortest paths from vertex 1 to
the vertices 2, • • • , n.

INPUT: Number of vertices n, edges (i, j), and lengths li j

OUTPUT: Lengths Lj of shortest paths 1 * j, j � 2, • • • , n

1. Initial step

Vertex 1 gets PL: L1 � 0.
Vertex j (� 2, • • • , n) gets TL: L�j � (� � if there is no edge (1, j) in G).
Set �� � {1}, �� � {2, 3, • • • , n}.

2. Fixing a permanent label

Find a k in �� for which L�k is miminum, set Lk � L�k. Take the smallest k if
there are several. Delete k from �� and include it in ��.
If �� � 	 (that is, �� is empty) then

OUTPUT L2, • • • , Ln. Stop

Else continue (that is, go to Step 3).

3. Updating temporary labels

For all j in ��, set L�j � mink {L�j, Lk � lk j} (that is, take the smaller of L�j and 
Lk � lk j as your new L�j).

Go to Step 2.

End DIJKSTRA

E X A M P L E  1 Application of Dijkstra’s Algorithm

Applying Dijkstra’s algorithm to the graph in Fig. 487a, find shortest paths from vertex 1 to vertices 2, 3, 4.

Solution. We list the steps and computations.

1. �� � {1}, �� � {2, 3, 4}

2. �� � {1, 3}, �� � {2, 4}

3.

2. �� � {1, 2, 3}, �� � {4}

3.

2. �� � {1, 2, 3, 4}, �� � 	.L4 � 7, k � 4

L�4 � min {7, L2 � l24} � min {7, 6 � 2} � 7

L2 � min {L�2, L�4} � min {6, 7} � 6, k � 2,

L�4 � min {7, L3 � l34} � min {7, �} � 7

L�2 � min {8, L3 � l32} � min {8, 5 � 1} � 6

L3 � min {L�2, L�3, L�4} � 5, k � 3,

L1 � 0, L�2 � 8, L�3 � 5, L�4 � 7,

l1j

lij � 0,

lij

Lk � lkj

L�j

L1 � 0
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Figure 487b shows the resulting shortest paths, of lengths �L2 � 6, L3 � 5, L4 � 7.

SEC. 23.3 Bellman’s Principle. Dijkstra’s Algorithm 983

1. The net of roads in Fig. 488 connecting four villages
is to be reduced to minimum length, but so that one
can still reach every village from every other village.
Which of the roads should be retained? Find the
solution (a) by inspection, (b) by Dijkstra’s algorithm.

5.

6.

7.
1 2

3 4

3617

2

10

2

45

31

3

5

2

8

20

7

6

211

4

2

5

3
3

5

4 1

2

P R O B L E M  S E T  2 3 . 3

1

3

2

4

8

1 7

5 2

(a) Given graph G

1

3

2

4
1 7

5

(b) Shortest paths in G

Fig. 487. Example 1

Complexity. Dijkstra’s algorithm is 

P R O O F Step 2 requires comparison of elements, first the next time etc., a total
of Step 3 requires the same number of comparisons, a total of

as well as additions, first the next time etc., again a total of
Hence the total number of operations is �3(n � 2)(n � 1)>2 � O(n2).(n � 2)(n � )>2.

n � 3,n � 2,(n � 2)(n � 1)>2,
(n � 2)(n � 1)>2.

n � 3,n � 2,

O(n2).

1 2 4

3
40

28

36

12 16

8

Fig. 488. Problem 1

2. Show that in Dijkstra’s algorithm, for there is a path
of length 

3. Show that in Dijkstra’s algorithm, at each instant the
demand on storage is light (data for fewer than n edges).

4–9 DIJKSTRA’S ALGORITHM

For each graph find the shortest paths.

4.

1

4

3 52

2

9

15

5
10

13 3

6

4

Lk.P: 1 : k
Lk
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23.4 Shortest Spanning Trees: Greedy Algorithm
So far we have discussed shortest path problems. We now turn to a particularly important
kind of graph, called a tree, along with related optimization problems that arise quite
often in practice.

By definition, a tree T is a graph that is connected and has no cycles. “Connected”
was defined in Sec. 23.3; it means that there is a path from any vertex in T to any other
vertex in T. A cycle is a path of at least three edges that is closed see also
Sec. 23.2. Figure 489a shows an example.

CAUTION! The terminology varies; cycles are sometimes also called circuits.

A spanning tree T in a given connected graph is a tree containing all the
n vertices of G. See Fig. 489b. Such a tree has edges. (Proof?)

A shortest spanning tree T in a connected graph G (whose edges (i, j) have lengths
is a spanning tree for which (sum over all edges of T ) is minimum compared

to for any other spanning tree in G.Slij

Slijlij � 0)

n � 1
G � (V, E )

(t � s);s : t

984 CHAP. 23 Graphs. Combinatorial Optimization

(a) (b)

Fig. 489. Example of (a) a cycle, (b) a spanning tree in a graph 

8.

2

2
2

5
5

6

6

810

1

8
1 2

3 4

5 6

9.

6

210

15

4

5

3

3
1

1 2

6 5

3

4

Trees are among the most important types of graphs, and they occur in various
applications. Familiar examples are family trees and organization charts. Trees can be
used to exhibit, organize, or analyze electrical networks, producer–consumer and other
business relations, information in database systems, syntactic structure of computer
programs, etc. We mention a few specific applications that need no lengthy additional
explanations.

The set of shortest paths from vertex 1 to the vertices in the last section forms
a spanning tree.

Railway lines connecting a number of cities (the vertices) can be set up in the form of
a spanning tree, the “length” of a line (edge) being the construction cost, and one wants
to minimize the total construction cost. Similarly for bus lines, where “length” may be

2, Á , n
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the average annual operating cost. Or for steamship lines (freight lines), where “length”
may be profit and the goal is the maximization of total profit. Or in a network of telephone
lines between some cities, a shortest spanning tree may simply represent a selection of
lines that connect all the cities at minimal cost. In addition to these examples we could
mention others from distribution networks, and so on.

We shall now discuss a simple algorithm for the problem of finding a shortest spanning
tree. This algorithm (Table 23.3) is particularly suitable for sparse graphs (graphs with
very few edges; see Sec. 23.1).

Table 23.3 Kruskal’s5 Greedy Algorithm for Shortest Spanning Trees
Proceedings of the American Mathematical Society 7 (1956), 48–50.

ALGORITHM KRUSKAL [G � (V, E ), lij for all (i, j) in E]

Given a connected graph G � (V, E ) with vertices 1, 2, • • • , n and edges (i, j) having
length lij � 0, the algorithm determines a shortest spanning tree T in G.

INPUT: Edges (i, j) of G and their lengths lij

OUTPUT: Shortest spanning tree T in G

1. Order the edges of G in ascending order of length.
2. Choose them in this order as edges of T, rejecting an edge only if it forms a

cycle with edges already chosen.

If n � 1 edges have been chosen, then
OUTPUT T (� the set of edges chosen). Stop

End KRUSKAL

5JOSEPH BERNARD KRUSKAL (1928– ), American mathematician who worked at Bell Laboratories. 
He is known for his contributions to graph theory and statistics.

E X A M P L E  1 Application of Kruskal’s Algorithm

Using Kruskal’s algorithm, we shall determine a shortest spanning tree in the graph in Fig. 490.

1 2

6

3 4

5

8

4

1 6

7 11

2

9

Fig. 490. Graph in Example 1

Solution. See Table 23.4. In some of the intermediate stages the edges chosen form a disconnected graph
(see Fig. 491); this is typical. We stop after choices since a spanning tree has edges. In our
problem the edges chosen are in the upper part of the list. This is typical of problems of any size; in general,
edges farther down in the list have a smaller chance of being chosen. �

n � 1n � 1 � 5

Table 23.4 Solution in Example 1

Edge Length Choice

(3, 6) 1 1st
(1, 2) 2 2nd
(1, 3) 4 3rd
(4, 5) 6 4th
(2, 3) 7 Reject
(3, 4) 8 5th
(5, 6) 9
(2, 4) 11
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The efficiency of Kruskal’s method is greatly increased by double labeling of 
vertices.

Double Labeling of Vertices. Each vertex i carries a double label where

Root of the subtree to which i belongs,

Predecessor of i in its subtree,

for roots.

This simplifies rejecting.

Rejecting. If (i, j) is next in the list to be considered, reject (i, j) if (that is, i and
j are in the same subtree, so that they are already joined by edges and (i, j) would thus
create a cycle). If include (i, j) in T.

If there are several choices for choose the smallest. If subtrees merge (become a
single tree), retain the smallest root as the root of the new subtree.

For Example 1 the double-label list is shown in Table 23.5. In storing it, at each instant
one may retain only the latest double label. We show all double labels in order to exhibit
the process in all its stages. Labels that remain unchanged are not listed again.
Underscored are the two 1’s that are the common root of vertices 2 and 3, the reason for
rejecting the edge (2, 3). By reading for each vertex the latest label we can read from
this list that 1 is the vertex we have chosen as a root and the tree is as shown in the last
part of Fig. 491.

ri,
ri � rj,

ri � rj

pi � 0

pi �

ri �

(ri, pi),

3 3 3 44

6 5

1 2 1

First Second Third Fourth Fifth

Fig. 491. Choice process in Example 1

Table 23.5 List of Double Labels in Example 1

Choice 1 Choice 2 Choice 3 Choice 4 Choice 5
Vertex (3, 6) (1, 2) (1, 3) (4, 5) (3, 4)

1 (1, 0)
2 (1, 1)
3 (3, 0) (1, 1)
4 (4, 0) (1, 3)
5 (4, 4) (1, 4)
6 (3, 3) (1, 3)
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This is made possible by the predecessor label that each vertex carries. Also, for accepting
or rejecting an edge we have to make only one comparison (the roots of the two endpoints
of the edge).

Ordering is the more expensive part of the algorithm. It is a standard process in
data processing for which various methods have been suggested (see Sorting in Ref.
[E25] listed in App. 1). For a complete list of m edges, an algorithm would be

but since the edges of the tree are most likely to be found earlier,
by inspecting the q topmost edges, for such a list of q edges one would have
O(q log2 m).

(�  m)
n � 1O(m log2 m),

SEC. 23.4 Shortest Spanning Trees: Greedy Algorithm 987

1–6 KRUSKAL’S GREEDY ALGORITHM

Find a shortest spanning tree by Kruskal’s algorithm.
Sketch it.

1.

2.

3.

4. 1

2 3 5

4

2

5
8

2

4

6
7

3

20

4

3

2

1

5 7

8
6

3 2

6 5

1

4

12

420

30

8

10

6

6
2

1 2

6 5

3

4

4

2

3

8 1

7

5

2
2 4

5

1 3

5.

6.

7. CAS PROBLEM. Kruskal’s Algorithm. Write a
corresponding program. (Sorting is discussed in Ref.
[E25] listed in App. 1.)

8. To get a minimum spanning tree, instead of adding
shortest edges, one could think of deleting longest
edges. For what graphs would this be feasible?
Describe an algorithm for this.

9. Apply the method suggested in Prob. 8 to the graph in
Example 1. Do you get the same tree?

10. Design an algorithm for obtaining longest spanning
trees.

11. Apply the algorithm in Prob. 10 to the graph in
Example 1. Compare with the result in Example 1.

12. Forest. A (not necessarily connected) graph without
cycles is called a forest. Give typical examples of
applications in which graphs occur that are forests or
trees.

3 12 812

2

3
9

11 13

10

5

7

8

6 5

34

2

7

1

1

3 52

4

2 6
5

2

48

7

320

P R O B L E M  S E T  2 3 . 4
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13. Air cargo. Find a shortest spanning tree in the
complete graph of all possible 15 connections between
the six cities given (distances by airplane, in miles,
rounded). Can you think of a practical application of
the result?

14–20 GENERAL PROPERTIES OF TREES
Prove the following. Hint. Use Prob. 14 in proving 15 and
18; use Probs. 16 and 18 in proving 20.

14. Uniqueness. The path connecting any two vertices u
and v in a tree is unique.

15. If in a graph any two vertices are connected by a unique
path, the graph is a tree.

988 CHAP. 23 Graphs. Combinatorial Optimization

16. If a graph has no cycles, it must have at least 2 vertices
of degree 1 (definition in Sec. 23.1).

17. A tree with exactly two vertices of degree 1 must be a
path.

18. A tree with n vertices has edges. (Proof by
induction.)

19. If two vertices in a tree are joined by a new edge, a
cycle is formed.

20. A graph with n vertices is a tree if and only if it has
edges and has no cycles.n � 1

n � 1

Dallas Denver Los Angeles New York Washington, DC

Chicago 800 900 1800 700 650
Dallas 650 1300 1350 1200
Denver 850 1650 1500
Los Angeles 2500 2350
New York 200

23.5 Shortest Spanning Trees:
Prim’s Algorithm

Prim’s6 algorithm, shown in Table 23.6, is another popular algorithm for the shortest
spanning tree problem (see Sec. 23.4). This algorithm avoids ordering edges and gives a
tree T at each stage, a property that Kruskal’s algorithm in the last section did not have
(look back at Fig. 491 if you did not notice it).

In Prim’s algorithm, starting from any single vertex, which we call 1, we “grow” the
tree T by adding edges to it, one at a time, according to some rule (in Table 23.6) until
T finally becomes a spanning tree, which is shortest.

We denote by U the set of vertices of the growing tree T and by S the set of its edges.
Thus, initially and at the end, the vertex set of the given graph

whose edges (i, j) have length as before.lij � 0,G � (V, E),
U � V,S � �;U � {1}

6ROBERT CLAY PRIM (1921– ), American computer scientist at General Electric, Bell Laboratories, and
Sandia National Laboratories. 
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Thus at the beginning (Step 1) the labels

of the vertices

are the lengths of the edges connecting them to vertex 1 (or if there is no such edge in
G). And we pick (Step 2) the shortest of these as the first edge of the growing tree T and
include its other end j in U (choosing the smallest j if there are several, to make the process
unique). Updating labels in Step 3 (at this stage and at any later stage) concerns each
vertex k not yet in U. Vertex k has label from before. If this means
that k is closer to the new member j just included in U than k is to its old “closest neighbor”

in U. Then we update the label of k, replacing by and setting
If, however, (the old label of k), we don’t touch the old label. Thus the

label always identifies the closest neighbor of k in U, and this is updated in Step 3 as
U and the tree T grow. From the final labels we can backtrack the final tree, and from their
numeric values we compute the total length (sum of the lengths of the edges) of this tree.

Prim’s algorithm is useful for computer network design, cable, distribution networks,
and transportation networks.

lk

ljk � lki(k) � j.
lk � ljklk � li(k),ki(k)

ljk � lk,lk � li(k),k

	

2, Á , nl2, Á , ln

SEC. 23.5 Shortest Spanning Trees: Prim’s Algorithm 989

Table 23.6 Prim’s Algorithm for Shortest Spanning Trees
Bell System Technical Journal 36 (1957), 1389–1401.

For an improved version of the algorithm, see Cheriton and Tarjan, SIAM Journal on Computation 5
(1976), 724–742.

ALGORITHM PRIM [G � (V, E ), V � {1, • • • , n}, li j for all (i, j) in E]

Given a connected graph G � (V, E ) with vertices 1, 2, • • • , n and edges (i, j ) having
length li j � 0, this algorithm determines a shortest spanning tree T in G and its length
L(T).

INPUT: n, edges (i, j ) of G and their lengths lij

OUTPUT: Edge set S of a shortest spanning tree T in G; L(T )
[Initially, all vertices are unlabeled.]

1. Initial step
Set i(k) � 1, U � {1}, S � �.
Label vertex k (� 2, • • • , n) with 
k � lik [� 	 if G has no edge (1, k)].

2. Addition of an edge to the tree T
Let 
j be the smallest 
k for vertex k not in U. Include vertex j in U and edge
(i( j), j ) in S.
If U � V then compute

L(T) � �lij (sum over all edges in S )
OUTPUT S, L(T ). Stop
[S is the edge set of a shortest spanning tree T in G.]

Else continue (that is, go to Step 3).

3. Label updating
For every k not in U, if ljk � 
k, then set 
k � ljk and i(k) � j.
Go to Step 2.

End PRIM
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E X A M P L E  1 Application of Prim’s Algorithm

990 CHAP. 23 Graphs. Combinatorial Optimization

Table 23.7 Labeling of Vertices in Example 1

Initial Relabeling
Vertex

Label (I) (II) (III) (IV)

2 l12 � 2 — — — —
3 l13 � 4 l13 � 4 — — —
4 	 l24 � 11 l34 � 8 l34 � 8 —
5 	 	 	 l65 � 9 l45 � 6
6 	 	 l36 � 1 — —

SHORTEST SPANNING TREES. PRIM’S
ALGORITHM

1. When will at the end in Prim’s algorithm?

2. Complexity. Show that Prim’s algorithm has com-
plexity 

3. What is the result of applying Prim’s algorithm to a
graph that is not connected?

4. If for a complete graph (or one with very few edges
missing), our data is an distance table (as in Prob.
13, Sec. 23.4), show that the present algorithm [which
is cannot easily be replaced by an algorithm of
order less than 

5. How does Prim’s algorithm prevent the generation of
cycles as you grow T?

O(n2).
O(n2)]

n � n

O(n2).

S � E

6–13 Find a shortest spanning tree by Prim’s algorithm.

6.

7.
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4

1 6

7 11

2

9

Fig. 492. Graph in 
Example 1

Find a shortest spanning tree in the graph in Fig. 492 (which is the same as in Example 1, Sec. 23.4,
so that we can compare).

Solution. The steps are as follows.

1. i(k) � 1, U � {1}, S � �, initial labels see Table 23.7.

2. 
2 � l12 � 2 is smallest, U � {1, 2}, S � {(1, 2)}.

3. Update labels as shown in Table 23.7, column (I).

2. 
3 � l13 � 4 is smallest, U � {1, 2, 3}, S � {(1, 2), (1, 3)}.

3. Update labels as shown in Table 23.7, column (II).

2. 
6 � l36 � 1 is smallest, U � {1, 2, 3, 6}, S � {(1, 2), (1, 3), (3, 6)}.

3. Update labels as shown in Table 23.7, column (III).

2. 
4 � l34 � 8 is smallest, U � {1, 2, 3, 4, 6}, S � {(1, 2), (1, 3), (3, 4), (3, 6)}.

3. Update labels as shown in Table 23.7, column (IV).

2. 
5 � l45 � 6 is smallest, U � V, S � (1, 2), (1, 3), (3, 4), (3, 6), (4, 5). Stop.

The tree is the same as in Example 1, Sec. 23.4. Its length is 21. You will find it interesting to
compare the growth process of the present tree with that in Sec. 23.4. �
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23.6 Flows in Networks
After shortest path problems and problems for trees, as a third large area in combinatorial
optimization we discuss flow problems in networks (electrical, water, communication,
traffic, business connections, etc.), turning from graphs to digraphs (directed graphs; see
Sec. 23.1).

By definition, a network is a digraph in which each edge (i, j) has assigned
to it a capacity maximum possible flow along (i, j)], and at one vertex, s,
called the source, a flow is produced that flows along the edges of the digraph G to another
vertex, t, called the target or sink, where the flow disappears.

In applications, this may be the flow of electricity in wires, of water in pipes, of cars
on roads, of people in a public transportation system, of goods from a producer to
consumers, of e-mail from senders to recipients over the Internet, and so on.

We denote the flow along a (directed!) edge (i, j) by and impose two conditions:

1. For each edge (i, j) in G the flow does not exceed the capacity 

(1) (“Edge condition”).

2. For each vertex i, not s or t,

Inflow Outflow (“Vertex condition,” “Kirchhoff’s law”);�

0 � fij � cij

cij,

fij

cij � 0 [�
G � (V, E)

SEC. 23.6 Flows in Networks 991

8.

9.

10. For the graph in Prob. 6, Sec. 23.4.

11. For the graph in Prob. 4, Sec. 23.4.

12. For the graph in Prob. 2, Sec. 23.4.

13. CAS PROBLEM. Prim’s Algorithm. Write a program
and apply it to Probs. 6–9.

14. TEAM PROJECT. Center of a Graph and Related
Concepts. (a) Distance, Eccentricity. Call the length
of a shortest path in a graph theG � (V, E)u : v

10 2 16

6
4

8

14 4
5 4 2

13

5

1

3

6

4

5

6

10

4

8

3

6

8 7 2
7

3

20
8

1 2

7
distance from u to v. For fixed u, call the
greatest as v ranges over V the eccentricity
of u. Find the eccentricity of vertices 1, 2, 3 in the
graph in Prob. 7.

(b) Diameter, Radius, Center. The diameter
of a graph is the maximum of as u
and v vary over V, and the radius r(G) is the smallest
eccentricity of the vertices v. A vertex v with

is called a central vertex. The set of all
central vertices is called the center of G. Find

and the center of the graph in Prob. 7.

(c) What are the diameter, radius, and center of the
spanning tree in Example 1 of the text?

(d) Explain how the idea of a center can be used in setting
up an emergency service facility on a transportation
network. In setting up a fire station, a shopping center.
How would you generalize the concepts in the case of two
or more such facilities?

(e) Show that a tree T whose edges all have length 1
has center consisting of either one vertex or two
adjacent vertices.

(f) Set up an algorithm of complexity for finding
the center of a tree T.

O(n)

d(G), r (G),

P(v) � r (G)
P(v)

d(u, v)G � (V, E)
d(G)

P(u)d(u, v)
d(u, v)
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in a formula,

(2)

where f is the total flow (and at s the inflow is zero, whereas at t the outflow is zero).
Figure 493 illustrates the notation (for some hypothetical figures).

a
k

 fki � a
j

 fij � d 0 if vertex i � s, i � t,

�f at the source s,

f at the target (sink) t,
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Inflow Outflow

{ {

i
3

8

5
2

1 fi3
 = 1f

1i = 7

f 2i
 = 2 f

i8 = 5f
i5  = 3

Fig. 493. Notation in (2): inflow and outflow for a vertex i (not s or t)

Paths
By a path from a vertex to a vertex in a digraph G we mean a sequence
of edges

regardless of their directions in G, that forms a path as in a graph (see Sec. 23.2). Hence
when we travel along this path from to we may traverse some edge in its given
direction—then we call it a forward edge of our path—or opposite to its given direction—
then we call it a backward edge of our path. In other words, our path consists of one-way
streets, and forward edges (backward edges) are those that we travel in the right direction
(in the wrong direction). Figure 494 shows a forward edge (u, v) and a backward edge (w, v)
of a path 

CAUTION! Each edge in a network has a given direction, which we cannot change.
Accordingly, if (u, v) is a forward edge in a path then (u, v) can become a
backward edge only in another path in which it is an edge and is traversed in the
opposite direction as one goes from to see Fig. 495. Keep this in mind, to avoid
misunderstandings.

x j;x1

x1 : x j

v1 : vk,

v1 : vk.

vkv1

(v1, v2), (v2, v3), Á , (vk�1, vk),

vkv1v1 : vk

...

v
1

vk

u

v

w

x
1

v
1

vk

xju

v
... ...

......

Fig. 494. Forward edge (u, v) and
backward edge (w, v) of a path v1 * vk

Fig. 495. Edge (u, v) as forward edge in the path
v1 * vk and as backward edge in the path x1 * xj

Flow Augmenting Paths
Our goal will be to maximize the flow from the source s to the target t of a given network.
We shall do this by developing methods for increasing an existing flow (including the
special case in which the latter is zero). The idea then is to find a path all ofP: s : t

c23-b.qxd  11/3/10  4:07 PM  Page 992



whose edges are not fully used, so that we can push additional flow through P. This
suggests the following concept.

D E F I N I T I O N Flow Augmenting Path

A flow augmenting path in a network with a given flow on each edge (i, j) is a
path such that

(i) no forward edge is used to capacity; thus for these;

(ii) no backward edge has flow 0; thus for these.

E X A M P L E  1 Flow Augmenting Paths

Find flow augmenting paths in the network in Fig. 496, where the first number is the capacity and the second
number a given flow.

fij � 0

fij � cij

P: s : t
fij
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2 3

4 5

61

7, 4

11, 8
13, 6

3, 3

5, 2
4, 3

20, 5

10, 4

s t

Fig. 496. Network in Example 1 
First number Capacity, Second number Given flow��

1

2 3

3

5

6

Δ
36  = 7

Δ
14  = 6

Δ
36  = 4

Δ
23

 = 3

Δ
35

 = 2

Δ
45

 = 3

Δ 12
 = 15

6

4

1s t

s t

Path P
1

Path P
2

Fig. 497. Flow augmenting paths in Example 1

Solution. In practical problems, networks are large and one needs a systematic method for augmenting
flows, which we discuss in the next section. In our small network, which should help to illustrate and clarify
the concepts and ideas, we can find flow augmenting paths by inspection and augment the existing flow 
in Fig. 496. (The outflow from s is which equals the inflow into t.)

We use the notation

for forward edges

for backward edges

taken over all edges of a path.

From Fig. 496 we see that a flow augmenting path is (Fig. 497), with
etc., and Hence we can use to increase the given flow 9 to 

All three edges of are forward edges. We augment the flow by 3. Then the flow in each of the edges of 
is increased by 3, so that we now have (instead of 5), (instead of 8), and (instead of
6). Edge (2, 3) is now used to capacity. The flow in the other edges remains as before.

We shall now try to increase the flow in this network in Fig. 496 beyond 
There is another flow augmenting path namely, (Fig. 497). It shows how

a backward edge comes in and how it is handled. Edge (3, 5) is a backward edge. It has flow 2, so that 
We compute etc. (Fig. 497) and Hence we can use for another augmentation to
get The new flow is shown in Fig. 498. No further augmentation is possible. We shall confirm
later that is maximum. �f � 14

f � 12  2 � 14.
P2¢ � 2.¢14 � 10 � 4 � 6,

¢36 � 2.
P2: 1 � 4 � 5 � 3 � 6P2: s : t,

f � 12.

f36 � 9f23 � 11f12 � 8
P1P1

f � 9  3 � 12.P1¢ � 3.¢12 � 20 � 5 � 15,
P1: 1 � 2 � 3 � 6P1: s : t

 ¢ � min ¢ij

 ¢ij � fij

 ¢ij � cij � fij

6  35  4 � 9,
f � 9
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Cut Sets
A cut set is a set of edges in a network. The underlying idea is simple and natural. If we
want to find out what is flowing from s to t in a network, we may cut the network
somewhere between s and t (Fig. 498 shows an example) and see what is flowing in the
edges hit by the cut, because any flow from s to t must sometimes pass through some of
these edges. These form what is called a cut set. [In Fig. 498, the cut set consists of the
edges (2, 3), (5, 2), (4, 5).] We denote this cut set by (S, T ). Here S is the set of vertices
on that side of the cut on which s lies for the cut in Fig. 498) and T is the
set of the other vertices in Fig. 498). We say that a cut partitions the vertex
set V into two parts S and T. Obviously, the corresponding cut set (S, T ) consists of all
the edges in the network with one end in S and the other end in T.

(T � {3, 5, t}
(S � {s, 2, 4}

994 CHAP. 23 Graphs. Combinatorial Optimization

By definition, the capacity cap (S, T ) of a cut set (S, T ) is the sum of the capacities of
all forward edges in (S, T ) (forward edges only!), that is, the edges that are directed from
S to T,

(3) [sum over the forward edges of (S, T )].

Thus, cap in Fig. 498.

Explanation. This can be seen as follows. Look at Fig. 498. Recall that for each edge
in that figure, the first number denotes capacity and the second number flow. Intuitively,
you can think of the edges as roads, where the capacity of the road is how many cars can
actually be on the road, and the flow denotes how many cars actually are on the road. To
compute capacity cap (S, T ) we are only looking at the first number on the edges. Take
a look and see that the cut physically cuts three edges, that is, (2, 3), (4, 5), and (5, 2).
The cut concerns only forward edges that are being cut, so it concerns edges (2, 3) and
(4, 5) (and does not include edge (5, 2) which is also being cut, but since it goes backwards,
it does not count). Hence (2, 3) contributes 11 and (4, 5) contributes 7 to the capacity cap
(S, T ), for a total of 18 in Fig. 498. Hence 

The other edges (directed from T to S) are called backward edges of the cut set (S, T ),
and by the net flow through a cut set we mean the sum of the flows in the forward edges
minus the sum of the flows in the backward edges of the cut set.

CAUTION! Distinguish well between forward and backward edges in a cut set and in
a path: (5, 2) in Fig. 498 is a backward edge for the cut shown but a forward edge in the
path 

For the cut in Fig. 498 the net flow is For the same cut in Fig. 496
(not indicated there), the net flow is In both cases it equals the flow f.8  4 � 3 � 9.

11  6 � 3 � 14.

1 � 4 � 5 � 2 � 3 � 6.

cap (S, T ) � 18.

(S, T ) � 11  7 � 18

cap (S, T ) � Scij

2 3

4 5

61

3, 3

20, 8

s t

Cut

7, 6

11, 11
13, 11

5, 0
4, 3

10, 6

Fig. 498. Maximum flow in Example 1
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We claim that this is not just by chance, but cuts do serve the purpose for which we have
introduced them:

T H E O R E M  1 Net Flow in Cut Sets

Any given flow in a network G is the net flow through any cut set (S, T ) of G.

P R O O F By Kirchhoff’s law (2), multiplied by at a vertex i we have

(4)

Here we can sum over j and l from 1 to n number of vertices) by putting for
and also for edges without flow or nonexisting edges; hence we can write the two

sums as one,

We now sum over all i in S. Since s is in S, this sum equals f :

(5)

We claim that in this sum, only the edges belonging to the cut set contribute. Indeed,
edges with both ends in T cannot contribute, since we sum only over i in S; but edges
(i, j) with both ends in S contribute at one end and at the other, a total contribution
of 0. Hence the left side of (5) equals the net flow through the cut set. By (5), this is equal
to the flow f and proves the theorem.

This theorem has the following consequence, which we shall also need later in this
section.

T H E O R E M  2 Upper Bound for Flows

A flow f in a network G cannot exceed the capacity of any cut set (S, T ) in G.

P R O O F By Theorem 1 the flow f equals the net flow through the cut set, where 
is the sum of the flows through the forward edges and is the sum of the flows
through the backward edges of the cut set. Thus Now cannot exceed the sum
of the capacities of the forward edges; but this sum equals the capacity of the cut set, by 
definition. Together, as asserted. �f � cap (S, T ),

f1f � f1.
f2 (� 0)

f1f � f1 � f2,

�

�fijfij

a
i�S

 a
j�V

 ( fij � fji) � f.

a
j

 ( fij � fji) � b 0 if i � s, t,

f if i � s.

j � i
fij � 0(�

a
j

 fij � a
l

 fli � b 0 if i � s, t,

f if i � s.

�1,

SEC. 23.6 Flows in Networks 995
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Cut sets will now bring out the full importance of augmenting paths:

T H E O R E M  3 Main Theorem. Augmenting Path Theorem for Flows

A flow from s to t in a network G is maximum if and only if there does not exist a
flow augmenting path in G.

P R O O F (a) If there is a flow augmenting path we can use it to push through it an additional
flow. Hence the given flow cannot be maximum.

(b) On the other hand, suppose that there is no flow augmenting path in G.
Let be the set of all vertices i (including s) such that there is a flow augmenting
path and let be the set of the other vertices in G. Consider any edge (i, j) with
i in and j in Then we have a flow augmenting path since i is in but

is not flow augmenting because j is not in Hence we must have

(6) if (i, j ) is a edge of the path 

Otherwise we could use (i, j) to get a flow augmenting path Now 
defines a cut set (since t is in why?). Since by (6), forward edges are used to capacity
and backward edges carry no flow, the net flow through the cut set equals the
sum of the capacities of the forward edges, which is cap by definition. This
net flow equals the given flow f by Theorem 1. Thus We also have

by Theorem 2. Hence f must be maximum since we have reached
equality.

The end of this proof yields another basic result (by Ford and Fulkerson, Canadian Journal
of Mathematics 8 (1956), 399–404), namely, the so-called

T H E O R E M  4 Max-Flow Min-Cut Theorem

The maximum flow in any network G equals the capacity of a “minimum cut set”
a cut set of minimum capacity) in G.

P R O O F We have just seen that for a maximum flow f and a suitable cut set 
Now by Theorem 2 we also have for this f and any cut set (S, T ) in G.
Together, Hence is a minimum cut set.

The existence of a maximum flow in this theorem follows for rational capacities from
the algorithm in the next section and for arbitrary capacities from the Edmonds–Karp BFS
also in that section.

The two basic tools in connection with networks are flow augmenting paths and cut sets.
In the next section we show how flow augmenting paths can be used in an algorithm for
maximum flows.

�

(S0, T0)cap (S0, T0) � cap (S, T ).
f � cap (S, T )

(S0, T0).f � cap (S0, T0)

(�

�

f � cap (S0, T0)
f � cap (S0, T0).

(S0, T0)
(S0, T0)

T0;
(S0, T0)s : i : j.

s : i : j.b 

forward

backward
fij � b 

cij

0

S0.s : i : j
S0,s : iT0.S0

T0s : i,
S0

s : t

P: s : t,

s : t
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1–6 CUT SETS, CAPACITY
Find T and cap (S, T ) for:

1. Fig. 498, 

2. Fig. 499, 

3. Fig. 498, 

4. Fig. 499, 

5. Fig. 499, 

6. Fig. 498, S � {1, 3, 5}

S � {1, 2, 4, 5}

S � {1, 2}

S � {1, 2, 3}

S � {1, 2, 3}

S � {1, 2, 4, 5}

13.

14.

15.

16–19 MAXIMUM FLOW
Find the maximum flow by inspection:

16. In Prob. 13

17.

18. In Prob. 12

19.

20. Find another maximum flow in Prob. 19.f � 15

t

s 21 4

53
3, 1

10, 7

5, 3 6, 2 8, 5 7, 4

8, 4

3

42

8, 5

4, 2

2, 2
6, 3

5

6

11, 7

4, 1

13, 95, 2
5,

 2

t

s 1

s t
1 54

5, 3

6, 0
3, 1 1, 1

4, 2 8, 5

10, 3

2

3

s

t

5, 2

10, 1

16, 6

2 4

3 5

1
4, 27, 1

8, 5

9, 4

3, 1

2 4

5 t

s

3

1

10, 2

12, 3

4, 2
8, 3

6, 2

4, 1

14
, 1

P R O B L E M  S E T  2 3 . 6

2 3

54

1

6

7

10, 8

6, 1

8, 5

4, 2

4, 2

6, 5

6, 1 2, 1
7, 5

8, 4

s t

Fig. 499. Problems 2, 4, and 5

7–8 MINIMUM CUT SET
Find a minimum cut set and its capacity for the network:

7. In Fig. 499

8. In Fig. 496. Verify that its capacity equals the maximum
flow.

9. Why are backward edges not considered in the
definition of the capacity of a cut set?

10. Incremental network. Sketch the network in Fig. 499,
and on each edge (i, j) write and . Do you
recognize that from this “incremental network” one can
more easily see flow augmenting paths?

11. Omission of edges. Which edges could be omitted
from the network in Fig. 499 without decreasing the
maximum flow?

12–15 FLOW AUGMENTING PATHS
Find flow augmenting paths:

12.
2 4

3 5

s t
1 6

1, 0

1, 0
2, 1 8, 1

2, 1 8, 1

2, 1
4, 2

7, 1

fijcij � fij
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23.7 Maximum Flow: Ford–Fulkerson Algorithm
Flow augmenting paths, as discussed in the last section, are used as the basic tool in the
Ford–Fulkerson7 algorithm in Table 23.8 in which a given flow (for instance, zero flow in
all edges) is increased until it is maximum. The algorithm accomplishes the increase by a
stepwise construction of flow augmenting paths, one at a time, until no further such paths
can be constructed, which happens precisely when the flow is maximum.

In Step 1, an initial flow may be given. In Step 3, a vertex j can be labeled if there is 
an edge (i, j) with i labeled and

(“forward edge”)

or if there is an edge ( j, i) with i labeled and

(“backward edge”).

To scan a labeled vertex i means to label every unlabeled vertex j adjacent to i that can be
labeled. Before scanning a labeled vertex i, scan all the vertices that got labeled before i.
This BFS (Breadth First Search) strategy was suggested by Edmonds and Karp in 1972
(Journal of the Association for Computing Machinery 19, 248–64). It has the effect that one
gets shortest possible augmenting paths.

Table 23.8 Ford–Fulkerson Algorithm for Maximum Flow
Canadian Journal of Mathematics 9 (1957), 210–218

ALGORITHM FORD–FULKERSON

vertices 1 edges (i, j ), 
This algorithm computes the maximum flow in a network G with source s, sink t, and
capacities of the edges (i, j).

INPUT: n, s � 1, t � n, edges (i, j) of G, 

OUTPUT: Maximum flow ƒ in G

1. Assign an initial flow (for instance, for all edges), compute ƒ.

2. Label s by �. Mark the other vertices “unlabeled.”

3. Find a labeled vertex i that has not yet been scanned. Scan i as follows. For every
unlabeled adjacent vertex j, if compute

and

and label j with a “forward label” or if compute

and label j by a “backward label” (i�, ¢j).

¢j � min (¢i, fji)

fji � 0,(i, ¢j);

¢j � b 

¢ij if i � 1

min (¢i, ¢ij) if i � 1
¢ij � cij � fij

cij � fij,

fij � 0fij

cij

cij � 0

cij](� s), Á , n (� t),[G � (V, E ),

fji � 0

cij � fij
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7LESTER RANDOLPH FORD Jr. (1927– ) and DELBERT RAY FULKERSON (1924–1976), American
mathematicians known for their pioneering work on flow algorithms.
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If no such j exists then OUTPUT ƒ. Stop

[ƒ is the maximum flow.]

Else continue (that is, go to Step 4).

4. Repeat Step 3 until t is reached.

[This gives a flow augmenting path P: s * t.]

If it is impossible to reach t then OUTPUT ƒ. Stop

[ƒ is the maximum flow.]

Else continue (that is, go to Step 5).

5. Backtrack the path P, using the labels.

6. Using P, augment the existing flow by �t. Set 

7. Remove all labels from vertices 2, n. Go to Step 3.

End FORD–FULKERSON

E X A M P L E  1 Ford–Fulkerson Algorithm

Applying the Ford–Fulkerson algorithm, determine the maximum flow for the network in Fig. 500 (which is
the same as that in Example 1, Sec. 23.6, so that we can compare).

Solution. The algorithm proceeds as follows.

1. An initial flow is given.

2. Label by Mark 2, 3, 4, 5, 6 “unlabeled.”�.s (� 1)

f � 9

Á ,

f � f  ¢t.
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2

1

3

6

11, 8

s t

4 5
7, 4

4, 3
20, 5

10, 4

5, 2

3, 3

13, 6

Fig. 500. Network in Example 1 with capacities (first numbers) and given flow

3. Scan 1.

Compute Label 2 by 

Compute Label 4 by 

4. Scan 2.

Compute Label 3 by 

Compute Label 5 by 

Scan 3.

Compute Label 6 by 

5. is a flow augmenting path.

6. Augmentation gives other unchanged. Augmented flow

7. Remove labels on vertices 2, 6. Go to Step 3.

3. Scan 1.

Compute Label 2 by 

Compute Label 4 by (1, 6).¢14 � 10 � 4 � 6 � ¢4.

(1, 12).¢12 � 20 � 8 � 12 � ¢2.

Á ,

f � 9  3 � 12.
fij f36 � 9, f23 � 11,f12 � 8,¢t � 3.

P: 1 � 2 � 3 � 6 (� t)

(3, 3).¢36 � 13 � 6 � 7, ¢6 � ¢t � min (¢3, 7) � 3.

(2�, 3).¢5 � min (¢2, 3) � 3.

(2, 3).¢23 � 11 � 8 � 3, ¢3 � min (¢2, 3) � 3.

(1, 6).¢14 � 10 � 4 � 6 � ¢4.

(1, 15).¢12 � 20 � 5 � 15 � ¢2.
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4. Scan 2.

Compute Label 5 by 

Scan 4. [No vertex left for labeling.]

Scan 5.

Compute Label 3 by 

Scan 3.

Compute Label 6 by 

5. is a flow augmenting path.

6. Augmentation gives other unchanged. Augmented 
flow 

7. Remove labels on vertices 2, 6. Go to Step 3.

One can now scan 1 and then scan 2, as before, but in scanning 4 and then 5 one finds that no vertex is left for
labeling. Thus one can no longer reach t. Hence the flow obtained (Fig. 501) is maximum, in agreement with
our result in the last section. �

Á ,

f � 12  2 � 14.
fijf12 � 10, f32 � 1, f35 � 0, f36 � 11,¢t � 2.

P: 1 � 2 � 5 � 3 � 6 (� t)

(3, 2).¢36 � 13 � 9 � 4, ¢6 � min (¢3, 4) � 2.

(5�, 2).¢3 � min (¢5, 2) � 2.

(2�, 3).¢5 � min (¢2, 3) � 3.
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2

1

3

6

11, 11

s t

4 5
7, 4

4, 1
20, 10

10, 4

5, 0

3, 3

13, 11

Fig. 501. Maximum flow in Example 1

1. Do the computations indicated near the end of Exam-
ple 1 in detail.

2. Solve Example 1 by Ford–Fulkerson with initial flow 0.
Is it more work than in Example 1?

3. Which are the “bottleneck” edges by which the flow in
Example 1 is actually limited? Hence which capacities
could be decreased without decreasing the maximum
flow?

4. What is the (simple) reason that Kirchhoff’s law is
preserved in augmenting a flow by the use of a flow
augmenting path?

5. How does Ford–Fulkerson prevent the formation of
cycles?

6–9 MAXIMUM FLOW 
Find the maximum flow by Ford-Fulkerson:

6. In Prob. 12, Sec. 23.6

7. In Prob. 15, Sec. 23.6

8. In Prob. 14, Sec. 23.6

9.
2 4

3 5

s t
1 6

5, 3

6, 3
3, 2 1, 0

4, 2 10, 4

2, 1 3, 2 3, 1

10. Integer flow theorem. Prove that, if the capacities in
a network G are integers, then a maximum flow exists
and is an integer.

11. CAS PROBLEM. Ford–Fulkerson. Write a program
and apply it to Probs. 6–9.

12. How can you see that Ford–Fulkerson follows a BFS
technique?

13. Are the consecutive flow augmenting paths produced
by Ford–Fulkerson unique?

14. If the Ford–Fulkerson algorithm stops without reach-
ing t, show that the edges with one end labeled and the
other end unlabeled form a cut set (S, T ) whose capacity
equals the maximum flow.

15. Find a minimum cut set in Fig. 500 and its capacity.

16. Show that in a network G with all the maximum
flow equals the number of edge-disjoint paths 

17. In Prob. 15, the cut set contains precisely all forward
edges used to capacity by the maximum flow (Fig. 501).
Is this just by chance?

18. Show that in a network G with capacities all equal to 1,
the capacity of a minimum cut set (S, T) equals the
minimum number q of edges whose deletion destroys
all directed paths (A directed path is a
path in which each edge has the direction in which it is
traversed in going from v to w.)

v : ws : t.

s : t.
cij � 1,

P R O B L E M  S E T  2 3 . 7
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19. Several sources and sinks. If a network has several
sources show that it can be reduced to the
case of a single-source network by introducing a new
vertex s and connecting s to by k edges of
capacity Similarly if there are several sinks. Illustrate
this idea by a network with two sources and two sinks.

20. Find the maximum flow in the network in Fig. 502 with
two sources (factories) and two sinks (consumers).

	.
s1, Á , sk

s1, Á , sk,
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S

a

b

c

T

1

2

3

4

Fig. 503. Bipartite graph in the assignment of a set S � {a, b, c} 
of workers to a set T � {1, 2, 3, 4} of jobs

23.8 Bipartite Graphs. Assignment Problems
From digraphs we return to graphs and discuss another important class of combinatorial
optimization problems that arises in assignment problems of workers to jobs, jobs to
machines, goods to storage, ships to piers, classes to classrooms, exams to time periods,
and so on. To explain the problem, we need the following concepts.

A bipartite graph is a graph in which the vertex set V is partitioned into
two sets S and T (without common elements, by the definition of a partition) such that
every edge of G has one end in S and the other in T. Hence there are no edges in G that
have both ends in S or both ends in T. Such a graph is also written

Figure 503 shows an illustration. V consists of seven elements, three workers a, b, c,
making up the set S, and four jobs 1, 2, 3, 4, making up the set T. The edges indicate that
worker a can do the jobs 1 and 2, worker b the jobs 1, 2, 3, and worker c the job 4. The
problem is to assign one job to each worker so that every worker gets one job to do. This
suggests the next concept, as follows.

D E F I N I T I O N Maximum Cardinality Matching

A matching in is a set M of edges of G such that no two of them
have a vertex in common. If M consists of the greatest possible number of edges,
we call it a maximum cardinality matching in G.

For instance, a matching in Fig. 503 is Another is 
obviously, this is of maximum cardinality.(b, 3), (c, 4)};

M2 � {(a, 1),M1 � {(a, 2), (b, 1)}.

G � (S, T; E )

G � (S, T; E ).
G � (V, E )

G � (V, E )

s1

s2

t1

t2

5

6

4 3

3

4 6

3 4

87 5

1 3

2 4

5

6

7

8

Fig. 502. Problem 20

A vertex v is exposed (or not covered) by a matching M if v is not an endpoint of an
edge of M. This concept, which always refers to some matching, will be of interest when
we begin to augment given matchings (below). If a matching leaves no vertex exposed,

c23-b.qxd  11/3/10  4:07 PM  Page 1001



we call it a complete matching. Obviously, a complete matching can exist only if S and
T consist of the same number of vertices.

We now want to show how one can stepwise increase the cardinality of a matching M
until it becomes maximum. Central in this task is the concept of an augmenting path.

An alternating path is a path that consists alternately of edges in M and not in M
(Fig. 504A). An augmenting path is an alternating path both of whose endpoints (a and b
in Fig. 504B) are exposed. By dropping from the matching M the edges that are on an
augmenting path P (two edges in Fig. 504B) and adding to M the other edges of P (three
in the figure), we get a new matching, with one more edge than M. This is how we use
an augmenting path in augmenting a given matching by one edge. We assert that this
will always lead, after a number of steps, to a maximum cardinality matching. Indeed,
the basic role of augmenting paths is expressed in the following theorem.

1002 CHAP. 23 Graphs. Combinatorial Optimization

a

b

(A) Alternating path

(B) Augmenting path P

Fig. 504. Alternating and augmenting paths. 
Heavy edges are those belonging to a matching M

T H E O R E M  1 Augmenting Path Theorem for Bipartite Matching

A matching M in a bipartite graph is of maximum cardinality if and
only if there does not exist an augmenting path P with respect to M.

P R O O F (a) We show that if such a path P exists, then M is not of maximum cardinality. Let P have
q edges belonging to M. Then P has edges not belonging to M. (In Fig. 504B we
have The endpoints a and b of P are exposed, and all the other vertices on P are
endpoints of edges in M, by the definition of an alternating path. Hence if an edge of M is
not an edge of P, it cannot have an endpoint on P since then M would not be a matching.
Consequently, the edges of M not on P, together with the edges of P not belonging
to M form a matching of cardinality one more than the cardinality of M because we omitted
q edges from M and added instead. Hence M cannot be of maximum cardinality.

(b) We now show that if there is no augmenting path for M, then M is of maximum
cardinality. Let be a maximum cardinality matching and consider the graph H
consisting of all edges that belong either to M or to but not to both. Then it is possible
that two edges of H have a vertex in common, but three edges cannot have a vertex in
common since then two of the three would have to belong to M (or to violating that
M and are matchings. So every v in V can be in common with two edges of H or with
one or none. Hence we can characterize each “component” maximal connected subset)
of H as follows.

(A) A component of H can be a closed path with an even number of edges (in the case
of an odd number, two edges from M or two from would meet, violating the matching
property). See (A) in Fig. 505.

M*

(�
M*

M*),

M*,
M*

q  1

q  1

q � 2.)
q  1

G � (S, T; E)
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(B) A component of H can be an open path P with the same number of edges from M
and edges from for the following reason. P must be alternating, that is, an edge of
M is followed by an edge of etc. (since M and are matchings). Now if P had an
edge more from then P would be augmenting for M [see (B2) in Fig. 505],
contradicting our assumption that there is no augmenting path for M. If P had an edge
more from M, it would be augmenting for [see (B3) in Fig. 505], violating the
maximum cardinality of by part (a) of this proof. Hence in each component of H, the
two matchings have the same number of edges. Adding to this the number of edges that
belong to both M and (which we left aside when we made up H ), we conclude that
M and must have the same number of edges. Since is of maximum cardinality,
this shows that the same holds for M, as we wanted to prove. �

M*M*
M*

M*,
M*

M*,
M*M*,

M*,

SEC. 23.8 Bipartite Graphs. Assignment Problems 1003

(A)

(B1)

(B2)

(B3)

(Possible)

(Augmenting for M)

(Augmenting for M*)

Edge from M

Edge from M*

Fig. 505. Proof of the augmenting path theorem for bipartite matching

This theorem suggests the algorithm in Table 23.9 for obtaining augmenting paths, in
which vertices are labeled for the purpose of backtracking paths. Such a label is in
addition to the number of the vertex, which is also retained. Clearly, to get an augmenting
path, one must start from an exposed vertex, and then trace an alternating path until one
arrives at another exposed vertex. After Step 3 all vertices in S are labeled. In Step 4,
the set T contains at least one exposed vertex, since otherwise we would have stopped
at Step 1.

Table 23.9 Bipartite Maximum Cardinality Matching

ALGORITHM MATCHING [G � (S, T; E), M, n]

This algorithm determines a maximum cardinality matching M in a bipartite graph G by
augmenting a given matching in G.

INPUT: Bipartite graph G � (S, T; E) with vertices 1, • • • , n, matching M in G (for
instance, M � �)

OUTPUT: Maximum cardinality matching M in G

1. If there is no exposed vertex in S then

OUTPUT M. Stop

[M is of maximum cardinality in G.]

Else label all exposed vertices in S with �.

2. For each i in S and edge (i, j) not in M, label j with i, unless already labeled.
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3. For each nonexposed j in T, label i with j, where i is the other end

of the unique edge (i, j) in M.

4. Backtrack the alternating path P ending on an exposed vertex in T

by using the labels on the vertices.

5. If no P in Step 4 is augmenting then

OUTPUT M. Stop

[M is of maximum cardinality in G.]

Else augment M by using an augmenting path P.

Remove all labels.

Go to Step 1.

End MATCHING

E X A M P L E  1 Maximum Cardinality Matching

Is the matching in Fig. 506a of maximum cardinality? If not, augment it until maximum cardinality is reached.M1

1004 CHAP. 23 Graphs. Combinatorial Optimization

1

1

5

2 66

3

3

3

3

77

4 8

S T

(a) (b)

1

2

5

2 66

3

3

3

75

7

4 8

S T

Matching M
2

and new labels
Given graph

and matching M
1

Ø

Ø Ø

Fig. 506. Example 1

Solution. We apply the algorithm.

1. Label 1 and 4 with 

2. Label 7 with 1. Label 5, 6, 8 with 3.

3. Label 2 with 6, and 3 with 7.

[All vertices are now labeled as shown in Fig. 506a.]

4. [By backtracking, is augmenting.]

is augmenting.]

5. Augment by using , dropping from and including and Remove all labels.
Go to Step 1.

Figure 506b shows the resulting matching

1. Label 4 with 

2. Label 7 with 2. Label 6 and 8 with 3.

3. Label 1 with 7, and 2 with 6, and 3 with 5.

4. is alternating but not augmenting.]

5. Stop. is of maximum cardinality (namely, 3). �M2

P3: 5 � 3 � 8. [P3

�.

M2 � {(1, 7), (2, 6), (3, 5)}.

(3, 5).(1, 7)M1(3, 7)P1M1

[P2P2: 1 � 7 � 3 � 8.

P1P1: 1 � 7 � 3 � 5.

�.
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SEC. 23.8 Bipartite Graphs. Assignment Problems 1005

1–7 BIPARTITE OR NOT?
If you answer is yes, find S and T:

1. 2.

3. 4.

5. 6.

7.

8. Can you obtain the answer to Prob. 3 from that to
Prob. 1?

9. Can you obtain a bipartite subgraph in Prob. 4 by
omitting two edges? Any two edges? Any two edges
without a common vertex?

10–12 MATCHING. AUGMENTING PATHS
Find an augmenting path:

10. 11. 1 2

3 4

5 6

7

1 4

2 5

3 6

1 32

6 5 4

3

2

4

5

1

3

1 2

7 8

4

5 6

1

2 3

4

5 6

2

4

1

3

1 2

3 4

21

3

12.

13–15 MAXIMUM CARDINALITY MATCHING
Using augmenting paths, find a maximum cardinality
matching:

13. In Prob. 11

14. In Prob. 10

15. In Prob. 12

16. Complete bipartite graphs. A bipartite graph
is called complete if every vertex in S is

joined to every vertex in T by an edge, and is denoted
by where and are the numbers of vertices
in S and T, respectively. How many edges does this
graph have?

17. Planar graph. A planar graph is a graph that can be
drawn on a sheet of paper so that no two edges cross.
Show that the complete graph with four vertices is
planar. The complete graph with five vertices is not
planar. Make this plausible by attempting to draw 
so that no edges cross. Interpret the result in terms of
a net of roads between five cities.

18. Bipartite graph not planar. Three factories 1,
2, 3 are each supplied underground by water, gas, and
electricity, from points A, B, C, respectively. Show that
this can be represented by (the complete bipartite
graph with S and T consisting of three
vertices each) and that eight of the nine supply lines
(edges) can be laid out without crossing. Make it
plausible that is not planar by attempting to draw
the ninth line without crossing the others.

19–25 VERTEX COLORING

19. Vertex coloring and exam scheduling. What is the
smallest number of exam periods for six subjects a, b,
c, d, e, f if some of the students simultaneously take a,
b, f, some c, d, e, some a, c, e, and some c, e? Solve
this as follows. Sketch a graph with six vertices 
and join vertices if they represent subjects simul-
taneously taken by some students. Color the vertices
so that adjacent vertices receive different colors. (Use
numbers instead of actual colors if you want.)
What is the minimum number of colors you need? For
any graph G, this minimum number is called the

1, 2, Á

a, Á , f

K3,3

G � (S, T; E )
K3,3

K3,3

K5

K5

K4

n2n1Kn1,n2
,

G � (S, T; E )

1 2

3 4

5

7

6

8

P R O B L E M  S E T  2 3 . 8
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(vertex) chromatic number Why is this the
answer to the problem? Write down a possible
schedule.

20. Scheduling and matching. Three teachers 
teach four classes for these numbers of
periods:

1 0 1 1
1 1 1 1
0 1 1 1

Show that this arrangement can be represented by a
bipartite graph G and that a teaching schedule for one
period corresponds to a matching in G. Set up a
teaching schedule with the smallest possible number of
periods.

21. How many colors do you need for vertex coloring any
tree?

22. Harbor management. How many piers does a harbor
master need for accommodating six cruise ships

with expected dates of arrival A and departure
D in July, 

respectively, if each pier can(14, 17),(16, 18),(12, 15),
(14, 17),(13, 15),(A, D) � (10, 13),

S1, Á , S6

x3

x2

x1

y4y3y2y1

y1, y2, y3, y4

x1, x2, x3

�
v(G).

1006 CHAP. 23 Graphs. Combinatorial Optimization

accommodate only one ship, arrival being at 6 am and
departures at 11 pm? Hint. Join and by an edge if
their intervals overlap. Then color vertices.

23. What would be the answer to Prob. 22 if only the five
ships had to be accommodated?

24. Four- (vertex) color theorem. The famous four-color
theorem states that one can color the vertices of any
planar graph (so that adjacent vertices get different
colors) with at most four colors. It had been conjectured
for a long time and was eventually proved in 1976 by
Appel and Haken [Illinois J. Math 21 (1977), 429–567].
Can you color the complete graph with four colors?
Does the result contradict the four-color theorem? (For
more details, see Ref. [F1] in App. 1.)

25. Find a graph, as simple as possible, that cannot be
vertex colored with three colors. Why is this of interest
in connection with Prob. 24?

26. Edge coloring. The edge chromatic number of
a graph G is the minimum number of colors needed for
coloring the edges of G so that incident edges get
different colors. Clearly, where 
is the degree of vertex u. If is bipartite,
the equality sign holds. Prove this for the complete
(cf. Sec. 23.1) bipartite graph with S and
T consisting of n vertices each.

G � (S, T, E )
Kn,n

G � (S, T; E )
d(u)�

e(G) � max d(u),

�
e(G)

K5

S1, Á , S5

SjSi

1. What is a graph, a digraph, a cycle, a tree?

2. State some typical problems that can be modeled and
solved by graphs or digraphs.

3. State from memory how graphs can be handled on
computers.

4. What is a shortest path problem? Give applications.

5. What situations can be handled in terms of the traveling
salesman problem?

6. Give typical applications involving spanning trees.

7. What are the basic ideas and concepts in handling flows?

8. What is combinatorial optimization? Which sections of
this chapter involved it? Explain details.

9. Define bipartite graphs and describe some typical
applications of them.

10. What is BFS? DFS? In what connection did these
concepts occur?

11–16 MATRICES FOR GRAPHS AND DIGRAPHS

Find the adjacency matrix of:

11. 3

4

2

1

12. 13.

14–16 Sketch the graph whose adjacency matrix is:

14. 15.

16.

17. Vertex incidence list. Make it for the graph in Prob. 15.

E0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

U

E0 1 0 1

1 0 0 1

0 0 0 1

1 1 1 0

UE0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

U

1 2

4 3

1

2

3

C H A P T E R  2 3  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S
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Summary of Chapter 23 1007

18. Find a shortest path and its length by Moore’s BFS
algorithm, assuming that all the edges have length 1.

24. Find an augmenting path,

22. Find flow augmenting paths and the maximum flow.

19. Find shortest paths by Dijkstra’s algorithm.

s
t 

Problem 18

20. Find a shortest spanning tree.

26
5

3

4

8

4

1
3

2

Problem 19

21. Company A has offices in Chicago, Los Angeles, and
New York; Company B in Boston and New York;
Company C in Chicago, Dallas, and Los Angeles.
Represent this by a bipartite graph.

81

5

7

3

3

2

4

4

5

1
2

2

Problem 20

23. Using augmenting paths, find a maximum cardinality
matching.

2 4

3 5

s t1 6

5, 3

6, 3
3, 2 1, 0

4, 2 10, 4

2, 1 3, 2
3, 1

Problem 22

1 2

3 4

5

7

6

8

Problem 25

1 2

3 5

4

Problem 24

Combinatorial optimization concerns optimization problems of a discrete or
combinatorial structure. It uses graphs and digraphs (Sec. 23.1) as basic tools.

A graph consists of a set V of vertices (often simply
denoted by and a set E of edges each of which connects
two vertices. We also write (i, j) for an edge with vertices i and j as endpoints. A
digraph directed graph) is a graph in which each edge has a direction (indicated
by an arrow). For handling graphs and digraphs in computers, one can use matrices
or lists (Sec. 23.1).

This chapter is devoted to important classes of optimization problems for graphs
and digraphs that all arise from practical applications, and corresponding algorithms,
as follows.

(�

e1, e2, Á , em,1, 2, Á , n)
v1, v2, Á , vnG � (V, E )

SUMMARY OF CHAPTER 23
Graphs. Combinatorial Optimization
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In a shortest path problem (Sec. 23.2) we determine a path of minimum length
(consisting of edges) from a vertex s to a vertex t in a graph whose edges (i, j) have
a “length” which may be an actual length or a travel time or cost or an
electrical resistance [if (i, j) is a wire in a net], and so on. Dijkstra’s algorithm
(Sec. 23.3) or, when all Moore’s algorithm (Sec. 23.2) are suitable for these
problems.

A tree is a graph that is connected and has no cycles (no closed paths). Trees are
very important in practice. A spanning tree in a graph G is a tree containing all the
vertices of G. If the edges of G have lengths, we can determine a shortest spanning
tree, for which the sum of the lengths of all its edges is minimum, by Kruskal’s
algorithm or Prim’s algorithm (Secs. 23.4, 23.5).

A network (Sec. 23.6) is a digraph in which each edge (i, j) has a capacity
maximum possible flow along (i, j)] and at one vertex, the source s, a

flow is produced that flows along the edges to a vertex t, the sink or target, where
the flow disappears. The problem is to maximize the flow, for instance, by applying
the Ford–Fulkerson algorithm (Sec. 23.7), which uses flow augmenting paths
(Sec. 23.6). Another related concept is that of a cut set, as defined in Sec. 23.6.

A bipartite graph (Sec. 23.8) is a graph whose vertex set V consists
of two parts S and T such that every edge of G has one end in S and the other in T,
so that there are no edges connecting vertices in S or vertices in T. A matching in
G is a set of edges, no two of which have an endpoint in common. The problem
then is to find a maximum cardinality matching in G, that is, a matching M that
has a maximum number of edges. For an algorithm, see Sec. 23.8.

G � (V, E )

cij � 0 [�

lij � 1,

lij � 0,

1008 CHAP. 23 Graphs. Combinatorial Optimization
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C H A P T E R  2 4 Data Analysis. Probability Theory

C H A P T E R  2 5 Mathematical Statistics

1009

P A R T  G

Probability,
Statistics

Probability theory (Chap. 24) provides models of probability distributions (theoretical
models of the observable reality involving chance effects) to be tested by statistical methods,
and it will also supply the mathematical foundation of these methods in Chap. 25.

Modern mathematical statistics (Chap. 25) has various engineering applications, for
instance, in testing materials, control of production processes, quality control of production
outputs, performance tests of systems, robotics, and automatization in general, production
planning, marketing analysis, and so on.

To this we could add a long list of fields of applications, for instance, in agriculture,
biology, computer science, demography, economics, geography, management of natural
resources, medicine, meteorology, politics, psychology, sociology, traffic control, urban
planning, etc. Although these applications are very heterogeneous, we shall see that most
statistical methods are universal in the sense that each of them can be applied in various
fields.

Additional Software for
Probability and Statistics
See also the list of software at the beginning of Part E on Numerical Analysis.
Data Desk. Data Description, Inc., Ithaca, NY. Phone 1-800-573-5121 or (607) 257-1000,
website at www.datadesk.com.
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MINITAB. Minitab, Inc., State College, PA. Phone 1-800-448-3555 or (814) 238-3280,
website at www.minitab.com.
SAS. SAS Institute, Inc., Cary, NC. Phone 1-800-727-0025 or (919) 677-8000, website
at www.sas.com.
R. website at www.r-project.org. Free software, part of the GNU/Free Software Foundation
project.
SPSS. SPSS, Inc., Chicago, IL. (part of IBM) Phone 1-800-543-2185 or (312) 651-3000,
website at www.spss.com.
STATISTICA. StatSoft, Inc., Tulsa, OK. Phone (918) 749-1119, website at
www.statsoft.com.
TIBCO Spotfire S+. TIBCO Software Inc., Palo Alto, CA; Office for this software:
Somerville, MA. Phone 1-866-240-0491 (toll-free), (617) 702-1602, website at spotfire.
tibco.com/products/s-plus/statistical-analysis-software.aspx

1010 PART G Probability, Statistics
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1011

C H A P T E R 2 4

Data Analysis. 
Probability Theory

We first show how to handle data numerically or in terms of graphs, and how to extract
information (average size, spread of data, etc.) from them. If these data are influenced by
“chance,” by factors whose effect we cannot predict exactly (e.g., weather data, stock
prices, life spans of tires, etc.), we have to rely on probability theory. This theory
originated in games of chance, such as flipping coins, rolling dice, or playing cards.
Nowadays it gives mathematical models of chance processes called random experiments
or, briefly, experiments. In such an experiment we observe a random variable X, that
is, a function whose values in a trial (a performance of an experiment) occur “by chance”
(Sec. 24.3) according to a probability distribution that gives the individual probabilities
with which possible values of X may occur in the long run. (Example: Each of the six
faces of a die should occur with the same probability, Or we may simultaneously
observe more than one random variable, for instance, height and weight of persons or
hardness and tensile strength of steel. This is discussed in Sec. 24.9, which will also give
the basis for the mathematical justification of the statistical methods in Chapter 25.

Prerequisite: Calculus.
References and Answers to Problems: App. 1 Part G, App. 2.

24.1 Data Representation. Average. Spread
Data can be represented numerically or graphically in various ways. For instance, your
daily newspaper may contain tables of stock prices and money exchange rates, curves or
bar charts illustrating economical or political developments, or pie charts showing how
your tax dollar is spent. And there are numerous other representations of data for special
purposes.

In this section we discuss the use of standard representations of data in statistics. (For
these, software packages, such as DATA DESK, R, and MINITAB, are available, and
Maple or Mathematica may also be helpful; see pp. 789 and 1009) We explain corresponding
concepts and methods in terms of typical examples.

E X A M P L E  1 Recording and Sorting

Sample values (observations, measurements) should be recorded in the order in which they occur. Sorting, that
is, ordering the sample values by size, is done as a first step of investigating properties of the sample and graphing
it. Sorting is a standard process on the computer; see Ref. [E35], listed in App. 1.

1>6.)
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Super alloys is a collective name for alloys used in jet engines and rocket motors, requiring high temperature
(typically F), high strength, and excellent resistance to oxidation. Thirty specimens of Hastelloy C (nickel-
based steel, investment cast) had the tensile strength (in recorded in the order obtained and
rounded to integer values,

(1)

Sorting gives

(2)

Graphic Representation of Data
We shall now discuss standard graphic representations used in statistics for obtaining
information on properties of data.

E X A M P L E  2 Stem-and-Leaf Plot (Fig. 507)

This is one of the simplest but most useful representations of data. For (1) it is shown in Fig. 507. The numbers
in (1) range from 78 to 99; see (2). We divide these numbers into 5 groups, 75–79, 80–84, 85–89, 90–94,
95–99. The integers in the tens position of the groups are 7, 8, 8, 9, 9. These form the stem in Fig. 507. The
first leaf is 789, representing 77, 78, 79. The second leaf is 1123344, representing 81, 81, 82, 83, 83, 84, 84.
And so on.

The number of times a value occurs is called its absolute frequency. Thus 78 has absolute frequency 1, the
value 89 has absolute frequency 5, etc. The column to the extreme left in Fig. 507 shows the cumulative absolute
frequencies, that is, the sum of the absolute frequencies of the values up to the line of the leaf. Thus, the number
10 in the second line on the left shows that (1) has 10 values up to and including 84. The number 23 in the next
line shows that there are 23 values not exceeding 89, etc. Dividing the cumulative absolute frequencies by

in Fig. 507) gives the cumulative relative frequencies 0.1, 0.33, 0.76, 0.93, 1.00.

E X A M P L E  3 Histogram (Fig. 508)

For large sets of data, histograms are better in displaying the distribution of data than stem-and-leaf plots. The
principle is explained in Fig. 508. (An application to a larger data set is shown in Sec. 25.7). The bases of the
rectangles in Fig. 508 are the x-intervals (known as class intervals) 74.5–79.5, 79.5–84.5, 84.5–89.5, 89.5–94.5,
94.5–99.5, whose midpoints (known as class marks) are respectively. The height of a
rectangle with class mark x is the relative class frequency defined as the number of data values in that
class interval, divided by in our case). Hence the areas of the rectangles are proportional to these
relative frequencies, 0.10, 0.23, 0.43, 0.17, 0.07, so that histograms give a good impression of the distribution
of data. �

n (� 30
frel(x),

x � 77, 82, 87, 92, 97,

�n (� 30

�
77 78 79 81 81 82 83 83 84 84 86 86 87 87 87

88 88 88 89 89 89 89 89 90 90 91 91 92 93 99

89 77 88 91 88 93 99 79 87 84 86 82 88 89 78

90 91 81 90 83 83 92 87 89 86 89 81 87 84 89

1000 lb>sq in.),
1800°
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3
10
23
29
30

7
8
8
9
9

789
1123344
6677788899999
001123
9

Leaf unit = 1.0

frel(x)

0.5

x

0.4

0.3

0.2

0.1

0
77 82 87 92 97

Fig. 507. Stem-and-leaf plot 
of the data in Example 1

Fig. 508. Histogram of the data in 
Example 1 (grouped as in Fig. 507)
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E X A M P L E  4 Boxplot. Median. Interquartile Range. Outlier

A boxplot of a set of data illustrates the average size and the spread of the values, in many cases the two most
important quantities characterizing the set, as follows.

The average size is measured by the median, or middle quartile, If the number n of values of the set is odd,
then is the middlemost of the values when ordered as in (2). If n is even, then is the average of the two
middlemost values of the ordered set. In (2) we have and thus 
(In general, will be a fraction if n is even.)

The spread of values can be measured by the range the largest value minus the smallest
one.

Better information on the spread gives the interquartile range Here is the middlemost
value (or the average of the two middlemost values) in the data above the median; and is the middlemost
value (or the average of the two middlemost values) in the data below the median. Hence in (2) we have

and 
The box in Fig. 509 extends vertically from to it has height The vertical lines below and

above the box extend from to so that they show R � 22.xmax � 99,xmin � 77
IQR � 6.qU;qL

IQR � 89 � 83 � 6.qU � x23 � 89, qL � x8 � 83,

qL

qUIQR � qU � qL.

R � xmax � xmin,
qM

87.5.qM � 1
2 (x15 � x16) � 1

2 (87 � 88) �n � 30
qMqM

qM.
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100

95

90

85

80

75

Data set (1)

qU

qM

qL

Fig. 509. Boxplot of the data set (1)

The line above the box is suspiciously long. This suggests the concept of an outlier, a value that is more
than 1.5 times the IQR away from either end of the box; here 1.5 is purely conventional. An outlier indicates
that something might have gone wrong in the data collection. In (2) we have and we regard
99 as an outlier.

Mean. Standard Deviation. Variance.
Empirical Rule
Medians and quartiles are easily obtained by ordering and counting, practically without
calculation. But they do not give full information on data: you can change data values to
some extent without changing the median. Similarly for the quartiles.

The average size of the data values can be measured in a more refined way by the
mean

(3) x �
1
n   a

n

j�1

 x j �
1
n (x1 � x2 � Á � xn).

�
89 � 1.5 IQR � 98,
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This is the arithmetic mean of the data values, obtained by taking their sum and dividing
by the data size n. Thus in (1),

Every data value contributes, and changing one of them will change the mean.
Similarly, the spread (variability) of the data values can be measured in a more refined

way by the standard deviation s or by its square, the variance

(4)

Thus, to obtain the variance of the data, take the difference of each data value from
the mean, square it, take the sum of these n squares, and divide it by (not n, as we
motivate in Sec. 25.2). To get the standard deviation s, take the square root of 

For example, using we get for the data (1) the variance

Hence the standard deviation is Note that the standard deviation
has the same dimension as the data values see at the beginning), which is an
advantage. On the other hand, the variance is preferable to the standard deviation in
developing statistical methods, as we shall see in Chap. 25.

CAUTION! Your CAS (Maple, for instance) may use instead of in (4),
but the latter is better when n is small (see Sec. 25.2).

Mean and standard deviation, introduced to give center and spread, actually give much
more information according to this rule.

Empirical Rule. For any mound-shaped, nearly symmetric distribution of data the intervals

contain about

respectively, of the data points.

E X A M P L E  5 Empirical Rule and Outliers. z-Score

For (1), with and the three intervals in the Rule are 
and contain (22 values remain, 5 are too small, and 5 too large), (28 values,

1 too small, and 1 too large), and respectively.
If we reduce the sample by omitting the outlier 99, mean and standard deviation reduce to 

approximately, and the percentage values become (5 and 5 values outside), (1 and 1 outside), and 
Finally, the relative position of a value x in a set of mean and standard deviation s can be measured by the

z-score

This is the distance of x from the mean measured in multiples of s. For instance, 
This is negative because 83 lies below the mean. By the Empirical Rule, the extreme z-values

are about and 3. ��3
4.8 � �0.77.

(83 � 86.7)>z(83) �x

z(s) �
x � x

s
 .

x
100%.93%67%

sred � 4.3,xred � 86.2,
100%,

93%73%72.3 � x � 101.1
81.9 � x � 91.5, 77.1 � x � 96.3,s � 4.8,x � 86.7

68%, 95%, 99.7%,x � s, x � 2s, x � 3s

1>(n � 1)1>n

(kg>mm2,
s � 12006>87 � 4.802.

s2 � 1
29 [(89 � 260

3  )2 � (77 � 260
3  )2 � Á � (89 � 260

3  )2] � 2006
87 � 23.06

x � 260>3,
s2.

n � 1
x j � x

s2 �
1

n � 1
 a

n

j�1

 (x j � x)2 �
1

n � 1
 [(x1 � x)2 � Á � (xn � x)2].

x � 1
30 (89 � 77 � Á � 89) � 260

3 � 86.7.
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SEC. 24.2 Experiments, Outcomes, Events 1015

1–10 DATA REPRESENTATIONS
Represent the data by a stem-and-leaf plot, a histogram, and
a boxplot:

1. Length of nails [mm]

2. Phone calls per minute in an office between A.M.
and A.M.

3. Systolic blood pressure of 15 female patients of ages
20–22

4. Iron content of 15 specimens of hermatite 

5. Weight of filled bags [g] in an automatic filling

6. Gasoline consumption [miles per gallon, rounded] of
six cars of the same model under similar conditions

7. Release time [sec] of a relay

1.3 1.2 1.4 1.5 1.3 1.3 1.4 1.1 1.5 1.4
1.6 1.3 1.5 1.1 1.4 1.2 1.3 1.5 1.4 1.4

15.0 15.5 14.5 15.0 15.5 15.0

203 199 198 201 200 201 201

72.8 70.4 71.2 69.2 70.3 68.9 71.1 69.8
71.5 69.7 70.5 71.3 69.1 70.9 70.6

(Fe2O3)[%]

156 158 154 133 141 130 144 137
151 146 156 138 138 149 139

6 6 4 2 1 7 0 4 6 7

9:10
9:00

19 21 19 20 19 20 21 20

8. Foundrax test of Brinell hardness (2.5 mm steel ball,
62.5 kg load, 30 sec) of 20 copper plates (values in

)

9. Efficiency of seven Voith Francis turbines of
runner diameter 2.3 m under a head range of 185 m

10.

11–16 AVERAGE AND SPREAD

Find the mean and compare it with the median. Find the
standard deviation and compare it with the interquartile range.

11. For the data in Prob. 1

12. For the phone call data in Prob. 2

13. For the medical data in Prob. 3

14. For the iron contents in Prob. 4

15. For the release times in Prob. 7

16. For the Brinell hardness data in Prob. 8

17. Outlier, reduced data. Calculate s for the data
Then reduce the data by deleting

the outlier and calculate s. Comment.

18. Outlier, reduction. Do the same tasks as in Prob. 17
for the hardness data in Prob. 8.

19. Construct the simplest possible data with but
What is the point of this problem?

20. Mean. Prove that must always lie between the
smallest and the largest data values.

x

qM � 0.
x � 100

4 1 3 10 2.

�0.51 0.12 �0.47 0.95 0.25 �0.18 �0.54

91.8 89.1 89.9 92.5 90.7 91.2 91.0

[%]

86 86 87 89 76 85 82 86 87 85
90 88 89 90 88 80 84 89 90 89

kg>mm2

P R O B L E M  S E T  2 4 . 1

24.2 Experiments, Outcomes, Events
We now turn to probability theory. This theory has the purpose of providing mathematical
models of situations affected or even governed by “chance effects,” for instance, in weather
forecasting, life insurance, quality of technical products (computers, batteries, steel sheets,
etc.), traffic problems, and, of course, games of chance with cards or dice. And the accuracy
of these models can be tested by suitable observations or experiments—this is a main
purpose of statistics to be explained in Chap. 25.

We begin by defining some standard terms. An experiment is a process of measurement
or observation, in a laboratory, in a factory, on the street, in nature, or wherever; so
“experiment” is used in a rather general sense. Our interest is in experiments that involve
randomness, chance effects, so that we cannot predict a result exactly. A trial is a single
performance of an experiment. Its result is called an outcome or a sample point. n trials
then give a sample of size n consisting of n sample points. The sample space S of an
experiment is the set of all possible outcomes.
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Random Experiments. Sample Spaces

(1) Inspecting a lightbulb. {Defective, Nondefective}.

(2) Rolling a die. 

(3) Measuring tensile strength of wire. S the numbers in some interval.

(4) Measuring copper content of brass. say.

(5) Counting daily traffic accidents in New York. S the integers in some interval.

(6) Asking for opinion about a new car model. {Like, Dislike, Undecided}.

The subsets of S are called events and the outcomes simple events.

E X A M P L E  7 Events

In (2), events are (“Odd number”), (“Even number”), etc. Simple
events are 

If, in a trial, an outcome a happens and (a is an element of A), we say that A
happens. For instance, if a die turns up a 3, the event A: Odd number happens. Similarly,
if C in Example 7 happens (meaning 5 or 6 turns up), then, say, happens.
Also note that S happens in each trial, meaning that some event of S always happens. All
this is quite natural.

Unions, Intersections, Complements of Events
In connection with basic probability laws we shall need the following concepts and facts
about events (subsets) of a given sample space S.

The union of A and B consists of all points in A or B or both.

The intersection of A and B consists of all points that are in both A and B.

If A and B have no points in common, we write

where is the empty set (set with no elements) and we call A and B mutually exclusive
(or disjoint) because, in a trial, the occurrence of A excludes that of B (and conversely)—
if your die turns up an odd number, it cannot turn up an even number in the same trial.
Similarly, a coin cannot turn up Head and Tail at the same time.

Complement of A. This is the set of all the points of S not in A. Thus,

In Example 7 we have hence 
Another notation for the complement of A is (instead of but we shall not

use this because in set theory is used to denote the closure of A (not needed in
our work).

Unions and intersections of more events are defined similarly. The union

�
m

j�1
 Aj � A1 � A2 � Á � Am

A
Ac),A

A � Ac � {1, 2, 3, 4, 5, 6} � S.Ac � B,

A � Ac � �,  A � Ac � S.

Ac

�

A � B � �

A � B

A � B

A, B, C, Á

D � {4, 5, 6}

a � A

�{1}, {2}, Á , {6}.
C � {5, 6}.B � {2, 4, 6}A � {1, 3, 5}

�S �

S: 50% to 90%,

S � {1, 2, 3, 4, 5, 6}.

S �

1016 CHAP. 24 Data Analysis. Probability Theory

E X A M P L E S  1 – 6
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1JOHN VENN (1834–1923), English mathematician.

S S

A

B

A

Union A ∪ B Intersection A ∩ B

B

S

4

13

5

6
2

A

C

Fig. 510. Venn diagrams showing two events A and B in a sample space S
and their union A � B (colored) and intersection A � B (colored)

Fig. 511. Venn diagram for the experiment of rolling a die, showing S, 
A � {1, 3, 5}, C � {5, 6}, A � C � {1, 3, 5, 6}, A � C � {5}

1–12 SAMPLE SPACES, EVENTS

Graph a sample space for the experiments:
1. Drawing 3 screws from a lot of right-handed and left-

handed screws
2. Tossing 2 coins

3. Rolling 2 dice

4. Rolling a die until the first Six appears

5. Tossing a coin until the first Head appears

6. Recording the lifetime of each of 3 lightbulbs

P R O B L E M  S E T  2 4 . 2

of events consists of all points that are in at least one Similarly for the
union of infinitely many subsets of an infinite sample space
S (that is, S consists of infinitely many points). The intersection

of consists of the points of S that are in each of these events. Similarly for
the intersection of infinitely many subsets of S.

Working with events can be illustrated and facilitated by Venn diagrams1 for showing
unions, intersections, and complements, as in Figs. 510 and 511, which are typical
examples that give the idea.

E X A M P L E  8 Unions and Intersections of 3 Events

In rolling a die, consider the events

Then Can you sketch a Venn diagram
of this? Furthermore, hence (why?). �A � B � C � SA � B � S,

A � B � {4, 5}, B � C � {2, 4}, C � A � {4, 6}, A � B � C � {4}.

A:  Number greater than 3,  B:  Number less than 6,  C:  Even number.

A1 � A2 � Á

A1, Á , Am

�
m

j�1 
Aj � A1 � A2 � Á � Am

A1, A2, ÁA1 � A2 � Á

Aj.A1, Á , Am
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1018 CHAP. 24 Data Analysis. Probability Theory

7. Recording the daily maximum temperature X and the
daily maximum air pressure Y at Times Square in New
York

8. Choosing a committee of 2 from a group of 5 people

9. Drawing gaskets from a lot of 10, containing one
defective D, unitil D is drawn, one at a time and
assuming sampling without replacement, that is,
gaskets drawn are not returned to the lot. (More about
this in Sec. 24.6)

10. In rolling 3 dice, are the events A: Sum divisible by 3
and B: Sum divisible by 5 mutually exclusive?

11. Answer the questions in Prob. 10 for rolling 2 dice.

12. List all 8 subsets of the sample space 

13. In Prob. 3 circle and mark the events A: Faces are equal,
B: Sum of faces less than 5,

14. In drawing 2 screws from a lot of right-handed and
left-handed screws, let A, B, C, D mean at a least
1 right-handed, at least 1 left-handed, 2 right-handed,
2 left-handed, respectively. Are A and B mutually
exclusive? C and D?

15–20 VENN DIAGRAMS

15. In connection with a trip to Europe by some students,
consider the events P that they see Paris, G that they
have a good time, and M that they run out of money,
and describe in words the events in the
diagram.

1, Á , 7

A � B, A � B, Ac, Bc.

S � {a, b, c}.

16. Show that, by the definition of complement, for any
subset A of a sample space S.

17. Using a Venn diagram, show that if and only if

18. Using a Venn diagram, show that if and only if

19. (De Morgan’s laws) Using Venn diagrams, graph and
check De Morgan’s laws

20. Using Venn diagrams, graph and check the rules

 A � (B � C) � (A � B) � (A � C).

 A � (B � C) � (A � B) � (A � C)

 (A � B)c � Ac � Bc.

 (A � B)c � Ac � Bc

A � B � A.
A � B

A � B � B.
A � B

A � Ac � S,  A � Ac � �.

(Ac)c � A,  Sc � �,  �c � S,

24.3 Probability
The “probability” of an event A in an experiment is supposed to measure how frequently
A is about to occur if we make many trials. If we flip a coin, then heads H and tails T
will appear about equally often—we say that H and T are “equally likely.” Similarly, for
a regularly shaped die of homogeneous material (“fair die”) each of the six outcomes

will be equally likely. These are examples of experiments in which the sample
space S consists of finitely many outcomes (points) that for reasons of some symmetry
can be regarded as equally likely. This suggests the following definition.

D E F I N I T I O N  1 First Definition of Probability

If the sample space S of an experiment consists of finitely many outcomes (points)
that are equally likely, then the probability of an event A is

(1) P(A) �
Number of points in A

Number of points in S
  .

P(A)

1, Á , 6

M P

G

3

7

6

2

15

4

Problem 15
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SEC. 24.3 Probability 1019

From this definition it follows immediately that, in particular,

(2)

E X A M P L E  1 Fair Die

In rolling a fair die once, what is the probability of A of obtaining a 5 or a 6? The probability of B: “Even
number”?

Solution. The six outcomes are equally likely, so that each has probability Thus 
because has 2 points, and 

Definition 1 takes care of many games as well as some practical applications, as we shall
see, but certainly not of all experiments, simply because in many problems we do not
have finitely many equally likely outcomes. To arrive at a more general definition of
probability, we regard probability as the counterpart of relative frequency. Recall from
Sec. 24.1 that the absolute frequency of an event A in n trials is the number of times
A occurs, and the relative frequency of A in these trials is thus

(3)

Now if A did not occur, then If A always occurred, then These are
the extreme cases. Division by n gives

In particular, for we have because S always occurs (meaning that
some event always occurs; if necessary, see Sec. 24.2, after Example 7). Division
by n gives

Finally, if A and B are mutually exclusive, they cannot occur together. Hence the absolute
frequency of their union must equal the sum of the absolute frequencies of A and
B. Division by n gives the same relation for the relative frequencies,

We are now ready to extend the definition of probability to experiments in which equally
likely outcomes are not available. Of course, the extended definition should include
Definition 1. Since probabilities are supposed to be the theoretical counterpart of relative
frequencies, we choose the properties in as axioms. (Historically, such a
choice is the result of a long process of gaining experience on what might be best and
most practical.)

(4*), (5*), (6*)

(A � B � �).frel(A � B) � frel(A) � frel(B)(6*)

A � B

frel(S) � 1.(5*)

f (S) � nA � S

0 � frel(A) � 1.(4*)

f (A) � n.f (A) � 0.

frel(A) �
f (A)

n �
Number of times A occurs

Number of trials  .

f (A)>n;
f (A)

�P(B) � 3>6 � 1>2.A � {5, 6}
P(A) � 2>6 � 1>31>6.

P(A)

P(S) � 1.
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D E F I N I T I O N  2 General Definition of Probability

Given a sample space S, with each event A of S (subset of S) there is associated a
number called the probability of A, such that the following axioms of
probability are satisfied.

1. For every A in S,

(4)

2. The entire sample space S has the probability

(5)

3. For mutually exclusive events A and see Sec. 24.2),

(6)

If S is infinite (has infinitely many points), Axiom 3 has to be replaced by
For mutually exclusive events 

In the infinite case the subsets of S on which is defined are restricted to form a
so-called -algebra, as explained in Ref. [GenRef6] (not [G6]!) in App. 1. This is of no
practical consequence to us.

Basic Theorems of Probability
We shall see that the axioms of probability will enable us to build up probability theory
and its application to statistics. We begin with three basic theorems. The first of them
is useful if we can get the probability of the complement more easily than 
itself.

T H E O R E M  1 Complementation Rule

For an event A and its complement in a sample space S,

(7)

P R O O F By the definition of complement (Sec. 24.2), we have and 
Hence by Axioms 2 and 3,

thus �P(Ac) � 1 � P(A).1 � P(S) � P(A) � P(Ac),

A � Ac � �.S � A � Ac

P(Ac) � 1 � P(A).

Ac

P(A)Ac

s

P(A)

P(A1 � A2 � Á ) � P(A1) � P(A2) � Á .(6r)

A1, A2, Á ,3r.

(A � B � �).P(A � B) � P(A) � P(B)

B (A � B � �;

P(S) � 1.

0 � P(A) � 1.

P(A),

1020 CHAP. 24 Data Analysis. Probability Theory
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E X A M P L E  2 Coin Tossing

Five coins are tossed simultaneously. Find the probability of the event A: At least one head turns up. Assume
that the coins are fair.

Solution. Since each coin can turn up heads or tails, the sample space consists of outcomes. Since
the coins are fair, we may assign the same probability to each outcome. Then the event (No heads
turn up) consists of only 1 outcome. Hence and the answer is 

The next theorem is a simple extension of Axiom 3, which you can readily prove by
induction.

T H E O R E M  2 Addition Rule for Mutually Exclusive Events

For mutually exclusive events in a sample space S,

(8)

E X A M P L E  3 Mutually Exclusive Events

If the probability that on any workday a garage will get 10–20, 21–30, 31–40, over 40 cars to service is 0.20,
0.35, 0.25, 0.12, respectively, what is the probability that on a given workday the garage gets at least 21 cars
to service?

Solution. Since these are mutually exclusive events, Theorem 2 gives the answer 
Check this by the complementation rule.

In many cases, events will not be mutually exclusive. Then we have

T H E O R E M  3 Addition Rule for Arbitrary Events

For events A and B in a sample space,

(9)

P R O O F C, D, E in Fig. 512 make up and are mutually exclusive (disjoint). Hence by
Theorem 2,

This gives (9) because on the right by Axiom 3 and disjointness;
and also by Axiom 3 and disjointness. �P(E) � P(B) � P(D) � P(B) � P(A � B),

P(C) � P(D) � P(A)

P(A � B) � P(C) � P(D) � P(E).

A � B

P(A � B) � P(A) � P(B) � P(A � B).

�
0.35 � 0.25 � 0.12 � 0.72.

P(A1 � A2 � Á Am) � P(A1) � P(A2) � Á � P(Am).

A1, Á , Am

�P(A) � 1 � P(Ac) � 31>32.P(Ac) � 1>32,
Ac(1>32)

25 � 32

SEC. 24.3 Probability 1021
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Fig. 512. Proof of Theorem 3
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Note that for mutually exclusive events A and B we have by definition and,
by comparing (9) and (6),

(10)

(Can you also prove this by (5) and (7)?)

E X A M P L E  4 Union of Arbitrary Events

In tossing a fair die, what is the probability of getting an odd number or a number less than 4?

Solution. Let A be the event “Odd number” and B the event “Number less than 4.” Then Theorem 3 gives
the answer

because “Odd number less than 4”

Conditional Probability. Independent Events
Often it is required to find the probability of an event B under the condition that an event
A occurs. This probability is called the conditional probability of B given A and is denoted
by In this case A serves as a new (reduced) sample space, and that probability is
the fraction of which corresponds to Thus

(11)

Similarly, the conditional probability of A given B is

(12)

Solving (11) and (12) for we obtain

T H E O R E M  4 Multiplication Rule

If A and B are events in a sample space S and then

(13)

E X A M P L E  5 Multiplication Rule

In producing screws, let A mean “screw too slim” and B “screw too short.” Let and let the conditional
probability that a slim screw is also too short be What is the probability that a screw that we pick
randomly from the lot produced will be both too slim and too short?

Solution. by Theorem 4.

Independent Events. If events A and B are such that

(14) P(A � B) � P(A)P(B),

�P(A � B) � P(A)P(B ƒ A) � 0.1 � 0.2 � 0.02 � 2%,

P(B ƒ A) � 0.2.
P(A) � 0.1

P(A � B) � P(A)P(B ƒ A) � P(B)P(A ƒ B).

P(A) � 0, P(B) � 0,

P(A � B),

[P(B) � 0].P(A ƒ B) �
P(A � B)

P(B)

[P(A) � 0].P(B ƒ A) �
P(A � B)

P(A)

A � B.P(A)
P(B ƒ A).

�� {1, 3}.A � B �

P(A � B) � 3
6 � 3

6 � 2
6 � 2

3 

P(�) � 0.

A � B � �

1022 CHAP. 24 Data Analysis. Probability Theory

c24.qxd  11/3/10  5:12 PM  Page 1022



they are called independent events. Assuming we see from (11)–(13)
that in this case

This means that the probability of A does not depend on the occurrence or nonoccurrence
of B, and conversely. This justifies the term “independent.”

Independence of m Events. Similarly, m events are called independent if

(15a)

as well as for every k different events 

(15b)

where 

Accordingly, three events A, B, C are independent if and only if

(16)

Sampling. Our next example has to do with randomly drawing objects, one at a time,
from a given set of objects. This is called sampling from a population, and there are
two ways of sampling, as follows.

1. In sampling with replacement, the object that was drawn at random is placed back to
the given set and the set is mixed thoroughly. Then we draw the next object at random.

2. In sampling without replacement the object that was drawn is put aside.

E X A M P L E  6 Sampling With and Without Replacement

A box contains 10 screws, three of which are defective. Two screws are drawn at random. Find the probability
that neither of the two screws is defective.

Solution. We consider the events

A: First drawn screw nondefective.

B: Second drawn screw nondefective.

Clearly, because 7 of the 10 screws are nondefective and we sample at random, so that each screw
has the same probability of being picked. If we sample with replacement, the situation before the second
drawing is the same as at the beginning, and The events are independent, and the answer is

If we sample without replacement, then as before. If A has occurred, then there are 9 screws left
in the box, 3 of which are defective. Thus and Theorem 4 yields the answer

Is it intuitively clear that this value must be smaller than the preceding one? �

P(A � B) � 7
10 � 23 � 47%.

P(B ƒ A) � 6
9 � 2

3 ,
P(A) � 7

10 ,

P(A � B) � P(A)P(B) � 0.7 � 0.7 � 0.49 � 49%.

P(B) � 7
10 .

( 1
10 )

P(A) � 7
10 

 P(A � B � C ) � P(A)P(B)P(C).

 P(C � A) � P(C )P(A),

 P(B � C ) � P(B)P(C),

 P(A � B) � P(A)P(B),

k � 2, 3, Á , m � 1.

P(Aj1
� Aj2

� Á � Ajk
) � P(Aj1

)P(Aj2
) Á P(Ajk

)

Aj1
, Aj2

, Á , Ajk
.

P(A1 � Á � Am) � P(A1) Á P(Am)

A1, Á , Am

P(A ƒ B) � P(A),  P(B ƒ A) � P(B).

P(A) � 0, P(B) � 0,
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24.4 Permutations and Combinations
Permutations and combinations help in finding probabilities by systematically
counting the number a of points of which an event A consists; here, k is the number of
points of the sample space S. The practical difficulty is that a may often be surprisingly
large, so that actual counting becomes hopeless. For example, if in assembling some
instrument you need 10 different screws in a certain order and you want to draw them

P(A) � a>k

1024 CHAP. 24 Data Analysis. Probability Theory

1. In rolling 3 fair dice, what is the probability of obtaining
a sum not greater than 16?

2. In rolling 2 fair dice, what is the probability of a sum
greater than 3 but not exceeding 6?

3. Three screws are drawn at random from a lot of 100
screws, 10 of which are defective. Find the probability
of the event that all 3 screws drawn are nondefective,
assuming that we draw (a) with replacement, (b) without
replacement.

4. In Prob. 3 find the probability of E: At least 1 defective
(i) directly, (ii) by using complements; in both cases
(a) and (b).

5. If a box contains 10 left-handed and 20 right-handed
screws, what is the probability of obtaining at least
one right-handed screw in drawing 2 screws with
replacement?

6. Will the probability in Prob. 5 increase or decrease if we
draw without replacement. First guess, then calculate.

7. Under what conditions will it make practically no
difference whether we sample with or without
replacement?

8. If a certain kind of tire has a life exceeding 40,000 miles
with probability 0.90, what is the probability that a set
of these tires on a car will last longer than 40,000 miles?

9. If we inspect photocopy paper by randomly drawing 5
sheets without replacement from every pack of 500,
what is the probability of getting 5 clean sheets although

of the sheets contain spots?

10. Suppose that we draw cards repeatedly and with
replacement from a file of 100 cards, 50 of which refer
to male and 50 to female persons. What is the
probability of obtaining the second “female” card before
the third “male” card?

11. A batch of 200 iron rods consists of 50 oversized rods,
50 undersized rods, and 100 rods of the desired length.
If two rods are drawn at random without replacement,
what is the probability of obtaining (a) two rods of the

0.4%

desired length, (b) exactly one of the desired length,
(c) none of the desired length?

12. If a circuit contains four automatic switches and we
want that, with a probability of during a given
time interval the switches to be all working, what
probability of failure per time interval can we admit
for a single switch?

13. A pressure control apparatus contains 3 electronic
tubes. The apparatus will not work unless all tubes are
operative. If the probability of failure of each tube
during some interval of time is 0.04, what is the
corresponding probability of failure of the apparatus?

14. Suppose that in a production of spark plugs the fraction
of defective plugs has been constant at over a long
time and that this process is controlled every half hour
by drawing and inspecting two just produced. Find the
probabilities of getting (a) no defectives, (b) 1
defective, (c) 2 defectives. What is the sum of these
probabilities?

15. What gives the greater probability of hitting at least
once: (a) hitting with probability and firing 1 shot,
(b) hitting with probability and firing 2 shots,
(c) hitting with probability and firing 4 shots? First
guess.

16. You may wonder whether in (16) the last relation
follows from the others, but the answer is no. To see
this, imagine that a chip is drawn from a box containing
4 chips numbered 000, 011, 101, 110, and let A, B, C
be the events that the first, second, and third digit,
respectively, on the drawn chip is 1. Show that then
the first three formulas in (16) hold but the last one
does not hold.

17. Show that if B is a subset of A, then 

18. Extending Theorem 4, show that 

19. Make up an example similar to Prob. 16, for instance,
in terms of divisibility of numbers.

P(A)P(B ƒ A)P(C ƒ A � B).
P(A � B � C ) �

P(B) � P(A).

1>8
1>4

1>2

2%

99%,

P R O B L E M  S E T  2 4 . 3
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randomly from a box (which contains nothing else) the probability of obtaining them in
the required order is only because there are

orders in which they can be drawn. Similarly, in many other situations the numbers of
orders, arrangements, etc. are often incredibly large. (If you are unimpressed, take 20
screws—how much bigger will the number be?)

Permutations
A permutation of given things (elements or objects) is an arrangement of these things in
a row in some order. For example, for three letters a, b, c there are 
permutations: abc, acb, bac, bca, cab, cba. This illustrates (a) in the following theorem.

T H E O R E M  1 Permutations

(a) Different things. The number of permutations of n different things taken
all at a time is

(1) (read “n factorial ”).

(b) Classes of equal things. If n given things can be divided into c classes of
alike things differing from class to class, then the number of permutations of
these things taken all at a time is

(2)

Where is the number of things in the jth class.

P R O O F (a) There are n choices for filling the first place in the row. Then things are still
available for filling the second place, etc.

(b) alike things in class 1 make permutations collapse into a single permutation
(those in which class 1 things occupy the same positions), etc., so that (2) follows
from (1).

E X A M P L E  1 Illustration of Theorem 1(b)

If a box contains 6 red and 4 blue balls, the probability of drawing first the red and then the blue balls is

A permutation of n things taken k at a time is a permutation containing only k of the
n given things. Two such permutations consisting of the same k elements, in a different
order, are different, by definition. For example, there are 6 different permutations of the
three letters a, b, c, taken two letters at a time, ab, ac, bc, ba, ca, cb.

A permutation of n things taken k at a time with repetitions is an arrangement obtained
by putting any given thing in the first position, any given thing, including a repetition of the
one just used, in the second, and continuing until k positions are filled. For example, there

�P � 6!4!>10! � 1>210 � 0.5%.

�

n1

n1!n1

n � 1

n j

(n1 � n2 � Á � nc � n)
n!

n1!n2! Á nc!

n! � 1 � 2 � 3 Á  n

3! � 1 � 2 � 3 � 6

10! � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9 � 10 � 3,628,800

1>3,628,800
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are different such permutations of a, b, c taken 2 letters at a time, namely, the
preceding 6 permutations and aa, bb, cc. You may prove (see Team Project 14):

T H E O R E M  2 Permutations

The number of different permutations of n different things taken k at a time without
repetitions is

(3a)

and with repetitions is

(3b)

E X A M P L E  2 Illustration of Theorem 2

In an encrypted message the letters are arranged in groups of five letters, called words. From (3b) we see that
the number of different such words is

From (3a) it follows that the number of different such words containing each letter no more than once is

Combinations
In a permutation, the order of the selected things is essential. In contrast, a combination
of given things means any selection of one or more things without regard to order. There
are two kinds of combinations, as follows.

The number of combinations of n different things, taken k at a time, without
repetitions is the number of sets that can be made up from the n given things, each set
containing k different things and no two sets containing exactly the same k things.

The number of combinations of n different things, taken k at a time, with repetitions
is the number of sets that can be made up of k things chosen from the given n things,
each being used as often as desired.

For example, there are three combinations of the three letters a, b, c, taken two letters
at a time, without repetitions, namely, ab, ac, bc, and six such combinations with
repetitions, namely, ab, ac, bc, aa, bb, cc.

T H E O R E M  3 Combinations

The number of different combinations of n different things taken, k at a time, without
repetitions, is

(4a)

and the number of those combinations with repetitions is

(4b) an � k � 1

k
b .

an
k
b �

n!
k!(n � k)!

�
n(n � 1) Á (n � k � 1)

1 � 2 Á k
 ,

�26!>(26 � 5)! � 26 � 25 � 24 � 23 � 22 � 7,893,600.

265 � 11,881,376.

nk.

n(n � 1)(n � 2) Á (n � k � 1) �
n!

(n � k)! 

32 � 9
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P R O O F The statement involving (4a) follows from the first part of Theorem 2 by noting that there
are permutations of k things from the given n things that differ by the order of the
elements (see Theorem 1), but there is only a single combination of those k things of the
type characterized in the first statement of Theorem 3. The last statement of Theorem 3
can be proved by induction (see Team Project 14).

E X A M P L E  3 Illustration of Theorem 3

The number of samples of five lightbulbs that can be selected from a lot of 500 bulbs is [see (4a)]

Factorial Function
In (1)–(4) the factorial function is basic. By definition,

(5)

Values may be computed recursively from given values by

(6)

For large n the function is very large (see Table A3 in App. 5). A convenient approximation
for large n is the Stirling formula2

(7)

where is read “asymptotically equal” and means that the ratio of the two sides of (7)
approaches 1 as n approaches infinity.

E X A M P L E  4 Stirling Formula

n! By (7) Exact Value Relative Error

4! 23.5 24 2.1%
10! 3,598,696 3,628,800 0.8%
20! 2.42279 � 1018 2,432,902,008,176,640,000 0.4%

Binomial Coefficients
The binomial coefficients are defined by the formula

(8) (k 	 0, integer).aa
k
b �

a(a � 1)(a � 2) Á (a � k � 1)

k!
 

�

�

(e � 2.718 Á )n! � 12pn an
e  b

n

(n � 1)! � (n � 1)n!.

0! � 1.

�a500

5
b �

500!

5!495!
�

500 � 499 � 498 � 497 � 496

1 � 2 � 3 � 4 � 5
� 255,244,687,600.

�

k!
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Note the large numbers in the answers to some of these
problems, which would make counting cases hopeless!

1. In how many ways can a company assign 10 drivers to
n buses, one driver to each bus and conversely?

2. List (a) all permutations, (b) all combinations without
repetitions, (c) all combinations with repetitions, of 5
letters a, e, i, o, u taken 2 at a time.

3. If a box contains 4 rubber gaskets and 2 plastic gaskets,
what is the probability of drawing (a) first the plastic
and then the rubber gaskets, (b) first the rubber and
then the plastic ones? Do this by using a theorem and
checking it by multiplying probabilities.

4. An urn contains 2 green, 3 yellow, and 5 red balls. We
draw 1 ball at random and put it aside. Then we draw
the next ball, and so on. Find the probability of drawing

at first the 2 green balls, then the 3 yellow ones, and
finally the red ones.

5. In how many different ways can we select a committee
consisting of 3 engineers, 2 physicists, and 2 computer
scientists from 10 engineers, 5 physicists, and 6
computer scientists? First guess.

6. How many different samples of 4 objects can we draw
from a lot of 50?

7. Of a lot of 10 items, 2 are defective. (a) Find the
number of different samples of 4. Find the number of
samples of 4 containing (b) no defectives, (c) 1
defective, (d) 2 defectives.

8. Determine the number of different bridge hands. (A
bridge hand consists of 13 cards selected from a full
deck of 52 cards.)

P R O B L E M  S E T  2 4 . 4

The numerator has k factors. Furthermore, we define

(9) in particular,

For integer we obtain from (8)

(10)

Binomial coefficients may be computed recursively, because

(11)

Formula (8) also yields

(12)

There are numerous further relations; we mention two important ones,

(13)

and

(14) (r 	 0, integer).a

r

k�0

  apkb a
q

r � k
b � ap � q

r
b

(k 	 0, n 	 1,

both integer)a

n�1

s�0

  ak � s

k
b � an � k

k � 1
b

(k 	 0, integer)

(m 
 0).
a�m

k
b � (�1)k  am � k � 1

k
b

(k 	 0, integer).aa
k
b � a a

k � 1
b � aa � 1

k � 1
b

(n 	 0, 0 � k � n).an
k
b � a n

n � k
b

a � n

a0
0
b � 1.aa

0
b � 1,
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24.5 Random Variables. 
Probability Distributions

In Sec. 24.1 we considered frequency distributions of data. These distributions show the
absolute or relative frequency of the data values. Similarly, a probability distribution
or, briefly, a distribution, shows the probabilities of events in an experiment. The quantity
that we observe in an experiment will be denoted by X and called a random variable
(or stochastic variable) because the value it will assume in the next trial depends on
chance, on randomness—if you roll a die, you get one of the numbers from 1 to 6, but
you don’t know which one will show up next. Thus Number a die turns up is a
random variable. So is Elasticity of rubber (elongation at break). (“Stochastic” means
related to chance.)

If we count (cars on a road, defective screws in a production, tosses until a die shows
the first Six), we have a discrete random variable and distribution. If we measure
(electric voltage, rainfall, hardness of steel), we have a continuous random variable and
distribution. Precise definitions follow. In both cases the distribution of X is determined
by the distribution function

(1)

this is the probability that in a trial, X will assume any value not exceeding x.

CAUTION! The terminology is not uniform. is sometimes also called the
cumulative distribution function.

F(x)

F(x) � P(X � x);

X �
X �

SEC. 24.5 Random Variables. Probability Distributions 1029

9. In how many different ways can 6 people be seated at
a round table?

10. If a cage contains 100 mice, 3 of which are male, what
is the probability that the 3 male mice will be included
if 10 mice are randomly selected?

11. How many automobile registrations may the police
have to check in a hit-and-run accident if a witness
reports KDP7 and cannot remember the last two digits
on the license plate but is certain that all three digits
were different?

12. If 3 suspects who committed a burglary and 6 innocent
persons are lined up, what is the probability that a
witness who is not sure and has to pick three persons
will pick the three suspects by chance? That the witness
picks 3 innocent persons by chance?

13. CAS PROJECT. Stirling formula. (a) Using (7),
compute approximate values of for 
(b) Determine the relative error in (a). Find an
empirical formula for that relative error.
(c) An upper bound for that relative error is

Try to relate your empirical formula to this.
(d) Search through the literature for further information
on Stirling’s formula. Write a short eassy about your

e1>12n � 1.

n � 1, Á , 20.n!

findings, arranged in logical order and illustrated with
numeric examples.

14. TEAM PROJECT. Permutations, Combinations.
(a) Prove Theorem 2.
(b) Prove the last statement of Theorem 3.
(c) Derive (11) from (8).
(d) By the binomial theorem,

so that has the coefficient Can you

conclude this from Theorem 3 or is this a mere
coincidence?
(e) Prove (14) by using the binomial theorem.
(f) Collect further formulas for binomial coefficients
from the literature and illustrate them numerically.

15. Birthday problem. What is the probability that in a
group of 20 people (that includes no twins) at least
two have the same birthday, if we assume that the
probability of having birthday on a given day is 
for every day. First guess. Hint. Consider the com-
plementary event.

1>365

Ank B .akbn�k

(a � b)n � a

n

k�0

  ankb akbn�k,
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For (1) to make sense in both the discrete and the continuous case we formulate con-
ditions as follows.

D E F I N I T I O N Random Variable

A random variable X is a function defined on the sample space S of an experiment.
Its values are real numbers. For every number a the probability

with which X assumes a is defined. Similarly, for any interval I the probability

with which X assumes any value in I is defined.

Although this definition is very general, in practice only a very small number of distributions
will occur over and over again in applications.

From (1) we obtain the fundamental formula for the probability corresponding to an
interval 

(2)

This follows because (“X assumes any value not exceeding a”) and 
(“X assumes any value in the interval ”) are mutually exclusive events, so that
by (1) and Axiom 3 of Definition 2 in Sec. 24.3

and subtraction of on both sides gives (2).

Discrete Random Variables and Distributions
By definition, a random variable X and its distribution are discrete if X assumes only finitely
many or at most countably many values called the possible values of X,
with positive probabilities 
whereas the probability is zero for any interval I containing no possible value.

Clearly, the discrete distribution of X is also determined by the probability function
of X, defined by

(3)

From this we get the values of the distribution function by taking sums,

(4) F(x) � a
xj�x

  f (x j) � a
xj�x

  pj

F(x)

( j � 1, 2, Á ),f (x) � b 

pj if x � x j

0 otherwise

f (x)

P(X � I )
p3 � P(X � x3), Á ,p1 � P(X � x1), p2 � P(X � x2),

x1, x2, x3, Á ,

F(a)

 � F(a) � P(a � X � b)

 F(b) � P(X � b) � P(X � a) � P(a � X � b)

a � x � b
a � X � bX � a

P(a � X � b) � F(b) � F(a).

a � x � b,

P(X � I )

P(X � a)
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where for any given x we sum all the probabilities for which is smaller than or equal
to that of x. This is a step function with upward jumps of size at the possible values

of X and constant in between.

E X A M P L E  1 Probability Function and Distribution Function

Figure 513 shows the probability function and the distribution function of the discrete random variable

X has the possible values with probability each. At these x the distribution function
has upward jumps of magnitude Hence from the graph of we can construct the graph of and
conversely.

In Figure 513 (and the next one) at each jump the fat dot indicates the function value at the jump! �

F(x)f (x)1>6.
1>6x � 1, 2, 3, 4, 5, 6

X � Number a fair die turns up.

F (x)f (x)

x j

pj

x jpj

F(x)

1

f (x)

1
2

1
6

0 5

0 5

x

x

1

20
36

10
36

30
36

0 5 10 12

0 5 10 12

F(x)

f (x)

x

x

1
6

Fig. 513. Probability function ƒ(x) 
and distribution function F(x) of the

random variable X � Number 

obtained in tossing a fair die once

Fig. 514. Probability function ƒ(x) and
distribution function F(x) of the random
variable X � Sum of the two numbers

obtained in tossing two fair dice once

E X A M P L E  2 Probability Function and Distribution Function

The random variable Sum of the two numbers two fair dice turn up is discrete and has the possible values
There are equally likely outcomes 

where the first number is that shown on the first die and the second number that on the other die. Each such
outcome has probability . Now occurs in the case of the outcome in the case of the
two outcomes in the case of the three outcomes and so on. Hence

have the values

x 2 3 4 5 6 7 8 9 10 11 12

ƒ(x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36
F(x) 1/36 3/36 6/36 10/36 15/36 21/36 26/36 30/36 33/36 35/36 36/36

Figure 514 shows a bar chart of this function and the graph of the distribution function, which is again a step
function, with jumps (of different height!) at the possible values of X. �

f (x) � P(X � x) and F(x) � P(X � x)
(1, 3), (2, 2), (3, 1);(1, 2) and (2, 1); X � 4

(1, 1); X � 3X � 21>36

(1, 1) (1, 2), Á , (6, 6),6 � 6 � 362 (� 1 � 1), 3, 4, Á , 12 (� 6 �  6).
X �
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Two useful formulas for discrete distributions are readily obtained as follows. For the
probability corresponding to intervals we have from (2) and (4)

(5) (X discrete).

This is the sum of all probabilities for which satisfies (Be careful about
) From this and (Sec. 24.3) we obtain the following formula.

(6) (sum of all probabilities).

E X A M P L E  3 Illustration of Formula (5)

In Example 2, compute the probability of a sum of at least 4 and at most 8.

Solution.

E X A M P L E  4 Waiting Time Problem. Countably Infinite Sample Space

In tossing a fair coin, let Number of trials until the first head appears. Then, by independence of events
(Sec. 24.3),

etc.

and in general Also, (6) can be confirmed by the sum formula for the geometric
series,

Continuous Random Variables and Distributions
Discrete random variables appear in experiments in which we count (defectives in a
production, days of sunshine in Chicago, customers standing in a line, etc.). Continuous
random variables appear in experiments in which we measure (lengths of screws, voltage
in a power line, Brinell hardness of steel, etc.). By definition, a random variable X and
its distribution are of continuous type or, briefly, continuous, if its distribution function

[defined in (1)] can be given by an integral

(7)  F(x) � �
x

��

f (v) dv

F(x)

� � �1 � 2 � 1.

 
1

2
�

1

4
�

1

8
� Á � �1 �

1

1 � 1
2 

P(X � n) � (1
2 )n, n � 1, 2, Á .

 P(X � 3) � P(T TH ) � 1
2 � 1

2 � 1
2 �

1
8 ,

(T � Tail) P(X � 2) � P(TH )  � 1
2 � 1

2  �
1
4

(H � Head) P(X � 1) � P(H )  � 1
2 

X �

�P(3 � X � 8) � F(8) � F(3) � 26
36 � 3

36 � 23
36 .

a
j

 pj � 1

P(S) � 1� and � !
a � x j � b.x jpj

P(a � X � b) � F(b) � F(a) � a
a�xj�b

pj
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(we write v because x is needed as the upper limit of the integral) whose integrand 
called the density of the distribution, is nonnegative, and is continuous, perhaps except
for finitely many x-values. Differentiation gives the relation of f to F as

(8)

for every x at which is continuous.
From (2) and (7) we obtain the very important formula for the probability corresponding

to an interval:

(9)

This is the analog of (5).
From (7) and (Sec. 24.3) we also have the analog of (6):

(10)

Continuous random variables are simpler than discrete ones with respect to intervals.
Indeed, in the continuous case the four probabilities corresponding to 

and with any fixed are all the same.
Can you see why? (Answer. This probability is the area under the density curve, as in
Fig. 515, and does not change by adding or subtracting a single point in the interval of
integration.) This is different from the discrete case! (Explain.)

The next example illustrates notations and typical applications of our present formulas.

a and b (
 a)a � X � ba � X � b, a � X � b,
a � X � b,

�
�

��
 
f (v) dv � 1.

P(S) � 1

P(a � X � b) � F(b) � F(a) � �
b

a
 
f (v) dv.

f (x)

 f (x) � Fr(x)

f (x),
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Curve of density
f (x)

P(a < X ≤ b)

ba x

Fig. 515. Example illustrating formula (9)

E X A M P L E  5 Continuous Distribution

Let X have the density function and zero otherwise. Find the distribution
function. Find the probabilities . Find x such that 

Solution. From (7) we obtain 

and From this and (9) we get

P(�1
2 � X � 1

2) � F(1
2) � F(�1

2) � 0.75 �
1>2

�1>2

(1 � v2) dv � 68.75%

F(x) � 1 if x 
 1.

F(x) � 0.75 �
x

�1

(1 � v2) dv � 0.5 � 0.75x � 0.25x3   if �1 � x � 1,

F(x) � 0 if x � �1,

P(X � x) � 0.95.P(�1
2 � X � 1

2) and P( 
1
4 � X � 2)

f (x) � 0.75(1 � x2) if �1 � x � 1
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1034 CHAP. 24 Data Analysis. Probability Theory

(because for a continuous distribution) and

(Note that the upper limit of integration is 1, not 2. Why?) Finally,

Algebraic simplification gives A solution is approximately.
Sketch and mark and 0.73, so that you can see the results (the probabilities) as areas under

the curve. Sketch also 

Further examples of continuous distributions are included in the next problem set and in
later sections.

�F(x).
x � �1

2 , 12 , 14 ,f (x)
x � 0.73,3x � x3 � 1.8.

P(X � x) � F(x) � 0.5 � 0.75x � 0.25x3 � 0.95.

P(1
4 � X � 2) � F(2) � F(1

4) � 0.75 �
1

1>4

(1 � v2) dv � 31.64%.

P(�1
2 � X � 1

2) � P(�1
2 � X � 1

2)

1. Graph the probability function 
k suitable) and the distribution function.

2. Graph the density function 
k suitable) and the distribution function.

3. Uniform distribution. Graph f and F when the density
of X is and 0 else-
where. Find 

4. In Prob. 3 find c and such that 
95% and 

5. Graph f and F when 
Can f have further positive values?

6. A box contains 4 right-handed and 6 left-handed
screws. Two screws are drawn at random without
replacement. Let X be the number of left-handed
screws drawn. Find the probabilities 

and 

7. Let X be the number of years before a certain kind of
pump needs replacement. Let X have the probability
function Find k. Sketch f
and F.

8. Graph the distribution function if
and the density Find x

such that 

9. Let X [millimeters] be the thickness of washers.
Assume that X has the density if

and 0 otherwise. Find k. What is the
probability that a washer will have thickness between
0.95 mm and 1.05 mm?

0.9 � x � 1.1
f (x) � kx

F(x) � 0.9.
f (x).x 
 0, F(x) � 0 if x � 0,

F(x) � 1 � e�3x

f (x) � kx3, x � 0, 1, 2, 3, 4,

P(0.5 � X � 10).P(X 
 1),P(X 	 1),
P(X � 1),P(1 � X � 2),P(X � 2),P(X � 1),
P(X � 0),

f (1) � 3
8.

f (�1) �f (�2) � f (2) � 1
8,

P(0 � X �  c�) � 95%.
P(�c � X � c) �c�

P(0 � X � 2).
f (x) � k � const if �2 � x � 2

f (x) � kx2 (0 � x � 5;

4, 5;
(x � 1, 2, 3,f (x) � kx2 10. If the diameter X of axles has the density if

and 0 otherwise, how many
defectives will a lot of 500 axles approximately contain
if defectives are axles slimmer than 119.91 or thicker
than 120.09?

11. Find the probability that none of three bulbs in a traffic
signal will have to be replaced during the first 1500
hours of operation if the lifetime X of a bulb is a random
variable with the density 
when otherwise, where x is
measured in multiples of 1000 hours.

12 Let X be the ratio of sales to profits of some company.
Assume that X has the distribution function if

if if
Find and sketch the density. What is the probability

that X is between profit) and 

13. Suppose that in an automatic process of filling oil
cans, the content of a can (in gallons) is 
where X is a random variable with density

when and 0 when 
Sketch In a lot of 1000 cans, about how
many will contain 100 gallons or more? What is the
probability that a can will contain less than 99.5
gallons? Less than 99 gallons?

14. Find the probability function of Number of times
a fair die is rolled until the first Six appears and show
that it satisfies (6).

15. Let X be a random variable that can assume every real
value. What are the complements of the events 

b � X � c?b � X � c,X 
 c,X 	 c,X � b,
X � b,

X �

f (x) and F(x).
ƒ x ƒ 
 1.ƒ x ƒ � 1f (x) � 1 � ƒ x ƒ

Y � 100 � X,

5 (20% profit)?2.5 (40%
x 	 3.

F(x) � 1  2 � x � 3,F(x) � (x2 � 4)>5 x � 2,
F(x) � 0

1 � x � 2 and f (x) � 0
f (x) � 630.25 � (x � 1.5)24

119.9 � x � 120.1
f (x) � k

P R O B L E M  S E T  2 4 . 5
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24.6 Mean and Variance of a Distribution
The mean and variance of a random variable X and of its distribution are the theoretical
counterparts of the mean and variance of a frequency distribution in Sec. 24.1 and
serve a similar purpose. Indeed, the mean characterizes the central location and the variance
the spread (the variability) of the distribution. The mean (mu) is defined by

(a) (Discrete distribution)

(1)

(b) (Continuous distribution)

and the variance (sigma square) by

(a) (Discrete distribution)

(2)

(b) (Continuous distribution).

(the positive square root of is called the standard deviation of X and its distribution.
f is the probability function or the density, respectively, in (a) and (b).

The mean is also denoted by and is called the expectation of X because it gives
the average value of X to be expected in many trials. Quantities such as and that
measure certain properties of a distribution are called parameters. and are the two
most important ones. From (2) we see that

(3)

(except for a discrete “distribution” with only one possible value, so that We
assume that and exist (are finite), as is the case for practically all distributions that
are useful in applications.

E X A M P L E  1 Mean and Variance

The random variable Number of heads in a single toss of a fair coin has the possible values and
with probabilities and From (la) we thus obtain the mean

and (2a) yields the variance

E X A M P L E  2 Uniform Distribution. Variance Measures Spread

The distribution with the density

if a � x � bf (x) �
1

b � a

�s2 � (0 � 1
2 )2 � 1

2 � (1 � 1
2 )2 � 1

2 � 1
4 .

� � 0 � 1
2 � 1 � 1

2 � 1
2 ,

P(X � 1) � 1
2.P(X � 0) � 1

2X � 1
X � 0X �

s2�
s2 � 0).

s2 
 0

s2�
s2�

E(X )�

s2)s

s2 � �
�

��

(x � �)2f (x) dx

s2 � a
j

 (x j � �)2f (x j)

s2

 � � �
�

��

 x f (x) dx

 � � a
j

 x j f (x j)

�

s2x
s2�

SEC. 24.6 Mean and Variance of a Distribution 1035
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and otherwise is called the uniform distribution on the interval From (1b) (or from Theorem 1,
below) we find that and (2b) yields the variance

Figure 516 illustrates that the spread is large if and only if is large. �s2

s2 � �
b

a

 ax �
a � b

2
 b

2

 
1

b � a
 dx �

(b � a)2

12
 .

� � (a � b)>2,
a � x � b.f � 0

1036 CHAP. 24 Data Analysis. Probability Theory

1

0 1 0 1 2–1

1

1

0 1 0 1 2–1

1

F(x)

f (x)

F(x)

f (x)

x

x

x

x

�   2 =     � σ 1
12 �   2 =     � σ 3

4

Fig. 516. Uniform distributions having the same mean (0.5) but different variances s2

Symmetry. We can obtain the mean without calculation if a distribution is symmetric.
Indeed, you may prove

T H E O R E M  1 Mean of a Symmetric Distribution

If a distribution is symmetric with respect to that is, 
then (Examples 1 and 2 illustrate this.)

Transformation of Mean and Variance
Given a random variable X with mean and variance we want to calculate the mean
and variance of where and are given constants. This problem is
important in statistics, where it often appears.

T H E O R E M  2 Transformation of Mean and Variance

(a) If a random variable X has mean and variance then the random
variable

(4)

has the mean and variance where

(5) and s*2 � a2
2s2.�* � a1 � a2�

s*2,�*

(a2 
 0)X* � a1 � a2X

s2,�

a2a1X* � a1 � a2X,
s2,�

� � c.
f (c � x) � f (c � x),x � c,

�
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(b) In particular, the standardized random variable Z corresponding to X,
given by

(6)

has the mean 0 and the variance 1.

P R O O F We prove (5) for a continuous distribution. To a small interval I of length on the
x-axis there corresponds the probability [approximately; the area of a rectangle
of base and height Then the probability must equal that for the
corresponding interval on the -axis, that is, where is the density of 
and is the length of the interval on the -axis corresponding to I. Hence for
differentials we have Also, by (4), so that (1b)
applied to gives

On the right the first integral equals 1, by (10) in Sec. 24.5. The second intergral is 
This proves (5) for It implies

From this and (2) applied to again using we obtain the second
formula in (5),

For a discrete distribution the proof of (5) is similar.
Choosing and we obtain (6) from (4), writing For these

formula (5) gives and as claimed in (b).

Expectation, Moments
Recall that (1) defines the expectation (the mean) of X, the value of X to be expected on
the average, written More generally, if is nonconstant and continuous for
all x, then is a random variable. Hence its mathematical expectation or, briefly, itsg(X )

g(x)� � E(X ).

�s*2 � 1,�* � 0a1, a2

X* � Z.a2 � 1>sa1 � ��>s

s*2 � �
�

��

(x* � �*)2f *(x*) dx* � a2
2 �

�

��

(x � �)2f (x) dx � a2
2s2.

f *(x*) dx* � f (x) dx,X*,

x* � �* � (a1 � a2x) � (a1 � a2�) � a2(x � �).

�*.
�.

 � a1 �
�

��

 f (x) dx � a2 �
�

��

 x f (x) dx.

 � �
�

��

(a1 � a2x) f (x) dx

 �* � �
�

��

 x*f *(x*) dx*

X*
x* � a1 � a2xf *(x*) dx* � f (x) dx.

x*¢x*
X*f *f *(x*)¢x*,x*

f (x)¢xf (x)].¢x
f (x)¢x

¢x

Z �
X � �

s
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expectation is the value of to be expected on the average, defined [similarly
to (1)] by

(7) or

In the first formula, f is the probability function of the discrete random variable X. In the
second formula, f is the density of the continuous random variable X. Important special
cases are the kth moment of X (where 

(8)

and the kth central moment of 

(9)

This includes the first moment, the mean of X

(10)

It also includes the second central moment, the variance of X

(11)

For later use you may prove

(12) E(1) � 1.

[(9) with k � 2].s2 � E([X � �]2)

[(8) with k � 1].� � E(X )

E([X � �]k) � a
j

 (x j � �)kf (x j)  or  �
�

��

(x � �)kf (x) dx.

X (k � 1, 2, Á )

E(Xk) � a
j

 x j
kf (x j)  or  �

�

��

 xkf (x) dx

k � 1, 2, Á )

E(g(X)) � �
�

��

 g(x) f (x) dx.E(g(X)) � a
j

 g(x j) f (x j)

g(X )E(g(X ))

1038 CHAP. 24 Data Analysis. Probability Theory

1–8 MEAN, VARIANCE
Find the mean and variance of the random variable X with
probability function or density 

1. suitable)

2.

3. Uniform distribution on 

4. with X as in Prob. 3

5.

6. if and 0 otherwise

7.

8. Number of times a fair coin is flipped until the
first Head appears. (Calculate only.)

9. If the diameter X [cm] of certain bolts has the density
for and 0

for other x, what are , and Sketch f (x).s2?k, �
0.9 � x � 1.1f (x) � k(x � 0.9)(1.1 � x)

�
X �

f (x) � Ce�x>2 (x � 0)

�1 � x � 1f (x) � k(1 � x2)

f (x) � 4e�4x (x 	 0)

Y � 13(X � �)>p

[0, 2p]

X � Number a fair die turns up

f (x) � kx (0 � x � 2, k

f (x).

10. If, in Prob. 9, a defective bolt is one that deviates from
1.00 cm by more than 0.06 cm, what percentage of
defectives should we expect?

11. For what choice of the maximum possible deviation
from 1.00 cm shall we obtain defectives in Probs. 9
and 10?

12. What total sum can you expect in rolling a fair die
20 times? Do the experiment. Repeat it a number of
times and record how the sum varies.

13. What is the expected daily profit if a store sells X air
conditioners per day with probability 

and the profit
per conditioner is 

14. Find the expectation of where X is uniformly
distributed on the interval �1 � x � 1.

g(X ) � X2,

$55?
f (13) � 0.2f (12) � 0.4,f (11) � 0.3,

f (10) � 0.1,

10%

P R O B L E M  S E T  2 4 . 6
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24.7 Binomial, Poisson, and Hypergeometric
Distributions

These are the three most important discrete distributions, with numerous applications.

Binomial Distribution
The binomial distribution occurs in games of chance (rolling a die, see below, etc.),
quality inspection (e.g., counting of the number of defectives), opinion polls (counting
number of employees favoring certain schedule changes, etc.), medicine (e.g., recording
the number of patients who recovered on a new medication), and so on. The conditions
of its occurrence are as follows.

We are interested in the number of times an event A occurs in n independent trials. In
each trial the event A has the same probability Then in a trial, A will not occur
with probability In n trials the random variable that interests us is

X can assume the values and we want to determine the corresponding
probabilities. Now means that A occurs in x trials and in trials it does not
occur. This may look as follows.

(1)

Here is the complement of A, meaning that A does not occur (Sec. 24.2). We now
use the assumption that the trials are independent, that is, they do not influence each other.
Hence (1) has the probability (see Sec. 24.3 on independent events)

B � Ac

A A Á A  B B Á B.

n � xX � x
0, 1, Á , n,

X � Number of times the event A occurs in n trials.

q � 1 � p.
P(A) � p.

SEC. 24.7 Binomial, Poisson, and Hypergeometric Distributions 1039

15. A small filling station is supplied with gasoline every
Saturday afternoon. Assume that its volume X of sales
in ten thousands of gallons has the probability density

if and 0 otherwise.
Determine the mean, the variance, and the standardized
variable.

16. What capacity must the tank in Prob. 15 have in order
that the probability that the tank will be emptied in a
given week be 

17. James rolls 2 fair dice, and Harry pays k cents to James,
where k is the product of the two faces that show on
the dice. How much should James pay to Harry for
each game to make the game fair?

18. What is the mean life of a lightbulb whose life X [hours]
has the density 

19. Let X be discrete with probability function 
Find the expectation of 

20. TEAM PROJECT. Means, Variances, Expectations.

(a) Show that E(X � �) � 0, s2 � E(X2) � �2.

X3.1
8,  f (1) � f (2) � 3

8.
f (0) � f (3) �

f (x) � 0.001e�0.001x (x 	 0)?

5%?

0 � x � 1f (x) � 6x(1 � x)

(b) Prove (10)–(12).

(c) Find all the moments of the uniform distribution
on an interval 

(d) The skewness of a random variable X is defined
by

(13)

Show that for a symmetric distribution (whose third
central moment exists) the skewness is zero.

(e) Find the skewness of the distribution with density
when and otherwise.

Sketch 

(f) Calculate the skewness of a few simple discrete
distributions of your own choice.

(g) Find a nonsymmetric discrete distribution with
3 possible values, mean 0, and skewness 0.

f (x).
f (x) � 0x 
 0f (x) � xe�x

g �
1

s3
 E([X � �]3).

g

a � x � b.

} }

x times n � x times
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Now (1) is just one order of arranging x A’s and B’s. We now use Theorem 1(b)
in Sec. 24.4, which gives the number of permutations of n things (the n outcomes of the
n trials) consisting of 2 classes, class 1 containing the A’s and class 2 containing
the B’s. This number is

Accordingly, , multiplied by this binomial coefficient, gives the probability 
of that is, of obtaining A precisely x times in n trials. Hence X has the probability
function

(2)

and otherwise. The distribution of X with probability function (2) is called the
binomial distribution or Bernoulli distribution. The occurrence of A is called success
(regardless of what it actually is; it may mean that you miss your plane or lose your watch)
and the nonoccurrence of A is called failure. Figure 517 shows typical examples. Numeric
values can be obtained from Table A5 in App. 5 or from your CAS.

The mean of the binomial distribution is (see Team Project 16)

(3)

and the variance is (see Team Project 16)

(4)

For the symmetric case of equal chance of success and failure this gives the
mean the variance and the probability function

(x � 0, 1, Á , n). f (x) � an
x
b  a1

2
 bn(2*)

n>4,n>2,
(p � q � 1

2)

s2 � npq.

� � np

f (x) � 0

(x � 0, 1, Á , n) f (x) � an
x
b  pxqn�x

X � x,
P(X � x)(1*)

n!
x!(n � x)!

� an
x
b .

n � n1 � n � x
n1 � x

n � x

pp Á p �  qq Á q � pxqn�x.(1*)

1040 CHAP. 24 Data Analysis. Probability Theory

} }

x times n � x times

50

0.5

50 50 50 50
0

p = 0.1 p = 0.2 p = 0.5 p = 0.8 p = 0.9

Fig. 517. Probability function (2) of the binomial distribution for n 5 and various values of p�
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E X A M P L E  1 Binomial Distribution

Compute the probability of obtaining at least two “Six” in rolling a fair die 4 times.

Solution. The event “At least two ‘Six’” occurs if we obtain 2 or
3 or 4 “Six.” Hence the answer is

Poisson Distribution
The discrete distribution with infinitely many possible values and probability function

(5)

is called the Poisson distribution, named after S. D. Poisson (Sec. 18.5). Figure 518
shows (5) for some values of It can be proved that this distribution is obtained as a
limiting case of the binomial distribution, if we let and so that the mean

approaches a finite value. (For instance, may be kept constant.) The
Poisson distribution has the mean and the variance (see Team Project 16)

(6)

Figure 518 gives the impression that, with increasing mean, the spread of the distribution
increases, thereby illustrating formula (6), and that the distribution becomes more and
more (approximately) symmetric.

s2 � �.

�
� � np� � np

n : �p : 0
�.

(x � 0, 1, Á ) f (x) �
�x

x!
 e��

� �
1

64
 (6 � 25 � 4 � 5 � 1) �

171

1296
� 13.2%.

 P � f (2) � f (3) � f (4) � a4
2
b  a1

6
 b

2

  a5

6
 b

2

� a4
3
b  a1

6
 b

3

  a5

6
 b � a4

4
b  a1

6
 b

4

 

p � P(A) � P(“Six”) � 1
6, q � 5

6, n � 4.

SEC. 24.7 Binomial, Poisson, and Hypergeometric Distributions 1041

50

0.5

50 50 5 100

 = 5 = 2 = 1 = 0.5μ μ μ μ

Fig. 518. Probability function (5) of the Poisson distribution for various values of �

E X A M P L E  2 Poisson Distribution

If the probability of producing a defective screw is what is the probability that a lot of 100 screws
will contain more than 2 defectives?

Solution. The complementary event is Not more than 2 defectives. For its probability we get, from the
binomial distribution with mean , the value [see (2)]

P(Ac) � a100

0
b  0.99100 � a100

1
b  0.01 � 0.9999 � a100

2
b  0.012 � 0.9998.

� � np � 1
Ac: 

p � 0.01,

c24.qxd  11/3/10  5:12 PM  Page 1041



Since p is very small, we can approximate this by the much more convenient Poisson distribution with mean
obtaining [see (5)]

Thus Show that the binomial distribution gives so that the Poisson approximation
is quite good.

E X A M P L E  3 Parking Problems. Poisson Distribution

If on the average, 2 cars enter a certain parking lot per minute, what is the probability that during any given
minute 4 or more cars will enter the lot?

Solution. To understand that the Poisson distribution is a model of the situation, we imagine the minute to
be divided into very many short time intervals, let p be the (constant) probability that a car will enter the lot
during any such short interval, and assume independence of the events that happen during those intervals. Then
we are dealing with a binomial distribution with very large n and very small p, which we can approximate by
the Poisson distribution with

because 2 cars enter on the average. The complementary event of the event “4 cars or more during a given
minute” is “3 cars or fewer enter the lot” and has the probability

Answer: (Why did we consider that complement?)

Sampling with Replacement
This means that we draw things from a given set one by one, and after each trial we
replace the thing drawn (put it back to the given set and mix) before we draw the next
thing. This guarantees independence of trials and leads to the binomial distribution.
Indeed, if a box contains N things, for example, screws, M of which are defective, the
probability of drawing a defective screw in a trial is Hence the probability of
drawing a nondefective screw is and (2) gives the probability of
drawing x defectives in n trials in the form

(7)

Sampling without Replacement. 
Hypergeometric Distribution
Sampling without replacement means that we return no screw to the box. Then we no
longer have independence of trials (why?), and instead of (7) the probability of drawing
x defectives in n trials is

(x � 0, 1, Á , n).f (x) � an
x
b  aM

N
 bx 

 a1 �
M
N

 bn�x

q � 1 � p � 1 � M>N,
p � M>N.

�14.3%.

 � 0.857.

 f (0) � f (1) � f (2) � f (3) � e�2
 
 a20

0!
�

21

1!
�

22

2!
�

23

3!
 b

� � np � 2,

�
P(A) � 7.94%,P(A) � 8.03%.

 � 91.97%.

 P(Ac) � e�1
 
 (1 � 1 � 1

2)

� � np � 100 � 0.01 � 1,

1042 CHAP. 24 Data Analysis. Probability Theory
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(8)

The distribution with this probability function is called the hypergeometric distribution
(because its moment generating function (see Team Project 16) can be expressed by the
hypergeometric function defined in Sec. 5.4, a fact that we shall not use).

Derivation of (8). By (4a) in Sec. 24.4 there are

(a) different ways of picking n things from N,

(b) different ways of picking x defectives from M,

(c) different ways of picking nondefectives from 

and each way in (b) combined with each way in (c) gives the total number of mutually
exclusive ways of obtaining x defectives in n drawings without replacement. Since (a) is
the total number of outcomes and we draw at random, each such way has the probability

From this, (8) follows.

The hypergeometric distribution has the mean (Team Project 16)

(9)

and the variance

(10)

E X A M P L E  4 Sampling with and without Replacement

We want to draw random samples of two gaskets from a box containing 10 gaskets, three of which are defective.
Find the probability function of the random variable 

Solution. We have For sampling with replacement, (7) yields

For sampling without replacement we have to use (8), finding

�f (x) � a3
x
b  a 7

2 � x
b^a10

2
b ,  f (0) � f (1) �

21

45
 � 0.47, f (2) �

3

45
 � 0.07.

f (x) � a2
x
b  a 3

10
 bx 

 a 7

10
 b2�x

,  f (0) � 0.49, f (1) � 0.42, f (2) � 0.09.

N � 10, M � 3, N � M � 7, n � 2.

X � Number of defectives in the sample.

s2 �
nM(N � M)(N � n)

N 2(N � 1)
 .

� � n 
M
N

 

�1^aN
n
b .

N � M,n � xaN � M

n � x
b

aM
x
b

aN
n
b

(x � 0, 1, Á , n). f (x) �

aM
x
b  aN � M

n � x
b

aN
n
b
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If N, M, and are large compared with n, then it does not matter too much whether
we sample with or without replacement, and in this case the hypergeometric distribution
may be approximated by the binomial distribution (with which is somewhat
simpler.

Hence, in sampling from an indefinitely large population (“infinite population”), we
may use the binomial distribution, regardless of whether we sample with or without
replacement.

p � M>N),

N � M
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1. Mark the positions of in Fig. 517. Comment.

2. Graph (2) for as in Fig. 517 and compare with
Fig. 517.

3. In Example 3, if 5 cars enter the lot on the average,
what is the probability that during any given minute 6
or more cars will enter? First guess. Compare with
Example 3.

4. How do the probabilities in Example 4 of the text
change if you double the numbers: drawing 4 gaskets
from 20, 6 of which are defective? First guess.

5. Five fair coins are tossed simultaneously. Find the
probability function of the random variable Number
of heads and compute the probabilities of obtaining no
heads, precisely 1 head, at least 1 head, not more than
4 heads.

6. Suppose that of steel rods made by a machine are
defective, the defectives occurring at random during
production. If the rods are packaged 100 per box, what
is the Poisson approximation of the probability that a
given box will contain defectives?

7. Let X be the number of cars per minute passing a certain
point of some road between 8 A.M. and 10 A.M. on a
Sunday. Assume that X has a Poisson distribution with
mean 5. Find the probability of observing 4 or fewer
cars during any given minute.

8. Suppose that a telephone switchboard of some
company on the average handles 300 calls per hour,
and that the board can make at most 10 connections
per minute. Using the Poisson distribution, estimate the
probability that the board will be overtaxed during a
given minute. (Use Table A6 in App. 5 or your CAS.)

9. Rutherford–Geiger experiments. In 1910, E.
Rutherford and H. Geiger showed experimentally that
the number of alpha particles emitted per second in a
radioactive process is a random variable X having a
Poisson distribution. If X has mean 0.5, what is the
probability of observing two or more particles during
any given second?

10. Let be the probability that a certain type of
lightbulb will fail in a 24-hour test. Find the probability

p � 2%

x � 0, 1, Á , 5

4%

X �

n � 8

� that a sign consisting of 15 such bulbs will burn 24
hours with no bulb failures.

11. Guess how much less the probability in Prob. 10 would
be if the sign consisted of 100 bulbs. Then calculate.

12. Suppose that a certain type of magnetic tape contains,
on the average, 2 defects per 100 meters. What is the
probability that a roll of tape 300 meters long will
contain (a) x defects, (b) no defects?

13. Suppose that a test for extrasensory perception consists
of naming (in any order) 3 cards randomly drawn from
a deck of 13 cards. Find the probability that by chance
alone, the person will correctly name (a) no cards, (b) 1
card, (c) 2 cards, (d) 3 cards.

14. If a ticket office can serve at most 4 customers per
minute and the average number of customers is 120 per
hour, what is the probability that during a given minute
customers will have to wait? (Use the Poisson
distribution, Table 6 in Appendix 5.)

15. Suppose that in the production of 60-ohm radio
resistors, nondefective items are those that have a
resistance between 58 and 62 ohms and the probability
of a resistor’s being defective is The resistors
are sold in lots of 200, with the guarantee that all
resistors are nondefective. What is the probability that
a given lot will violate this guarantee? (Use the Poisson
distribution.)

16. TEAM PROJECT. Moment Generating Function.
The moment generating function G(t) is defined by

or

where X is a discrete or continuous random variable,
respectively.

(a) Assuming that termwise differentiation and differ-
entiation under the integral sign are permissible, show

G(t) � E(etX) � �
�

��

 etxf (x) dx

G(t) � E(etXj) � a
j

 etxjf (x j)

0.1%.

P R O B L E M  S E T  2 4 . 7
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SEC. 24.8 Normal Distribution 1045

that where in
particular, 

(b) Show that the binomial distribution has the
moment generating function

(c) Using (b), prove (3).

(d) Prove (4).

(e) Show that the Poisson distribution has the moment
generating function and prove (6).

(f) Prove 

Using this, prove (9).

17. Multinomial distribution. Suppose a trial can result
in precisely one of k mutually exclusive events

x  aM
x

 b � M  aM � 1

x � 1
b .

G(t) � e��e�et

 � (pet � q)n.

 G(t) � a
n

x�0

 etx an
x
b  pxqn�x � a

n

x�0

 an
x

 b ( pet)xqn�x

� � Gr(0).
G(k) � dkG>dt k,E(Xk) � G(k)(0), with probabilities respectively,

where Suppose that n independent
trials are performed. Show that the probability of
getting ’ ’s is

where and 
The distribution having this probability

function is called the multinomial distribution.

18. A process of manufacturing screws is checked every
hour by inspecting n screws selected at random from
that hour’s production. If one or more screws are
defective, the process is halted and carefully examined.
How large should n be if the manufacturer wants the
probability to be about that the process will be
halted when of the screws being produced are
defective? (Assume independence of the quality of any
screw from that of the other screws.)

10%
95%

xk � n.
x1 � Á �0 � x j � n, j � 1, Á , k,

f (x1, Á , xk) �
n!

x! Á xk!
 p1

x1 Á pk
xk

s, Á , xk Akx1 A1

p1 � Á � pk � 1.
p1, Á , pk,A1, Á , Ak

24.8 Normal Distribution
Turning from discrete to continuous distributions, in this section we discuss the normal
distribution. This is the most important continuous distribution because in applications many
random variables are normal random variables (that is, they have a normal distribution)
or they are approximately normal or can be transformed into normal random variables in a
relatively simple fashion. Furthermore, the normal distribution is a useful approximation of
more complicated distributions, and it also occurs in the proofs of various statistical tests.

The normal distribution or Gauss distribution is defined as the distribution with the
density

(1)

where exp is the exponential function with base This is simpler than it may
at first look. has these features (see also Fig. 519).

1. is the mean and the standard deviation.

2. is a constant factor that makes the area under the curve of from 
to equal to 1, as it must be by (10), Sec. 24.5.

3. The curve of is symmetric with respect to because the exponent is
quadratic. Hence for it is symmetric with respect to the y-axis (Fig. 519,
“bell-shaped curves”).

4. The exponential function in (1) goes to zero very fast—the faster the smaller the
standard deviation is, as it should be (Fig. 519).s

x � 0� � 0
x � �f (x)

�
��f (x)1>(s12p)

s�

f (x)
e � 2.718 Á .

(s 
 0)f (x) �
1

s12p
  exp c� 

1

2
 ax � �

s
 b

2 d
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Distribution Function F(x)
From (7) in Sec. 24.5 and (1) we see that the normal distribution has the distribution
function

(2)

Here we needed x as the upper limit of integration and wrote v (instead of x) in the integrand.
For the corresponding standardized normal distribution with mean 0 and standard

deviation 1 we denote by . Then we simply have from (2)

(3)

This integral cannot be integrated by one of the methods of calculus. But this is no serious
handicap because its values can be obtained from Table A7 in App. 5 or from your CAS.
These values are needed in working with the normal distribution. The curve of is
S-shaped. It increases monotone (why?) from 0 to 1 and intersects the vertical axis at 
(why?), as shown in Fig. 520.

Relation Between and Although your CAS will give you values of in
(2) with any and directly, it is important to comprehend that and why any such an

can be expressed in terms of the tabulated standard as follows.£(z),F(x)
s�

F(x)≥(z).F(x)

1
2

£(z)

£(z) �
1

12p
 �

z

��

e�u2>2du.

£(z)F(x)

F(x) �
1

s12p
 �

x

��

exp c� 
1

2
 av � �

s
 b

2 d  dv.
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f (x)

x0 21–1–2

1.0

0.5

1.5 σ = 0.25

σ = 0.5

σ = 1.0

Fig. 519. Density (1) of the normal distribution with for various values of s� � 0

y

x0 2 31–1–2–3

0.2

0.4

0.6

0.8

1.0
Φ(x)

Fig. 520. Distribution function of the normal distribution with mean 0 and variance 1£(z)
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T H E O R E M  1 Use of the Normal Table A7 in App. 5

The distribution function of the normal distribution with any and [see (2)]
is related to the standardized distribution function in (3) by the formula

(4)

P R O O F Comparing (2) and (3) we see that we should set

Then gives

as the new upper limit of integration. Also thus Together, since
drops out,

Probabilities corresponding to intervals will be needed quite frequently in statistics in
Chap. 25. These are obtained as follows.

T H E O R E M  2 Normal Probabilities for Intervals

The probability that a normal random variable X with mean and standard
deviation assume any value in an interval is

(5)

P R O O F Formula (2) in Sec. 24.5 gives the first equality in (5), and (4) in this section gives the
second equality.

Numeric Values
In practical work with the normal distribution it is good to remember that about of all values
of X to be observed will lie between about between and practically all
between the three-sigma limits More precisely, by Table A7 in App. 5,

(a)

(6) (b)

(c)

Formulas (6a) and (6b) are illustrated in Fig. 521.

P(� � 3s � X � � � 3s) � 99.7%.

P(� � 2s � X � � � 2s) � 95.5%

P(� � s � X � � � s) � 68%

� � 3s.
� � 2s,95%� � s,

2
3

�

P(a � X � b) � F(b) � F(a) � £ab � �

s
 b � £aa � �

s
 b .

a � x � bs

�

�F(x) �
1

s12p
 �

(x��)>s

��

e�u2>2 s du � £ax � �

s
 b .

s

dv � s du.v � � � su,

u �
x � �
s

 v � xu �
v � �

s
 .

F(x) � £ax � �

s
 b .

£(z)
s�F(x)
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The formulas in (6) show that a value deviating from by more than or will
occur in one of about 3, 20, and 300 trials, respectively.

3ss, 2s,�
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95.5%

2.25%2.25%
16%

68%

16%

μ μ--      σμ          -- 2          σμ          + 2          σμ       +      σμ       

(a) (b)

Fig. 521. Illustration of formula (6)

In tests (Chap. 25) we shall ask, conversely, for the intervals that correspond to certain
given probabilities; practically most important are the probabilities of and

For these, Table A8 in App. 5 gives the answers and
respectively. More precisely,

(a)

(7) (b)

(c)

Working with the Normal Tables A7 and A8 in App. 5
There are two normal tables in App. 5, Tables A7 and A8. If you want probabilities, use
Table A7. If probabilities are given and corresponding intervals or x-values are wanted,
use Table A8. The following examples are typical. Do them with care, verifying all values,
and don’t just regard them as dull exercises for your software. Make sketches of the density
to see whether the results look reasonable.

E X A M P L E  1 Reading Entries from Table A7

If X is standardized normal (so that then

E X A M P L E  2 Probabilities for Given Intervals, Table A7

Let X be normal with mean 0.8 and variance 4 (so that ). Then by (4) and (5)

or, if you like it better, (similarly in the other cases)

� P(1.0 � X � 1.8) � £(0.5) � £(0.1) � 0.6915 � 0.5398 � 0.1517.

 P(X 	 1) � 1 � P(X � 1) � 1 � £a1 � 0.8

2
b � 1 � 0.5398 � 0.4602

 P(X � 2.44) � PaX � 0.80

2
 �

2.44 � 0.80

2
 b � P(Z � 0.82) � 0.7939

P(X � 2.44) � F(2.44) � £  a2.44 � 0.80

2
 b � £(0.82) � 0.7939 � 80%

s � 2

� P(1.0 � X � 1.8) � £(1.8) � £(1.0) � 0.9641 � 0.8413 � 0.1228.

 P(X 	 1) � 1 � P(X � 1) � 1 � 0.8413 � 0.1587) by (7), Sec. 24.3

 P(X � �1.16) � 1 � £(1.16) � 1 � 0.8770 � 0.1230 � 12.3%

 P(X � 2.44) � 0.9927 � 991
4 %

� � 0, s � 1),

P(� � 3.29s � X � � � 3.29s) � 99.9%.

P(� � 2.58s � X � � � 2.58s) � 99%

P(� � 1.96s � X � � � 1.96s) � 95%

� � 3.3s,
� � 2s, � � 2.6s,99.9%.

95%, 99%,
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E X A M P L E  3 Unknown Values c for Given Probabilities, Table A8

Let X be normal with mean 5 and variance 0.04 (hence standard deviation 0.2). Find c or k corresponding to
the given probability

E X A M P L E  4 Defectives

In a production of iron rods let the diameter X be normally distributed with mean 2 in. and standard deviation
0.008 in.

(a) What percentage of defectives can we expect if we set the tolerance limits at in.?

(b) How should we set the tolerance limits to allow for defectives?

Solution. (a) because from (5) and Table A7 we obtain for the complementary event the probability

(b) because, for the complementary event, we have

or

so that Table A8 gives

Normal Approximation of the Binomial Distribution
The probability function of the binomial distribution is (Sec. 24.7)

(8)

If n is large, the binomial coefficients and powers become very inconvenient. It is of great
practical (and theoretical) importance that, in this case, the normal distribution provides
a good approximation of the binomial distribution, according to the following theorem,
one of the most important theorems in all probability theory.

(x � 0, 1, Á , n).f (x) � anx b pxqn�x

�
2 � c � 2

0.008
� 2.054,  c � 0.0164.

0.98 � £  a2 � c � 2

0.008
 b ,

0.98 � P(X � 2 � c)

0.96 � P(2 � c � X � 2 � c)

2 � 0.0164

 � 983
4 %.

 � 0.9876

 � 0.9938 � (1 � 0.9938)

 � £(2.5) � £(�2.5)

 P(1.98 � X � 2.02) � £a2.02 � 2.00

0.008
 b � £a1.98 � 2.00

0.008
 b

11
4 %

4%

2 � 0.02

�P(X 	 c) � 1%,   thus P(X � c) � 99%,   
c � 5

0.2
� 2.326,   c � 5.465.

P(5 � k � X � 5 � k) � 90%,   5 � k � 5.329   (as before; why?)

P(X � c) � 95%,   £ac � 5

0.2
 b � 95%,   

c � 5

0.2
� 1.645,   c � 5.329 
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T H E O R E M  3 Limit Theorem of De Moivre and Laplace

For large n,

(9)

Here f is given by (8). The function

(10)

is the density of the normal distribution with mean and variance
(the mean and variance of the binomial distribution). The symbol (read
asymptotically equal) means that the ratio of both sides approaches 1 as n approaches

. Furthermore, for any nonnegative integers a and b

(11)

A proof of this theorem can be found in [G3] listed in App. 1. The proof shows that the term
0.5 in and is a correction caused by the change from a discrete to a continuous distribution.ba

a �
a � np � 0.5

1npq
 ,   b �

b � np � 0.5

1npq
 .

P(a � X � b) � a
b

x�a

 anxb pxqn�x � £(b) � £(a),

(
 a),�

�
s2 � npq� � np

f *(x) �
1

12p1npq
  e�z2>2,  z �

x � np

1npq
 

(x � 0, 1, Á , n).f (x) � f *(x)
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1. Let X be normal with mean 10 and variance 4. Find

2. Let X be normal with mean 105 and variance 25. Find

3. Let X be normal with mean 50 and variance 9.
Determine c such that 

4. Let X be normal with mean 3.6 and variance 0.01. Find
c such that 

5. If the lifetime X of a certain kind of automobile battery
is normally distributed with a mean of 5 years and a
standard deviation of 1 year, and the manufacturer wishes
to guarantee the battery for 4 years, what percentage of
the batteries will he have to replace under the guarantee?

6. If the standard deviation in Prob. 5 were smaller, would
that percentage be larger or smaller?

7. A manufacturer knows from experience that the
resistance of resistors he produces is normal with mean

X � 3.6 � c) � 99.9%.P(�c �
P(X � c) � 50%, P(X 
 c) � 10%,

50 � c) � 50%.1%, P(50 � c � X �
P(X � c) � 5%, P(X 
 c) �

P(X � 112.5), P(x 
 100), P(110.5 � X � 111.25).

P(X 
 12), P(X � 10), P(X � 11), P(9 � X � 13).
and standard deviation What

percentage of the resistors will have resistance between
and Between and 

8. The breaking strength X [kg] of a certain type of plastic
block is normally distributed with a mean of 1500 kg
and a standard deviation of 50 kg. What is the maximum
load such that we can expect no more than of the
blocks to break?

9. If the mathematics scores of the SAT college entrance
exams are normal with mean 480 and standard deviation
100 (these are about the actual values over the past
years) and if some college sets 500 as the minimum
score for new students, what percent of students would
not reach that score?

10. A producer sells electric bulbs in cartons of 1000 bulbs.
Using (11), find the probability that any given carton
contains not more than defective bulbs, assuming
the production process to be a Bernoulli experiment
with probability that any given bulb will be
defective). First guess. Then calculate.

p � 1%(�

1%

5%

160 ?140 152 ?148 

s � 5 .� � 150 

P R O B L E M  S E T 2 4 . 8
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11. If sick-leave time X used by employees of a company
in one month is (very roughly) normal with mean 1000
hours and standard deviation 100 hours, how much
time t should be budgeted for sick leave during the next
month if t is to be exceeded with probability of only

12. If the monthly machine repair and maintenance cost X
in a certain factory is known to be normal with mean

and standard deviation what is the
probability that the repair cost for the next month will
exceed the budgeted amount of 

13. If the resistance X of certain wires in an electrical
network is normal with mean and standard
deviation , how many of 1000 wires will meet
the specification that they have resistance between
0.009 and ?

14. TEAM PROJECT. Normal Distribution. (a) Derive
the formulas in (6) and (7) from the appropriate normal
table.
(b) Show that Give an example.
(c) Find the points of inflection of the curve of (1).
(d) Considering and introducing polar coordi-
nates in the double integral (a standard trick worth
remembering), prove

£
2(�)

£(�z) � 1 � £(z).

0.011 

0.001 
0.01 

$15,000?

$2000,$12,000

20%?

(12)

(e) Show that in (1) is indeed the standard deviation
of the normal distribution. [Use (12).]
(f ) Bernoulli’s law of large numbers. In an experiment
let an event A have probability and let X
be the number of times A happens in n independent trials.
Show that for any given 

(g) Transformation. If X is normal with mean and
variance show that is
normal with mean and variance

15. WRITING PROJECT. Use of Tables, Use of CAS.
Give a systematic discussion of the use of Tables A7 and
A8 for obtaining 

as well as 
include simple examples. If you have

a CAS, describe to what extent it makes the use of those
tables superfluous; give examples.

X � � � c) � k;
P(� � c �P(X 
 c) � k,P(X � c) � k,

P(a � X � b),P(X 
 a),P(X � b),

s*2 � c1
2s2.

�* � c1� � c2

X* � c1X � c2 (c1 
 0)s2,
�

as n : �.P a `  Xn � p ` � Pb: 1

P 
 0,

p (0 � p � 1),

s

£(�) �
1

12p
 �

�

��

e�u2>2 du � 1.
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24.9 Distributions of Several Random Variables
Distributions of two or more random variables are of interest for two reasons:

1. They occur in experiments in which we observe several random variables, for
example, carbon content X and hardness Y of steel, amount of fertilizer X and yield of
corn Y, height weight and blood pressure of persons, and so on.

2. They will be needed in the mathematical justification of the methods of statistics in
Chap. 25.

In this section we consider two random variables X and Y or, as we also say, a two-
dimensional random variable For the outcome of a trial is a pair of numbers

briefly which we can plot as a point in the XY-plane.
The two-dimensional probability distribution of the random variable is given

by the distribution function

(1)

This is the probability that in a trial, X will assume any value not greater than x and in
the same trial, Y will assume any value not greater than y. This corresponds to the blue
region in Fig. 522, which extends to to the left and below. determines theF(x, y)��

F(x, y) � P(X � x, Y � y).

(X, Y)
(X, Y ) � (x, y),X � x, Y � y,

(X, Y )(X, Y ).

X3X2,X1,
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probability distribution uniquely, because in analogy to formula (2) in Sec. 24.5, that is,
we now have for a rectangle (see Prob. 16)

(2)

As before, in the two-dimensional case we shall also have discrete and continuous
random variables and distributions.

Discrete Two-Dimensional Distributions
In analogy to the case of a single random variable (Sec. 24.5), we call and its
distribution discrete if can assume only finitely many or at most countably infinitely
many pairs of values with positive probabilities, whereas the probability
for any domain containing none of those values of is zero.

Let be any of those pairs and let (where we admit that
may be 0 for certain pairs of subscripts i, j). Then we define the probability function

of by

(3) if and otherwise;

here, and independently. In analogy to (4), Sec. 24.5, we now have
for the distribution function the formula

(4)

Instead of (6) in Sec. 24.5 we now have the condition

(5)

E X A M P L E  1 Two-Dimensional Discrete Distribution

If we simultaneously toss a dime and a nickel and consider

then X and Y can have the values 0 or 1, and the probability function is

otherwise. �f (0, 0) � f (1, 0) � f (0, 1) � f (1, 1) � 1
4 , f (x, y) � 0

 Y � Number of heads the nickel turns up,

 X � Number of heads the dime turns up,

a
i
a

j

 f (x i, yj) � 1.

F(x, y) � a
xi�x

  a
yj�y

  f (x i, yj).

j � 1, 2, Ái � 1, 2, Á

f (x, y) � 0x � x i, y � yjf (x, y) � pij

(X, Y )f (x, y)
pij

P(X � x i, Y � yj) � pij(x i, yj)
(X, Y )

(x1, y1), (x2, y2), Á

(X, Y )
(X, Y )

P(a1 � X � b1, a2 � Y � b2) � F(b1, b2) � F(a1, b2) � F(b1, a2) � F(a1, a2).

P(a � X � b) � F(b) � F(a),
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X
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Continuous Two-Dimensional Distributions
In analogy to the case of a single random variable (Sec. 24.5) we call and its
distribution continuous if the corresponding distribution function can be given by
a double integral

(6)

whose integrand f, called the density of is nonnegative everywhere, and is
continuous, possibly except on finitely many curves.

From (6) we obtain the probability that assume any value in a rectangle (Fig. 523)
given by the formula

(7)

E X A M P L E  2 Two-Dimensional Uniform Distribution in a Rectangle

Let R be the rectangle The density (see Fig. 524)

(8) if is in R, otherwise

defines the so-called uniform distribution in the rectangle R; here is the area of R.
The distribution function is shown in Fig. 525. �

k � (b1 � a1)(b2 � a2)

f (x, y) � 0(x, y)f (x, y) � 1>k

a1 � x � b1, a2 � y � b2.

P(a1 � X � b1, a2 � Y � b2) � �
b2

a2

�
b1

a1

 f (x, y) dx dy.

(X, Y )

(X, Y ),

F(x, y) � �
y

��

 �
x

��

 f (x*, y*) dx* dy*

F(x, y)
(X, Y )
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a
1

a
2

b
2

b
1

Y

X

Fig. 523. Notion of a two-dimensional distribution

    1
α

    2
α

    1
β

   2
β

0

x
y

Fig. 524. Density function (8) of the
uniform distribution

1

    1
α

    2
α

    1
β

   2
β

0

x

y

Fig. 525. Distribution function of the 
uniform distribution defined by (8)

Marginal Distributions of a Discrete Distribution
This is a rather natural idea, without counterpart for a single random variable. It amounts
to being interested only in one of the two variables in say, X, and asking for its
distribution, called the marginal distribution of X in So we ask for the probability(X, Y ).

(X, Y ),
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Since is discrete, so is X. We get its probability function,
call it from the probability function of by summing over y:

(9)

where we sum all the values of that are not 0 for that x.
From (9) we see that the distribution function of the marginal distribution of X is

(10)

Similarly, the probability function

(11)

determines the marginal distribution of Y in . Here we sum all the values of that
are not zero for the corresponding y. The distribution function of this marginal distribution is

(12)

E X A M P L E  3 Marginal Distributions of a Discrete Two-Dimensional Random Variable

In drawing 3 cards with replacement from a bridge deck let us consider

The deck has 52 cards. These include 4 queens, 4 kings, and 4 aces. Hence in a single trial a queen has probability
and a king or ace This gives the probability function of 

and otherwise. Table 24.1 shows in the center the values of and on the right and lower margins
the values of the probability functions and of the marginal distributions of X and Y, respectively.

Table 24.1 Values of the Probability Functions ƒ(x, y), ƒ1(x), ƒ2(y) in Drawing
Three Cards with Replacement from a Bridge Deck, where X is the Number
of Queens Drawn and Y is the Number of Kings or Aces Drawn

x
y 0 1 2 3 ƒ1(x)

0 _1000
2197

_600
2197

_120
2197

_8
2197

_1728
2197

1 _300
2197

_120
2197

_12
2197 0 _432

2197

2 _30
2197

_6
2197 0 0 _36

2197

3 _1
2197 0 0 0 _1

2197

ƒ2(y) _1331
2197

_726
2197

_132
2197

_8
2197

�f2(y)f1(x)
f (x, y)f (x, y) � 0

(x � y � 3)f (x, y) �
3!

x!y!(3 � x � y)!
  a 1

13
 b

x 

a 2

13
 b

y 

a10

13
 b

3�x�y

(X, Y ),8
52 � 2

13.4
52 � 1

13

(X, Y ),  X � Number of queens,  Y � Number of kings or aces.

F2( y) � P(X arbitrary, Y � y) � a
y*�y

 f2( y*).

f (x, y)(X, Y )

f2( y) � P(X arbitrary, Y � y) � a
x

 f (x, y)

F1(x) � P(X � x, Y arbitrary) � a
x*�x

 f1(x*).

f (x, y)

f1(x) � P(X � x, Y arbitrary) � a
y

 f (x, y)

(X, Y )f (x, y)f1(x),
(X, Y )P(X � x, Y arbitrary).
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Marginal Distributions of a Continuous Distribution
This is conceptually the same as for discrete distributions, with probability functions and
sums replaced by densities and integrals. For a continuous random variable with
density we now have the marginal distribution of X in , defined by the
distribution function

(13)

with the density of X obtained from by integration over y,

(14)

Interchanging the roles of X and Y, we obtain the marginal distribution of Y in 
with the distribution function

(15)

and density

(16)

Independence of Random Variables
X and Y in a (discrete or continuous) random variable are said to be independent if

(17)

holds for all Otherwise these random variables are said to be dependent. These
definitions are suggested by the corresponding definitions for events in Sec. 24.3.

Necessary and sufficient for independence is

(18)

for all x and y. Here the f ’s are the above probability functions if is discrete or
those densities if is continuous. (See Prob. 20.)

E X A M P L E  4 Independence and Dependence

In tossing a dime and a nickel, may
assume the values 0 or 1 and are independent. The random variables in Table 24.1 are dependent. �

X � Number of heads on the dime, Y � Number of heads on the nickel

(X, Y )
(X, Y )

f (x, y) � f1(x)f2(y)

(x, y).

F(x, y) � F1(x)F2(y)

(X, Y )

f2(y) � �
�

��

 f (x, y) dx.

F2(y) � P(�� � X � �, Y � y) � �
y

��

 f2(y*) dy*

(X, Y )

f1(x) � �
�

��

 f (x, y) dy.

f (x, y)f1

F1(x) � P(X � x, �� � Y � �) � �
x

��

 f1(x*) dx*

(X, Y )f (x, y)
(X, Y )
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Extension of Independence to n-Dimensional Random Variables. This will be needed
throughout Chap. 25. The distribution of such a random variable is
determined by a distribution function of the form

The random variables are said to be independent if

(19)

for all Here is the distribution function of the marginal distribution of
in X, that is,

Otherwise these random variables are said to be dependent.

Functions of Random Variables
When we write Taking a nonconstant continuous
function defined for all x, y, we obtain a random variable For example,
if we roll two dice and X and Y are the numbers the dice turn up in a trial, then 
is the sum of those two numbers (see Fig. 514 in Sec. 24.5).

In the case of a discrete random variable we may obtain the probability function
of by summing all for which equals the value of z

considered; thus

(20)

Hence the distribution function of Z is

(21)

where we sum all values of for which 
In the case of a continuous random variable we similarly have

(22)

where for each z we integrate the density of over the region in
the xy-plane, the boundary curve of this region being g(x, y) � z.

g(x, y) � z(X, Y )f (x, y)

F(z) � P(Z � z) � ��
g(x,y)�z

f (x, y) dx dy

(X, Y )
g(x, y) � z.f (x, y)

F(z) � P(Z � z) � aa
g(x,y)�z

 f (x, y)

f (z) � P(Z � z) � aa
g(x,y)�z

 f (x, y).

g(x, y)f (x, y)Z � g(X, Y )f (z)
(X, Y )

Z � X � Y
Z � g(X, Y ).g(x, y)

X1 � X, X2 � Y, x1 � x, x2 � y.n � 2,

Fj(x j) � P(Xj � x j, Xk arbitrary, k � 1, Á , n, k � j).

Xj

Fj(x j)(x1, Á , xn).

F(x1, Á , xn) � F1(x1)F2(x2) Á Fn(xn)

X1, Á , Xn

F(x1, Á , xn) � P(X1 � x1, Á , Xn � xn).

X � (X1, Á , Xn)
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Addition of Means
The number

(23)

is called the mathematical expectation or, briefly, the expectation of . Here it is
assumed that the double series converges absolutely and the integral of 
over the xy-plane exists (is finite). Since summation and integration are linear processes,
we have from (23)

(24)

An important special case is

and by induction we have the following result.

T H E O R E M  1 Addition of Means

The mean (expectation) of a sum of random variables equals the sum of the means
(expectations), that is,

(25)

Furthermore, we readily obtain

T H E R O E M  2 Multiplication of Means

The mean (expectation) of the product of independent random variables equals the
product of the means (expectations), that is,

(26)

P R O O F If X and Y are independent random variables (both discrete or both continuous), then
In fact, in the discrete case we have

E(XY ) � a
x

 a
y

 xyf (x, y) � a
x

 xf1(x) a
y

 yf2( y) � E(X )E(Y ),

E(XY ) � E(X )E(Y ).

E(X1X2
Á Xn) � E(X1)E(X2) Á E(Xn).

E(X1 � X2 � Á � Xn) � E(X1) � E(X2) � Á � E(Xn).

E(X � Y ) � E(X ) � E(Y ),

E(ag(X, Y ) � bh(X, Y )) � aE(g(X, Y )) � bE(h(X, Y )).

ƒ g(x, y) ƒ f (x, y)
g(X, Y )

E(g(X, Y )) � e a
x

 a
y

 g(x, y) f (x, y)   [(X, Y ) discrete]

�
�

��
 �

�

��
 g(x, y) f (x, y) dx dy    [(X, Y ) continuous]
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and in the continuous case the proof of the relation is similar. Extension to n independent
random variables gives (26), and Theorem 2 is proved.

Addition of Variances
This is another matter of practical importance that we shall need. As before, let 
and denote the mean and variance of Z by and Then we first have (see Team Project
20(a) in Problem Set 24.6)

From (24) we see that the first term on the right equals

For the second term on the right we obtain from Theorem 1

By substituting these expressions into the formula for we have

From Team Project 20, Sec. 24.6, we see that the expression in the first line on the right
is the sum of the variances of X and Y, which we denote by and respectively. The
quantity in the second line (except for the factor 2) is

(27)

and is called the covariance of X and Y. Consequently, our result is

(28)

If X and Y are independent, then

hence and

(29)

Extension to more than two variables gives the basic

T H E O R E M  3 Addition of Variances

The variance of the sum of independent random variables equals the sum of the
variances of these variables.

s2 � s1
2 � s2

2.

sXY � 0,

E(XY ) � E(X )E(Y );

s2 � s1
2 � s2

2 � 2sXY.

sXY � E(XY ) � E(X )E(Y )

s2
2,s1

2

� 2[E(XY ) � E(X )E(Y )].

s2 � E(X2) � [E(X )]2 � E(Y2) � [E(Y )]2

s2

[E(Z )]2 � [E(X ) � E(Y )]2 � [E(X )]2 � 2E(X )E(Y ) � [E(Y )]2.

E(Z2) � E(X2 � 2XY � Y2) � E(X2) � 2E(XY ) � E(Y2).

s2 � E([Z � �]2) � E(Z2) � [E(Z )]2.

s2.�
Z � X � Y

�
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CAUTION! In the numerous applications of Theorems 1 and 3 we must always
remember that Theorem 3 holds only for independent variables.

This is the end of Chap. 24 on probability theory. Most of the concepts, methods, and
special distributions discussed in this chapter will play a fundamental role in the next
chapter, which deals with methods of statistical inference, that is, conclusions from
samples to populations, whose unknown properties we want to know and try to discover
by looking at suitable properties of samples that we have obtained.

SEC. 24.9 Distributions of Several Random Variables 1059

1. Let when and and
zero elsewhere. Find k. Find 
and 

2. Find and if 
has the density if 

3. Let if and 0 other-
wise. Find k. Sketch Find 

4. Find the density of the marginal distribution of X in
Prob. 2.

5. Find the density of the marginal distribution of Y in
Fig. 524.

6. If certain sheets of wrapping paper have a mean weight
of 10 g each, with a standard deviation of 0.05 g, what
are the mean weight and standard deviation of a pack
of 10,000 sheets?

7. What are the mean thickness and the standard deviation
of transformer cores each consisting of 50 layers of
sheet metal and 49 insulating paper layers if the metal
sheets have mean thickness 0.5 mm each with a
standard deviation of 0.05 mm and the paper layers
have mean 0.05 mm each with a standard deviation of
0.02 mm?

8. Let X [cm] and Y [cm] be the diameters of a pin and
hole, respectively. Suppose that has the density

if

and 0 otherwise. (a) Find the marginal distributions.
(b) What is the probability that a pin chosen at random
will fit a hole whose diameter is 1.00?

9. Using Theorems 1 and 3, obtain the formulas for the
mean and the variance of the binomial distribution.

10. Using Theorem 1, obtain the formula for the mean of
the hypergeometric distribution. Can you use Theorem
3 to obtain the variance of that distribution?

11. A 5-gear assembly is put together with spacers between
the gears. The mean thickness of the gears is 5.020 cm
with a standard deviation of 0.003 cm. The mean
thickness of the spacers is 0.040 cm with a standard
deviation of 0.002 cm. Find the mean and standard
deviation of the assembled units consisting of 5 randomly
selected gears and 4 randomly selected spacers.

0.98 � x � 1.02, 1.00 � y � 1.04f (x, y) � 625

(X, Y)

P(Y 
 X ).P(X � Y � 1),f (x, y).
x 
 0, y 
 0, x � y � 3f (x, y) � k

x � y � 8.y 	 0,x 	 0,f (x, y) � 1
32

(X, Y)P(X � 1, Y � 1)P(X 
 4, Y 
 4)

P(9 � X � 13, Y � 1).
P(X � 11, 1 � Y � 1.5)

0 � y � 28 � x � 12f (x, y) � k 12. If the mean weight of certain (empty) containers is 5 lb
the standard deviation is 0.2 lb, and if the filling of the
containers has mean weight 100 lb and standard
deviation 0.5 lb, what are the mean weight and the
standard deviation of filled containers?

13. Find when has the density

if

and 0 otherwise.

14. An electronic device consists of two components. Let
X and Y [years] be the times to failure of the first and
second components, respectively. Assume that 
has the density if and 
and 0 otherwise. (a) Are X and Y dependent or
independent? (b) Find the densities of the marginal
distributions. (c) What is the probability that the first
component will have a lifetime of 2 years or longer?

15. Give an example of two different discrete distributions
that have the same marginal distributions.

16. Prove (2).

17. Let have the probability function

Are X and Y independent?

18. Let have the density

if 

and 0 otherwise. Determine k. Find the densities of the
marginal distributions. Find the probability

19. Show that the random variables with the densities

and

if and and
elsewhere, have the same marginal

distribution.

20. Prove the statement involving (18).

g(x, y) � 0
f (x, y) � 00 � x � 1, 0 � y � 1

g(x, y) � (x � 1
2 )(y � 1

2 )

f (x, y) � x � y

P(X2 � Y2 � 1
4).

x2 � y2 � 1f (x, y) � k

(X, Y )

f (0, 1) � f (1, 0) � 3
8.

f (0, 0) � f (1, 1) � 1
8,

(X, Y )

y 
 0x 
 0f (x, y) � 4e�2(x�y)
(X, Y )

x 	 0, y 	 0f (x, y) � 0.25e�0.5(x�y)

(X, Y )P(X 
 Y )

P R O B L E M  S E T 2 4 . 9
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1. What are stem-and-leaf plots? Boxplots? Histograms?
Compare their advantages.

2. What properties of data are measured by the mean? The
median? The standard deviation? The variance?

3. What do we mean by an experiment? An outcome? An
event? Give examples.

4. What is a random variable? Its distribution function?
Its probability function or density?

5. State the definition of probability from memory. Give
simple examples.

6. What is sampling with and without replacement? What
distributions are involved?

7. When is the Poisson distribution a good approximation
of the binomial distribution? The normal distribution?

8. Explain the use of the tables of the normal distribution.
If you have a CAS, how would you proceed without
the tables?

9. State the main theorems on probability. Illustrate them
by simple examples.

10. State the most important facts about distributions of
two random variables and their marginal distributions.

11. Make a stem-and-leaf plot, histogram, and boxplot of the
data 110, 113, 109, 118, 110, 115, 104, 111, 116, 113.

12. Same task as in Prob. 11. for the data 13.5, 13.2, 12.1,
13.6, 13.3.

13. Find the mean, standard deviation, and variance in
Prob. 11.

14. Find the mean, standard deviation, and variance in
Prob. 12.

15. Show that the mean always lies between the smallest
and the largest data value.

16. What are the outcomes in the sample space of the
experiment of simultaneously tossing three coins?

17. Plot a histogram of the data 8, 2, 4, 10 and guess and s
by inspecting the histogram. Then calculate and s.

18. Using a Venn diagram, show that if and only if

19. Suppose that of bolts made by a machine are
defective, the defectives occurring at random during
production. If the bolts are packaged 50 per box, what
is the binomial approximation of the probability that a
given box will contain defectives?

20. Of a lot of 12 items, 3 are defective. (a) Find the number
of different samples of 3 items. Find the number of
samples of 3 items containing (b) no defectives, (c) 1
defective, (d) 2 defectives, (e) 3 defectives.

21. Find the probability function of Number of times
of tossing a fair coin until the first head appears.

22. If the life of ball bearings has the density 
if and 0 otherwise, what is k? What is the
probability 

23. Find the mean and variance of a discrete random variable
X having the probability function 

24. Let X be normal with mean 14 and variance 4. Determine
c such that 

25. Let X be normal with mean 80 and variance 9. Find
and P(78 � X � 82).P(X 
 83), P(X � 81), P(X � 80),

P(X � c) � 99.5%.
P(X � c) � 5%,P(X � c) � 95%,

f (2) � 1
4 .

f (0) � 1
4 ,  f (1) � 1

2 ,

P(X 	 1)?
0 � x � 2

f (x) � ke�x

X �

x � 0, 1, Á , 5

3%

A � B � A.
A � B

x, s2,
x

C H A P T E R  2 4  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S

A random experiment, briefly called experiment, is a process in which the result
(“outcome”) depends on “chance” (effects of factors unknown to us). Examples are
games of chance with dice or cards, measuring the hardness of steel, observing weather
conditions, or recording the number of accidents in a city. (Thus the word “experiment”
is used here in a much wider sense than in common language.) The outcomes are
regarded as points (elements) of a set S, called the sample space, whose subsets are
called events. For events E we define a probability by the axioms (Sec. 24.3)

(1)

(Ej � Ek � � ).P(E1 � E2 � Á ) � P(E1) � P(E2) � Á

P(S) � 1

0 � P(E) � 1

P(E)

SUMMARY OF CHAPTER 24
Data Analysis. Probability Theory
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These axioms are motivated by properties of frequency distributions of data
(Sec. 24.1).

The complement of E has the probability

(2)

The conditional probability of an event B under the condition that an event A
happens is (Sec. 24.3)

(3)

Two events A and B are called independent if the probability of their simultaneous
appearance in a trial equals the product of their probabilities, that is, if

(4)

With an experiment we associate a random variable X. This is a function defined
on S whose values are real numbers; furthermore, X is such that the probability

with which X assumes any value a, and the probability with
which X assumes any value in an interval are defined (Sec. 24.5). The
probability distribution of X is determined by the distribution function

(5)

In applications there are two important kinds of random variables: those of the
discrete type, which appear if we count (defective items, customers in a bank, etc.)
and those of the continuous type, which appear if we measure (length, speed,
temperature, weight, etc.).

A discrete random variable has a probability function

(6)

Its mean and variance are (Sec. 24.6)

(7) and

where the are the values for which X has a positive probability. Important discrete
random variables and distributions are the binomial, Poisson, and hypergeometric
distributions discussed in Sec. 24.7.

A continuous random variable has a density

(8) [see (5)].

Its mean and variance are (Sec. 24.6)

(9) and s2 � �
�

��

(x � �)2f (x) dx.� � �
�

��

 x f (x) dx

f (x) � Fr(x)

x j

s2 � a
j

(x j � �)2f (x j)� � a
j

 x j f (x j)

s2�

f (x) � P(X � x).

F(x) � P(X � x).

a � X � b
P(a � X � b)P(X � a)

P(A � B) � P(A)P(B).

[P(A) 
 0].P(B ƒ A) �
P(A � B)

P(A)
 

P(Ec) � 1 � P(E).

Ec

Summary of Chapter 24 1061
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Very important is the normal distribution (Sec. 24.8), whose density is

(10)

and whose distribution function is (Sec. 24.8; Tables A7, A8 in App. 5)

(11)

A two-dimensional random variable (X, Y ) occurs if we simultaneously observe
two quantities (for example, height X and weight Y of adults). Its distribution function
is (Sec. 24.9)

(12)

X and Y have the distribution functions (Sec. 24.9)

(13) Y arbitrary) and

respectively; their distributions are called marginal distributions. If both X and Y
are discrete, then (X, Y ) has a probability function

If both X and Y are continuous, then (X, Y ) has a density f (x, y).

f (x, y) � P(X � x, Y � y).

F2(y) � P(x arbitrary, Y � y)F1(x) � P(X � x,

F(x, y) � P(X � x, Y � y).

F(x) � £ax � �

s
 b .

f (x) �
1

s12p
  exp c� 

1

2
  ax � �

s
 b

2 d
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1063

C H A P T E R 2 5

Mathematical Statistics

In probability theory we set up mathematical models of processes that are affected by
“chance.” In mathematical statistics or, briefly, statistics, we check these models against
the observable reality. This is called statistical inference. It is done by sampling, that
is, by drawing random samples, briefly called samples. These are sets of values from a
much larger set of values that could be studied, called the population. An example is
10 diameters of screws drawn from a large lot of screws. Sampling is done in order to
see whether a model of the population is accurate enough for practical purposes. If this
is the case, the model can be used for predictions, decisions, and actions, for instance, in
planning productions, buying equipment, investing in business projects, and so on.

Most important methods of statistical inference are estimation of parameters (Secs. 25.2),
determination of confidence intervals (Sec. 25.3), and hypothesis testing (Sec. 25.4, 25.7,
25.8), with application to quality control (Sec. 25.5) and acceptance sampling (Sec. 25.6).

In the last section (25.9) we give an introduction to regression and correlation analysis,
which concern experiments involving two variables.

Prerequisite: Chap. 24.
Sections that may be omitted in a shorter course: 25.5, 25.6, 25.8.
References, Answers to Problems, and Statistical Tables: App. 1 Part G, App. 2, App. 5.

25.1 Introduction. Random Sampling
Mathematical statistics consists of methods for designing and evaluating random
experiments to obtain information about practical problems, such as exploring the relation
between iron content and density of iron ore, the quality of raw material or manufactured
products, the efficiency of air-conditioning systems, the performance of certain cars, the
effect of advertising, the reactions of consumers to a new product, etc.

Random variables occur more frequently in engineering (and elsewhere) than one
would think. For example, properties of mass-produced articles (screws, lightbulbs, etc.)
always show random variation, due to small (uncontrollable!) differences in raw material
or manufacturing processes. Thus the diameter of screws is a random variable X and we
have nondefective screws, with diameter between given tolerance limits, and defective
screws, with diameter outside those limits. We can ask for the distribution of X, for the
percentage of defective screws to be expected, and for necessary improvements of the
production process.

Samples are selected from populations—20 screws from a lot of of 5000
voters, 8 beavers in a wildlife conservation project—because inspecting the entire
population would be too expensive, time-consuming, impossible or even senseless (think

1000, 100
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of destructive testing of lightbulbs or dynamite). To obtain meaningful conclusions,
samples must be random selections. Each of the 1000 screws must have the same chance
of being sampled (of being drawn when we sample), at least approximately. Only then
will the sample mean (Sec. 24.1) of a sample of size 
(or any other n) be a good approximation of the population mean (Sec. 24.6); and the
accuracy of the approximation will generally improve with increasing n, as we shall see.
Similarly for other parameters (standard deviation, variance, etc.).

Independent sample values will be obtained in experiments with an infinite sample
space S (Sec. 24.2), certainly for the normal distribution. This is also true in sampling with
replacement. It is approximately true in drawing small samples from a large finite population
(for instance, 5 or 10 of 1000 items). However, if we sample without replacement from a
small population, the effect of dependence of sample values may be considerable.

Random numbers help in obtaining samples that are in fact random selections. This
is sometimes not easy to accomplish because there are many subtle factors that can bias
sampling (by personal interviews, by poorly working machines, by the choice of
nontypical observation conditions, etc.). Random numbers can be obtained from a
random number generator in Maple, Mathematica, or other systems listed on p. 789.
(The numbers are not truly random, as they would be produced in flipping coins or
rolling dice, but are calculated by a tricky formula that produces numbers that do have
practically all the essential features of true randomness. Because these numbers
eventually repeat, they must not be used in cryptography, for example, where true
randomness is required.)

E X A M P L E  1 Random Numbers from a Random Number Generator

To select a sample of size from 80 given ball bearings, we number the bearings from 1 to 80. We then
let the generator randomly produce 10 of the integers from 1 to 80 and include the bearings with the numbers
obtained in our sample, for example.

or whatever.
Random numbers are also contained in (older) statistical tables.

Representing and processing data were considered in Sec. 24.1 in connection with
frequency distributions. These are the empirical counterparts of probability distributions
and helped motivating axioms and properties in probability theory. The new aspect in this
chapter is randomness: the data are samples selected randomly from a population.
Accordingly, we can immediately make the connection to Sec. 24.1, using stem-and-leaf
plots, box plots, and histograms for representing samples graphically.

Also, we now call the mean in (5), Sec. 24.1, the sample mean

(1)

We call n the sample size, the variance in (6), Sec. 24.1, the sample variance

(2) s2 �
1

n � 1
  a

n

j�1

 (x j � x)2 �
1

n � 1
 [(x1 � x)2 � Á � (xn � x)2],

s2

x �
1
n  a

n

j�1

 x j �
1
n (x1 � x2 � Á � xn).

x

�

44 55 53 03 52 61 67 78 39 54

n � 10

�
n � 20x � (x1 � Á � x20)>20
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and its positive square root s the sample standard deviation. and s are called
parameters of a sample; they will be needed throughout this chapter.

25.2 Point Estimation of Parameters
Beginning in this section, we shall discuss the most basic practical tasks in statistics and
corresponding statistical methods to accomplish them. The first of them is point estimation
of parameters, that is, of quantities appearing in distributions, such as p in the binomial
distribution and and in the normal distribution.

A point estimate of a parameter is a number (point on the real line), which is computed
from a given sample and serves as an approximation of the unknown exact value of the
parameter of the population. An interval estimate is an interval (“confidence interval”)
obtained from a sample; such estimates will be considered in the next section. Estimation
of parameters is of great practical importance in many applications.

As an approximation of the mean of a population we may take the mean of a
corresponding sample. This gives the estimate for that is,

(1)

where n is the sample size. Similarly, an estimate for the variance of a population is
the variance of a corresponding sample, that is,

(2)

Clearly, (1) and (2) are estimates of parameters for distributions in which or 
appear explicity as parameters, such as the normal and Poisson distributions. For the
binomial distribution, [see (3) in Sec. 24.7]. From (1) we thus obtain for p
the estimate

(3)

We mention that (1) is a special case of the so-called method of moments. In this
method the parameters to be estimated are expressed in terms of the moments of the
distribution (see Sec. 24.6). In the resulting formulas, those moments of the distribution
are replaced by the corresponding moments of the sample. This gives the estimates. Here
the kth moment of a sample is

mk �
1
n   a

n

j�1

 x j
k .

x1, Á , xn

p̂ �
x
n   .

p � �>n

s2�

ŝ2 � s2 �
1

n � 1
  a

n

j�1

 (x j � x)2.

s2
ŝ2

�̂ � x �
1
n (x1 � Á � xn)

�,�̂ � x
x�

s�

x, s2,
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Maximum Likelihood Method
Another method for obtaining estimates is the so-called maximum likelihood method of
R. A. Fisher [Messenger Math. 41 (1912), 155–160]. To explain it, we consider a discrete
(or continuous) random variable X whose probability function (or density) depends
on a single parameter We take a corresponding sample of n independent values

. Then in the discrete case the probability that a sample of size n consists
precisely of those n values is

(4)

In the continuous case the probability that the sample consists of values in the small
intervals is

(5)

Since depends on the function l in (5) given by (4) depends on and 
We imagine to be given and fixed. Then l is a function of which is called
the likelihood function. The basic idea of the maximum likelihood method is quite simple,
as follows. We choose that approximation for the unknown value of for which l is as
large as possible. If l is a differentiable function of a necessary condition for l to have
a maximum in an interval (not at the boundary) is

(6)

(We write a partial derivative, because l depends also on A solution of (6)
depending on is called a maximum likelihood estimate for . We may replace
(6) by

(7)

because a maximum of l is in general positive, and ln l is a monotone increasing
function of l. This often simplifies calculations.

Several Parameters. If the distribution of X involves r parameters then instead
of (6) we have the r conditions and instead of (7) we have

(8)

E X A M P L E  1 Normal Distribution

Find maximum likelihood estimates for and in the case of the normal distribution.

Solution. From (1), Sec. 24.8, and (4) we obtain the likelihood function

where h �
1

2s2   a

n

j�1

 (x j � �)2.l � a 1

12p
bn a 1

s
bn

 

e�h

u2 � su1 � �

0 ln l
0u1

� 0,  Á ,  0 ln l
0ur

� 0.

0l>0u1 � 0, Á , 0l>0ur � 0,
u1, Á , ur,

f (x j) � 0,

0 ln l
0u

� 0,

ux1, Á , xn

x1, Á , xn.)

0l
0u

� 0.

u,
u

u,x1, Á , xn

u.x1, Á , xnu,f (x j)

f (x1)¢x  f (x2)¢x Á  f (xn)¢x � l(¢x)n.

x j � x � x j � ¢x ( j � 1, 2, Á , n)

l � f (x1) f (x2) Á  f (xn).

x1, Á , xn

u.
f (x)
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Taking logarithms, we have

The first equation in (8) is written out

hence

The solution is the desired estimate for we find

The second equation in (8) is written out

Replacing by and solving for we obtain the estimate

which we shall use in Sec. 25.7. Note that this differs from (2). We cannot discuss criteria for the goodness of
estimates but want to mention that for small n, formula (2) is preferable. �

s�2 �
1
n

  a

n

j�1

 (x j � x)2

s2,�̂�

0 ln l

0s
� � 

n
s

�
0h

0s
� � 

1
s

�
1

s3
  a

n

j�1

 (x j � �)2 � 0.

0(ln l)>0s � 0,

�̂ �
1
n

  a

n

j�1

 x j � x.

�:�̂

a

n

j�1

 x j � n� � 0.
0 ln l

0�
� � 

0h

0�
�

1

s2
  a

n

j�1

 (x j � �) � 0.

0(ln l)>0� � 0,

ln l � �n ln 12p � n ln s � h.

1. Normal distribution. Apply the maximum likelihood
method to the normal distribution with 

2. Find the maximum likelihood estimate for the
parameter of a normal distribution with known
variance 

3. Poisson distribution. Derive the maximum likelihood
estimator for Apply it to the sample 

giving numbers of minutes with 0–10, 11–20,
21–30, 31–40, 41–50, more than 50 fliers per minute,
respectively, checking in at some airport check-in.

4. Uniform distribution. Show that, in the case of the
parameters a and b of the uniform distribution (see
Sec. 24.6), the maximum likelihood estimate cannot be
obtained by equating the first derivative to zero. How
can we obtain maximum likelihood estimates in this
case, more or less by using common sense?

5. Binomial distribution. Derive a maximum likelihood
estimate for p.

6. Extend Prob. 5 as follows. Suppose that m times n trials
were made and in the first n trials A happened times,
in the second n trials A happened times, in the
mth n trials A happened times. Find a maximum
likelihood estimate of p based on this information.

km

Á ,k2

k1

10, 4),
(10, 25, 26, 17,�.

s2 � s2
0 � 16.

�

� � 0.
7. Suppose that in Prob. 6 we made 3 times 4 trials and

A happened 2, 3, 2 times, respectively. Estimate p.

8. Geometric distribution. Let Number of inde-
pendent trials until an event A occurs. Show that X has
a geometric distribution, defined by the probability
function where p is the
probability of A in a single trial and Find
the maximum likelihood estimate of p corresponding to
a sample of observed values of X.

9. In Prob. 8, show that (as it
should be!). Calculate independently of Prob. 8 the
maximum likelihood of p in Prob. 8 corresponding to
a single observed value of X.

10. In rolling a die, suppose that we get the first “Six” in
the 7th trial and in doing it again we get it in the 6th
trial. Estimate the probability p of getting a “Six” in
rolling that die once.

11. Find the maximum likelihood estimate of in the
density if and if 

12. In Prob. 11, find the mean substitute it in find
the maximum likelihood estimate of , and show that
it is identical with the estimate for which can be
obtained from that for in Prob. 11.u

�
�

f (x),�,

x � 0.f (x) � 0x � 0f (x) � ue�ux
u

f (1) � f (2) � Á � 1

x1, x2, Á , xn

q � 1 � p.
f (x) � pqx�1, x � 1, 2, Á ,

X �

P R O B L E M  S E T  2 5 . 2
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13. Compute in Prob. 11 from the sample 1.9, 0.4, 0.7, 0.6,
1.4. Graph the sample distribution function and the
distribution function of the random variable, with

, on the same axes. Do they agree reasonably well?
(We consider goodness of fit systematically in Sec. 25.7.)

14. Do the same task as in Prob. 13 if the given sample is
0.4, 0.7, 0.2, 1.1, 0.1.

ûu �
F(x)

F̂(x)
û
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15. CAS EXPERIMENT. Maximum Likelihood
Estimates. (MLEs). Find experimentally how much
MLEs can differ depending on the sample size. Hint.
Generate many samples of the same size n, e.g., of the
standardized normal distribution, and record and 
Then increase n.

s2.x

25.3 Confidence Intervals
Confidence intervals1 for an unknown parameter of some distribution (e.g., are
intervals that contain not with certainty but with a high probability 
which we can choose and are popular). Such an interval is calculated from a
sample. means probability of being wrong—one of about
20 such intervals will not contain Instead of writing we denote this more
distinctly by writing

(1)

Such a special symbol, CONF, seems worthwhile in order to avoid the misunderstanding
that must lie between and 

is called the confidence level, and and are called the lower and upper
confidence limits. They depend on The larger we choose the smaller is the error
probability but the longer is the confidence interval. If then its length goes
to infinity. The choice of depends on the kind of application. In taking no umbrella, a

chance of getting wet is not tragic. In a medical decision of life or death, a chance
of being wrong may be too large and a chance of being wrong may be
more desirable.

Confidence intervals are more valuable than point estimates (Sec. 25.2). Indeed, we can
take the midpoint of (1) as an approximation of and half the length of (1) as an “error bound”
(not in the strict sense of numerics, but except for an error whose probability we know).

and in (1) are calculated from a sample These are n observations of a
random variable X. Now comes a standard trick. We regard as single
observations of n random variables (with the same distribution, namely, that
of X ). Then and in (1) are observed values of two
random variables and The condition (1)
involving can now be written

(2)

Let us see what all this means in concrete practical cases.
In each case in this section we shall first state the steps of obtaining a confidence interval

in the form of a table, then consider a typical example, and finally justify those steps
theoretically.

P(	1 � u � 	2) � g.

g

	2 � 	2(X1, Á , Xn).	1 � 	1(X1, Á , Xn)
u2 � u2(x1, Á , xn)u1 � u1(x1, Á , xn)
X1, Á , Xn

x1, Á , xn

x1, Á , xn.u2u1

u

(g � 99%)1%
5%5%

g

g : 1,1 � g,
g,g.

u2u1g

u2.u1u

CONFg {u1 � u � u2}.

u1 � u � u2,u.
1 � g � 5% � 1

20g � 95%
99%(95%

g,u,u1 � u � u2

u � �)u

1JERZY NEYMAN (1894–1981), American statistician, developed the theory of confidence intervals (Annals
of Mathematical Statistics 6 (1935), 111–116).
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Confidence Interval for of the Normal Distribution
with Known 

Table 25.1 Determination of a Confidence Interval for the Mean �
of a Normal Distribution with Known Variance �2

Step 1. Choose a confidence level 
 (95%, 99%, or the like).

Step 2. Determine the corresponding c:


 0.90 0.95 0.99 0.999

c 1.645 1.960 2.576 3.291

Step 3. Compute the mean of the sample .

Step 4. Compute The confidence interval for � is

(3)

E X A M P L E  1 Confidence Interval for � of the Normal Distribution with Known �

Determine a confidence interval for the mean of a normal distribution with variance using a sample
of values with mean 

Solution. Step 1. is required. Step 2. The corresponding c equals 1.960; see Table 25.1.
Step 3. is given. Step 4. We need Hence 
and the confidence interval is 

This is sometimes written but we shall not use this notation, which can be misleading.
With your CAS you can determine this interval more directly. Similarly for the other examples in this section.

Theory for Table 25.1. The method in Table 25.1 follows from the basic

T H E O R E M  1 Sum of Independent Normal Random Variables

Let be independent normal random variables each of which has mean
and variance Then the following holds.

(a) The sum is normal with mean and variance 

(b) The following random variable is normal with mean and variance

(4)

(c) The following random variable Z is normal with mean 0 and variance 1.

(5) Z �
X � �

s>1n

X �
1
n (X1 � Á � Xn)

s2>n.�X

ns2.n�X1 � Á � Xn

s2.�
X1, Á , Xn

�
� � 5 � 0.588,
CONF0.95 {4.412 � � � 5.588}.

x � k � 4.412, x � k � 5.588k � 1.960 � 3>1100 � 0.588.x � 5
g � 0.95

x � 5.n � 100
s2 � 9,95%

2

CONFg {x � k � � � x � k}.

k � cs>1n.

x1, Á , xnx

s2
�
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P R O O F The statements about the mean and variance in (a) follow from Theorems 1 and 3 in
Sec. 24.9. From this, and Theorem 2 in Sec. 24.6, we see that has the mean 
and the variance This implies that Z has the mean 0 and variance 1,
by Theorem 2(b) in Sec. 24.6. The normality of is proved in Ref. [G3]
listed in App. 1. This implies the normality of (4) and (5).

Derivation of (3) in Table 25.1. Sampling from a normal distribution gives independent
sample values (see Sec. 25.1), so that Theorem 1 applies. Hence we can choose and
then determine c such that

(6)

For the value we obtain from Table A8 in App. 5, as used in
Example 1. For we get the other values of c listed in Table 25.1.
Finally, all we have to do is to convert the inequality in (6) into one for and insert
observed values obtained from the sample. We multiply by and then by

writing (as in Table 25.1),

Adding gives or

(7)

Inserting the observed value of gives (3). Here we have regarded as single
observations of (the standard trick!), so that is an observed value
of and is an observed value of Note further that (7) is of the form (2)
with and 

E X A M P L E  2 Sample Size Needed for a Confidence Interval of Prescribed Length

How large must n be in Example 1 if we want to obtain a confidence interval of length 

Solution. The interval (3) has the length Solving for n, we obtain

In the present case the answer is 
Figure 526 shows how L decreases as n increases and that for the confidence interval is substantially

longer than for (and the same sample size n). �g � 95%
g � 99%

n � (2 � 1.960 � 3>0.4)2 � 870.

n � (2cs>L)2.

L � 2k � 2cs>1n.

L � 0.4?95%

�	2 � X � k.	1 � X � k
X.xX1 � Á � Xn

x1 � Á � xnX1, Á , Xn

x1, Á , xnXx

P(X � k � � � X � k) � g.

P(X � k � � � X � k) � gX

 � P(k � � � X � �k) � g.

 P(�c � Z � c) � P(c � �Z � �c) � P  ac �
� � X

s>1n
 � �cb

cs>1n � ks>1n,
�1�c � Z � c

�
g � 0.9, 0.99, 0.999

z(D) � 1.960g � 0.95

P(�c � Z � c) � P a�c �
X � �

s>1n
 � cb � £(c) � £(�c) � g.

g

�

X1 � Á � Xn

(1>n)2ns2 � s2>n.
(1>n)n� � �X
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Confidence Interval for of the Normal Distribution
with Unknown 
In practice is frequently unknown. Then the method in Table 25.1 does not help and
the whole theory changes, although the steps of determining a confidence interval for 
remain quite similar. They are shown in Table 25.2. We see that k differs from that in
Table 25.1, namely, the sample standard deviation s has taken the place of the unknown
standard deviation of the population. And c now depends on the sample size n and must
be determined from Table A9 in App. 5 or from your CAS. That table lists values z for
given values of the distribution function (Fig. 527)

(8)

of the t-distribution. Here, is a parameter, called the number of degrees
of freedom of the distribution (abbreviated d.f.). In the present case, see
Table 25.2. The constant is such that By integration it turns out that

where is the gamma function (see (24) in App. A3.1).

Table 25.2 Determination of a Confidence Interval for the Mean �
of a Normal Distribution with Unknown Variance �2

Step 1. Choose a confidence level or the like).

Step 2. Determine the solution c of the equation

(9)

from the table of the t-distribution with degrees of freedom
(Table A9 in App. 5; or use a CAS; sample size).

Step 3. Compute the mean and the variance s2 of the sample 

Step 4. Compute k � cs/�n�. The confidence interval is

(10) CONFg {x � k � � � x � k}.

x1, Á , xn.x

n �
n � 1

F(c) � 1
2 (1 � g)

g (95%, 99%,

Km � (1
2 m � 1

2)>31mp (1
2 m)4,

F(�) � 1.Km

m � n � 1;
m (� 1, 2, Á )

F(z) � Km�
x

��
 
a1 �

u2

m b
�(m�1)>2 

du

s

�
s2

s2
�
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0.6 

0.4 

0.2 

0
0 500

L/σσ

n

γ = 99%γ

γ = 95%γ

Fig. 526. Length of the confidence interval (3) (measured in multiples of 
as a function of the sample size n for % and %g � 99g � 95

s)
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E X A M P L E  3 Confidence Interval for �� of the Normal Distribution with Unknown ��2

Five independent measurements of the point of inflammation (flash point) of Diesel oil (D-2) gave the values
(in Assuming normality, determine a confidence interval for the mean.

Solution. Step 1. is required.

Step 2. and Table A9 in App. 5 with d.f. gives 

Step 3.

Step 4. The confidence interval is 

If the variance were known and equal to the sample variance thus then Table 25.1 would
give and We see that the present
interval is almost twice as long as that obtained from Table 25.1 (with Hence for small samples the
difference is considerable! See also Fig. 529. �

s2 � 3.8).
CONF0.99 {142.35 � � � 146.85}.k � cs>1n � 2.57613.8>15 � 2.25

s2 � 3.8,s2,s2

CONF0.99 {140.5 � � � 148.7}.k � 13.8 � 4.60>15 � 4.01.

x � 144.6, s2 � 3.8.

c � 4.60.n � 1 � 4F(c) � 1
2 (1 � g) � 0.995,

g � 0.99

99%144 147 146 142 144.°F)
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y

x0 2 31–1–2–3

0.2

0.4

0.6

0.8

1.0
3 d.f.

1 d.f.

Fig. 527. Distribution functions of the 
t-distribution with 1 and 3 d.f. and of the

standardized normal distribution (steepest curve)

y

x0 2 31–1–2–3

0.1

0.2

0.3

0.4 3 d.f.

1 d.f.

Fig. 528. Densities of the t-distribution
with 1 and 3 d.f. and of the standardized

normal distribution

γ = 99%γ

γ = 95%γ

L /L

n

2

1.5

1
0 10 20

'

Fig. 529. Ratio of the lengths and L of the confidence 
intervals (10) and (3) with % and % as a function 

of the sample size n for equal s and s
g � 99g � 95

Lr

Figure 528 compares the curve of the density of the t-distribution with that of the normal
distribution. The latter is steeper. This illustrates that Table 25.1 (which uses more
information, namely, the known value of yields shorter confidence intervals than
Table 25.2. This is confirmed in Fig. 529, which also gives an idea of the gain by increasing
the sample size.

s2)
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Theory for Table 25.2. For deriving (10) in Table 25.2 we need from Ref. [G3]

T H E O R E M  2 Student’s t-Distribution

Let be independent normal random variables with the same mean and
the same variance Then the random variable

(11)

has a t-distribution [see (8)] with degrees of freedom (d.f.); here is given
by (4) and

(12)

Derivation of (10). This is similar to the derivation of (3). We choose a number 
between 0 and 1 and determine a number c from Table A9 in App. 5 with d.f. (or
from a CAS) such that

(13)

Since the t-distribution is symmetric, we have

and (13) assumes the form (9). Substituting (11) into (13) and transforming the result as
before, we obtain

(14)

where

By inserting the observed values of and of into (14) we finally obtain (10).

Confidence Interval for the Variance 
of the Normal Distribution
Table 25.3 shows the steps, which are similar to those in Tables 25.1 and 25.2.

s2

�S2s2Xx

K � cS>1n.

P(X � K � � � X � K) � g

F(�c) � 1 � F(c),

P(�c � T � c) � F(c) � F(�c) � g.

n � 1
g

S2 �
1

n � 1
  a

n

j�1

 (Xj � X)2 .

Xn � 1

T �
X � �

S>1n

s2.
�X1, Á , Xn
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Table 25.3 Determination of a Confidence Interval for the Variance
�2 of a Normal Distribution, Whose Mean Need Not Be Known

Step 1. Choose a confidence level or the like).

Step 2. Determine solutions and of the equations

(15)

from the table of the chi-square distribution with degrees of
freedom (Table A10 in App. 5; or use a CAS; sample size).

Step 3. Compute where is the variance of the sample

Step 4. Compute and The
confidence interval is

(16)

E X A M P L E  4 Confidence Interval for the Variance of the Normal Distribution

Determine a confidence interval (16) for the variance, using Table 25.3 and a sample (tensile strength of
sheet steel in rounded to integer values)

Solution. Step 1. is required.

Step 2. For we find

and

Step 3.

Step 4.

The confidence interval is

This is rather large, and for obtaining a more precise result, one would need a much larger sample.

Theory for Table 25.3. In Table 25.1 we used the normal distribution, in Table 25.2
the t-distribution, and now we shall use the -distribution (chi-square distribution),
whose distribution function is if and

(Fig. 530).

The parameter is called the number of degrees of freedom (d.f.), and

Note that the distribution is not symmetric (see also Fig. 531).

Cm � 1>[2m>2(1
2 m)].

m (� 1, 2, Á )

F(z) � Cm�
z

0

e�u>2u(m�2)>2 du  if z � 0

z � 0F(z) � 0

�2

�

CONF0.95 {13.21 � s2 � 65.25}.

13s2>c1 � 65.25, 13s2>c2 � 13.21.

13s2 � 326.9.

c2 � 24.74.c1 � 5.01

n � 1 � 13

g � 0.95

89 84 87 81 89 86 91 90 78 89 87 99 83 89.

kg>mm2,
95%

CONFg {k2 � s2 � k1}.

k2 � (n � 1)s2>c2.k1 � (n � 1)s2>c1

x1, Á , xn.
s2(n � 1)s2,

n �
n � 1

F(c1) � 1
2 (1 � g),   F(c2) � 1

2 (1 � g)

c2c1

g (95%, 99%,
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y

x0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

2 d.f.

3 d.f.

5 d.f.

Fig. 530. Distribution function of the chi-square distribution with 2, 3, 5 d.f.

y

x0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

2 d.f.

3 d.f.

5 d.f.

Fig. 531. Density of the chi-square distribution with 2, 3, 5 d.f.

T H E O R E M  3 Chi-Square Distribution

Under the assumptions in Theorem 2 the random variable

(17)

with given by (12) has a chi-square distribution with degrees of freedom.

Proof in Ref. [G3], listed in App. 1.

n � 1S2

Y � (n � 1) 
S2

s2

Derivation of (16). This is similar to the derivation of (3) and (10). We choose a number
between 0 and 1 and determine and from Table A10, App. 5, such that [see (15)]

P(Y � c1) � F(c1) � 1
2 (1 � g),  P(Y � c2) � F(c2) � 1

2 (1 � g).

c2c1g

For deriving (16) in Table 25.3 we need the following theorem.
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Subtraction yields

Transforming with Y given by (17) into an inequality for we obtain

By inserting the observed value of we obtain (16).

Confidence Intervals for Parameters 
of Other Distributions
The methods in Tables 25.1–25.3 for confidence intervals for and are designed for
the normal distribution. We now show that they can also be applied to other distributions
if we use large samples.

We know that if are independent random variables with the same mean 
and the same variance then their sum has the following properties.

(A) has the mean and the variance (by Theorems 1 and 3 in Sec. 24.9).

(B) If those variables are normal, then is normal (by Theorem 1).

If those random variables are not normal, then (B) is not applicable. However, for large
n the random variable is still approximately normal. This follows from the central limit
theorem, which is one of the most fundamental results in probability theory.

T H E O R E M  4 Central Limit Theorem

Let be independent random variables that have the same distribution
function and therefore the same mean and the same variance Let

Then the random variable

(18)

is asymptotically normal with mean 0 and variance 1; that is, the distribution
function of satisfies

A proof can be found in Ref. [G3] listed in App. 1.

Hence, when applying Tables 25.1–25.3 to a nonnormal distribution, we must use
sufficiently large samples. As a rule of thumb, if the sample indicates that the skewness
of the distribution (the asymmetry; see Team Project 20(d), Problem Set 24.6) is small,
use at least for the mean and at least for the variance.n � 50n � 20

lim
n:�

 Fn(x) � £(x) �
1

12p
 �

x

��

e�u2>2 du.

ZnFn(x)

Zn �
Yn � n�

s1n

Yn � X1 � Á � Xn.
s2.�

X1, Á , Xn, Á

Yn

Yn

ns2n�Yn

Yn � X1 � Á � Xns2,
�X1, Á , Xn

s2�

�S2s2

n � 1
c2

  S2 � s2 �
n � 1

c1
  S2 .

s2,c1 � Y � c2

P(c1 � Y � c2) � P(Y � c2) � P(Y � c1) � F(c2) � F(c1) � g.
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1. Why are interval estimates generally more useful than
point estimates?

2–6 MEAN (VARIANCE KNOWN)

2. Find a confidence interval for the mean of a
normal population with standard deviation 4.00 from
the sample 39, 51, 49, 43, 57, 59. Does that interval
get longer or shorter if we take instead of
0.95? By what factor?

3. By what factor does the length of the interval in Prob. 2
change if we double the sample size?

4. Determine a confidence interval for the mean 
of a normal population with variance using
a sample of size 200 with mean 74.81.

5. What sample size would be needed for obtaining a 
confidence interval (3) of length ? Of length ?

6. What sample size is needed to obtain a confidence
interval of length 2.0 for the mean of a normal population
with variance 25? Use Fig. 526. Check by calculation.

MEAN (VARIANCE UNKNOWN)

7. Find a confidence interval for the percentage of
cars on a certain highway that have poorly adjusted
brakes, using a random sample of 800 cars stopped at
a roadblock on that highway, 126 of which had poorly
adjusted brakes.

8. K. Pearson result. Find a confidence interval for
p in the binomial distribution from a classical result by
K. Pearson, who in 24,000 trials of tossing a coin obtained
12,012 Heads. Do you think that the coin was fair?

9–11 Find a confidence interval for the mean of
a normal population from the sample:

9. Copper content of brass 66, 66, 65, 64, 66, 67, 64,
65, 63, 64

10. Melting point of aluminum 660, 667, 654, 663, 662

11. Knoop hardness of diamond 9500, 9800, 9750, 9200,
9400, 9550

(°C)

(%)

99%

99%

95%

99%

s2s
95%

s2 � 16,
�95%

g � 0.99

95%

12. CAS EXPERIMENT. Confidence Intervals. Obtain
100 samples of size 10 of the standardized normal
distribution. Calculate from them and graph the
corresponding confidence intervals for the mean
and count how many of them do not contain 0. Does
the result support the theory? Repeat the whole
experiment, compare and comment.

13–17 VARIANCE
Find a confidence interval for the variance of a normal
population from the sample:

13. Length of 20 bolts with sample mean 20.2 cm and
sample variance 

14. Carbon monoxide emission (grams per mile) of a
certain type of passenger car (cruising at 55 mph): 17.3,
17.8, 18.0, 17.7, 18.2, 17.4, 17.6, 18.1

15. Mean energy (keV) of delayed neutron group (Group 3,
half-life 6.2 s) for uranium fission: a sample of
100 values with mean 442.5 and variance 9.3

16. Ultimate tensile strength (k psi) of alloy steel
(Maraging H) at room temperature: 251, 255, 258, 253,
253, 252, 250, 252, 255, 256

17. The sample in Prob. 9

18. If and are independent normal random variables
with mean 14 and 8 and variance 2 and 5, respectively,
what distribution does have? Hint. Use Team
Project 14(g) in Sec. 24.8.

19. A machine fills boxes weighing Y lb with X lb of salt,
where X and Y are normal with mean 100 lb and 5 lb
and standard deviation 1 lb and 0.5 lb, respectively.
What percent of filled boxes weighing between 104 lb
and 106 lb are to be expected?

20. If the weight X of bags of cement is normally
distributed with a mean of 40 kg and a standard
deviation of 2 kg, how many bags can a delivery truck
carry so that the probability of the total load exceeding
2000 kg will be 5%?

3 X1 � X2

X2X1

U235

0.04 cm2

95%

95%

P R O B L E M  S E T 2 5 . 3

25.4 Testing of Hypotheses. Decisions
The ideas of confidence intervals and of tests2 are the two most important ideas in modern
statistics. In a statistical test we make inference from sample to population through testing a
hypothesis, resulting from experience or observations, from a theory or a quality requirement,
and so on. In many cases the result of a test is used as a basis for a decision, for instance, to

2Beginning around 1930, a systematic theory of tests was developed by NEYMAN (see Sec. 25.3) and EGON
SHARPE PEARSON (1895–1980), English statistician, the son of Karl Pearson (see the footnote on p. 1086).
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buy (or not to buy) a certain model of car, depending on a test of the fuel efficiency 
(and other tests, of course), to apply some medication, depending on a test of its effect; to
proceed with a marketing strategy, depending on a test of consumer reactions, etc.

Let us explain such a test in terms of a typical example and introduce the corresponding
standard notions of statistical testing.

E X A M P L E  1 Test of a Hypothesis. Alternative. Significance Level 

We want to buy 100 coils of a certain kind of wire, provided we can verify the manufacturer’s claim that the
wire has a breaking limit (or more). This is a test of the hypothesis (also called null hypothesis)

We shall not buy the wire if the (statistical) test shows that actually the wire is
weaker, the claim does not hold. is called the alternative (or alternative hypothesis) of the test. We shall
accept the hypothesis if the test suggests that it is true, except for a small error probability called the
significance level of the test. Otherwise we reject the hypothesis. Hence is the probability of rejecting a
hypothesis although it is true. The choice of is up to us. and are popular values.

For the test we need a sample. We randomly select 25 coils of the wire, cut a piece from each coil, and
determine the breaking limit experimentally. Suppose that this sample of values of the breaking limit
has the mean (somewhat less than the claim!) and the standard deviation 

At this point we could only speculate whether this difference is due to randomness, is a
chance effect, or whether it is significant, due to the actually inferior quality of the wire. To continue beyond
speculation requires probability theory, as follows.

We assume that the breaking limit is normally distributed. (This assumption could be tested by the method
in Sec. 25.7. Or we could remember the central limit theorem (Sec. 25.3) and take a still larger sample.) Then

in (11), Sec. 25.3, with has a t-distribution with degrees of freedom for our sample).
Also and are observed values of and S to be used later. We can now choose a significance
level, say, From Table A9 in App. 5 or from a CAS we then obtain a critical value c such that

For the table gives so that 
because of the symmetry of the distribution (Fig. 532).

We now reason as follows—this is the crucial idea of the test. If the hypothesis is true, we have a chance
of only that we observe a value t of T (calculated from a sample) that will fall between and

Hence, if we nevertheless do observe such a t, we assert that the hypothesis cannot be true and we reject
it. Then we accept the alternative. If, however, we accept the hypothesis.

A simple calculation finally gives as an observed value of T. Since
we reject the hypothesis (the manufacturer’s claim) and accept the alternative 

the wire seems to be weaker than claimed. �
� � �1 � 200,�2.5 � �1.71,

t � (197 � 200)>(6>125) � �2.5
t � c,

�1.71.
��a (� 5%)

c � �c� � �1.71c� � 1.71,P(T � c�) � 1 � a � 95%P(T � c) � a � 5%.
a � 5%.

Xs � 6x � 197
(n � 1 � 24n � 1� � �0

T �
X � �0

S>1n

197 � 200 � �3
s � 6 lb.x � 197 lb

n � 25

1%5%a

a

a,
�1

� � �1 � �0,� � �0 � 200.
� � �0 � 200 lb

A

(miles>gal)
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95%

= 5%α           

Do not reject hypothesisReject hypothesis

c = –1.71 0 t

Fig. 532. t-distribution in Example 1

This example illustrates the steps of a test:

1. Formulate the hypothesis to be tested. in the example.)

2. Formulate an alternative in the example.)

3. Choose a significance level

4. Use a random variable whose distribution depends on the
hypothesis and on the alternative, and this distribution is known in both cases. Determine

	̂ � g(X1, Á , Xn)

a (5%, 1%, 0.1%).

u � u1. (u1 � �1

(u0 � �0u � u0
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a critical value c from the distribution of assuming the hypothesis to be true. (In the
example, and c is, obtained from 

5. Use a sample to determine an observed value of 
(t in the example.)

6. Accept or reject the hypothesis, depending on the size of relative to c. in
the example, rejection of the hypothesis.)

Two important facts require further discussion and careful attention. The first is the
choice of an alternative. In the example, but other applications may require

The second fact has to do with errors. We know that (the
significance level of the test) is the probability of rejecting a true hypothesis. And we
shall discuss the probability of accepting a false hypothesis.

One-Sided and Two-Sided Alternatives (Fig. 533)
Let be an unknown parameter in a distribution, and suppose that we want to test the
hypothesis Then there are three main kinds of alternatives, namely,

(1)

(2)

(3)

(1) and (2) are one-sided alternatives, and (3) is a two-sided alternative.
We call rejection region (or critical region) the region such that we reject the

hypothesis if the observed value in the test falls in this region. In ① the critical c lies to
the right of because so does the alternative. Hence the rejection region extends to
the right. This is called a right-sided test. In ② the critical c lies to the left of (as
in Example 1), the rejection region extends to the left, and we have a left-sided test
(Fig. 533, middle part). These are one-sided tests. In ③ we have two rejection regions.
This is called a two-sided test (Fig. 533, lower part).

u0

u0

u � u0.

u � u0

u � u0

u � u0.
u

b

a�1 � �0 or �1 � �0.
�1 � �0,

(t � cû

	̂ .û � g(x1, Á , xn)x1, Á , xn

P(T � c) � a.)	̂ � T,
	̂ ,
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Acceptance Region
Do not reject hypothesis

(Accept hypothesis)

Acceptance Region
Do not reject hypothesis

(Accept hypothesis)

Rejection Region
(Critical Region)

Reject hypothesis

Rejection Region
(Critical Region)

Reject hypothesis

c0
θ

c 0
θ

Acceptance Region
Do not reject
hypothesis

(Accept hypothesis)

Rejection Region
(Critical Region)

Reject hypothesis

Rejection Region
(Critical Region)

Reject hypothesis

c
1

c
2

0
θ

2

1

3

Fig. 533. Test in the case of alternative (1) (upper part of the figure), alternative 
(2) (middle part), and alternative (3)
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All three kinds of alternatives occur in practical problems. For example, (1) may arise
if is the maximum tolerable inaccuracy of a voltmeter or some other instrument.
Alternative (2) may occur in testing strength of material, as in Example 1. Finally, in
(3) may be the diameter of axle-shafts, and shafts that are too thin or too thick are equally
undesirable, so that we have to watch for deviations in both directions.

Errors in Tests
Tests always involve risks of making false decisions:

(I) Rejecting a true hypothesis (Type I error).

(II) Accepting a false hypothesis (Type II error).

Clearly, we cannot avoid these errors because no absolutely certain conclusions about
populations can be drawn from samples. But we show that there are ways and means of
choosing suitable levels of risks, that is, of values and The choice of depends on the
nature of the problem (e.g., a small risk is used if it is a matter of life or death).

Let us discuss this systematically for a test of a hypothesis against an alternative
that is a single number for simplicity. We let so that we have a right-sided
test. For a left-sided or a two-sided test the discussion is quite similar.

We choose a critical (as in the upper part of Fig. 533, by methods discussed
below). From a given sample we then compute a value

with a suitable g (whose choice will be a main point of our further discussion; for instance,
take in the case in which is the mean). If , we reject the
hypothesis. If , we accept it. Here, the value can be regarded as an observed value
of the random variable

(4)

because may be regarded as an observed value of In this test there are
two possibilities of making an error, as follows.

Type I Error (see Table 25.4). The hypothesis is true but is rejected (hence the
alternative is accepted) because 	 assumes a value . Obviously, the probability of
making such an error equals

(5)

is called the significance level of the test, as mentioned before.

Type II Error (see Table 25.4). The hypothesis is false but is accepted because 
assumes a value . The probability of making such an error is denoted by thus

(6) P(	̂ � c)u�u1 � b.

b;û � c
	̂

a

P(	̂ � c)u�u0 � a.

û � c

Xj, j � 1, Á , n.x j

	̂ � g(X1, Á , Xn)

ûû � c
û � cug � (x1 � Á � xn)>n

û � g(x1, Á , xn)

x1, Á , xn

c � u0

u1 � u0,u1,
u � u0

a � 1%
ab.a

b � Probability of making a Type II error.

a � Probability of making a Type I error.

u0

u0

1080 CHAP. 25 Mathematical Statistics
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is called the power of the test. Obviously, the power is the probability of
avoiding a Type II error.

Table 25.4 Type I and Type II Errors in Testing a Hypothesis 
� � �0 Against an Alternative � � �1

Unknown Truth

True decision Type II error
P � 1 � � P � �

Type 1 error True decision 
P � � P � 1 � �

Formulas (5) and (6) show that both and depend on c, and we would like to choose
c so that these probabilities of making errors are as small as possible. But the important
Figure 534 shows that these are conflicting requirements because to let decrease we must
shift c to the right, but then increases. In practice we first choose sometimes 
then determine c, and finally compute If is large so that the power is small,
we should repeat the test, choosing a larger sample, for reasons that will appear shortly.

h � 1 � bbb.
1%),a (5%,b

a

ba

u � u1

u � u0

u � u1u � u0

hh � 1 � b
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A
cc

ep
te

d

β α

0
θ

1
θ

Acceptance region Rejection region (Critical region)

c

Density of Θ̂ if 
the hypothesis
is true

Density of Θ̂ if 
the alternative
is true

Fig. 534. Illustration of Type I and II errors in testing a hypothesis 
� � �0 against an alternative � � �1 (� �0, right-sided test)

If the alternative is not a single number but is of the form (1)–(3), then becomes a
function of This function is called the operating characteristic (OC) of the test
and its curve the OC curve. Clearly, in this case also depends on This
function is called the power function of the test. (Examples will follow.)

Of course, from a test that leads to the acceptance of a certain hypothesis it does
not follow that this is the only possible hypothesis or the best possible hypothesis. Hence
the terms “not reject” or “fail to reject” are perhaps better than the term “accept.”

Test for of the Normal Distribution with Known 
The following example explains the three kinds of hypotheses.

E X A M P L E  2 Test for the Mean of the Normal Distribution with Known Variance

Let X be a normal random variable with variance Using a sample of size with mean test the
hypothesis against the three kinds of alternatives, namely,

(a) (b) (c) � � �0.� � �0� � �0

� � �0 � 24
x,n � 10s2 � 9.

s2�

u0,
h(u)

u.h � 1 � b
b(u)u.

b
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Solution. We choose the significance level An estimate of the mean will be obtained from

If the hypothesis is true, is normal with mean and variance see Theorem 1, Sec. 25.3.
Hence we may obtain the critical value c from Table A8 in App. 5.

Case (a). Right-Sided Test. We determine c from that is,

Table A8 in App. 5 gives and which is greater than as in the upper
part of Fig. 533. If the hypothesis is accepted. If it is rejected. The power function of the
test is (Fig. 535)

x � 25.56,x � 25.56,
�0,c � 25.56,(c � 24)>10.9 � 1.645,

P(X � c)��24 � £  ac � 24

10.9
b � 1 � a � 0.95.

P(X � c)��24 � a � 0.05,

s2>n � 0.9,� � 24X

X �
1
n

 (X1 � Á � Xn).

a � 0.05.
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� (�)

�22 �0 26 2820

0.2

0.4

0.6

0.8

1.0

Fig. 535. Power function in Example 2, case (a) (dashed) and case (c)h(�)

(7)

Case (b). Left-Sided Test. The critical value c is obtained from the equation

Table A8 in App. 5 yields . If we accept the hypothesis. If we
reject it. The power function of the test is

(8)

Case (c). Two-Sided Test. Since the normal distribution is symmetric, we choose and equidistant from
say, and and determine k from

P(24 � k � X � 24 � k)��24 � £  a k

10.9
b � £  a� 

k

10.9
b � 1 � a � 0.95.

c2 � 24 � k,c1 � 24 � k� � 24,
c2c1

h(�) � P(X � 22.44)� � £  a22.44 � �

10.9
b � £(23.65 � 1.05�).

x � 22.44,x � 22.44,c � 24 � 1.56 � 22.44

P(X � c)��24 � £  ac � 24

10.9
b � a � 0.05.

 � 1 � £  a25.56 � �

10.9
b � 1 � £(26.94 � 1.05�)

 h(�) � P(X � 25.56)� � 1 � P(X � 25.56)�
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Table A8 in App. 5 gives hence This gives the values and
If is not smaller than and not greater than we accept the hypothesis. Otherwise

we reject it. The power function of the test is (Fig. 535)

(9)

Consequently, the operating characteristic (see before) is (Fig. 536)

If we take a larger sample, say, of size (instead of 10), then (instead of 0.9) and the
critical values are and as can be readily verified. Then the operating characteristic of
the test is

Figure 536 shows that the corresponding OC curve is steeper than that for This means that the increase
of n has led to an improvement of the test. In any practical case, n is chosen as small as possible but so
large that the test brings out deviations between and that are of practical interest. For instance, if
deviations of units are of interest, we see from Fig. 536 that is much too small because when

is almost On the other hand, we see that is sufficient
for that purpose. �

n � 10050%.� � 24 � 2 � 22 or � � 24 � 2 � 26 b
n � 10�2

�0�

n � 10.

 � £(81.97 � 3.33�) � £(78.03 � 3.33�).

 b(�) � £  a24.59 � �

10.09
b � £  a23.41 � �

10.09
b

c2 � 24.59,c1 � 23.41
s2>n � 0.09n � 100

b(�) � £(27.26 � 1.05�) � £(23.34 � 1.05�).

b(�) � 1 � h(�)

� 1 � £(23.34 � 1.05�) � £(27.26�1.05�).

� 1 � £  a22.14 � �

10.9
b � £  a25.86 � �

10.9
b

h(�) � P(X � 22.14)� � P(X � 25.86)� � P(X � 22.14)� � 1 � P(X � 25.86)�

c2,c1xc2 � 24 � 1.86 � 25.86.
c1 � 24 � 1.86 � 22.14k � 1.86.k>10.9 � 1.960,
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�(�)

�22 �0 26 2820

0.2

0.4

0.6

0.8

1.0

n = 10

n = 100

Fig. 536. Curves of the operating characteristic (OC curves) in 
Example 2, case (c), for two different sample sizes n

Test for When Is Unknown, and for 

E X A M P L E  3 Test for the Mean of the Normal Distribution with Unknown Variance

The tensile strength of a sample of manila ropes (diameter 3 in.) was measured. The sample mean was
and the sample standard deviation was (N. C. Wiley, 41st Annual Meeting of the

American Society for Testing Materials). Assuming that the tensile strength is a normal random variable, test
the hypothesis against the alternative Here may be a value given by the
manufacturer, while may result from previous experience.�1

�0�1 � 4400 kg.�0 � 4500 kg

s � 115 kgx � 4482 kg,
n � 16

s2s2�
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Solution. We choose the significance level If the hypothesis is true, it follows from Theorem 2
in Sec. 25.3, that the random variable

has a t-distribution with d.f. The test is left-sided. The critical value c is obtained from
Table A9 in App. 5 gives As an observed value of T we obtain from the

sample We see that and accept the hypothesis. For obtaining
numeric values of the power of the test, we would need tables called noncentral Student t-tables; we shall not
discuss this question here.

E X A M P L E  4 Test for the Variance of the Normal Distribution

Using a sample of size and sample variance from a normal population, test the hypothesis
against the alternative 

Solution. We choose the significance level If the hypothesis is true, then

has a chi-square distribution with d.f. by Theorem 3, Sec. 25.3. From

that is,

and Table A10 in App. 5 with 14 degrees of freedom we obtain This is the critical value of Y. Hence
to there corresponds the critical value Since 
we accept the hypothesis.

If the alternative is true, the random variable has a chi-square distribution with 14
d.f. Hence our test has the power

From a more extensive table of the chi-square distribution (e.g. in Ref. [G3] or [G8]) or from your CAS, you
see that Hence the Type II risk is very large, namely, To make this risk smaller, we would
have to increase the sample size.

Comparison of Means and Variances
E X A M P L E  5 Comparison of the Means of Two Normal Distributions

Using a sample from a normal distribution with unknown mean and a sample from
another normal distribution with unknown mean we want to test the hypothesis that the means are equal,

against an alternative, say, The variances need not be known but are assumed to be equal.3

Two cases of comparing means are of practical importance:

Case A. The samples have the same size. Furthermore, each value of the first sample corresponds to precisely
one value of the other, because corresponding values result from the same person or thing (paired comparison)—
for example, two measurements of the same thing by two different methods or two measurements from the two
eyes of the same person. More generally, they may result from pairs of similar individuals or things, for example,
identical twins, pairs of used front tires from the same car, etc. Then we should form the differences of
corresponding values and test the hypothesis that the population corresponding to the differences has mean 0,
using the method in Example 3. If we have a choice, this method is better than the following.

�x � �y.�x � �y,
�y,

y1, Á , yn2
�xx1, Á , xn1

�
38%.h � 62%.

h � P(S2 � c*)s2�20 � P(Y1 � 0.7c*)s2�20 � 1 � P(Y1 � 11.84)s2�20.

Y1 � 14S2>s1
2 � 0.7S2

s2 � c*,c* � 0.714 � 23.68 � 16.91.S2 � s0
2Y>(n � 1) � 0.714Y

c � 23.68.

P(Y � c) � 0.95,P(Y � c) � a � 0.05,

n � 1 � 14

Y � (n � 1) 
S2

s0
2

� 14 
S2

10
� 1.4S2

a � 5%.

s2 � s1
2 � 20.s2 � s0

2 � 10
s2 � 13n � 15

�

t � ct � (4482 � 4500)>(115>4) � �0.626.
c � �1.75.P(T � c)�0

� a � 0.05.
n � 1 � 15

T �
X � �0

S>1n
�

X � 4500

S>4

a � 5%.
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3This assumption of equality of variances can be tested, as shown in the next example. If the test shows that
they differ significantly, choose two samples of the same size n1 � n2 � n (not too small, � 30, say), use the
test in Example 2 together with the fact that (12) is an observed value of an approximately standardized normal
random variable.
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Case B. The two samples are independent and not necessarily of the same size. Then we may proceed
as follows. Suppose that the alternative is We choose a significance level Then we compute the
sample means as well as and are the sample variances. Using
Table A9 in App. 5 with degrees of freedom, we now determine c from

(10)

We finally compute

(11)

It can be shown that this is an observed value of a random variable that has a t-distribution with 
degrees of freedom, provided the hypothesis is true. If the hypothesis is accepted. If it is rejected.

If the alternative is then (10) must be replaced by

Note that for samples of equal size formula (11) reduces to

(12)

To illustrate the computations, let us consider the two samples given by

and
105 108 86 103 103 107 124 105

89 92 84 97 103 107 111 97

showing the relative output of tin plate workers under two different working conditions [J. J. B. Worth, Journal
of Industrial Engineering 9, 249–253). Assuming that the corresponding populations are normal and have the
same variance, let us test the hypothesis against the alternative (Equality of variances will
be tested in the next example.)

Solution. We find

We choose the significance level From with and Table A9
in App. 5 with 14 degrees of freedom we obtain . Formula (12) with gives the
value

Since we accept the hypothesis that under both conditions the mean output is the same.
Case A applies to the example because the two first sample values correspond to a certain type of work, the

next two were obtained in another kind of work, etc. So we may use the differences

16 16 2 6 0 0 13 8

of corresponding sample values and the method in Example 3 to test the hypothesis is the mean
of the population corresponding to the differences. As a logical alternative we take The sample mean is

and the sample variance is Hence

From and Table A9 in App. 5 with degrees of freedom we
obtain and reject the hypothesis because does not lie between Hence
our present test, in which we used more information (but the same samples), shows that the difference in output
is significant. �

c1 and c2.t � 3.19c1 � �2.36, c2 � 2.36
n � 1 � 7P(T � c1) � 2.5%, P(T � c2) � 97.5%

t � 18 (7.625 � 0)>145.696 � 3.19.

s2 � 45.696.d � 7.625,
� � 0.
� � 0, where �

�x � �yc1 � t0 � c2,

t0 � 18 � 7.625>1190.125 � 1.56.

n � 8c1 � �2.14 and c2 � 2.14
0.5a � 2.5%, 1 � 0.5a � 97.5%(10*)a � 5%.

x � 105.125,  y � 97.500,  sx
2 � 106.125.  sy

2 � 84.000.

�x � �y.�x � �y

(x1, Á , xn1
) and ( y1, Á , yn2

)

t0 � 1n 
x � y

2sx
2 � sy

2
 .

n1 � n2 � n,

P(T � c1) � 0.5a,  P(T � c2) � 1 � 0.5a.(10*)

�x � �y,
t0 � c,t0 � c,

n1 � n2 � 2

t0 �
B

n1n2(n1 � n2 � 2)

n1 � n2

 x � y

2(n1 � 1)sx
2 � (n2 � 1)sy

2
 .

P(T � c) � 1 � a.

n1 � n2 � 2
 sy

2(n1 � 1)sx
2 and (n2 � 1)sy

2, where sx
2x and y

a.�x � �y.
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E X A M P L E  6 Comparison of the Variance of Two Normal Distributions

Using the two samples in the last example, test the hypothesis assume that the corresponding
populations are normal and the nature of the experiment suggests the alternative 

Solution. We find We choose the significance level Using
and Table A11 in App. 5, with degrees of freedom, we

determine We finally compute Since we accept the hypothesis. If 
we would reject it.

This test is justified by the fact that is an observed value of a random variable that has a so-called
F-distribution with degrees of freedom, provided the hypothesis is true. (Proof in Ref. [G3]
listed in App. 1.) The F-distribution with degrees of freedom was introduced by R. A. Fisher4 and has
the distribution function and

(13)

where (For see App. A3.1.)

This long section contained the basic ideas and concepts of testing, along with typical
applications and you may perhaps want to review it quickly before going on, because the
next sections concern an adaptation of these ideas to tasks of great practical importance
and resulting tests in connection with quality control, acceptance (or rejection) of goods
produced, and so on.

�Kmn � mm>2nn>2(1
2 m � 1

2 n)>(1
2 m)(1

2 n).

(z � 0),F(z) � Kmn�
z

0

 t (m�2)>2(mt � n)�(m�n)>2 dt

F(z) � 0 if z � 0
(m, n)

(n1 � 1, n2 � 1)
v0

v0 � c,v0 � c,v0 � sx
2>sy

2 � 1.26.c � 3.79.
(n1 � 1, n2 � 1) � (7, 7)P(V � c) � 1 � a � 95%

a � 5%.sx
2 � 106.125, sy

2 � 84.000.

sx
2 � sy

2.
sx

2 � sy
2;

4After the pioneering work of the English statistician and biologist, KARL PEARSON (1857–1936), the
founder of the English school of statistics, and WILLIAM SEALY GOSSET (1876–1937), who discovered the
t-distribution (and published under the name “Student”), the English statistician Sir RONALD AYLMER
FISHER (1890–1962), professor of eugenics in London (1933–1943) and professor of genetics in Cambridge,
England (1943–1957) and Adelaide, Australia (1957–1962), had great influence on the further development of
modern statistics.

1. From memory: Make a list of the three types of
alternatives, each with a typical example of your own.

2. Make a list of methods in this section, each with the
distribution needed in testing.

3. Test assuming normality and
using the sample (deviations of the
azimuth [multiples of 0.01 radian] in some revolution
of a satellite). Choose 

4. In one of his classical experiments Buffon obtained 2048
heads in tossing a coin 4040 times. Was the coin fair?

5. Do the same test as in Prob. 4, using a result by K.
Pearson, who obtained 6019 heads in 12,000 trials.

6. Assuming normality and known variance 
test the hypothesis against the alternative

using a sample of size 20 with mean 
and choosing 

7. How does the result in Prob. 6 change if we use a small-
er sample, say, of size 5, the other data 

etc.) remaining as before?a � 5%,
(x � 58.05,

a � 5%.
x � 58.50� � 57.0

� � 60.0
s2 � 9,

a � 5%.

0, 1, �1, 3, �8, 6, 1
� � 0 against � � 0,

8. Determine the power of the test in Prob. 6.

9. What is the rejection region in Prob. 6 in the case of a
two-sided test with ?

10. CAS EXPERIMENT. Tests of Means and Variances.
(a) Obtain 100 samples of size 10 each from the normal
distribution with mean 100 and variance 25. For each
sample, test the hypothesis against the
alternative at the level of Record
the number of rejections of the hypothesis. Do the whole
experiment once more and compare.

(b) Set up a similar experiment for the variance of a
normal distribution and perform it 100 times.

11. A firm sells oil in cans containing 5000 g oil per can
and is interested to know whether the mean weight
differs significantly from 5000 g at the level, in
which case the filling machine has to be adjusted. Set
up a hypothesis and an alternative and perform the test,
assuming normality and using a sample of 50 fillings
with mean 4990 g and standard deviation 20 g.

5%

a � 10%.�1 � 100
�0 � 100

a � 5%

P R O B L E M  S E T 2 5 . 4
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12. If a sample of 25 tires of a certain kind has a mean life
of 37,000 miles and a standard deviation of 5000 miles,
can the manufacturer claim that the true mean life of
such tires is greater than 35,000 miles? Set up and test
a corresponding hypothesis at the level, assuming
normality.

13. If simultaneous measurements of electric voltage by
two different types of voltmeter yield the differences
(in volts) can we
assert at the level that there is no significant
difference in the calibration of the two types of
instruments? Assume normality.

14. If a standard medication cures about of patients
with a certain disease and a new medication cured 310
of the first 400 patients on whom it was tried, can we
conclude that the new medication is better? Choose

First guess. Then calculate.

15. Suppose that in the past the standard deviation of
weights of certain 100.0-oz packages filled by a
machine was 0.8 oz. Test the hypothesis 
against the alternative (an undesirable
increase), using a sample of 20 packages with standard
deviation 1.0 oz and assuming normality. Choose

16. Suppose that in operating battery-powered electrical
equipment, it is less expensive to replace all batter-
ies at fixed intervals than to replace each battery
individually when it breaks down, provided the
standard deviation of the lifetime is less than a certain

a � 5%.

H1: s � 0.8
H0: s � 0.8

a � 5%.

75%

5%
0.4, �0.6, 0.2, 0.0, 1.0, 1.4, 0.4, 1.6,

5%

SEC. 25.5 Quality Control 1087

limit, say, less than 5 hours. Set up and apply a suitable
test, using a sample of 28 values of lifetimes with
standard deviation hours and assuming
normality: choose 

17. Brand A gasoline was used in 16 similar automobiles
under identical conditions. The corresponding sample
of 16 values (miles per gallon) had mean 19.6 and
standard deviation 0.4. Under the same conditions,
high-power brand B gasoline gave a sample of 16
values with mean 20.2 and standard deviation 0.6. Is
the mileage of B significantly better than that of A?
Test at the level; assume normality. First guess.
Then calculate.

18. The two samples and 
are values of the differences of

temperatures of iron at two stages of casting, taken
from two different crucibles. Is the variance of the first
population larger than that of the second? Assume
normality. Choose 

19. Show that for a normal distribution the two types of
errors in a test of a hypothesis against an
alternative can be made as small as one
pleases (not zero!) by taking the sample sufficiently
large.

20. Test for equality of population means against the
alternative that the means are different assuming
normality, choosing and using two samples of
sizes 12 and 18, with mean 10 and 14, respectively,
and equal standard deviation 3.

a � 5%

H1: � � �1

H0: � � �0

a � 5%.

(°C)
130, 120, 120, 130, 120

140, 120,70, 80, 30, 70, 60, 80

5%

a � 5%.
s � 3.5

25.5 Quality Control
The ideas on testing can be adapted and extended in various ways to serve basic practical
needs in engineering and other fields. We show this in the remaining sections for some
of the most important tasks solvable by statistical methods. As a first such area of problems,
we discuss industrial quality control, a highly successful method used in various industries.

No production process is so perfect that all the products are completely alike. There is
always a small variation that is caused by a great number of small, uncontrollable factors
and must therefore be regarded as a chance variation. It is important to make sure that the
products have required values (for example, length, strength, or whatever property may
be essential in a particular case). For this purpose one makes a test of the hypothesis that
the products have the required property, say, where is a required value. If
this is done after an entire lot has been produced (for example, a lot of 100,000 screws),
the test will tell us how good or how bad the products are, but it it obviously too late to
alter undesirable results. It is much better to test during the production run. This is done
at regular intervals of time (for example, every hour or half-hour) and is called quality
control. Each time a sample of the same size is taken, in practice 3 to 10 times. If the
hypothesis is rejected, we stop the production and look for the cause of the trouble.

�0� � �0,
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If we stop the production process even though it is progressing properly, we make a
Type I error. If we do not stop the process even though something is not in order, we
make a Type II error (see Sec. 25.4). The result of each test is marked in graphical form
on what is called a control chart. This was proposed by W. A. Shewhart in 1924 and
makes quality control particularly effective.

Control Chart for the Mean
An illustration and example of a control chart is given in the upper part of Fig. 537. This
control chart for the mean shows the lower control limit LCL, the center control line
CL, and the upper control limit UCL. The two control limits correspond to the critical
values and in case (c) of Example 2 in Sec. 25.4. As soon as a sample mean falls
outside the range between the control limits, we reject the hypothesis and assert that the

c2c1
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Fig. 537. Control charts for the mean (upper part of figure) and 
the standard deviation in the case of the samples on p. 1089
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production process is “out of control”; that is, we assert that there has been a shift in
process level. Action is called for whenever a point exceeds the limits.

If we choose control limits that are too loose, we shall not detect process shifts. On the
other hand, if we choose control limits that are too tight, we shall be unable to run the
process because of frequent searches for nonexistent trouble. The usual significance level
is From Theorem 1 in Sec. 25.3 and Table A8 in App. 5 we see that in the case
of the normal distribution the corresponding control limits for the mean are

(1)

Here is assumed to be known. If is unknown, we may compute the standard deviations
of the first 20 or 30 samples and take their arithmetic mean as an approximation of 
The broken line connecting the means in Fig. 537 is merely to display the results.

Additional, more subtle controls are often used in industry. For instance, one observes
the motions of the sample means above and below the centerline, which should happen
frequently. Accordingly, long runs (conventionally of length 7 or more) of means all above
(or all below) the centerline could indicate trouble.

Table 25.5 Twelve Samples of Five Values Each 
(Diameter of Small Cylinders, Measured in Millimeters)

Sample
Number 

Sample Values s R

1 4.06 4.08 4.08 4.08 4.10 4.080 0.014 0.04
2 4.10 4.10 4.12 4.12 4.12 4.112 0.011 0.02
3 4.06 4.06 4.08 4.10 4.12 4.084 0.026 0.06
4 4.06 4.08 4.08 4.10 4.12 4.088 0.023 0.06
5 4.08 4.10 4.12 4.12 4.12 4.108 0.018 0.04

6 4.08 4.10 4.10 4.10 4.12 4.100 0.014 0.04
7 4.06 4.08 4.08 4.10 4.12 4.088 0.023 0.06
8 4.08 4.08 4.10 4.10 4.12 4.096 0.017 0.04
9 4.06 4.08 4.10 4.12 4.14 4.100 0.032 0.08

10 4.06 4.08 4.10 4.12 4.16 4.104 0.038 0.10

11 4.12 4.14 4.14 4.14 4.16 4.140 0.014 0.04
12 4.14 4.14 4.16 4.16 4.16 4.152 0.011 0.02

Control Chart for the Variance
In addition to the mean, one often controls the variance, the standard deviation, or the range.
To set up a control chart for the variance in the case of a normal distribution, we may employ
the method in Example 4 of Sec. 25.4 for determining control limits. It is customary to use only
one control limit, namely, an upper control limit. Now from Example 4 of Sec. 25.4 we have

where, because of our normality assumption, the random variable Y has a
chi-square distribution with degrees of freedom. Hence the desired control limit is

(2) UCL �
s2c

n � 1

n � 1
S2 � s0

2Y>(n � 1),

x

s.
ss

UCL � �0 � 2.58 
s

1n
 .LCL � �0 � 2.58 

s

1n
 ,

a � 1%.
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where c is obtained from the equation

that is,

and the table of the chi-square distribution (Table A10 in App. 5) with degrees of
freedom (or from your CAS); here is the probability that in a properly
running process an observed value of is greater than the upper control limit.

If we wanted a control chart for the variance with both an upper control limit UCL and
a lower control limit LCL, these limits would be

(3) and

where and are obtained from Table A10 with d.f. and the equations

(4) and

Control Chart for the Standard Deviation
To set up a control chart for the standard deviation, we need an upper control limit

(5)

obtained from (2). For example, in Table 25.5 we have Assuming that the
corresponding population is normal with standard deviation and choosing

we obtain from the equation

and Table A10 in App. 5 with 4 degrees of freedom the critical value and from
(5) the corresponding value

which is shown in the lower part of Fig. 537.
A control chart for the standard deviation with both an upper and a lower control limit

is obtained from (3).

Control Chart for the Range
Instead of the variance or standard deviation, one often controls the range R largest
sample value minus smallest sample value). It can be shown that in the case of the normal
distribution, the standard deviation is proportional to the expectation of the randoms

(�

UCL �
0.02113.28

14
� 0.0365,

c � 13.28

P(Y � c) � 1 � a � 99%

a � 1%,
s � 0.02

n � 5.

UCL �
s1c

1n � 1

P(Y � c2) � 1 �
a

2
  .P(Y � c1) �

a

2

n � 1c2c1

UCL �
s2c2

n � 1
  ,LCL �

s2c1

n � 1

S2s2
a (5% or 1%, say)

n � 1

P(Y � c) � 1 � aP(Y � c) � a,
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variable for which R is an observed value, say, where the factor of
proportionality depends on the sample size n and has the values

n 2 3 4 5 6 7 8 9 10

0.89 0.59 0.49 0.43 0.40 0.37 0.35 0.34 0.32

n 12 14 16 18 20 30 40 50

0.31 0.29 0.28 0.28 0.27 0.25 0.23 0.22

Since R depends on two sample values only, it gives less information about a sample
than s does. Clearly, the larger the sample size n is, the more information we lose in using
R instead of s. A practical rule is to use s when n is larger than 10.

ln � s>E(R*)

ln � s>E(R*)

ln

s � lnE(R*)R*

SEC. 25.5 Quality Control 1091

1. Suppose a machine for filling cans with lubricating
oil is set so that it will generate fillings which form
a normal population with mean 1 gal and standard
deviation 0.02 gal. Set up a control chart of the
type shown in Fig. 537 for controlling the mean, that
is, find LCL and UCL, assuming that the sample size
is 4.

2. Three-sigma control chart. Show that in Prob. 1, the
requirement of the significance level leads
to and and
find the corresponding numeric values.

3. What sample size should we choose in Prob. 1 if we
want LCL and UCL somewhat closer together, say,

without changing the signifi-
cance level?

4. What effect on does it have if we double
the sample size? If we switch from to

5. How should we change the sample size in controlling
the mean of a normal population if we want

to decrease to half its original value?

6. Graph the means of the following 10 samples
(thickness of gaskets, coded values) on a control chart
for means, assuming that the population is normal with
mean 5 and standard deviation 1.16.

UCL � LCL

a � 5%?
a � 1%

UCL � LCL

UCL � LCL � 0.02,

UCL � � � 3s>1n,LCL � � � 3s>1n
a � 0.3%

7. Graph the ranges of the samples in Prob. 6 on a control
chart for ranges.

8. Graph as a function of n. Why is a
monotone decreasing function of n?

9. Eight samples of size 2 were taken from a lot of screws.
The values (length in inches) are

Sample No. 1 2 3 4 5 6 7 8

Length
3.50 3.51 3.49 3.52 3.53 3.49 3.48 3.52

3.51 3.48 3.50 3.50 3.49 3.50 3.47 3.49

Assuming that the population is normal with mean
3.500 and variance 0.0004 and using (1), set up a
control chart for the mean and graph the sample means
on the chart.

10. Attribute control charts. Fifteen samples of size 100
were taken from a production of containers. The
numbers of defectives (leaking containers) in those
samples (in the order observed) were

1 4 5 4 9 7 0 5 6 13 0 2 1 12 8

From previous experience it was known that the
average fraction defective is provided that
the process of production is running properly. Using
the binomial distribution, set up a fraction defective
chart (also called a p-chart), that is, choose the

p � 4%

lnln � s>E(R*)

P R O B L E M  S E T  2 5 . 5

Time 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00

5 7 7 4 5 6 5 5 3 3

Sample 2 5 3 4 6 4 5 2 4 6

values 5 4 6 3 4 6 6 5 8 6

6 4 5 6 6 4 4 3 4 8
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corresponding process is under control, whether the
quantities observed vary randomly, etc.).

13. Since the presence of a point outside control limits for
the mean indicates trouble, how often would we be
making the mistake of looking for nonexistent trouble
if we used (a) 1-sigma limits, (b) 2-sigma limits?
Assume normality.

14. What LCL and UCL should we use instead of (1) if,
instead of , we use the sum of the
sample values? Determine these limits in the case of
Fig. 537.

15. Number of defects per unit. A so-called c-chart or
defects-per-unit chart is used for the control of the
number X of defects per unit (for instance, the number
of defects per 100 meters of paper, the number of
missing rivets in an airplane wing, etc.). (a) Set up
formulas for CL and LCL, UCL corresponding to

assuming that X has a Poisson distribution.
(b) Compute CL, LCL, and UCL in a control process
of the number of imperfections in sheet glass; assume
that this number is 3.6 per sheet on the average when
the process is in control.

� � 3s,

x1 � Á � xnx

25.6 Acceptance Sampling
Acceptance sampling is usually done when products leave the factory (or in some cases
even within the factory). The standard situation in acceptance sampling is that a producer
supplies to a consumer (a buyer or wholesaler) a lot of N items (a carton of screws, for
instance). The decision to accept or reject the lot is made by determining the number x
of defectives defective items) in a sample of size n from the lot. The lot is accepted
if where c is called the acceptance number, giving the allowable number of
defectives. If the consumer rejects the lot. Clearly, producer and consumer must
agree on a certain sampling plan giving n and c.

From the hypergeometric distribution we see that the event A: “Accept the lot” has
probability (see Sec. 24.7)

(1)

where M is the number of defectives in a lot of N items. In terms of the fraction defective
we can write (1) as

(2)

can assume values corresponding to here, n and
c are fixed. A monotone smooth curve through these points is called the operating
characteristic curve (OC curve) of the sampling plan considered.

u � 0, 1>N, 2>N, Á , N>N;n � 1P(A; u)

P(A; u) � a

c

x�0

 aNux b a
N � Nu

n � x
b^aN

n
b .

u � M>N

P(A) � P(X � c) � a

c

x�0

 aMx b a
N � M

n � x
b^aN

n
b

x � c,
x � c,

(�

and determine the UCL for the fraction
defective (in percent) by the use of 3-sigma limits,
where is the variance of the random variable

Fraction defective in a sample of size 100.

Is the process under control?

11. Number of defectives. Find formulas for the UCL, CL,
and LCL (corresponding to -limits) in the case of a
control chart for the number of defectives, assuming
that, in a state of statistical control, the fraction of
defectives is p.

12. CAS PROJECT. Control Charts. (a) Obtain 100
samples of 4 values each from the normal distribution
with mean 8.0 and variance 0.16 and their means,
variances, and ranges.

(b) Use these samples for making up a control chart
for the mean.

(c) Use them on a control chart for the standard
deviation.

(d) Make up a control chart for the range.

(e) Describe quantitative properties of the samples
that you can see from those charts (e.g., whether the

3s

X �

s2

LCL � 0
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E X A M P L E  1  Sampling Plan

Suppose that certain tool bits are packaged 20 to a box, and the following sampling plan is used. A sample of
two tool bits is drawn, and the corresponding box is accepted if and only if both bits in the sample are good.
In this case, and (2) takes the form (a factor 2 drops out)

The values of for and the resulting OC curve are shown in Fig. 538.
(Verify!) �

u � 0, 1>20, 2>20, Á , 20>20P(A, u)

 �
(20 � 20 u)(19 � 20 u)

380
 .

 P(A; u) � a20 u

0
b a20 � 20 u

2
b^a20

2
b

N � 20, n � 2, c � 0,
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θ

1

0.5

0
0 0.5 1

P(A; )θ

θ

1

0.5

0
0 0.2

P(A; )θ

Fig. 538. OC curve of the sampling plan with 
and for lots of size N � 20c � 0

n � 2 Fig. 539. OC curve in Example 2

In most practical cases will be small (less than Then if we take small samples
compared to N, we can approximate (2) by the Poisson distribution (Sec. 24.7); thus

(3)

E X A M P L E  2 Sampling Plan. Poisson Distribution

Suppose that for large lots the following sampling plan is used. A sample of size is taken. If it contains
not more than one defective, the lot is accepted. If the sample contains two or more defectives, the lot is rejected.
In this plan, we obtain from (3)

The corresponding OC curve is shown in Fig. 539.

Errors in Acceptance Sampling
We show how acceptance sampling fits into general test theory (Sec. 25.4) and what this
means from a practical point of view. The producer wants the probability of rejectinga

�

P(A; u) � e�20 u(1 � 20 u),

n � 20

(� � nu).P(A; u) � e��
a

c

x�0

 
�x

x!

10%).u
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15%

50%

95%

0 0 
= 1%

θ 1 
= 5%

θ

P(A; )θ

Good
material

Indifference
zone

Poor
material

Consumer's risk
    = 15%β

Producer's risk
     = 5%α

Fig. 540. OC curve, producer’s and consumer’s risks

an acceptable lot (a lot for which does not exceed a certain number on which the
two parties agree) to be small. is called the acceptable quality level (AQL). Similarly,
the consumer (the buyer) wants the probability of accepting an unacceptable lot (a lot
for which is greater than or equal to some to be small. is called the lot tolerance
percent defective (LTPD) or the rejectable quality level (RQL). is called producer’s
risk. It corresponds to a Type I error in Sec. 25.4. is called consumer’s risk and
corresponds to a Type II error. Figure 540 shows an example. We see that the points

and ) lie on the OC curve. It can be shown that for large lots we can
choose and then determine n and c such that the OC curve runs very
close to those prescribed points. Table 25.6 shows the analogy between acceptance
sampling and hypothesis testing in Sec. 25.4.

Table 25.6 Acceptance Sampling and Hypothesis Testing

Acceptance Sampling Hypothesis Testing

Acceptable quality level (AQL) Hypothesis 
Lot tolerance percent defectives (LTPD)

Alternative 

Allowable number of defectives c Critical value c
Producer’s risk � of rejecting a lot Probability � of making a Type I error
with (significance level)
Consumer’s risk � of accepting a lot 

Probability � of making a Type II error
with 

Rectification
Rectification of a rejected lot means that the lot is inspected item by item and all defectives
are removed and replaced by nondefective items. (This may be too expensive if the lot is
cheap; in this case the lot may be sold at a cut-rate price or scrapped.) If a production
turns out defectives, then in K lots of size N each, of the KN items areKNu100u%

u � u1

u � u0

u � u1
u � u1

u � u0u � u0

u0, u1 (� u0), a, b
(u1, b(u0, 1 � a)

b

a

u1u1)u

b

u0

u0u
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defectives. Now of these lots are accepted. These contain defectives,
whereas the rejected and rectified lots contain no defectives, because of the rectification.
Hence after the rectification the fraction defective in all K lots equals This is
called the average outgoing quality (AOQ); thus

(4)

Figure 541 shows an example. Since and the AOQ curve has
a maximum at some giving the average outgoing quality limit (AOQL). This is
the worst average quality that may be expected to be accepted under rectification.

u � u*,
P(A; 1) � 0,AOQ(0) � 0

AOQ(u) � uP(A; u).

KPNu>KN.

KPNuKP(A; u)

SEC. 25.6 Acceptance Sampling 1095

∗
θ
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0.5

0

AOQL
AOQ curve

OC curve

0 0.5θ 1

Fig. 541. OC curve and AOQ curve for the sampling plan in Fig. 538

1. Lots of kitchen knives are inspected by a sampling plan
that uses a sample of size 20 and the acceptance number

What is the probability of accepting a lot with
defectives (knives with dull blades)?

Use Table A6 of the Poisson distribution in App. 5.
Graph the OC curve.

2. What happens in Prob. 1 if the sample size is increased
to 50? First guess. Then calculate. Graph the OC curve
and compare.

3. How will the probabilities in Prob. 1 with 
change (up or down) if we decrease c to zero? First
guess.

4. What are the producer’s and consumer’s risks in
Prob. 1 if the AQL is and the RQL is 

5. Lots of copper pipes are inspected according to a
sample plan that uses sample size 25 and acceptance
number 1. Graph the OC curve of the plan, using the

15%?2%

n � 20

1%, 2%, 10%
c � 1.

Poisson approximation. Find the producer’s risk if the
AQL is 

6. Graph the AOQ curve in Prob. 5. Determine the AOQL,
assuming that rectification is applied.

7. In Example 1 in the text, what are the producer’s and
consumer’s risks if the AQL is 0.1 and the RQL is 0.6?

8. What happens in Example 1 in the text if we increase
the sample size to leaving the other data as
before? Compute and and compare
with Example 1.

9. Graph and compare sampling plans with and
increasing values of n, say, (Use the
binomial distribution.)

10. Find the binomial approximation of the hypergeometric
distribution in Example 1 in the text and compare the
approximate and the accurate values.

n � 2, 3, 4.
c � 1

P(A; 0.2)P(A; 0.1)
n � 3,

1.5%.

P R O B L E M  S E T  2 5 . 6
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11. Samples of 3 fuses are drawn from lots and a lot is
accepted if in the corresponding sample we find no
more than 1 defective fuse. Criticize this sampling plan.
In particular, find the probability of accepting a lot
that is defective. (Use the binomial distribution
(7), Sec. 24.7.)

12. If in a sampling plan for large lots of spark plugs, the
sample size is 100 and we want the AQL to be and
the producer’s risk what acceptance number c
should we choose? (Use the normal approximation of
the binomial distribution in Sec. 24.8.)

2%,
5%

50%

1096 CHAP. 25 Mathematical Statistics

13. What is the consumer’s risk in Prob. 12 if we want the
RQL to be Use from the answer of
Prob. 12.

14. A lot of batteries for wrist watches is accepted if and
only if a sample of 20 contains at most 1 defective.
Graph the OC and AOQ curves. Find AOQL. [Use (3).]

15. Graph the OC curve and the AOQ curve for the single
sampling plan for large lots with and and
find the AOQL.

c � 0,n � 5

c � 912%?

25.7 Goodness of Fit. -Test
To test for goodness of fit means that we wish to test that a certain function is the
distribution function of a distribution from which we have a sample Then we
test whether the sample distribution function defined by

Sum of the relative frequencies of all sample values not exceeding x

fits “sufficiently well.” If this is so, we shall accept the hypothesis that is the
distribution function of the population; if not, we shall reject the hypothesis.

This test is of considerable practical importance, and it differs in character from the
tests for parameters etc.) considered so far.

To test in that fashion, we have to know how much can differ from if the
hypothesis is true. Hence we must first introduce a quantity that measures the deviation
of from and we must know the probability distribution of this quantity under
the assumption that the hypothesis is true. Then we proceed as follows. We determine
a number c such that, if the hypothesis is true, a deviation greater than c has a small
preassigned probability. If, nevertheless, a deviation greater than c occurs, we have reason
to doubt that the hypothesis is true and we reject it. On the other hand, if the deviation
does not exceed c, so that approximates sufficiently well, we accept the
hypothesis. Of course, if we accept the hypothesis, this means that we have insufficient
evidence to reject it, and this does not exclude the possibility that there are other functions
that would not be rejected in the test. In this respect the situation is quite similar to that
in Sec. 25.4.

Table 25.7 shows a test of that type, which was introduced by R. A. Fisher. This
test is justified by the fact that if the hypothesis is true, then is an observed value
of a random variable whose distribution function approaches that of the chi-square
distribution with degrees of freedom (or degrees of freedom if r
parameters are estimated) as n approaches infinity. The requirement that at least five
sample values lie in each interval in Table 25.7 results from the fact that for finite
n that random variable has only approximately a chi-square distribution. A proof can
be found in Ref. [G3] listed in App. 1. If the sample is so small that the requirement
cannot be satisfied, one may continue with the test, but then use the result with
caution.

K � r � 1K � 1

�0
2

F(x)F�(x)

F(x),F�(x)

F(x)F�(x)
(�, s2,

F(x)F(x)

x jF�(x) �

F�(x)
x1, Á , xn.

F(x)

�2
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Table 25.7 Chi-square Test for the Hypothesis That F (x) is the Distribution Function 
of a Population from Which a Sample x1, • • • , xn is Taken

Step 1. Subdivide the x-axis into K intervals such that each interval contains
at least 5 values of the given sample Determine the number of sample
values in the interval where If a sample value lies at a common
boundary point of two intervals, add 0.5 to each of the two corresponding 

Step 2. Using F(x), compute the probability that the random variable X under
consideration assumes any value in the interval , where Compute

(This is the number of sample values theoretically expected in Ij if the hypothesis
is true.)

Step 3. Compute the deviation

(1)

Step 4. Choose a significance level (5%, 1%, or the like).

Step 5. Determine the solution c of the equation

from the table of the chi-sqare distribution with K � 1 degrees of freedom (Table
A10 in App. 5). If r parameters of F(x) are unknown and their maximum likelihood
estimates (Sec. 25.2) are used, then use K � r � 1 degrees of freedom (instead
of K � 1). If accept the hypothesis. If reject the hypothesis.

Table 25.8 Sample of 100 Values of the Splitting Tensile Strength (lb/in.2) 
of Concrete Cylinders

320 380 340 410 380 340 360 350 320 370
350 340 350 360 370 350 380 370 300 420
370 390 390 440 330 390 330 360 400 370
320 350 360 340 340 350 350 390 380 340
400 360 350 390 400 350 360 340 370 420
420 400 350 370 330 320 390 380 400 370
390 330 360 380 350 330 360 300 360 360
360 390 350 370 370 350 390 370 370 340
370 400 360 350 380 380 360 340 330 370
340 360 390 400 370 410 360 400 340 360

D. L. IVEY, Splitting tensile tests on structural lightweight aggregate concrete. Texas Transportation
Institute, College Station, Texas.

E X A M P L E  1 Test of Normality

Test whether the population from which the sample in Table 25.8 was taken is normal.

Solution. Table 25.8 shows the values (column by column) in the order obtained in the experiment. Table
25.9 gives the frequency distribution and Fig. 542 the histogram. It is hard to guess the outcome of the test—
does the histogram resemble a normal density curve sufficiently well or not?

�0
2 � c,�0

2 � c,

P(�2 � c) � 1 � a

�0
2 � a

K

j�1

 
(bj � ej)

2

ej
 .

ej � npj.

j � 1, Á , K.Ij

pj

bj.
j � 1, Á , K.Ij,

bjx1, Á , xn.
I1, I2, Á , IK
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The maximum likelihood estimates for and are and The computation in
Table 25.10 yields It is very interesting that the interval contributes over of .
From the histogram we see that the corresponding frequency looks much too small. The second largest
contribution comes from and the histogram shows that the frequency seems somewhat too large,
which is perhaps not obvious from inspection.

Table 25.9 Frequency Table of the Sample in Table 25.8

1 2 3 4 5
Tensile Absolute Relative Cumulative Cumulative
Strength Frequency Frequency Absolute Relative

x Frequency Frequency
[lb/in.2] 

�
ƒ(x) F

�
(x)

300 2 0.02 2 0.02
310 0 0.00 2 0.02
320 4 0.04 6 0.06
330 6 0.06 12 0.12
340 11 0.11 23 0.23

350 14 0.14 37 0.37
360 16 0.16 53 0.53
370 15 0.15 68 0.68
380 8 0.08 76 0.76
390 10 0.10 86 0.86

400 8 0.08 94 0.94
410 2 0.02 96 0.96
420 3 0.03 99 0.99
430 0 0.00 99 0.99
440 1 0.01 100 1.00

We choose Since and we estimated parameters we have to use Table A10 in App. 5
with degrees of freedom. We find as the solution of Since 
we accept the hypothesis that the population is normal. �

�0
2 � c,P(�2 � c) � 95%.c � 14.07K � r � 1 � 7

r � 2K � 10a � 5%.

395 Á 405,

�0
250%375 Á 385�0

2 � 2.688.
s�2 � 712.9.�̂ � x � 364.7s2�
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Fig. 542. Frequency histogram of the sample in Table 25.8
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Table 25.10 Computations in Example 1

Term in (1)

�� • • • 325 �� • • • �1.49 0.0000 • • • 0.0681 6.81 6 0.096
325 • • • 335 �1.49 • • • �1.11 0.0681 • • • 0.1335 6.54 6 0.045
335 • • • 345 �1.11 • • • �0.74 0.1335 • • • 0.2296 9.61 11 0.201
345 • • • 355 �0.74 • • • �0.36 0.2296 • • • 0.3594 12.98 14 0.080
355 • • • 365 �0.36 • • • 0.01 0.3594 • • • 0.5040 14.46 16 0.164
365 • • • 375 0.01 • • • 0.39 0.5040 • • • 0.6517 14.77 15 0.0004
375 • • • 385 0.39 • • • 0.76 0.6517 • • • 0.7764 12.47 8 1.602
385 • • • 395 0.76 • • • 1.13 0.7764 • • • 0.8708 9.44 10 0.033
395 • • • 405 1.13 • • • 1.51 0.8708 • • • 0.9345 6.37 8 0.417
405 • • • � 1.51 • • • � 0.9345 • • • 1.0000 6.55 6 0.046

�0
2 � 2.688

bjej
£  ax j � 364.7

26.7
bx j � 364.7

26.7
x j

1. Verify the calculations in Example 1 of the text.

2. If it is known that of certain steel rods produced
by a standard process will break when subjected to a
load of 5000 lb, can we claim that a new, less expensive
process yields the same breakage rate if we find that in
a sample of 80 rods produced by the new process, 27
rods broke when subjected to that load? (Use 

3. If 100 flips of a coin result in 40 heads and 60 tails,
can we assert on the level that the coin is fair?

4. If in 10 flips of a coin we get the same ratio as in Prob. 3
(4 heads and 6 tails), is the conclusion the same as in
Prob. 3? First conjecture, then compute.

5. Can you claim, on a level, that a die is fair if 60
trials give with absolute frequencies 10, 13, 9,
11, 9, 8?

6. Solve Prob. 5 if rolling a die 180 times gives 33, 27,
29, 35, 25, 31.

7. If a service station had served 60, 49, 56, 46, 68, 39
cars from Monday through Friday between 1 P.M. and
2 P.M., can one claim on a level that the differences
are due to randomness? First guess. Then calculate.

8. A manufacturer claims that in a process of producing
drill bits, only of the bits are dull. Test the claim
against the alternative that more than of the bits
are dull, using a sample of 400 bits containing 17 dull
ones. Use 

9. In a table of properly rounded function values, even
and odd last decimals should appear about equally
often. Test this for the 90 values of in Table A1
in App. 5.

J1(x)

a � 5%.

2.5%
2.5%

5%

1, Á , 6
5%

5%

a � 5%.)

25%

10. TEAM PROJECT. Difficulty with Random
Selection. 77 students were asked to choose 3 of the
integers completely arbitrarily. The
amazing result was as follows.

Number 11 12 13 14 15 16 17 18 19 20

Frequ. 11 10 20 8 13 9 21 9 16 8

Number 21 22 23 24 25 26 27 28 29 30

Frequ. 12 8 15 10 10 9 12 8 13 9

If the selection were completely random, the following
hypotheses should be true.
(a) The 20 numbers are equally likely.
(b) The 10 even numbers together are as likely as the
10 odd numbers together.
(c) The 6 prime numbers together have probability 0.3
and the 14 other numbers together have probability 0.7.
Test these hypotheses, using Design further
experiments that illustrate the difficulties of random
selection.

11. CAS EXPERIMENT. Random Number Generator.
Check your generator experimentally by imitating
results of n trials of rolling a fair die, with a convenient
n (e.g., 60 or 300 or the like). Do this many times and
see whether you can notice any “nonrandomness”
features, for example, too few Sixes, too many even
numbers, etc., or whether your generator seems to work
properly. Design and perform other kinds of checks.

12. Test for normality at the level using a sample of
(rounded) values x (tensile strength [kg>mm2]n � 79

1%

a � 5%.

11, 12, 13, Á , 30

P R O B L E M  S E T  2 5 . 7
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of steel sheets of 0.3 mm thickness). 
absolute frequency. (Take the first two values together,
also the last three, to get 

x 57 58 59 60 61 62 63 64

a 4 10 17 27 8 9 3 1

13. Mendel’s pathbreaking experiments. In a famous
plant-crossing experiment, the Austrian Augustinian
father Gregor Mendel (1822–1884) obtained 355
yellow and 123 green peas. Test whether this agrees
with Mendel’s theory according to which the ratio
should be 3:1.

14. Accidents in a foundry. Does the random variable
Number of accidents per week have a Poisson

distribution if, within 50 weeks, 33 were accident-free,
1 accident occurred in 11 of the 50 weeks, 2 in 6 of

X �

K � 5.)

a � a(x) �

1100 CHAP. 25 Mathematical Statistics

the weeks, and more than 2 accidents in no week?
Choose 

15. Radioactivity. Rutherford-Geiger experiments.
Using the given sample, test that the corresponding
population has a Poisson distribution. x is the number
of alpha particles per 7.5-s intervals observed by
E. Rutherford and H. Geiger in one of their classical
experiments in 1910, and is the absolute frequency

number of time periods during which exactly x
particles were observed). Use 

x 0 1 2 3 4 5 6

a 57 203 383 525 532 408 273

x 7 8 9 10 11 12 �13

a 139 45 27 10 4 2 0

a � 5%.
(� 

a(x)

a � 5%.

25.8 Nonparametric Tests
Nonparametric tests, also called distribution-free tests, are valid for any distribution.
Hence they are used in cases when the kind of distribution is unknown, or is known but
such that no tests specifically designed for it are available. In this section we shall explain
the basic idea of these tests, which are based on “order statistics” and are rather simple.
If there is a choice, then tests designed for a specific distribution generally give better
results than do nonparametric tests. For instance, this applies to the tests in Sec. 25.4 for
the normal distribution.

We shall discuss two tests in terms of typical examples. In deriving the distributions
used in the test, it is essential that the distributions, from which we sample, are continuous.
(Nonparametric tests can also be derived for discrete distributions, but this is slightly more
complicated.)

E X A M P L E  1 Sign Test for the Median

A median of the population is a solution of the equation where F is the distribution function
of the population.

Suppose that eight radio operators were tested, first in rooms without air-conditioning and then in air-conditioned
rooms over the same period of time, and the difference of errors (unconditioned minus conditioned) were

Test the hypothesis (that is, air-conditioning has no effect) against the alternative (that is, inferior
performance in unconditioned rooms).

Solution. We choose the significance level If the hypothesis is true, the probability p of a positive
difference is the same as that of a negative difference. Hence in this case, and the random variable

Number of positive values among n values

has a binomial distribution with Our sample has eight values. We omit the values 0, which do not
contribute to the decision. Then six values are left, all of which are positive. Since

 � 1.56%

 � 0.0156

 P(X � 6) � a6
6
b (0.5)6(0.5)0

p � 0.5.

X �

p � 0.5,
a � 5%.

� � 0�� � 0

9 4 0 6 4 0 7 11.

F(x) � 0.5,x � ��
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we have observed an event whose probability is very small if the hypothesis is true; in fact 
Hence we assert that the alternative is true. That is, the number of errors made in unconditioned rooms
is significantly higher, so that installation of air conditioning should be considered.

E X A M P L E  2 Test for Arbitrary Trend

A certain machine is used for cutting lengths of wire. Five successive pieces had the lengths

Using this sample, test the hypothesis that there is no trend, that is, the machine does not have the tendency to
produce longer and longer pieces or shorter and shorter pieces. Assume that the type of machine suggests the
alternative that there is positive trend, that is, there is the tendency of successive pieces to get longer.

Solution. We count the number of transpositions in the sample, that is, the number of times a larger value
precedes a smaller value:

29 precedes 28 (1 transposition),

31 precedes 28 and 30 (2 transpositions).

The remaining three sample values follow in ascending order. Hence in the sample there are 
transpositions. We now consider the random variable

Number of transpositions.

If the hypothesis is true (no trend), then each of the permutations of five elements 1 2 3 4 5 has the
same probability We arrange these permutations according to their number of transpositions:(1>120).

5! � 120

T �

1 � 2 � 3

29 31 28 30 32.

�
�� � 0

1.56% � a � 5%.
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T � 0

1 2 3 4 5

T � 1

1 2 3 5 4
1 2 4 3 5
1 3 2 4 5
2 1 3 4 5

T � 2

1 2 4 5 3
1 2 5 3 4
1 3 2 5 4
1 3 4 2 5
1 4 2 3 5
2 1 3 5 4
2 1 4 3 5
2 3 1 4 5
3 1 2 4 5

T � 3

1 2 5 4 3
1 3 4 5 2
1 3 5 2 4
1 4 2 5 3
1 4 3 2 5
1 5 2 3 4
2 1 4 5 3
2 1 5 3 4
2 3 1 5 4
2 3 4 1 5
2 4 1 3 5
3 1 2 5 4
3 1 4 2 5
3 2 1 4 5
4 1 2 3 5

etc.

From this we obtain

We accept the hypothesis because we have observed an event that has a relatively large probability (certainly
much more than if the hypothesis is true.

Values of the distribution function of T in the case of no trend are shown in Table A12, App. 5. For instance,
if then If then 

and so on.F(4) � 1 � 0.167,F(3) � 1 � 0.375,F(2) � 0.375,
F(1) � 0.167,F(0) � 0.042,n � 4,F(0) � 0.167, F(1) � 0.500, F(2) � 1 � 0.167.n � 3,

5%)

P(T � 3) � 1
120 � 4

120 � 9
120 � 15

120 � 29
120 � 24%.
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Our method and those values refer to continuous distributions. Theoretically, we may then expect that all the
values of a sample are different. Practically, some sample values may still be equal, because of rounding: If m
values are equal, add mean value of the transpositions in the case of the permutations of m
elements), that is, for each pair of equal values, for each triple, etc. �3

2
1
2

m(m � 1)>4 (�

1102 CHAP. 25 Mathematical Statistics

1. What would change in Example 1 had we observed
only 5 positive values? Only 4?

2. Test against using 
(deviations of the azimuth [multiples of 0.01 radian] in
some revolution of a satellite).

3. Are oil filters of type A better than type B filters if in
11 trials, A gave cleaner oil than B in 7 cases, B gave
cleaner oil than A in 1 case, whereas in 3 of the trials
the results for A and B were practically the same?

4. Does a process of producing stainless steel pipes of
length 20 ft for nuclear reactors need adjustment if, in a
sample, 4 pipes have the exact length and 15 are shorter
and 3 longer than 20 ft? Use the normal approximation
of the binomial distribution.

5. Do the computations in Prob. 4 without the use of the
DeMoivre–Laplace limit theorem in Sec. 24.8.

6. Thirty new employees were grouped into 15 pairs of
similar intelligence and experience and were then
instructed in data processing by an old method (A)
applied to one (randomly selected) person of each pair,
and by a new presumably better method (B) applied to
the other person of each pair. Test for equality of
methods against the alternative that (B) is better than
(A), using the following scores obtained after the end
of the training period.

A 60 70 80 85 75 40 70 45 95 80 90 60 80 75 65

B 65 85 85 80 95 65 100 60 90 85 100 75 90 60 80

7. Assuming normality, solve Prob. 6 by a suitable test
from Sec. 25.4.

8. In a clinical experiment, each of 10 patients were given
two different sedatives A and B. The following table
shows the effect (increase of sleeping time, measured
in hours). Using the sign test, find out whether the
difference is significant.

A 1.9 0.8 1.1 0.1 �0.1 4.4 5.5 1.6 4.6 3.4
B 0.7 �1.6 �0.2 �1.2 �0.1 3.4 3.7 0.8 0.0 2.0

Difference 1.2 2.4 1.3 1.3 0.0 1.0 1.8 0.8 4.6 1.4

1, �1, 1, 3, �8, 6, 0�� � 0,�� � 0

9. Assuming that the populations corresponding to the
samples in Prob. 8 are normal, apply a suitable test for
the normal distribution.

10. Test whether a thermostatic switch is properly set to
against the alternative that its setting is too low.

Use a sample of 9 values, 8 of which are less than 
and 1 is greater.

11. How would you proceed in the sign test if the
hypothesis is (any number) instead of 

12. Test the hypothesis that, for a certain type of voltmeter,
readings are independent of temperature T against
the alternative that they tend to increase with T. Use
a sample of values obtained by applying a constant
voltage:

Temperature T [°C] 10 20 30 40 50

Reading V [volts] 99.5 101.1 100.4 100.8 101.6

13. Does the amount of fertilizer increase the yield of
wheat X ? Use a sample of values ordered
according to increasing amounts of fertilizer:

14. Apply the test explained in Example 2 to the following
data diastolic blood pressure [mm Hg], 
weight of heart [in grams] of 10 patients who died of
cerebral hemorrhage).

x 121 120 95 123 140 112 92 100 102 91

y 521 465 352 455 490 388 301 395 375 418

15. Does an increase in temperature cause an increase of
the yield of a chemical reaction from which the
following sample was taken?

Temperature [°C] 10 20 30 40 60 80

Yield [kg/min] 0.6 1.1 0.9 1.6 1.2 2.0

y �(x �

33.4 35.3 31.6 35.0 36.1 37.6 36.5 38.7.

[kg>plot]

[°C]

�� � 0?�� � ��0

50°C
50°C

P R O B L E M  S E T  2 5 . 8
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25.9 Regression. Fitting Straight Lines.
Correlation

So far we were concerned with random experiments in which we observed a single quantity
(random variable) and got samples whose values were single numbers. In this section we
discuss experiments in which we observe or measure two quantities simultaneously, so
that we get samples of pairs of values Most applications
involve one of two kinds of experiments, as follows.

1. In regression analysis one of the two variables, call it x, can be regarded as an
ordinary variable because we can measure it without substantial error or we can
even give it values we want. x is called the independent variable, or sometimes
the controlled variable because we can control it (set it at values we choose). The
other variable, Y, is a random variable, and we are interested in the dependence of
Y on x. Typical examples are the dependence of the blood pressure Y on the age x
of a person or, as we shall now say, the regression of Y on x, the regression of the
gain of weight Y of certain animals on the daily ration of food x, the regression of
the heat conductivity Y of cork on the specific weight x of the cork, etc.

2. In correlation analysis both quantities are random variables and we are interested
in relations between them. Examples are the relation (one says “correlation”)
between wear X and wear Y of the front tires of cars, between grades X and Y of
students in mathematics and in physics, respectively, between the hardness X of
steel plates in the center and the hardness Y near the edges of the plates, etc.

Regression Analysis
In regression analysis the dependence of Y on x is a dependence of the mean of Y on
x, so that is a function in the ordinary sense. The curve of is called the
regression curve of Y on x.

In this section we discuss the simplest case, namely, that of a straight regression line

(1)

Then we may want to graph the sample values as n points in the xY-plane, fit a straight
line through them, and use it for estimating at values of x that interest us, so that we
know what values of Y we can expect for those x. Fitting that line by eye would not be
good because it would be subjective; that is, different persons’ results would come out
differently, particularly if the points are scattered. So we need a mathematical method that
gives a unique result depending only on the n points. A widely used procedure is the method
of least squares by Gauss and Legendre. For our task we may formulate it as follows.

Least Squares Principle

The straight line should be fitted through the given points so that the sum of the
squares of the distances of those points from the straight line is minimum, where
the distance is measured in the vertical direction (the y-direction). (Formulas below.)

�(x)

�(x) � �0 � �1x.

�(x)� � �(x)
�

(x1, y1), (x2, y2), Á , (xn, yn).
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To get uniqueness of the straight line, we need some extra condition. To see this, take
the sample Then all the lines with any satisfy the principle.
(Can you see it?) The following assumption will imply uniqueness, as we shall find out.

General Assumption (A1)

The x-values in our sample are not all equal.

From a given sample we shall now determine a straight line by
least squares. We write the line as

(2)

and call it the sample regression line because it will be the counterpart of the population
regression line (1).

Now a sample point has the vertical distance (distance measured in the
y-direction) from (2) given by

(see Fig. 543).ƒ yj � (k0 � k1x j) ƒ

(x j, yj)

y � k0 � k1x

(x1, y1), Á , (xn, yn)

(x1, y1), Á , (xn, yn)x1, Á , xn

k1y � k1x(0, 1), (0, �1).

1104 CHAP. 25 Mathematical Statistics

Fig. 543. Vertical distance of a point (xj , yj) from a straight line y � k0 � k1x

y = yj

y = k
0 

+ k
1
xj

xj

y

x

Hence the sum of the squares of these distances is

(3)

In the method of least squares we now have to determine and such that q is minimum.
From calculus we know that a necessary condition for this is

(4) and

We shall see that from this condition we obtain for the sample regression line the formula

(5) y � y � k1(x � x).

0q

0k1
� 0.

0q

0k0
� 0

k1k0

q � a

n

j�1

(yj � k0 � k1x j)
2.

c25.qxd  11/3/10  6:21 PM  Page 1104



Here and are the means of the x- and the y-values in our sample, that is,

(6)

(a)

(b)

The slope in (5) is called the regression coefficient of the sample and is given by

(7)

Here the “sample covariance” is

(8)

and is given by

(9a)

From (5) we see that the sample regression line passes through the point by which
it is determined, together with the regression coefficient (7). We may call the variance
of the x-values, but we should keep in mind that x is an ordinary variable, not a random
variable.

We shall soon also need

(9b)

Derivation of (5) and (7). Differentiating (3) and using (4), we first obtain

where we sum over j from 1 to n. We now divide by 2, write each of the two sums as
three sums, and take the sums containing and over to the right. Then we get the
“normal equations”

(10)
 k0a x j � k1a x j

2 � a x jyj.

 k0n � k1a x j � a yj

x jyjyj

 
0q

0k1
 � �2a x j( yj � k0 � k1x j) � 0

 
0q

0k0
 � �2a ( yj � k0 � k1x j) � 0,

sy
2 �

1
n � 1

 a
n

j�1

( yj � y)2 �
1

n � 1
 can

j�1

yj
2 �

1
n   ¢an

j�1

yj≤2 d .
sx

2
(x, y),

sx
2 �

1
n � 1

  a
n

j�1

 (x j � x)2 �
1

n � 1
  can

j�1

 x j
2 �

1
n ¢ a

n

j�1

 x j≤2 d  .
sx

2

sxy �
1

n � 1
  a

n

j�1

 (x j � x)( yj � y) �
1

n � 1
  can

j�1

 x j yj �
1
n ¢an

i�1

 x i≤
 
¢ a

n

j�1

 yj≤ d
sxy

k1 �
sxy

sx
2

 .

k1

 y �
1
n ( y1 � Á � yn).

 x �
1
n (x1 � Á � xn)

yx
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This is a linear system of two equations in the two unknowns and Its coefficient
determinant is [see (9)]

and is not zero because of Assumption (A1). Hence the system has a unique solution.
Dividing the first equation of (10) by n and using (6), we get Together
with in (2) this gives (5). To get (7), we solve the system (10) by Cramer’s
rule (Sec. 7.6) or elimination, finding

(11)

This gives (7)–(9) and completes the derivation. [The equality of the two expressions in
(8) and in (9) may be shown by the student].

E X A M P L E  1 Regression Line

The decrease of volume of leather for certain fixed values of high pressure x [atmospheres] was measured.
The results are shown in the first two columns of Table 25.11. Find the regression line of y on x.

Solution. We see that and obtain the values and from (9)
and (8)

Table 25.11 Regression of the Decrease of Volume y [%] 
of Leather on the Pressure x [Atmospheres]

Given Values Auxiliary Values

4000 2.3 16,000,000 9200
6000 4.1 36,000,000 24,600
8000 5.7 64,000,000 45,600

10,000 6.9 100,000,000 69,000

28,000 19.0 216,000,000 148,400

Hence from (7), and the regression line is

or

Note that , which is physically meaningless, but typically indicates that a linear relation is merely
an approximation valid on some restricted interval. �

y(0) � �0.64

y � 0.00077x � 0.64.y � 4.75 � 0.00077(x � 7000)

k1 � 15,400>20,000,000 � 0.00077

 sxy �
1

3
  a148,400 �

28,000 � 19

4
b �

15,400

3
 .

 sx
2 �

1

3
  a216,000,000 �

28,0002

4
b �

20,000,000

3

x jyjx j
2yjx j

x � 28000>4 � 7000, y � 19.0>4 � 4.75,n � 4

y [%]

�

k1 �
na x jyj � a x i a yj

n(n � 1)sx
2

 .

y � k0 � k1x
k0 � y � k1x.

† n a x j

a x j a x j
2
† � na x j

2 � aa x jb
2

� n(n � 1)sx
2 � na (x j � x)2

k1.k0
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Confidence Intervals in Regression Analysis
If we want to get confidence intervals, we have to make assumptions about the distribution
of Y (which we have not made so far; least squares is a “geometric principle,” nowhere
involving probabilities!). We assume normality and independence in sampling:

Assumption (A2)

For each fixed x the random variable Y is normal with mean (1), that is,

(12)

and variance independent of x.

Assumption (A3)

The n performances of the experiment by which we obtain a sample

are independent.

in (12) is called the regression coefficient of the population because it can be shown
that, under Assumptions (A1)–(A3), the maximum likelihood estimate of is the sample
regression coefficient given by (11).

Under Assumptions (A1)–(A3), we may now obtain a confidence interval for , as
shown in Table 25.12.

Table 25.12 Determination of a Confidence Interval for �1 in (1) under Assumptions (A1)–(A3)

Step 1. Choose a confidence level 
 (95%, 99%, or the like).

Step 2. Determine the solution c of the equation

(13)

from the table of the t-distribution with degrees of freedom (Table A9 in
App. 5; sample size).

Step 3. Using a sample compute from (9a), 
from (8), from (7),

(14)

[as in (9b)], and

(15)

Step 4. Compute

The confidence interval is

(16) CONFg {k1 � K � �1 � k1 � K}.

K � c 
B

q0

(n � 2)(n � 1)sx
2

  .

q0 � (n � 1)(sy
2 � k1

2sx
2).

(n � 1)sy
2 � a

n

j�1

 yj
2 �

1
n   ¢ a

n

j�1

 yj≤2k1

(n � 1)sxy(n � 1)sx
2(x1, y1), Á , (xn, yn),

n �
n � 2

F(c) � 1
2 (1 � g)

�1

k1

�1

�1

(x1, y1), (x2, y2),  Á ,  (xn, yn)

s2

�(x) � �0 � �1x
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E X A M P L E  2 Confidence Interval for the Regression Coefficient

Using the sample in Table 25.11, determine a confidence interval for by the method in Table 25.12.

Solution. Step 1. We choose 

Step 2. Equation (13) takes the form and Table A9 in App. 5 with degrees of freedom
gives 

Step 3. From Example 1 we have and . From Table 25.11 we compute

Step 4. We thus obtain

and

Correlation Analysis
We shall now give an introduction to the basic facts in correlation analysis; for proofs see
Ref. [G2] or [G8] in App. 1.

Correlation analysis is concerned with the relation between X and Y in a two-
dimensional random variable (X, Y ) (Sec. 24.9). A sample consists of n ordered pairs of
values as before. The interrelation between the x and y values in the
sample is measured by the sample covariance in (8) or by the sample correlation
coefficient

(17)

with and given in (9). Here r has the advantage that it does not change under a
multiplication of the x and y values by a factor (in going from feet to inches, etc.).

T H E O R E M  1 Sample Correlation Coefficient

The sample correlation coefficient r satisfies In particular, 
if and only if the sample values lie on a straight line. (See Fig. 544.)

The theoretical counterpart of r is the correlation coefficient of X and Y,

(18) r �
sXY

sXsY

r

r � � 1�1 � r � 1.

sysx

r �
sxy

sxsy

sxy

(x1, y1), Á , (xn, yn),

�CONF 0.95 {0.00056 � �1 � 0.00098}.

 � 0.000206

 K � 4.3010.092>(2 � 20,000,000)

 � 0.092.

 q0 � 11.95 � 20,000,000 � 0.000772

 � 11.95.

 3sy
2 � 102.0 �

192

4

k1 � 0.000773sx
2 � 20,000,000

c � 4.30.
n � 2 � 2F(c) � 0.975,

g � 0.95.

�1
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where (the means
and variances of the marginal distributions of X and Y; see Sec. 24.9), and is the
covariance of X and Y given by (see Sec. 24.9)

(19)

The analog of Theorem 1 is

sXY � E([X � �X][Y � �Y]) � E(XY ) � E(X )E(Y ).

sXY

�X � E(X ), �Y � E(Y ), sX
2 � E([X � �X]2), sY

2 � E([Y � �Y]2)

SEC. 25.9 Regression. Fitting Straight Lines. Correlation 1109
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r = 0

r = –0.3

r = –0.9

Fig. 544. Samples with various values of the correlation coefficient r

T H E O R E M  2 Correlation Coefficient

The correlation coefficient satisfies In particular, if and
only if X and Y are linearly related, that is, 

X and Y are called uncorrelated if 

T H E O R E M  3 Independence. Normal Distribution

(a) Independent X and Y (see Sec. 24.9) are uncorrelated.

(b) If (X, Y) is normal (see below), then uncorrelated X and Y are
independent.

Here the two-dimensional normal distribution can be introduced by taking two independent
standardized normal random variables whose joint distribution thus has the density

(20) f *(x*, y*) �
1

2p
 e�(x*2�y*2)>2

X*, Y*,

r � 0.

Y � gX � d, X � g*Y � d*.
r � �1�1 � r � 1.r
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(representing a surface of revolution over the -plane with a bell-shaped curve as cross
section) and setting

This gives the general two-dimensional normal distribution with the density

(21a)

where

(21b)

In Theorem 3(b), normality is important, as we can see from the following example.

E X A M P L E  3 Uncorrelated But Dependent Random Variables

If X assumes with probability and then and in (3)

so that and X and Y are uncorrelated. But they are certainly not independent since they are even functionally
related.

Test for the Correlation Coefficient 
Table 25.13 shows a test for in the case of the two-dimensional normal distribution. t is
an observed value of a random variable that has a t-distribution with degrees of
freedom. This was shown by R. A. Fisher (Biometrika 10 (1915), 507–521).

Table 25.13 Test of the Hypothesis 	 � 0 Against the Alternative 	 �� 0 in the Case
of the Two-Dimensional Normal Distribution

Step 1. Choose a significance level � (5%, 1%, or the like).

Step 2. Determine the solution c of the equation

from the t-distribution (Table A9 in App. 5) with degrees of freedom.

Step 3. Compute r from (17), using a sample 

Step 4. Compute

If accept the hypothesis. If , reject the hypothesis.t � ct � c,

t � r a
B

n � 2

1 � r 2
 b .

(x1, y1), Á , (xn, yn).

n � 2

P(T � c) � 1 � a

n � 2
r

r

�
r � 0

sXY � E(XY) � E(X3) � (�1)3 � 1
3 � 03 � 1

3 � 13 � 1
3 � 0,

E(X) � 0Y � X2,1
3�1, 0, 1

h(x, y) �
1

1 � r2
 c ax � �X

sX
b

2

� 2r ax � �X

sX
b ay � �Y

sY
b � ay � �Y

sY
b

2 d .

f (x, y) �
1

2psXsY21 � r2
 e�h(x,y)>2

 Y � �Y � rsYX* � 21 � r2sYY*.

 X � �X � sXX*

x*y*
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E X A M P L E  4 Test for the Correlation Coefficient 	

Test the hypothesis (independence of X and Y, because of Theorem 3) against the alternative using
the data in the lower left corner of Fig. 544, where (manual soldering errors on 10 two-sided circuit
boards done by 10 workers; front, back of the boards).

Solution. We choose thus Since the table gives Also,
We reject the hypothesis and assert that there is a positive correlation. A worker making

few (many) errors on the front side also tends to make few (many) errors on the reverse side of the board. �
t � 0.618>0.64 � 2.12 � c.

c � 1.86.n � 10, n � 2 � 8,1 � a � 95%.a � 5%;

y �x �

r � 0.6
r � 0,r � 0

Chapter 25 Review Questions and Problems 1111

1–10 SAMPLE REGRESSION LINE 
Find and graph the sample regression line of y on x and the
given data as points on the same axes. Show the details of
your work.

1. (0, 1.0), (2, 2.1), (4, 2.9), (6, 3.6), (8, 5.2)

2.

3. Revolutions per minute, Power of a Diesel
engine [hp]

x 400 500 600 700 750

y 5800 10,300 14,200 18,800 21,000

4. Deformation of a certain steel [mm], Brinell
hardness 

x 6 9 11 13 22 26 28 33 35

y 68 67 65 53 44 40 37 34 32

5. Brinell hardness, Tensile strength [in 1000 psi
(pounds per square inch)] of steel with 
tempered for 1 hour

x 200 300 400 500

y 110 150 190 280

6. Abrasion of quenched and tempered steel S620.

x 1.1 3.2 3.4 4.5 5.6

y 40 65 120 150 190

7. Ohm’s law (Sec. 2.9). 
Also find the resistance R 

x 40 40 80 80 110 110

y 5.1 4.8 0.0 10.3 13.0 12.7

[�].[A].
x � Voltage [V], y � Current

x � Sliding distance [km], y � Wear volume [mm3]

0.45% C
y �x �

[kg>mm2]
y �x �

y �x �

(�2, 3.5), (1, 2.6), (3, 1.3), (5, 0.4)

8. Hooke’s law (Sec. 2.4). Force [lb], Extension
[in] of a spring. Also find the spring modulus.

x 2 4 6 8

y 4.1 7.8 12.3 15.8

9. Thermal conductivity of water.
Also find y

at room temperature 

x 32 50 100 150 212

y 0.337 0.345 0.365 0.380 0.395

10. Stopping distance of a car. Speed [mph]. 
Stopping distance [ft]. Also find y at 35 mph.

x 30 40 50 60

y 160 240 330 435

11. CAS EXPERIMENT. Moving Data. Take a sample,
for instance, that in Prob. 4, and investigate and graph
the effect of changing y-values (a) for small x, (b) for
large x, (c) in the middle of the sample.

12–15 CONFIDENCE INTERVALS

Find a confidence interval for the regression
coefficient assuming (A2) and (A3) hold and using the
sample.

12. In Prob. 2

13. In Prob. 3

14. In Prob. 4

15. Humidity of air [%], Expansion of gelatin [%],

x 10 20 30 40

y 0.8 1.6 2.3 2.8

y �x �

�1,
95%

y �x �

66°F.
[°F], y � Conductivity [Btu>(hr � ft � °F)].

x � Temperature

y �x �

P R O B L E M  S E T  2 5 . 9

1. What is a sample? A population? Why do we sample
in statistics?

2. If we have several samples from the same population,
do they have the same sample distribution function?
The same mean and variance?

3. Can we develop statistical methods without using
probability theory? Apply the methods without using a
sample?

4. What is the idea of the maximum likelihood method?
Why do we say “likelihood” rather than “probability”?

C H A P T E R  2 5  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S
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5. Couldn’t we make the error of interval estimation zero
simply by choosing the confidence level 1?

6. What is testing? Why do we test? What are the errors
involved?

7. When did we use the t-distribution? The F-distribution?

8. What is the chi-square test? Give a sample
example from memory.

9. What are one-sided and two-sided tests? Give typical
examples.

10. How do we test in quality control? In acceptance
sampling?

11. What is the power of a test? What could you perhaps
do when it is low?

12. What is Gauss’s least squares principle (which he found
at age 18)?

13. What is the difference between regression and
correlation?

14. Find the mean, variance, and standard derivation of the
sample 21.0 21.6 19.9 19.6 15.6 20.6 22.1 22.2.

15. Assuming normality, find the maximum likelihood
estimates of mean and variance from the sample in
Prob. 14.

16. Determine a confidence interval for the mean 
of a normal population with variance using
a sample of size 500 with mean 22.

17. Determine a confidence interval for the mean of
a normal population, using the sample 32, 33, 32, 34,
35, 29, 29, 27.

99%

s2 � 25,
�95%

(�2)
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18. Assuming normality, find a confidence interval for
the variance from the sample 145.3, 145.1, 145.4, 146.2.

19. Using a sample of 10 values with mean 14.5 from
a normal population with variance test
the hypothesis against the alternative

on the level. Find the power.

20. Three specimens of high-quality concrete had
compressive strength 357, 359, 413 and for
three specimens of ordinary concrete the values were
346, 358, 302. Test for equality of the population means,

against the alternative Assume
normality and equality of variance. Choose 

21. Assume the thickness of washers to be normal with
mean 2.75 mm and variance Set up
a control chart for and graph the means of the five
samples 

on the chart.

22. The OC curve in acceptance sampling cannot have a
strictly vertical portion. Why?

23. Find the risks in the sampling plan with and
assuming that the AQL is and the

RQL is How do the risks change if we
increase n?

24. Does a process of producing plastic rods of length
meters need adjustment if in a sample, 2 rods

have the exact length and 15 are shorter and 3 longer
than 2 meters? (Use the sign test.)

25. Find the regression line of y on x for the data
(x, y) � (0, 4), (2, 0), (4, �5), (6, �9), (8, �10).

�� � 2

u1 � 15%.
u0 � 1%c � 0,

n � 6

2.76), (2.71, 2.75)
(2.78,(2.79, 2.81),(2.74, 2.74),(2.74, 2.76),

�
0.00024 mm2.

X

a � 5%.
�1 � �2.�1 � �2,

[kg>cm2],

5%�1 � 14.5
�0 � 15.0

s2 � 0.25,

95%

We recall from Chap. 24 that, with an experiment in which we observe some quantity
(number of defectives, height of persons, etc.), there is associated a random variable
X whose probability distribution is given by a distribution function

(1) (Sec. 24.5)

which for each x gives the probability that X assumes any value not exceeding x.
In statistics we take random samples of size n by performing that

experiment n times (Sec. 25.1) and draw conclusions from properties of samples
about properties of the distribution of the corresponding X. We do this by calculating
point estimates or confidence intervals or by performing a test for parameters
and in the normal distribution, p in the binomial distribution, etc.) or by a test
for distribution functions.
s2

(�

x1, Á , xn

F(x) � P(X � x)

SUMMARY OF CHAPTER 25
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A point estimate (Sec. 25.2) is an approximate value for a parameter in the
distribution of X obtained from a sample. Notably, the sample mean (Sec. 25.1)

(2)

is an estimate of the mean of X, and the sample variance (Sec. 25.1)

(3)

is an estimate of the variance of X. Point estimation can be done by the basic
maximum likelihood method (Sec. 25.2).

Confidence intervals (Sec. 25.3) are intervals with endpoints
calculated from a sample such that, with a high probability , we obtain an interval
that contains the unknown true value of the parameter in the distribution of X.
Here, is chosen at the beginning, usually We denote such an interval
by 

In a test for a parameter we test a hypothesis against an alternative 
and then, on the basis of a sample, accept the hypothesis, or we reject it in favor of
the alternative (Sec. 25.4). Like any conclusion about X from samples, this may
involve errors leading to a false decision. There is a small probability (which we
can choose, for instance) that we reject a true hypothesis, and there is a
probability (which we can compute and decrease by taking larger samples) that
we accept a false hypothesis. is called the significance level and the power
of the test. Among many other engineering applications, testing is used in quality
control (Sec. 25.5) and acceptance sampling (Sec. 25.6).

If not merely a parameter but the kind of distribution of X is unknown, we can
use the chi-square test (Sec. 25.7) for testing the hypothesis that some function

is the unknown distribution function of X. This is done by determining the
discrepancy between and the distribution function of a given sample.

“Distribution-free” or nonparametric tests are tests that apply to any distribution,
since they are based on combinatorial ideas. These tests are usually very simple.
Two of them are discussed in Sec. 25.8.

The last section deals with samples of pairs of values, which arise in an experiment
when we simultaneously observe two quantities. In regression analysis, one of the
quantities, x, is an ordinary variable and the other, Y, is a random variable whose
mean depends on x, say, In correlation analysis the relation
between X and Y in a two-dimensional random variable is investigated,
notably in terms of the correlation coefficient .r

(X, Y )
�(x) � �0 � �1x.�

F�(x)F(x)
F(x)

1 � ba

b

5% or 1%,
a

u � u1u � u0

CONFg {u1 � u � u2}.
95% or 99%.g

u

g

u1 � u � u2

s2

s2 �
1

n � 1
  a

n

j�1

 (x j � x)2 �
1

n � 1
  [(x1 � x)2 � Á � (xn � x)2]

�

x �
1
n  a

n

j�1

 x j �
1
n (x1 � Á � xn)
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A4

A P P E N D I X 2
Answers to 
Odd-Numbered Problems

Problem Set 1.1, page 8

1. 3.

5. 7.

9. 11.
13. 15.
17. exp
19. Integrate (start from rest), then

Problem Set 1.2, page 11

11. Straight lines parallel to the x-axis 13.
15. gives the limit

[ ]
17. Errors of steps 1, 5, 10: 0.0052, 0.0382, 0.1245, approximately
19. (error 0.0093), (error 0.0189)

Problem Set 1.3, page 18

1. If you add a constant later, you may not get a solution.
Example: 

3.
5. , ellipses 7.
9. 11. , hyperbola

13.
15. 17.
19.
21. 23.
25.

27.
29. No. Use Newton’s law of cooling.
31.
33.

. Eight times.� � (1>0.15) ln 1000 � 7.3 # 2p
¢S � 0.15S¢�, dS>d� � 0.15S, S � S0e0.15� � 1000S0,
y � ax, yr � g(y>x) � a � const, independent of the point (x, y)

e�k #10 � 1
2, k � 1

10, ln 12, e�kt0 � 0.01, t � (ln 100)>k � 66 [min]

T � 22 � 17e�0.5 306t � 21.9 3°C4 when t � 9.68 min
PV � c � const69.6% of y0

y0ekt � 2y0, ek � 2 (1 week), e2k � 22 (2 weeks), e4k � 24
y � x arctan (x3 � 1)y2 � 4x2 � c � 25

dy>sin2 y � dx>cosh2 x, �cot y � tanh x � c, c � 0, y � �arccot (tanh x)
y � 24>xy � x>(c � x)
y � x arctan (x2 � c)y2 � 36x2 � c

cos2 y dy � dx, 1
2 y � 1

4 sin 2y � c � x
yr � y, ln ƒ y ƒ � x � c, y � ex�c � �cex but not ex � c (with c � 0)

 x10 � 0.2196x5 � 0.0286

meter>sec
>9.8 � 3.1vr � 0mvr � mg � bv2, vr � 9.8 � v2, v(0) � 10,

y � x

y(t) � 1
2 gt 2 � y0, where y(0) � y0 � 0

ys � g twice, yr(t) � gt � v0, yr(0) � v0 � 0
(�1.4 # 10�11t) � 1

2, t � 1011(ln 2)>1.4 [sec]
y � 0 and y � 1 because yr � 0 for these yy � 1>(1 � 3e�x)
y � (x � 1

2)exy � 1.65e�4x � 0.35

y �
1

5.13
 sinh 5.13x � cy � 2e�x(sin x � cos x) � c

y � cexy �
1
p

 cos 2px � c
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Problem Set 1.4, page 26

1. Exact, 3. Exact, 

5. Not exact, 7.
9. Exact, . Ans.

11.
13. . Ans.
15.

Problem Set 1.5, page 34

3. 5.
7. 9.

11. 13.
15.
17.
19. Solution of 
21.

. Thus, gives (4). We shall
see that this method extends to higher-order ODEs (Secs. 2.10 and 3.3).

23.
25.
27.
31.
33.
35.

. Ans. About 3 years
37.
39. . Constant solutions 

Problem Set 1.6, page 38

1. 3.
5.
7. 9.

11.
13. . 

Sketch or graph these curves.
15. . Trajectories . Now

. This agrees with the trajectory ODE 
in u if . But these 
are just the Cauchy–Riemann equations.

ux � vy (equal denominators) and uy � �vx (equal numerators)
v � c�, vx dx � vy dy � 0, yr � �vx>vy

y�r � uy
�>uxu � c, ux dx � uy dy � 0, yr � �ux>uy

yr � �4x>9y. Trajectories y�r � 9y�>4x, y� � c�x9>4  (c� � 0)
y� � c�x

yr � �2xy, y�r � 1>(2xy�), x � c�ey� 
2

2y�2 � x2 � c�
y>x � c, yr>x � y>x2, yr � y>x, y�r � �x>y�, y�2 � x2 � c�, circles

y � cosh (x � c) � c � 0x2>(c2 � 9) � y2>c2 � 1 � 0

y � A>(ceAt � B), y(0) � A>B if c � 0, y(0) � A>B if c � 0.(extinction).
yr � 0 if y � A>B (unlimited growth), yr � 0 if 0 � y � A>By � A>B,

y � 0,yr � By2 � Ay � By(y � A>B), A � 0, B � 0
yr � y � y2 � 0.2y, y � 1>(1.25 � 0.75e�0.8t), limit  0.8, limit 1
t � (ln 3)>0.3889 � 2.82
e�0.3889t � (0.09 � 0.045)>0.135 � 1>3,
y � 0.135e�0.3889t � 0.045 � 0.18>2,
yr � 175(0.0001 � y>450), y(0) � 450 � 0.0004 � 0.18,
yr � A � ky, y(0) � 0, y � A(1 � e�kt)>k
T � 240ekt

 � 60, T(10) � 200, k � �0.0539, t � 102 min
dx>dy � 6ey � 2x, x � ce�2y � 2ey
y � 1>u, u � ce�3.2x � 10>3.2
y2 � 1 � 8e�x2

y � uyh� r, ur � r>y* � re�p dx, u � �e�p dx r dx � c
ury* � uy*r � puy* � ury* � u(y*r � py*) � ury* � u # 0y � uy*, yr � py �

cy1r � pcy1 � c(yr1 � py1) � cr
(y1 � y2)r � p(y1 � y2) � (y1r � py1) � (y2r � py2) � r � 0 � r
(y1 � y2)r � p(y1 � y2) � (y1r � py1) � (y2r � py2) � 0 � 0 � 0

Separate. y � 2.5 � c cosh4 1.5xy � 2 � c sin x
y � (x � 2.5>e)ecos xy � x2(c � ex)
y � (x � c)e�kxy � cex � 5.2

b � k, ax2 � 2kxy � ly2 � c
ex � y � ey � cu � ex � k(y), uy � kr � �1 � ey, k � �y � ey

F � sinh x, sinh2 x cos y � c
e2x cos y � 1u � e2x cos y � k(y), uy � �e2x sin y � kr, kr � 0

 F � ex2

, ex2 tan y � cy � 2x2 � cx

y � arccos (c>cos x)2x � 2x, x2y � c, y � c>x2
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A6 App. 2 Answers to Odd-Numbered Problems

Problem Set 1.7, page 42

1. ; hence is continuous and is thus
bounded in the closed interval .

3. In ; just take b in large, namely, 
5. R has sides 2a and 2b and center . In 

and . Solution by , etc., .
7. .
9. No. At a common point they would both satisfy the “initial condition”

, violating uniqueness.

Chapter 1 Review Questions and Problems, page 43

11. 13.
15.
17.
19. 21.
23. 25.
27. [days]
29. . 43.7 days from 

Problem Set 2.1, page 53

1. 3.
5.
7.
9. 11.

13. 15.
17. 19.

Problem Set 2.2, page 59

1. 3.
5. 7.
9. 11.

13. 15.
17. 19.
21. 23.
25. 27.

29. 31. Independent

33. , say. 
Hence independent

35. Dependent since 
37. y1 � e�x, y2 � 0.001ex � e�x

sin 2x � 2 sin x cos x

c1x2 � c2x2 ln x � 0 with x � 1 gives c1 � 0; then c2 � 0 for x � 2

y �
1

1p
 e�0.27x sin (1p x)

y � (4.5 � x)e�pxy � 2e�x
y � 6e2x � 4e�3xy � 4.6 cos 5x � 0.24 sin 5x
ys � 4yr � 5y � 0ys � 215yr � 5y � 0
y � e�0.27x (A cos (1p x) � B sin (1p x))y � (c1 � c2x)e5x>3
y � c1e�x>2 � c2e3x>2y � c1e�2.6x � c2e0.8x
y � c1 � c2e�4.5xy � (c1 � c2x)e�px
y � c1e�2.8x � c2e�3.2xy � c1e�2.5x � c2e2.5x

y � 15e�x � sin xy � �0.75x3>2 � 2.25x �1>2
y � 3 cos 2.5x � sin 2.5xy(t) � c1e�t � kt � c2

y � c1e2x � c2y2 � x3 ln x
(dz>dy)z � �z3 sin y, �1>z � �dx>dy � cos y � c�1, x � �sin y � c1y � c2

y � (c1x � c2)�1>2
y � c1e�x � c2F(x, z, zr) � 0

ekt � 0.5, ekt � 0.01ek � 0.9, 6.6 days
ek � 1.25, (ln 2)>ln 1.25 � 3.1, (ln  3)>ln 1.25 � 4.9

3 sin x � 1
3 sin y � 0y � sin ( x � 1

4 p)
F � x, x3ey � x2y � c25y2 � 4x2 � c

y � ce�2.5x � 0.640 x � 0.256
y � ce�x � 0.01 cos 10x � 0.1 sin 10x

y � 1>(ce�4x � 4)y � ce�2x

y(x1) � y1

(x1, y1)
ƒ 1 � y2

ƒ � K � 1 � b2, a � b>K, da>db � 0, b � 1, a � 1
2

y � 1>(3 � 2x)dy>y2 � 2 dxaopt � b>K � 1
8

 da>db � 0 gives b � 1,f � 2y2 � 2(b � 1)2 � K, a � b>K � b>(2(b � 1)2),
R, (1, 1) since y(1) � 1

b � aK.a � b>Kƒ x � x0 ƒ � a
ƒ x � x0 ƒ � a

0f>0y � �p(x)yr � f (x, y) � r(x) � p(x)y
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Problem Set 2.3, page 61

1.
3.
5.
7.
9.

11.
15. Combine the two conditions to get .

The converse is simple.

Problem Set 2.4, page 69

1. . At integer t (if ), because of periodicity.
3. (i) Lower by a factor , (ii) higher by 
5. 0.3183, 0.4775,
7. (tangential component of ),

9. where is the volume of the
water that causes the restoring force .

. Frequency .
13. ; 

(ii) 
15.
17. The positive solutions , that is, (max), (min). etc
19. from .

Problem Set 2.5, page 73

3. 5.
7. 9.

11.
13. 15.
17. 19.

Problem Set 2.6, page 79

3. 5. 7.
9.

11.
13.
15.

Problem Set 2.7, page 84

1. 3.
5. 7.
9.

11. y � cos(13x) � 6x2 � 4
y � c1e4x � c2e�4x � 1.2 xe4x � 2ex

y � c1e�x>2 � c2e�3x>2 � 4
5 ex � 6x � 16y � (c1 �  c2x) e�2x � 1

2 e�x sin x
y � c1e�2x � c2e�x � 6x2 � 18x � 21y � c1e�x � c2e�4x � 5e�3x

ys � 3.24y � 0, W � 1.8, y � 14.2 cosh 1.8x � 9.1 sinh 1.8x
ys � 2yr � 0, W � �2e�2x, y � 0.5(1 � e�2x)
ys � 5y � 6.34 � 0, W � 0.3e�5x, 3e�2.5 cos 0.3x
ys � 25y � 0, W � 5, y � 3 cos 5x � sin 5x

W � aW � �x4W � �2.2e�3x

y � �0.525x5 � 0.625x�3y � cos (ln x) � sin (ln x)
y � (3.6 � 4.0 ln x)>xy � x�3>2

 y � x2(c1 cos (16 ln x) � c2 sin (16 ln x)) 
y � (c1 � c2 ln x) x0.6y � c1x2 � c2x3
1x (c1 cos (ln x) � c2 sin (ln x))y � (c1 � c2 ln x) x�1.8

exp (�10 � 3c>2m) � 1
20.0 231 � (ln 2)>30 3kg>sec4

5p>4p>4of tan t � 1
v* � 3v02 � c2>(4m2)41>2 � v031 � c2>(4mk)41>2 � v0(1 � c2>8mk) � 2.9 583

v0 � �2, �3
2, �4

3, �5
4, �6

5

y � [y0 � (v0 � ay0) t]e�a˛t, y � [1 � (v0 � 1)t]e�t
v0>2p � 0.4 3sec�14ys � v02 y � 0, v02 � ag>m � ag � 0.000 628g

agy with g � 9800 nt (� weight>meter3)
m � 1 kg, ay � p # 0.012 # 2y meter3mys � �a�gy,

us � v02 u � 0, v0>(2p) � 1g>L >(2p)
W � mgmLus � �mg sin u � �mgu

 1(k1 � k2)>m>(2p) � 0.5 738
1212

v0 � pyr � y0 cos v0t � (v0>v0) sin v0t

L(cy � kw) � L(cy) � L(kw) � cLy � kLw
(D � 1.6I )(D � 2.4I ), y � c1e1.6x � c2e2.4x
(D � 2.1I )2, y � (c1 � c2x)e2.1x
(2D � I )(2D � I ), y � c1e0.5x � c2e�0.5x
0, 5e2x, 0
0, 0, (D � 2I )(�4e�2x) � 8e�2x � 8e�2x
4e2x, �e�x � 8e2x, �cos x � 2 sin x
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A8 App. 2 Answers to Odd-Numbered Problems

13. 15.
17.

Problem Set 2.8, page 91

3.
5.
7.
9.

11.
13.
15.
17.

19.
25. CAS Experiment. The choice of needs experimentation, inspection of the curves

obtained, and then changes on a trail-and-error basis. It is interesting to see how in
the case of beats the period gets increasingly longer and the maximum amplitude gets
increasingly larger as approaches the resonance frequency.

Problem Set 2.9, page 98

1.
3.
5.
7.
9. 11.

13.
15.
17.
19.

Problem Set 2.10, page 102

1.
3. 5.
7. 9.

11. 13.

Chapter 2 Review Questions and Problems, page 102

7. 9.
11. 13.
15. 17.
19. 21.
23. I � �0.01093 cos 415t � 0.05273 sin 415t A

y � �4x � 2x3 � 1>xy � 5 cos 4x � 3
4 sin 4x � ex

y � (c1 � c2x)e1.5x � 0.25x2e1.5xy � c1e2x � c2e�x>2 � 3x � x2
y � c1x�4 � c2x3y � (c1 � c2x)e0.8x
y � e�3x (A cos 5x � B sin 5x)y � c1e�4.5x � c2e�3.5x

y � c1x�3 � c2x3 � 3x5y � c1x2 � c2x3 � 1>(2x4)
y � (c1 � c2x)ex � 4x7>2

 exy � (c1 � c2x) e2x � x �2e2x
y � A cos x � B sin x � 1

2  
x (cos x � sin x)y � c1x � c2x2 � x sin x

y � A cos 3x � B sin 3x � 1
9 (cos 3x) ln ƒ  cos 3x ƒ � 1

3 x sin 3x

R � 2 	, L � 1 H, C � 1
12 F, E � 4.4 sin 10t V

E(0) � 600, Ir(0) � 600, I � e�3t (�100 cos 4t � 75 sin 4t) � 100 cos t
R � Rcrit � 22L>C is Case I, etc.
I � e�5t(A cos 10t � B sin 10t) � 400 cos 25t � 200 sin 25t A

I � 5.5 cos 10t � 16.5 sin 10t AI � 0
I0 is maximum when S � 0; thus, C � 1>(v2L).
I � 2 (cos t � cos 20t)>399
LIr � RI � E, I � (E>R) � ce�Rt>L � 4.8 � ce�40t

 I � ce�t>(RC)RIr � I>C � 0,

v>(2p)

v

y � e�t(0.4 cos t � 0.8 sin t) � e�t>2(�0.4 cos 12 
t � 0.8 sin 12 

t)

y � 1
3 sin t � 1

15 sin 3t � 1
105 sin 5t

y � e�2t (A cos 2t � B sin 2t) � 1
4 sin 2t

y � A cos t � B sin t � (cos vt)>(v2 � 1)
y � A cos 12t � B sin 12t � t (sin 12t � cos 12t)>(212)
y � e�1.5t(A cos t � B sin t) � 0.8 cos t � 0.4 sin t
yp � 25 � 4

3 cos 3t � sin 3t
yp � �1.28 cos 4.5t � 0.36 sin 4.5t
yp � 1.0625 cos 2t � 3.1875 sin 2t

y � e�0.1x (1.5 cos 0.5x � sin 0.5x) � 2e0.5x
y � ln xy � ex>4 � 2ex>2 � 1

5 e�x � ex
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25.
27.
29.

Problem Set 3.1, page 111

9. Linearly independent 11. Linearly independent
13. Linearly independent 15. Linearly dependent

Problem Set 3.2, page 116

1. 3.
5.
7.
9. 11.

13.

Problem Set 3.3, page 122

1.
3.
5.
7.
9. 11.

13.

Chapter 3 Review Questions and Problems, page 122

7.
9.

11. 13.
15. 17.
19.

Problem Set 4.1, page 136

1. Yes
5. 
7. 9. 

11. 
13. 
15. (a) For example, gives , . (b) , 0. 

(d) gives the critical case. C about 0.18506.a22 � �4 � 216.4 � 1.05964
�2.4�0.000167�2.39993C � 1000

y1r � y2, y2r � 24y1 � 2y2, y1 � c1e4t � c2e�6t � y, y2 � yr
y1r � y2, y2r � y1 � � 15

4  y2, y � c1[1 4]T e4t � c2 [1 �1
4 ]T e 

�t>4
c1 � 10, c2 � 5c1 � 1, c2 � �5

y1r � 0.02(�y1 � y2), y2r � 0.02( y1 � 2y2 � y3), y3r � 0.02( y2 � y3)

y � 4e�4x � 5e�5x
y � 2e�2x cos 4x � 0.05 x � 0.06y � c1x � c2x1>2 � c3x3>2 � 10

3

y � (c1 � c2x � c3x2)e�2x � x2 � 3x � 3y � (c1 � c2x � c3x2)e�1.5x
y � c1 cosh 2x � c2 sinh 2x � c3 cos 2x � c4 sin 2x � cosh x
y � c1 � e�2x (A cos 3x � B sin 3x)

y � 2 � 2 sin x � cos x
y � e�3x (�1.4 cos x � sin x)y � cos x � 1

2 sin 4x
y � (c1 � c2x � c3x2)e3x � 1

4 
(cos 3x � sin 3x)

y � c1x2 � c2x � c3x�1 � 1
12 x�2

y � c1 cos x � c2 sin x � c3 cos 3x � c4 sin 3x � 0.1 sinh 2x
y � (c1 � c2x � c3x2)e�x � 1

8 ex � x � 2

y � e0.25x � 4.3e�0.7x � 12.1 cos 0.1x � 0.6 sin 0.1x
y � cosh 5x � cos 4xy � 4e�x � 5e�x>2 cos 3x

y � 2.398 � e�1.6x (1.002 cos 1.5x � 1.998 sin 1.5x)
y � A1 cos x � B1 sin x � A2 cos 3x � B2 sin 3x

y � c1 � c2x � c3 cos 2x � c4 sin 2xy � c1 � c2 cos 5x � c3 sin 5x

v � 3.1 is close to v0 � 2k>m � 3, y � 25 (cos 3t � cos 3.1t).
RLC - circuit with R � 20 	, L � 4 H, C � 0.1 F, E � �25 cos 4t V
I � 1

73 (50 sin 4t � 110 cos 4t) A
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Problem Set 4.3, page 147

1. 
3. 
5. 

7. 

9. 

11. 

13. 
15. 

17. 
, ,

. Note that .
19. , 

Problem Set 4.4, page 151

1. Unstable improper node, ,
3. Center, always stable, ,
5. Stable spiral, ,
7. Saddle point, always unstable, ,
9. Unstable node, ,

11. . Stable and attractive spirals
15. (was 0), , spiral point, unstable.
17. For instance, (a) , (b) , (c) , (d) , (e) 4.

Problem Set 4.5, page 159

5. Center at . At set . Then . Saddle point at .
7. , , , stable and attractive spiral point; 

, , , , saddle point
9. saddle point, and centers

11. saddle points; centers. 
Use .

13. centers; saddle points

15. By multiplication, . By integration,
, where .

Problem Set 4.6, page 163

3.
5. y2 � c1e5t � 2c2e2t � 1.12t � 0.53y1 � c1e5t � c2e2t � 0.43t � 0.24, 

y2 � �c1e�t � c2et � e3ty1 � c1e�t � c2et, 

c* � 1
2 c2 � 8y2

2 � 4y1
2 � 1

2 y1
4 � c* � 1

2 (c � 4 � y1
2)(c � 4 � y1

2)
y2 y2r � (4y1 � y1

3)y1r
y1 � (2n � 1)p � y~1r, (p 
 2np, 0)(
2np, 0)

�cos (
1
2 p � y~1) � sin (
y~1) � 
y~1

(�1
2 p 
 2np, 0)(1

2p 
 2np, 0)
(3, 0)(�3, 0)(0, 0)

 y~2r � �y~1 � y~2 y~1r � �y~1 � 3y~2 y2 � 2 � y~2y1 � �2 � y~1

(�2, 2), y2r � �y1 � y2y1r � �y1 � y2(0, 0)
(2, 0)y~2r � y~1y1 � 2 � y~1(2, 0)(0, 0)

�1� � 
1
2�1�2

 ¢ �0p � 0.2 � 0
y � e�t (A cos t � B sin t)

 y2 � 2c1e6t � 2c2e2ty1 � c1e6t � c2e2t
 y2 � �c1e�t � c2e3ty1 � c1e�t � c2e3t

 y2 � e�2t(B cos 2t � A sin 2t)y1 � e�2t(A cos 2t � B sin 2t)
 y2 � 3B cos 3t � 3A sin 3ty1 � A cos 3t � B sin 3t

 y2 � c2e2ty1 � c1et

I2 � �3c1e�t � c2e�3tI1 � c1e�t � 3c2e�3t
r 2 � y1

2 � y2
2 � e�2t(A2 � B2)y2 � y1r � y1 � e�t(B cos t � A sin t)

 y1 � e�t(A cos t � B sin t)y1s � 2y1r � 2y1 � 0
y2 � y1r � y1, y2r � y1s � y1r � �y1 � y2 � �y1 � ( y1r � y1),
y2 � 1

2 et
y1 � 1

2 et
y1 � 2 sinh t, y2 � 2 cosh t
y2 � 4et � 4e�t>2
y1 � �20et � 8e�t>2
y3 � c1e�18t � 2c2e9t � 1

2 c3e18t
y2 � c1e�18t � c2e9t � c3e18t
y1 � 1

2 c1e�18t � 2c2e9t � c3e18t
y3 � c2 cos 12t � c3 sin 12t � c1

y2 � c212 sin 12t � c312 cos 12t
y1 � �c2 cos 12t � c3 sin 12t � c1

y2 � �2c1 � 5c2e14.5t
y1 � 5c1 � 2c2e14.5t
y1 � 2c1e2t � 2c2, y2 � c1e2t � c2

y1 � c1e�2t � c2e2t, y2 � �3c1e�2t � c2e2t
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7. ,
9. The formula for v shows that these various choices differ by multiples of the eigen-

vector for , which can be absorbed into, or taken out of, in the general
solution .

11. ,
13. , 
15. ,
17. ,

19. ,

Chapter 4 Review Questions and Problems, page 164

11. , . Saddle point
13. ;

asymptotically stable spiral point
15. , . Stable node
17. , . Stable and attractive

spiral point
19. Unstable spiral point
21. 
23. 
25. 

27. saddle point; centers
29. center when n is even and saddle point when n is odd

Problem Set 5.1, page 174

3.
5. 
7. 
9. 

11. 

13. 

15. 

17. 

19. ; but is too large to give good
values. Exact: 

Problem Set 5.2, page 179

5. ,
P7(x) � 1

16 
(429x7 � 693x5 � 315x3 � 35x)

P6(x) � 1
16 

(231x6 � 315x4 � 105x2 � 5)

y � (x � 2)2ex
x � 2s � 4 � x2 � 1

3 x3 � 1
30  x5, s˛(2) � �8

5

s � 1 � x � x2 � 5
6 

x3 � 2
3 

x4 � 11
24 

x5, s˛(1
2) � 923

768

a
�

m�1

 
(m � 1)(m � 2)

(m � 1)2 � 1
 xm, a

�

m�5

(m � 4)2

(m � 3)!
 xm

a0(1 � 1
2 

x2 � 1
24 

x4 � 13
720 

x6 � Á ) � a1(x � 1
6 

x3 � 1
24 

x5 � 5
1008 

x7 � Á )

a0(1 � 1
12 

x4 � 1
60 

x5 � Á ) � a1(x � 1
2 

x2 � 1
6 

x3 � 1
24 

x4 � 1
24 

x5 � Á )

y � a0 � a1x � 1
2 

a0x2 � 1
6 a1x3 � Á � a0 cos x � a1 sin x

y � a0(1 � x2 � x4>2! � x6>3! � � Á ) � a0e�x2
23>2

2 ƒ  k ƒ

(np, 0)
(�1, 0), (1, 0)(0, 0)

I2 � (�6 � 32.5t)e�5t � 6 cos t � 2.5 sin t
I1 � (19 � 32.5t)e�5t � 19 cos t � 62.5 sin t,

2.5(I2r �  I1r) � 25I2 � 0,I1r � 2.5(I1 � I2) � 169 sin t, 
y2 � �c1e�t � c2e3ty1 � 2c1e�t � 2c2e3t � cos t � sin t, 

y2 � �c1e�4t �  c2e4t � 4ty1 � c1e�4t �  c2e4t � 1 � 8t 2, 

 y2 � e�t(B cos 2t � A sin 2t)y1 � e�t(A cos 2t � B sin 2t)
 y2 � c1e�5t � c2e�ty1 � c1e�5t � c2e�t

y1 � e�4t(A cos t � B sin t), y2 � 1
5 e�4t[(B � 2A) cos t � (A � 2B) sin t]

 y2 � 2c1e4t � 2c2e�4ty1 � c1e4t � c2e�4t

 c2 � �67.948c1 � 17.948
l1 � �0.9 � 10.41, l2 � �0.9 � 10.41
I2 � (1.1 � 10.41)c1el1t � (1.1 � 10.41) c2el2t,
I1 � 2c1el1t � 2c2el2t � 100

 y2 � �4e�t � ty1 � 4e�t � 4et � e2t
 y2 � 2 cos 2t � 2 sin 2t �  sin t y1 � cos 2t � sin 2t � 4 cos t

y2 � �8
3  sinh t � 4

3  cosh t � 4
3 e2ty1 � �8

3  cosh t � 4
3  sinh t � 11

3  e2t
y(h)

c1l � �2

 y2 � �c1et � 5c2e2t � 5t � 7.5 � e�ty1 � c1et � 4c2e2t � 3t � 4 � 2e�t
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11. Set .

15. , , ,

Problem Set 5.3, page 186

3. ,

5.
7. 

9. ,
11. ,
13. ,

15.

17. 

19.

Problem Set 5.4, page 195

3.
5. 
7.
9.

13. implies and 
somewhere between and by Rolle’s theorem. 

Now use (21b) to get there. Conversely, ,
thus implies in between by Rolle’s
theorem and (21a) with .

15. By Rolle, at least once between two zeros of . Use by (21b)
with . Together at least once between two zeros of . Also use

by (21a) with and Rolle.
19. Use (21b) with (21a) with (21d) with respectively.
21. Integrate (21a).
23. Use (21a) with partial integration, (21b) with partial integration.
25. Use (21d) to get

Problem Set 5.5, page 200

1. 
3. 
5. c1J0 (1x) � c2Y0(1x)

c1J2>3(x2) � c2Y2>3(x2)
c1J4 (x) � c2Y4(x)

 � �2J4(x) � 2J2(x) � J0(x) � c.

 �J5(x) dx � �2J4(x) ��J3(x) dx � �2J4(x) � 2J2(x) � �J1(x) dx

� � 0,� � 1,

� � 2,� � 1,� � 0,
� � 1(xJ1)r � xJ0

J0J1 � 0� � 0
Jr0 � �J1J0Jr0 � 0

� � n � 1
Jn(x) � 0x3

n�1Jn�1(x3) � x4
n�1Jn�1(x4) � 0

Jn�1(x3) � Jn�1(x4) � 0Jn�1(x) � 0
x2x1[x�nJn(x)]r � 0

x1
�nJn(x1) � x2

�nJn(x2) � 0Jn(x1) � Jn(x2) � 0
x��(c1J�(x) � c2J��(x)), � � 0, 
1, 
2, Á

c1J1>2(1
2 

x) � c2J�1>2(1
2 

x) � x�1>2(c�1 sin 12 
x � c�2 cos 12 

x)

c1J�(lx) � c2J��(lx), � � 0, 
1, 
2, Á

c1J0(1x)

y � c1F(2, �2, �1
2; t � 2) � c2(t � 2)3>2F(7

2, �1
2, 52; t � 2)

y � A(1 � 8x � 32
5  x2) � Bx3>4F(7

4, �5
4, 74; x)

y � AF(1, 1, �1
2; x) � Bx3>2F(5

2, 52, 52; x)

 y2 � ex ln xy1 � ex
 y2 � ex>xy1 � ex

 y2 � 1 � xy11x

1
120 x5 � 1

120  x6 � Á� 1
12 x4 �y2 � x � 1

6 x3

1
24  x4 � 1

30  x5 � 1
144 x6 � Á ,y1 � 1 � 1

2 x2 � 1
6  x3 �

b0 � 1, c0 � 0, r 2 � 0, y1 � e�x, y2 � e�x ln x

y2 �
1
x �

x
2!

�
x3

4!
� � Á �

cos x
xy1 � 1 �

x2

3!
�

x4

5!
� � Á �

sin x
x

P4
2 � (1 � x2)(105x2 �15)>2

 P2
2 � 3(1 � x2) P2

1 � 3x21 � x2P1
1 � 21 � x2

 y � c1Pn(x>a) � c2Qn(x>a)x � az
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7. 
9. 

11. Set and use (10).
13. Use (20) in Sec. 5.4.

Chapter 5 Review Questions and Problems, page 200

11.
13. ; Euler–Cauchy with instead of x
15. 

17. 
19. 

Problem Set 6.1, page 210

1. 3. 
5. 7. 

9. 11. 

13. 15. 

19. Use .

23. Set .

25. 27. 

29. 31. 

33. 35. 

37. 39. 

41. 43. 
45. 

Problem Set 6.2, page 216

1.
3. 

5. 
7. 9. 

11. 

13. t � t� � 1, Y� � 4>(s � 6), y� � 4e6t, y � 4e6(t�1)
y � (1 � t)e�1.5t � 4t 3 � 16t 2 � 32t

24>s4 � 32>s3 � 32>s2,Y � 1>(s � 1.5) � 1>(s � 1.5) 2 �
(s � 1.5)2Y � s � 31.5 � 3 � 54>s4 � 64>s,

y � et � e3t � 2ty � 1
2 e3t � 5

2 e�4t � 1
2 e�3t

(s2 � 1
4)Y � 12s, y � 12 cosh 12 t

y � 10e3t � e�2t
(s � 3)(s � 2) � 11s � 28 � 11 � 11s � 17, Y � 10>(s � 3) � 1>(s � 2),
y � 1.25e�5.2t � 1.25 cos 2t � 3.25 sin 2t

(k0 � k1t)e�at
e3t(2 cos 3t � 5

3 sin 3t)e�5pt sinh pt

7
2 

t 3e�t22pte�pt

0.5 # 2p

(s � 4.5)2 � 4p2

2

(s � 3)3

l
�1 a 4

s � 2
�  

3
s � 1

b � 4e2t � 3e�t2t 3 � 1.9t 5

1

L2
 cos 

npt
L

0.2 cos 1.8t � sin 1.8t

�
�

0

e�(s>c)pf ( p) dp>c � F(s>c)>cct � p. Then l( f (ct)) � �
�

0

e�stf (ct) dt �

eat � cosh at � sinh at

e�s � 1

2s2
�  

e�s

2s
�

1

s

(1 � e�s)2

s

1 � e�bs

s2
�  

be�bs

s

1

s
�

e�s � 1

s2

(v cos u � s sin u)>(s2 � v2)1>((s � 2)2 � 1)
s>(s2 � p2)3>s2 � 12>s

1x J1(1x), 1x Y1(1x)
ex, 1 � x

J
25

 

(x), J�25(x)
x � 1(x � 1)�5, (x � 1)7

cos 2x, sin 2x

H (1) � kH (2)
x3(c1J3(x) � c2Y3 (x))
1x  (c1J1>4 (

1
2 kx2) � c2Y1>4 (

1
2 kx2))
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15.

17. 19. 

21. 
23. 25. 

27. 29. 

Problem Set 6.3, page 223

3.

5. 

7. 

9. 

11. 13. 
15. 17. 
19. 21. 
23. 
25. 
27. 

29. 

31. 

33. 

35. 
37. 

39. 

Problem Set 6.4, page 230

3.
5. 
7. 
9. 

e�2t�30(cos (t � 10) � 7 sin (t � 10))4
0.1u(t � 10)3�e�t �y � 0.1[et � e�2t(�cos t � 7 sin t)] �

y � e�t � 4e�3t sin 12 t � 1
2 u(t � 1

2)e�3(t�1>2) sin (1
2 t � 1

4)
sin t (0 � t � p); 0 (p � t � 2p); �sin t (t � 2p)
y � 8 cos 2t � 1

2 u(t � p) sin 2t

i � 1000e�t sin t � 1000u(t � 2)e�t�2 sin (t � 2)

ir � 2i � 2�
t

0

i(t) dt � 1000(1 � u(t � 2)), I � 1000(1 � e�2s)>(s2 � 2s � 2),

i � 4 cos t � 4 cos 240t � 4u(t � p)[cos t � cos (140 (t � p))]
(0.5s2 � 20)I � 78s(1 � e�ps)>(s2 � 1),
i � (10 sin 10t � 100 sin t)(u(t � p) � u(t � 3p))

if t � 21 � e�10(t�2)

10I �
100

s  I �
100

s2
 e�2s, I � e�2s a1

s �  
1

s � 10
b, i � 0 if t � 2 and

R(sQ � CV0) � Q>C � 0, q � CV0e�t>(RC)
Rqr � q>C � 0, Q � l(q), q(0) � CV0, i � qr(t),

� 20u(t � 1)[�e�5t � e�250t�245]i � 20(e�5t � e�250t)
0.1ir � 25i � 490e�5t[1 � u(t � 1)],

� 49 cos (2t � 10) � 10 sin (2t � 10) if t � 5cos 2t
t � 1 � t�, y�s � 4y� � 8(1 � t�)2(1 � u( t� � 4)), cos 2t � 2t 2 � 1 if t � 5,
t � sin t (0 � t � 1), cos (t � 1) � sin (t � 1) � sin t (t � 1)
et � sin t (0 � t � 2p), et � 1

2 sin 2t (t � 2p)
sin 3t � sin t (0 � t � p); 43 sin 3t (t � p)1

3(et � 1)3e�5t
e�t cos t (0 � t � 2p)(t � 3)3u(t � 3)>6
2[1 � u(t � p)] sin 3t(se�ps>2 � e�ps)>(s2 � 1)

e�3s>2 a 2

s3
�

3

s2
�

9
4

s
b

1
s � p

(e�2(s�p) � e�4(s�p))

aeta1 � uat �
1
2
pbbb �

1
s � 1

 (1 � e�ps>2�p>2)

l((t � 2)u(t � 2)) � e�2s>s2

1

a2
(e�at � 1) �

t
a

1
9 (1 � t � cos 3t � 1

3 sin 3t)

(1 � cos vt)>v212(1 � e�t>4)
l( f r) � l(sinh 2t) � sl( f ) � 1. Answer: (s2 � 2)>(s3 � 4s)

2v2

s(s2 � 4v2)

1

(s � a) 2

t � t� � 1.5, (s � 1)(s � 4)Y� � 4s � 17 � 6>(s � 2), y � 3et�1.5 � e2(t�1.5)
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11.

15.

Problem Set 6.5, page 237

1. t 3.
5. 7.
9. 11.

13.

17. 19.
21. 23.
25.

Problem Set 6.6, page 241

3. 5.

7. 9.

11. 15.

17.
19.

Problem Set 6.7, page 246

3.
5.

7. 

9.
11.
13. 
15. 
19. 

Chapter 6 Review Questions and Problems, page 251

11. 13. 

15. 17. Sec. 6.6; 2s2>(s2 � 1)2e�3s�3>2>(s � 1
2)

1
2(1 � cos pt), p2>(2s3 � 2p2s)

5s

s2 � 4
�  

3

s2 � 1

i2 � �26e�2t � 8e�8t � 18 cos t � 12 sin t
i1 � �26e�2t � 16e�8t � 42 cos t � 15 sin t, 
4i1 � 8(i1 � i2) � 2i1r � 390 cos t, 8i2 � 8(i2 � i1) � 4i2r � 0,
y1 � et, y2 � e�t, y3 � et � e�t
y1 � �4et � sin 10t � 4 cos t, y2 � 4et � sin 10t � 4 cos t 
y1 � et � e2t, y2 � e2t
y1 � (3 � 4t)e3t, y2 � (1 � 4t)e3t
y2 � �e�2t � et � 1

3 u(t � 1)(�e3�2t � et)
y1 � �e�2t � 4et � 1

3 u(t � 1)(�e3�2t � et),
y2 � cos t � sin t � 1 � u(t � 1)[1 � cos (t � 1) � sin (t � 1)]
y1 � �cos t � sin t � 1 � u(t � 1)[�1 � cos (t � 1) � sin (t � 1)]

y1 � �e�5t � 4e2t, y2 � e�5t � 3e2t

3ln (s2 � 1) � 2 ln (s � 1)4r � 2s>(s2 � 1) � 2>(s � 1); 2(�cos t � et)>t
ln s � ln (s � 1); (�1 � et)>t

F(s) � � 
1
2

 a 1

s2 � 9
br, f (t) � 1

6 t sinh 3t
4s2 � p2

(s2 � 1
4p

2)2

p(3s2 � p2)

(s2 � p2)3

2s3 � 24s

(s2 � 4)3

s2 � v2

(s2 � v2)2

1
2

(s � 3)2

1.5t sin 6t
4.5(cosh 3t � 1)(vt � sin vt)>v2
t sin pte4t � e�1.5t

y(t) � 2�
t

0

et�t y(t) dt � tet, y � sinh t

y � cos ty � 1 * y � 1, y � et
et � t � 11

2 t sin vt
(et � e�t)>2 � sinh t

ke�ps>(s � se�ps)  (s � 0)
u(t � 2)(e�2(t�2) � e�3(t�2))
y � �e�3t � e�2t � 1

6 u(t � 1)(1 � 3e�2(t�1) � 2e�3(t�1)) �
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19. 21. 
23. 25. 
27. 29. 
31. 
33. 
35. 
37. 

39. 
41. 
43. 
45. 

Problem Set 7.1, page 261

3. 
5. 
7. No, no, yes, no, no

9. , undefined

11. , same, , same

13. , same, , undefined

15. , same, undefined, undefined 17. 

Problem Set 7.2, page 270

5. 10, 

7. 0, I, c1
0

0

0
d , c1

0

1

0
d

n(n � 1)>2

D �4.5

�27.0

9.0

TD 5.5

33.0

�11.0

T
�DD 70

�28

14

28

56

0

T
D 5.4

�4.2

�0.6

0.6

2.4

0.6

TD 0

34

28

26

32

�10

T
D 0

18

3

6

15

0

12

15

�9

T , D 0

2.5

�1

2.5

1.5

2

1

2

�1

T , D 0

20.5

2

8.5

16.5

2

13

17

�10

T
B � 1

5 A, 1
10 A

3  3, 3  4, 3  6, 2  2, 2  3, 3  2

i1 � �8e�2t � 5e�0.8t � 3, i2 � �4e�2t � 4e�0.8t
5i1r � 20(i1 � i2) � 60, 30i2r � 20(i2r � i1r) � 20i2 � 0,
i(t) � e�4t( 3

26 cos 3t � 10
39 sin 3t) � 3

26 cos 10t � 8
65 sin 10t

1 � e�t (0 � t � 4), (e4 � 1)e�t (t � 4)
y1 � (1>110) sin 110t, y2 � �(1>110) sin 110t 
y2 � �sin t � 2u(t � p) cos2 12 t � u(t � 2p) sin t
y1 � cos t � u(t � p) sin t � 2u(t � 2p) sin2 12 t, 
y1 � 4et � e�2t, y2 � et � e�2t
0 (0 � t � 2), 1 � 2e�(t�2) � e�2(t�2) (t � 2)
e�t � u(t � p)[1.2 cos t � 3.6 sin t � 2e�t�p � 0.8e2t�2p]

y � e�2t(13 cos t � 11 sin t) � 10t � 8e�2t(3 cos t � 2 sin t) 
3t 2 � t 3sin (vt � u)
tu(t � 1)12>(s2(s � 3))
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11. , same, , same

13. , undefined,

15. Undefined, , same

17. , undefined, , undefined

19. Undefined, , same

25. (d) etc.
(e) Answer. If 

29. 

Problem Set 7.3, page 280

1. 3. 
5. 7. arb.,
9. arb.

11. arb., arb.
13. 17. 
19. 
21. No
23. , thus

Problem Set 7.4, page 287

1. 3. 
5. 

[0 0 1]}
3; {[2 �1 4], [0 1 �46], [0 0 1]}; {[2 0 1], [0 3 23],

3; {[3 5 0], [0 3 5], [0 0 1]}1; [2 �1 3]; [2 �1]T

C3H8 � 5O2 :  3CO2 � 4H2O
C: 3x1 � x3 � 0, H: 8x1 � 2x4 � 0, O: 2x2 � 2x3 � x4 � 0
x2 � 1600 � x1, x3 � 600 � x1, x4 � 1000 � x1.
I1 � (R1 � R2)E0>(R1R2) A, I2 � E0>R1 A, I3 � E0>R2 A

I1 � 2, I2 � 6, I3 � 8w � 4, x � 0, y � 2, z � 6
y � 2t2 � t1, z � t2w � 1, x � t1

x � 3t � 1, y � �t � 4, z � t
z � 2tx � �3t, y � tx � 6, y � �7

x � 1, y � 3, z � �5x � �2, y � 0.5

p � [85 62 30]T, v � [44,920 30,940]T
AB � �BA.

AB � (AB)T � BTAT � BA;

D 10.5

0

�3

T , D 7

�3

1

T
D 22

4

�12

TD�30

45

5

�18

9

�7

T
D 8

�4

�3

T , [7 �1 3]

c�9

�5

3

�1

4

0
dD12

0

2

13

�6

0

�6

4

T , D�9

3

4

�5

�1

0

T
D 10

�14

�2

�5

7

�4

�15

�33

�4

TD 10

�5

�5

�14

7

�1

�6

�12

�4

T
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7. 
9. 

11. (c) 1 17. No
19. Yes 21. No
23. Yes 25. Yes
27. 
29. No 31. No
33. 1, solution of the given system , basis 
35. 

Problem Set 7.7, page 300

7. 9. 1
11. 40 13. 289
15. 17. 2
19. 2 21. 
23. 25. 

Problem Set 7.8, page 308

1. 3. 

5. 7. 

9. 11. 

15. . Multiply by A from the right.

Problem Set 7.9, page 318

1.
3. 5. No

7. Dimension 2, basis 9. 3; basis 

11. 
13. x1 � 2y1 � 3y2, x2 � �10y1 � 16y2 � y3, x3 � �7y1 � 11y2 � y3

x1 � 5y1 � y2, x2 � 3y1 � y2

c1
0

0

�1
d , c0

0

1

0
d , c0

1

0

0
dxe�x, e�x

1, [1 11 �7]T
[1 0]T, [0 1]T; [1 0]T, [0 �1]T; [1 1]T, [�1 1]T

AA�1 � I, (AA�1)�1 � (A�1)�1A�1 � I

(A2)�1 � (A�1)2 � c3.760

2.400

22.272

15.280
dD018

0

0

0

1
4

1
2

0

0

T
A�1 � AD 1

�2

3

0

1

�4

0

0

1

T
D 54

2

�30

0.9

0.2

�0.5

�3.4

�0.2

2

Tc1.20

0.50

4.64

3.60
d

w � 3, x � 0, y � 2, z � �2x � 0, y � 4, z � �1
x � 3.5, y � �1.0

�64

cos (a � b)

1, [4 2 4
3 1]

[1 10
3  3]c[1 10

3  3]

2, [�2 0 1], [0 2 1]

3; [9 0 1 0], [0 9 8 9], [0 0 1 0]
2; [8 0 4 0], [0 2 0 4]; [8 0 4], [0 2 0]
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15. 17. 
19. 1 21. 
23. 
25. 

Chapter 7 Review Questions and Problems, page 318

11.

13. 
15. 197, 0
17. 

19. 21. 

23. arb. 25. 
27. 29. Ranks 2, 2,
31. Ranks 2, 2, 1 33. 
35. 

Problem Set 8.1, page 329

1. 3, 3. 
5. 
7. 
9. 

11. 

13. defect 2
15. 

17. Eigenvalues i, . Corresponding eigenvectors are complex, 

indicating that no direction is preserved under a rotation.

19. A point onto the -axis goes onto itself, 

a point on the -axis onto the origin.
23. Use that real entries imply real coefficients of the characteristic polynomial.

x1

x2c0 0

0 1
d ; 1, c0

1
d ; 0, c1

0
d .

�ic0 �1

1 0
d .

�5, [�3 �3 1 1]T, 3, [3 �3 1 �1]T
(l � 1)2(l2 � 2l � 15); �1, [1 0 0 0]T, [0 1 0 0]T;
�(l � 9)3; 9, [2 �2 1]T,
6, [1 2 2]T; 9, [2 1 �2]T
�(l3 � 18l2 � 99l � 162)>(l � 3) � �(l2 � 15l � 54); 3, [2 �2 1]T;
0.8 � 0.6i, [1 �i]T; 0.8 � 0.6i, [1 i]T
l2 � 0, [1 0]T
�3i, [1 �i]; 3i, [1 i], i � 1�1

�4, [2 9]T; 3, [1 1]T[1 0]T; �0.6, [0 1]T

I1 � 4 A, I2 � 5 A, I3 � 1 A
I1 � 16.5 A, I2 � 11 A, I3 � 5.5 A

�x � 10, y � �2
x � 0.4, y � �1.3, z � 1.7x � 6, y � 2t � 2, z � t

x � 4, y � �2, z � 8D �2

�12

�12

�12

16

�9

�12

�9

�14

T
�5, det A2 � (det A)2 � 25, 0

[21 �8 �31]T, [21 �8 31]

D �1

�18

�13

6

8

�2

1

�7

�7

T  , D 1

�6

�1

18

�8

7

13

2

7

T

a � [5 3 2]T, b � [3 2 �1]T, 90 � 14 � 2(38 � 14)
a � [3 1 �4]T, b � [�4 8 �1]T, � a � b � � 2107 � 5.099 � 9

k � �20
25226
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Problem Set 8.2, page 333

1. 1.5, 
3. 1, 
5. 0.5, directions and 
7. 
9. 

11. 1.8
13. 
15. 
17. .
19. From and Prob. 18 follows and

. Adding on both sides, we see that
has the eigenvalue . From this the statement follows.

Problem Set 8.3, page 338

1. 
3. !
5. 
7. 
9. 

15. No 17. 
19. No since .

Problem Set 8.4, page 345

1. 

3. 

5. 

9. 

11. c�2

3

1

�1
d  A c1

3

1

2
d � c2

0

0

�5
d

c 1
5

�2
5

2
5

1
5

d  A c1
2

�2

1
d � c5

0

0

0
d

D40
0

3

�5

�5

�9

15

15

T , 0, D03
1

T ; 4, D10
0

T ; 10, D�1

1

1

T ; x � D30
1

T , D01
0

T , D 1

�1

1

T
c3.008

5.456

�0.544

6.992
d , 4, c�17

31
d ; 6, c�2

11
d ; x � c25

25
d , c10

5
d

c�25

�50

12

25
d , �5, c3

5
d ; 5, c2

5
d ; x � c�2

4
d , c2

1
d

det A � det (AT) � det (�A) � (�1)3det (A) � �det (A) � 0
A�1 � (�AT)�1 � �(A�1)T

1, [0 1 0]T; i, [1 0 i]T; �i, [1 0 �i]T, orthogonal
0, 
25i, skew–symmetric
1, [0 2 1]T; 6, [1 0 0]T, [0 1 �2]T; symmetric
2 
 0.8i, [1 
i]. Not skew–symmetric
0.8 
 0.6i, [1 
i]T; orthogonal

kplj
p � kqlj

qkpAp � kqAq
kqAqxj � kqlj

qxj (p � 0, q � 0, integer)
kpApxj � kplj

pxjAxj � ljxj (xj � 0)
Axj � ljxj (xj � 0), (A � kI)xj � ljxj � kxj � (lj � k)xj

x � (I � A)�1y � [0.6747 0.7128 0.7543]T
c [10 18 25]T

[11 12 16]T
[5 8]T

45°�45°[1 �1]T; 1.5, [1 1]T;
[�1>16 1]T, 112.2°; 8, [1 1>16]T, 22.2°

[1 �1]T, �45°; 4.5, [1 1]T, 45°
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13. 

15. 

17. 

19. 

21. , hyperbola

23. , hyperbolaC � c�11

42

42

24
d , 52y1

2 � 39y2
2 � 156, x �

1

213
 c2

3

3

�2
dy

C � c 1

�6

�6

1
d , 7y1

2 � 5y2
2 � 70, x �

1

22
 c�1

1

1

1
dy

C � c 3

11

11

3
d , 14y1

2 � 8y2
2 � 0, x �

1

22
 c1

1

1

�1
dy; pair of straight lines

C � c7
3

3

7
d , 4y1

2 � 10y2
2 � 200, x �  

1

22
 c 1

�1

1

1
dy, ellipse

D 1
3

�1
3

0

1
3

1
6

�1
2

1
3

1
6

1
2

T A D11
1

�2

1

1

0

�1

1

T � D10

0

0

0

1

0

0

0

5

T
D 1

�2

1

0

1

�2

0

0

1

T A D12
3

0

1

2

0

0

1

T � D40
0

0

�2

0

0

0

1

T
App. 2 Answers to Odd-Numbered Problems A21

Problem Set 8.5, page 351

1. Hermitian, 5,
3. Unitary,
5. Skew-Hermitian, unitary,
7. Eigenvalues eigenvectors 

9. Hermitian, 16 11. Skew-Hermitian, 
13. 
15. (H Hermitian, S skew-Hermitian)
19. 

if and only if HS � SH.
AAT

� ATA � (H � S)(H � S) � (H � S)(H � S) � 2(�HS � SH) � 0
A � H � S, H � 1

2 (A � AT), S � 1
2 (A � AT)

(ABC)˛ 
T

� C T BTAT
� C�1(�B)A

�6i
[1 0]T, resp.[0 1]T,

[1 �1]T, [1 1]T; [1 �i]T, [1 i]T;�1, 1;
�i, [0 �1 1]T, i, [1 0 0]T, [0 1 1]T

(1 � i13)>2, [�1 1]T; (1 � i13)>2, [1 1]T
[�i 1]T, 7, [i 1]T

Chapter 8 Review Questions and Problems, page 352

11. 
13. 
15. 

17. �1, 1; A �
1

16 c
5

�3

�3

5
d c23

39

2

1
d �

1
8 c

�1

63

1

1
d

0, [2 �2 1]T; 9i, [�1 � 3i 1 � 3i 4]T; �9i, [�1 � 3i 1 � 3i 4]T
3, [1 5]T; 7, [1 1]T
3, [1 1]T; 2, [1 �1]T
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19. 

21. 

23. , hyperbola

25. , ellipse 

Problem Set 9.1, page 360

1.
3. 
5. , position vector of Q
7. 9. 

11. 13. 
15. 17. [12, 8, 0]
21. 23. [0, 0, 5], 5
25. 27. 
29. arbitrary 31. 
33. Nothing
35. 
37. 

Problem Set 9.2, page 367

1. 44, 44, 0 3. 
5. 
7. ; cf. (6)
9. 300; cf. (5a) and (5b) 13. Use (1) and 

15. 

17. 
19. is negative! Why?
21. Yes, because 23. arccos 
27. is the angle between the unit vectors a and b. Use (2).
29. and 
31. 33. 
35. A square.
37. 0. Why?
39. If or if a and b are orthogonal.ƒ a ƒ � ƒ b ƒ

(a � b) • (a � b) � ƒ a ƒ
2 � ƒ b ƒ

2 � 0, ƒ a ƒ � ƒ b ƒ .

[3

5, � 
4
5]a1 � � 

28
3

123.7°g � arccos (12>(6113)) � 0.9828 � 56.3°
b �  a

0.5976 � 53.3°W � (p � q) • d � p • d � q • d.
[0, 4, 3] • [�3, �2, 1] � �5
[2, 5, 0] • [2, 2, 2] � 14
� 2 ƒ a ƒ

2 � 2 ƒ b ƒ
2

ƒ a � b ƒ
2 � ƒ a � b ƒ

2 � a • a � 2a • b � b • b � (a • a � 2a • b � b • b)
ƒ cos g ƒ � 1.

ƒ �24 ƒ � 24, ƒ a ƒ ƒ c ƒ � 135186 � 13010 � 54.86
ƒ [2, 9, 9] ƒ � 1166 � 12.88 � 180 � 186 � 18.22

135, 1320, 186

l � 1000, k � 10000 � l � 1000 � 0,
�k � l � 0 � 0,u � v � p � [�k, 0] � [l, l] � [0, �1000] � 0,

vB � vA � [�19, 0] � [22>12, 22>12] � [�19 � 22>12, �22>12]
ƒ p � q � u ƒ � 18.

k � 10v � [v1, v2, 3], v1, v2

p � [0, 0, �5][6, 2, �14] � 2u, 1236
[4, 9, �3], 1106
7[9, �7, 8] � [63, �49, 56]

[1, 5, 8][6, 4, 0], [3
2, 1, 0], [�3, �2, 0]

Q : (0, 0, �8), ƒ v ƒ � 8Q: (4, 0, 12), ƒ v ƒ � 116.25
2, 1, �2; u � [ 

2
3, 13, �2

3 
]

8.5, �4.0, 1.7; 191.14, [0.890, �0.419, 0.178]
5, 1, 0; 126; [5>126, 1>126, 0]

C � c3.7

1.6

1.6

1.3
d , 4.5y1

2 � 0.5y2
2 � 4.5, x �

1

15
c2
1

1

�2
dy

C � c 4

12

12

�14
d , 10y1

2 � 20y2
2 � 20, x �

1

15
c2
1

1

�2
dy

1
3

 D11
0

1

�1

1

�1

0

1

T A D 1

1

�1

2

�1

1

1

1

2

T � D40
0

0

�20

0

0

0

22

T
1
3 c

2

�1

�1

2
d  A c2

1

1

2
d � c�0.9

0

0

0.6
d
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Problem Set 9.3, page 374

5. instead of m, tendency to rotate in the opposite sense.
7. 
9. Zero volume in Fig. 191, which can happen in several ways.

11. 13. 
15. 0 17. 
19. 
21. 
23. 0, 0, 13
25. clockwise
27. 29. 
31. 33. 

Problem Set 9.4, page 380

1. Hyperbolas
3. Parallel straight lines (planes in space) 
5. Circles, centers on the y-axis
7. Ellipses 9. Parallel planes

11. Elliptic cylinders 13. Paraboloids

Problem Set 9.5, page 390

1. Circle, center , radius 2 3. Cubic parabola 
5. Ellipse 7. Helix
9. A “Lissajous curve” 11. 

13. 15. 
17. 19. 
21. Use 
25. At P, 
27. 29. 
31. 33. Start from .
35. 
37. 
39. 

, and 

41. 

and 

43. 

45. ,
[mph]

49. , etc.r(t) � [t, y(t), 0], rr � [1, yr, 0] r • rr � 1 � yr2
26.61 # 108 � 25,700 [ft>sec] � 17,500

ƒ v ƒ � 1gR �g � ƒ a ƒ � v2R � ƒ v ƒ
2>RR � 3960 � 80 mi � 2.133 # 107 ft,

ƒ a ƒ � v2R � ƒ v ƒ
2>R � 5.98 # 10�6 [km>sec2]

R � 30 # 365 # 86,400>2p � 151 # 106 [km],1 year � 365 # 86,400 sec,

atan �

1
2 sin 2t

4 � sin2 t
 v.�4 cos 2t],a � [�cos t, �4 sin 2t,

ƒ v ƒ
2 � 4 � sin2 t,v � [�sin t, 2 cos 2t, �2 sin 2t],

atan �
6 sin 3t

5 � 4 cos 3t
 v.�sin t � 4 sin 2t]a � [�cos t � 4 cos 2t,

ƒ v ƒ
2 � 5 � 4 cos 3t,cos t � 2 cos 2t],v � [�sin t � 2 sin 2t,

v(0) � (v � 1) Ri, a(0) � �v2Rj
v � rr � [1, 2t, 0], ƒ v ƒ � 21 � 4t 2, a � [0, 2, 0]

r(t) � [t, f (t)]2rr • rr � a, l � ap>2

2rr • rr � cosh t, l � sinh l � 1.175q(w) � [2 � w, 12 � 1
4w, 0]

rr � [�8, 0, 6]. q(w) � [6 � 8w, i, 8 � 6w].u � [�sin t, 0, cos t].
sin (�a) � �sin a.

r � [cosh t, (13>2) sinh t, �2]r � [12 cos t, sin t, sin t]
r � [t, 4t � 1, 5t]r � [2 � t, 1 � 2t, 3]
r � [3 � 113 cos t, 2 � 113 sin t, 1]

x � 0, z � y3(3, 0)

y � 3
4 

x � c

474>6 � 793x � 2y � z � 5

1
2 ƒ [�12, 2, 6] ƒ � 146[6, 2, 0] � [1, 2, 0] � [0, 0, 10]

m � [�2, �2, 0] � [2, 3, 0] � [0, 0, �10], m � 10

[�48, �72, �168], 121248 � 189.0, 189.0
1, �1

[�32, �58, 34], [�42, �63, 19]
[6, 2, 7], [�6, �2, �7][0, 0, 7], [0, 0, �7], �4

ƒ v ƒ � ƒ [0, 20, 0] � [8, 6, 0] ƒ � ƒ [0, 0, �160] ƒ � 160
�m
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51. 

53. 

Problem Set  9.7, page 402

1. 3. 
5. 7. Use the chain rule.
9. Apply the quotient rule to each component and collect terms.

11. 
13. 
15. 17. For P on the x- and y-axes.
19. 21. 
23. Points with 25. 
31. 33. 
35. 37. 
39. 
41. 43. 
45. 

Problem Set 9.8, page 405

1. 3. 0, after simplification; solenoidal
5. 7. 
9. (b) , etc.

11. , and
. Hence as t increases from 0 to 1, this “shear flow”

transforms the cube into a parallelepiped of volume l.
13. because do not depend on x, y, z, respectively.
15. 17. 0
19.

Problem Set 9.9, page 408

3. Use the definitions and direct calculation.
5. 7.
9. incompressible, 

11. incompressible, 

13. irrotational, compressible, Sketch it.
15. same (why?)
17. (why?), 
19. same (why?)[�2z � y, �2x � z, �2y � x],

�y � z � x�yz � zx � xy, 0
[�1, �1, �1],

r � [c1et, c2et, c3e�t].div v � 1,curl v � 0,
x2 � 1

2y2 � c, z � c3

xr � y, yr � �2x, 2xxr � yyr � 0,curl v � [0, 0, �3],
y � 3c3

2t � c2yr � 3z2 � 3c3
2,z � c3,

x � c1,v � rr � [xr, yr, zr] � [0, 3z2, 0],curl v � [�6z, 0, 0]
e�x[cos y, sin y, 0][x (z2 � y2), y (x2 � z2), z (y2 � x2)]

2>(x2 � y2 � z2)2
�2 cos 2x � 2 cos 2y

v1, v2, v3div (w � r) � 0

xr � y � c2, x � c2t � c1

[v1, v2, v3] � rr � [xr, yr, zr] � [ y, 0, 0], zr � 0, z � c3, yr � 0, y � c2

( fv1)x � ( fv2)y � ( fv3)z � f [(v1)x � (v2)y � (v3)z] � fxv1 � fyv2 � fzv3

�2ex (cos y)z9x2y2z2; 1296
2x � 8y � 18z; 7

f � �v1 dx � �v2 dy � �v3 dz
f � xyz28>3

[1, 1, 1] • [�3>125, 0, �4>125]>13 � �7>(12513)
[2, 1] • [1, �1]>15 � 1>15[�2x, �2y, 1], [�6, �8, 1]
[12x, 4y, 2z], [60, 20, 10]�f � [32x, �2y], �f (P) � [160, �2]
��T(P) � [0, 4, �1]y � 0, 
p, 
2p, Á .
[0, �e][�1.25, 0]

[8x, 18y, 2z], [40, �18, �22]
[2x>(x2 � y2), 2y>(x2 � y2)], [0.16, 0.12]
[ y, x], [5, �4]

[4x3, 4y3]
[�y>x2, 1>x][2y � 1, 2x � 2]

3>(1 � 9t 2 � 9t 4)

dr
ds

 �
dr
dt

 >
>ds

dt
 ,  d2r

ds2  �
d2r
dt 2  >
>ads

dt
 b2 � Á , d3r

ds3  �
d3r
dt 3  >
>ads

dt
 b3 � Á
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Chapter 9 Review Questions and Problems, page 409

11. 1080, 1080, 65
13.
15. undefined
17. 125,
19. 
21. 
23. 
25. 27.
29. tendency of clockwise rotation 31. 4
33. 1,
35. 0, same (why?),
37. 39.

Problem Set 10.1, page 418

3. 4
5. 
7. “Exponential helix,” 9. 23.5, 0

11. 15. 
17. 19. 

Problem Set 10.2, page 425

3. 5. 
7. 
9. 

13. 15. Dependent, etc.
17. Dependent, etc. 19. 

Problem Set 10.3, page 432

3. 5. 

7. 9. 
11. 
13. 15. 
17. 
19. 

Problem Set 10.4, page 438

1. 3. 
5. 
7. 0. Why? 9. 

13. �2w � cosh x, y � x>2 Á 2, 1
2 cosh 4 � 1

2 

16
5

2x � 2y, 2x(1 � x2) � (2 � x2)2 � 1, x � �1 Á 1, � 
56
15

9(e2 � 1) � 8
3 (e3 � 1)(�1 � 1) � p>4 � �p>2

Ix � (a � b)h3>24, Iy � h(a4 � b4)>(48(a � b))
Ix � bh3>12, Iy � b3h>4

x � 0, y � 4r>3px � 2b>3, y � h>3
z � 1 � r 2, dx dy � r dr du, Answer: p>2

36 � 27y2, 144cosh 2x � cosh x, 1
2 sinh 4 � sinh 2

�
1

0

[x � x3 � (x2 � x5)] dx �
1

12
8y3>3, 54

sin (a2 � 2b2 � c2)4 � 0,
x2 � �4y2,ea2 cos 2b

ex cosh y � ez sinh y, e � (cosh 1 � sinh 1) � 0
cosh 1 � 2 � �0.457

exy sin z, e � 0sin 12 x cos 2y, 1 � 1>12 � 0.293

144t 4, 1843.2[4 cos t, � sin t, sin t, 4 cos t], [2, 2, 0]
18p, 4

3 (4p)3, 18p2e�t � 2te�t2

, �2e�2 � e�4 � 3
(e6p � 1)>3

r � [2 cos t, 2 sin t], 0 � t � p>2; 8
5

9>1225 � 3
5[0, �2, 0]

2( y2 � x2 � xz)
�2y

[0, 0, �14],
v • w> ƒ w ƒ � 22>18 � 7.78[5, 2, 0] • [4 � 1, 3 � 1, 0] � 19

g1 � arccos (�10>165 # 40) � 1.7682 � �101.3°, g2 � 23.7°
[�2, �6, �13]
[70, �40, �50], 0, 2352 � 202 � 252 � 12250

�125�125,
[�1260, �1830, �300], [�210, 120, �540],
[�10, �30, 0], [10, 30, 0], 0, 40
�10,
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15. 17. 
19. 

Problem Set 10.5, page 442

1. Straight lines, k
3. , circles, straight lines, 
5. , circles, parabolas, 
7. ,

ellipses
11. 
13. Set and .
15. 
17. 

19. 

Problem Set 10.6, page 450

1. 
3. from (3), Sec. 10.5. Answer: 
5. 
7. 
9. Integrate to

get 
13. 
15. . Answer: 54.4

21. 

23. 

25. B the z-axis,
.

Problem Set 10.7, page 457

1. 224
3. 
5. 
7. 
9. 11. 

13. 15. 
17. 19. 
21. 23. 
25. Do Prob. 20 as the last one.

h5p>10(a4>4) � 2p � h � ha4p>2
8abc(b2 � c2)>3h4p>2
1>p � 5

24 � 0.5266div F � �sin z, 0
12(e � 1>e) � 24 sinh 1div F � 2x � 2z, 48

[r cos u cos v, cos u sin v, r sin u], dV � r 2 cos u dr du dv, s � v, 2p2a3>3

1
2 (sin 2x) (1 � cos 2x), 1

8, 3
4

�e�1�z � e�y�z, �2e�1�z � e�z, 2e�3 � e�2 � 2e�1 � 1

IK � IB � 12 # 4p � 20.9
 IB � 8p>3,[cos u cos v, cos u sin v, sin u], dA � (cos u) du dv,

[u cos v, u sin v, u], �
2p

0
�

h

0

u2 � u12 du dv �
p

12
 h4

Ix�y � ��
S

[1
2 (x � y)2 � z2] s dA

G(r) � (1 � 9u4)3>2, ƒ N ƒ � (1 � 9u4)1>2
7p3>16 � 88.6

2(1 � 1>12)(cosh 5 � 1) � 42.885.
2 sinh v sin ur � [2 cos u, 2 sin u, v], 0 � u � p>4, 0 � v � 5.

F • N � [0, sin u, cos v] • [1, �2u, 0], 4 � (�2 � p2>16 � p>2)12 � �0.1775
F(r) • N � �u3, �128p

1
3F(r) • N � cos3 v cos u sin u

F(r) • N � [�u2, v2, 0] • [�3, 2, 1] � 3u2 � 2v2, 29.5

[cosh u, sinh u, v], [cosh u, �sinh u, 0]
a2 cos2 v sin u, a2 cos v sin v][a2 cos2 v cos u,

[a cos v cos u, �2.8 � a cos v sin u, 3.2 � a sin v], a � 1.5;
[2 � 5 cos u, �1 � 5 sin u, v], [5 cos u, 5 sin u, 0]

y � vx � u
[u~, v~, u~2, � v~2], N

~
 � [�2u~, �2v~, 1]

x2>a2 � y2>b2 � z2>c2 � 1, [bc cos2 v cos u, ac cos2 v sin u, ab sin v cos v]
[�2u2 cos v, �2u2 sin v, u]z � x2 � y2

[�cu cos v, �cu sin v, u]z � c2x2 � y2

ƒ grad w ƒ
2 � e2x, 5

2 (e4 � 1)
�2w � 6x � 6y, � 38.4�2w � 6xy, 3x(10 � x2)2 � 3x, 486
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Problem Set 10.8, page 462

1. , no contributions. etc.
Integrals . Sum 0

3. The volume integral of is . The surface
integral of over is Others 0.

5. The volume integral of is 0; others 0.
7. use Sec. 10.7, etc.
9. and 

11. 

Problem Set 10.9, page 468

1. 
3. 
5. 
7. 
9. The sides contribute a, 0.

11. 13. 5k, 
15. 
17. 
19. 

Answer: 

Chapter 10 Review Questions and Problems, page 469

11. 
Or using exactness.

13. Not exact, 15. 0 since 
17. By Stokes, 19. 
21. 
23. 
25. 27. 
29. Answer: 21 31. 
33. Direct integration, 35. 

Problem Set 11.1, page 482

1. 5. There is no smallest

13. 

15. 

17. 
p

2
�

4
p

 acos x �
1
9

 cos 3x �
1

25
 cos 5x � Á b

1
3 sin 3x � Á )

4
3 p2 � 4 (cos x � 1

4 cos 2x � 1
9 cos 3x � Á ) � 4p (sin x � 1

2 sin 2x �

4
p

 (cos x �
1
9

 cos 3x �
1

25
 cos 5x � Á ) � 2 (sin x �

1
3

 sin 3x �
1
5

 sin 5x � Á )

p � 0.2p, 2p, p, p, 1, 1, 12, 12

72p224
3

24 sinh 1 � 28.205div F � 20 � 6z2.
288(a � b � c) pM � 4k>15, x � 5

16, y � 4
7

M � 63
20, x � 8

7 � 1.14, y � 118
49 � 2.41

M � 8, x � 8
5, y � 16

5

F � grad (y2 � xz), 2p
18p
curl F � 0curl F � (5 cos x)k, 
10

�4528>3.
r � [4 � 10t, 2 � 8t], F(r) • dr � [2(4 � 10t)2, �4(2t � 8t)2] • [�10, 8] dt;

1>2[�ez, 1, 0] • [�u cos v, �u sin v, u].
r � [u cos v, u sin v, u], 0 � u � 1, 0 � v � p>2,
r � [cos u, sin u, v], [�3v2, 0, 0] • [cos u, sin u, 0], �1
[0, �1, 2x � 2y] • [0, 0, 1], 13

80p�2p; curl F � 0
3a2>2, �a,

[�ez, �ex, �ey] • [�2x, 0, 1], 
(e4 � 2e � 1)
[0, 2z, 32 ] • [0, 0, 1] � 3

2 , 
3
2 a2

[2e�z cos y, �e�z, 0] • [0, �y, 1] � ye�z, 
(2 – 2>1e)
S: z � y (0 � x � 1, 0 � y � 4), [0, 2z, �2z] • [0, �1, 1], 
20

r � a, � � 0, cos � � 1, v � 1
3 a � (4pa2)

�2p � 1
2 (a2 � r 2)3>2 � 2

3 ƒ 0
a

� 2
3 pa3

dx dy � r dr du,z � 2a2 � x2 � y2 � 2a2 � r 2,z � 0
(2*),F � [x, 0, 0], div F � 1,

8(x � 1), �8(y � 1),6y2 � 4 � 2x2 � 12
8y3>3 � 8

3.x � 1f 0g>0n � f � 2x � 2f � 8y2
8y3>3 � 8

38y2 � [0, 8y] � [2x, 0] � 8y2
x � a: (�2a)bc,  y � b: (�2b)ac,  z � c: (4c) ab

x � a: 0f>0n � 0f>0x � �2x � �2a,x � 0, y � 0, z � 0
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19. 

21. 

Problem Set 11.2, page 490

1. Neither, even, odd, odd, neither 3. Even 5. Even

9. Odd, 

11. Even, 

13. Rectifier, 

15. Odd, 

17. Even, 

19. 

23. (a) 1, (b)

25. (a)

(b) 

27. (a)

(b)

29. Rectifier, 

(a) (b) 

Problem Set 11.3, page 494

3. The output becomes a pure cosine series.
5. For this is similar to Fig. 54 in Sec. 2.8, whereas for the phase shift 

the sense is the same for all n.
BnAn

sin x
2
p

�
4
p

 a 1
1 # 3

 cos x �
1

3 # 5
 cos 3x �

1
5 # 7

 cos 5x � Á b ,
L � p,

a1
5

�
2

25p
b sin 5x �

1
6

 sin 6x � Á

a1 �
2
p
b sin x �

1
2
 sin 2x � a1

3
�

2
9p
b sin 3x �

1
4
 sin 4x �

1
18

 cos 6x �
1

49
 cos 7x �

1
81

 cos 9x �
1

50
 cos 10x �

1
121

 cos 11x � Á b

3p
8

�
2
p

 acos x �
1
2
 cos 2x �

1
9

 cos 3x �
1

25
 cos 5x �L � p,

2 (sin x � 1
2 sin 2x � 1

3 sin 3x � 1
4 sin 4x � Á )

p

2
�

4
p

 acos x �
1
9

 cos 3x �
1

25
 cos 5x � Á b ,L � p,

4
p

 asin 
px
4

�
1
3

 sin 
3px

4
�

1
5

 sin 
5px

4
� Á bL � 4,

3
8 � 1

2 cos 2x � 1
8 cos 4x

L � 1, 1
2

�
4
p2 acos px �

1
9

 cos 3px �
1

25
 cos 5px � Á b

L � p, 4
p

 asin x �
1
9

 sin 3x �
1

25
 sin 5x � � Á b

1
p

 a1
2
 sin 2px �

1
4

 sin 4px �
1
6

 sin 6px �
1
8

 sin 8px � � Á b
L �

1
2

 , 1
8

�
1
p2 acos 2px �

1
9

 cos 6px �
1

25
 cos 10px � Á b �

L � 1, 1
3

�
4
p2 acos px �

1
4
 cos 2px �

1
9

 cos 3px � � Á b
L � 2,  4

p
 asin 

px
2

�
1
3

 sin 
3px

2
�

1
5

 sin 
5px

2
� Á b

2 (sin x � 1
2 sin 2x � 1

3 sin 3x � 1
4 sin 4x � 1

5 sin 5x � Á )

1
3

 sin 3x � � Á

p

4
�

2
p

 acos x �
1
9

 cos 3x �
1

25
 cos 5x � Á b � sin x �

1
2
 sin 2x �
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7. 
Note the change of sign.

11. 

13. 

15. (n odd),

with as in
Prob. 13.

17. 

19. 

Section 11.4, page 498

3. 

5. 0.6243, 

7. 
Why is so large?

Section 11.5, page 503

3. Set 5. etc.
7. 
9. 

11. 
13. 

Section 11.6, page 509

1. 
3. 
9. 

Rounding seems to have considerable influence in Probs. 8–13.m0 � 9.
�0.4775P1(x) � 0.6908P3(x) � 1.844P5(x) � 0.8236P7(x) � 0.1658P9(x) � Á ,

4
5 P0(x) � 4

7 P2(x) � 8
35 P4(x)

8 (P1(x) � P3(x) � P5(x))

p � e8x, q � 0, r � e8x, lm � m2, ym � e�4x sin mx, m � 1, 2, Á

lm � m2, m � 1, 2, Á , ym � x sin (m ln ƒ x ƒ )
l � [(2m � 1)p>(2L)]2, m � 0, 1, Á , ym � sin ((2m � 1) px>(2L))
lm � (mp>10)2, m � 1, 2, Á ; ym � sin (mpx>10)

x � cos u, dx � �sin u du,x � ct � k.

E*E* � 674.8, 454.7, 336.4, 265.6, 219.0.
F � 2 [(p2 � 6) sin x � 1

8 (4p2 � 6) sin 2x � 1
27 (9p2 � 6) sin 3x � � Á ];

0.4206 (0.1272 when N � 20)

F �
4
p

 asin x �
1
3

 sin 3x �
1
5

 sin 5x � Á b , E* � 1.1902, 1.1902, 0.6243,

0.0748, 0.0119, 0.0119, 0.0037

F �
p

2
�

4
p

 acos x �
1
9

 cos 3x �
1

25
 cos 5x � Á b , E* � 0.0748,

Bn � (�1)n�1 
24,000

nDn
 , Dn � (10 � n2)2 � 100n2

I (t) � a

�

n�1

(An cos nt � Bn sin nt), An � (�1)n�1 
2400 (10 � n2)

n2Dn

 ,

Bn � 10nan>Dn, an � �400>(n2p), Dn � (n2 � 10)2 � 100n2
An � (10 � n2) an>Dn,I � 50 � A1 cos t � B1 sin t � A3 cos 3t � B3 sin 3t � Á ,

DnBn � (�1)n�1 # 12(1 � n2)>(n3Dn)An � (�1)n # 12nc>n3Dn,

y � a

�

n�1

(An cos nt � Bn sin nt),bn � (�1)n�1 # 12 >n3

Bn � [(1 � n2)bn � ncan]>Dn, Dn � (1 � n2)2 � n2c2

y � a

N

n�1

(An cos nt � Bn sin nt), An � [(1 � n2)an � nbnc]>Dn,

1

v2 � 121
 sin 5t � Á b

y � C1 cos vt � C2 sin vt �
4
p

 a 1
v2 � 9

 sin t �
1

v2 � 49
 sin 3t �

0.8, 0.01.�5.26, 4.76,
y � C1 cos vt � C2 sin vt � a (v) sin t, a (v) � 1>(v2 � 1) � �1.33,
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11. 
13. 
15. 

Section 11.7, page 517

1. gives 

(see Example 3), etc.

3. Use (11); 

5. 

7. 

9. 

11. 

15. For the value of equals 0.28, 
0.029, 0.0103, 0.0065, (rounded).

17. 

19. 

Section 11.8, page 522

1. 
3. 

5. 

7. Yes. No 9. 
11. 

13. 

Problem Set 11.9, page 533

3. if otherwise
5. 
7. 9. 

11. 13. by formula 9e�w2>2i12>p (cos w � 1)>w
12>p(cos w � w sin w � 1)>w2(e�iaw(1 � iaw) � 1)>(12pw2)

[e(1�iw)a � e�(1�iw)a]>(12p(1 � iw))
a � b; 0i (e�ibw � e�iaw)>(w12p)

fs(e
�x) �

1
w

 a�fc(e�x) �
B

2
p

# 1b �
1
w

 a
B

2
p

#
1

w2 � 1
�
B

2
p
b �
B

2
p

 
w

w2 � 1

12>p ((2 � w2) cos w � 2w sin w � 2)>w3
12>p w>(a2 � w2)

fĉ(w) �
B

2
p

 
(w2 � 2) sin w � 2w cos w

w3

fĉ(w) � 1(2>p) (cos 2w � 2w sin 2w � 1)>w2

(2 sin w � sin 2w)>wfĉ(w) � 1(2>p)

2
p

 �
�

0

w � e (w cos w � sin w)

1 � w2  sin xw dw

2
p �

�

0

1 � cos w
w  sin xw dw

�0.0064�0.0099,�0.026,
�0.15,Si (np) � p>2n � 1, 2, 11, 12, 31, 32, 49, 50

2
p

 �
�

0

cos pw � 1
1 � w2  cos xw dw

A (w) �
2
p

 �
�

0

cos wv
1 � v2 dv � e�w (w � 0)

2
p �

�

0

sin w cos xw
w  dw

B (w) �
2
p

 �
1

0

 
1
2
 pv sin wv dv �

sin w � w cos w
w2

B �
2
p

 �
�

0

p

2
 sin wv dv �

1 � cos pw
w

A � �
�

0

e�v cos wv dv �
1

1 � w2
 , B �

w

1 � w2
f (x) � pe�x(x � 0)

(c) am � (2>J 1
2(a0,m)) (J1(a0,m)>a0,m) � 2>(a0,mJ1(a0,m))

0.1212P0(x) � 0.7955P2(x) � 0.9600P4(x) � 0.3360P6(x) � Á , m0 � 8
0.7854P0(x) � 0.3540P2(x) � 0.0830P4(x) � Á , m0 � 4
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17. No, the assumptions in Theorem 3 are not satisfied.
19. 

21. 

Chapter 11 Review Questions and Problems, page 537

11. 

13. 

15. respectively 17. Cf. Sec. 11.1.

19. 

21. 

23. 0.82, 0.50, 0.36, 0.28, 0.23
25. 0.0076, 0.0076, 0.0012, 0.0012, 0.0004

27. 

29. 

Problem Set 12.1, page 542

1. 
3. 5. 
7. Any c and 9. 

15. 17. 
19. 
21. 
23. (Euler–Cauchy)
25. a, b, c, k arbitrary constants

Problem Set 12.3, page 551

5. 

7. 

9. 
0.8
p2

 acos pt sin px �
1
9

 cos 3pt sin 3px �
1

25
 cos 5pt sin 5px � � Á b

8k
p3

 acos pt sin px �
1

27
 cos 3pt sin 3px �

1
125

 cos 5pt sin 5px � Á b
k cos 3pt sin 3px

u(x, y) � axy � bx � cy � k;
u � c1( y)x � c2( y)>x2
u � e�3y(a(x) cos 2y � b(x) sin 2y) � 0.1e3y
u � c(x) e�y3>3

u � a( y) cos 4px � b( y) sin 4pxu � 110 � (110>ln 100) ln (x2 � y2)
c � p>25v

c � a>bc � 2
L(c1u1 � c2u2) � c1L(u1) � c2L(u2) � c1

# 0 � c2
# 0 � 0

12>p (cos aw � cos w � aw sin aw � w sin w)>w2

1
p

 �
�

0

(cos w � w sin w � 1) cos wx � (sin w � w cos w) sin wx
w2  dw

�
1

16
 #

cos 4t

v2 � 16
� � Á b

y � C1 cos vt � C2 sin vt �
p2

v2
� 12 a cos t

v2 � 1
�

1

4
 #

cos 2t

v2 � 4
�

1

9
 #

cos 3t

v2 � 9

1
2

 �
4
p2 acos px �

1
9

 cos 3px � Á b , 2
p

 asin px �
1
2
 sin 2px � � Á b

cosh x, sinh x (�5 � x � 5),

1
p

 asin px �
1
2
 sin 2px �

1
3

 sin 3px � � Á b

1
4

�
2
p2 acos px �

1
9

 cos 3px �
1

25
 cos 5px � Á b �

1 �
4
p

 asin 
px
2

�
1
3

 sin 
3px

2
�

1
5

 sin 
5px

2
� Á b

c1 1

1 �1
d c f1

f2
d � c f1 � f2

f1 � f2
d

[ f1 � f2 � f3 � f4, f1 � if2 � f3 � if4, f1 � f2 � f3 � f4, f1 � if2 � f3 � if4]
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11. 

13. 

No terms with 

17. 

19. (a) (b) (c) (d)
from (a), (c). Insert this. The coefficient determinant resulting from (b), (d) must be
zero to have a nontrivial solution. This gives (22).

Problem Set 12.4, page 556

3. 
9. Elliptic,

11. Parabolic,
13. Hyperbolic,

15. Hyperbolic,

17. Elliptic, Real or imaginary parts of any
function u of this form are solutions. Why?

Problem Set 12.6, page 566

3. differ in rapidity of decay.
5. 

7. 

9. where satisfies the boundary conditions of the text, 

so that 

11. 
etc.

13. 

15. 

17. 

19. 

21. u �
100
p a

�

n�1

 
1

(2n � 1) sinh (2n � 1)p
 sin 

(2n � 1)px
24

 sinh 
(2n � 1)py

24

u � 1000 (sin 12 px sinh 12 py)>sinh p

� 
Kp
L a

�

n�1

nBn e
�ln

2t

1
2

�
4
p2 acos x e�t �

1
9

 cos 3x e�9t �
1

25
 cos 5x e�25t � Á b

u � 1
p � np>L,
F � A cos px � B sin px, Fr(0) � Bp � 0, B � 0, Fr(L) � �Ap sin pL � 0,

u
II

� a
�

n�1

Bn sin 
npx

L
 e�(cnp>L)2t, Bn �

2
L �

L

0

[ f (x) � u
I
(x)] sin 

npx
L

 dx.

uII � u � uIu � uI � uII,

u �
800

p3
 asin 0.1px e�0.01752p2t �

1

33
 sin 0.3px e�0.01752(3p)2t � Á b

u � sin 0.1px e�1.752p2t>100
u1 � sin x e�t, u2 � sin 2x e�4t, u3 � sin 3x e�9t

u � f1( y � (2 � i)x) � f2( y � (2 � i)x).

xyr2 � yyr � 0, y � v, xy � w, uw � z, u �
1
y  f1(xy) � f2( y)

u � f1( y � 4x) � f2( y � x)
u � x f1(x � y) � f2(x � y)

u � f1( y � 2ix) � f2( y � 2ix)
c2 � 300>[0.9>(2 # 9.80)] � 80.832 [m2>sec2]

ux(L, t) � 0. C � �A, D � �Bux(0, t) � 0,u(L, t) � 0,u(0, t) � 0,

u �
8L2

p3  acos c c ap
L
b2t d  sin 

px
L

�
1
33 cos c c a3p

L
b2t d  sin 

3px
L

� Á b
n � 4, 8, 12, Á .�

4 � 5p
125

 cos 5pt sin 5px � Á b .

4
p3

 a(4 � p) cos pt sin px � cos 2pt sin 2px �
4 � 3p

27
 cos 3pt sin 3px

�
1

25
 (2 � 12) cos 5pt sin 5px � � Á b

2
p2

 a(2 � 12) cos pt sin px �
1
9

 (2 � 12) cos 3pt sin 3px
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23. 

25. 

Problem Set 12.7, page 574

3. 

5. etc.

7. if and 0 if 

9. Set in (21) to get erf 
13. In (12) the argument is 0 (the point where f jumps) when 

This gives the lower limit of integration.
15. Set in (21).

Problem Set 12.9, page 584

1. (a), (b) It is multiplied by (c) Half
5. if m odd, 0 if m even
7. 

11. 

13. 

17. (corresponding eigenfunctions and ), etc.

19. 

Problem Set 12.10, page 591

5. 

7. 55p �
440
p

 (r cos u �
1
9

 r 3 cos 3u �
1

25
 r 5 cos 5u � Á )

110 �
440
p

 (r cos u �
1
3

 r 3 cos 3u �
1
5

 r 5 cos 5u � � Á )

cos apt
B

36

a2 �
4

b2b sin 
6px

a
 sin 

4py

b

F16,14F4,16cp1260

6.4

p2 a

�

m�1

 a

�

n�1
m,n   odd

 
1

m3n3
 cos (t2m2 � n2) sin mx sin ny

u � 0.1 cos 120t sin 2x sin 4y
Bmn � (�1)m�n4ab>(mnp2)
Bmn � (�1)n�18>(mnp2)

12.

w � s>12

z � �x>(2c1t).x � 2cz1t
(�x) � �erf x.w � �v

u � �
1

0

cos px e�c2p2t dp

p � 1,0 � p � 1A �
2
p �

�

0

sin v
v

 cos pv dv �
2
p

#
p

2
� 1

A �
2
p

 �
1

0

v cos pv dv �
2
p

#
cos p � p sin p � 1

p2 ,

A �
2

p �
�

0

cos pv
1 � v2

 dv �
2

p
#
p

2
 e�p, u � �

�

0

e�p�c2p2t cos px dp

a
�

n�1

An sin 
npx

a
 sinh 

np(b � y)
a

 , An �
2

a sinh (npb>a)
 �

a

0

f (x) sin 
npx

a
 dx

A0 �
1

242 �
24

0

f ( y) dy, An �
1

12
�

24

0

f ( y) cos 
npy

24
 dy

u � A0 x � a
�

n�1

 An 
sinh (npx>24)

sinh np
 cos 

npy
24

 ,

App. 2 Answers to Odd-Numbered Problems A33

bapp02.qxd  11/4/10  7:49 AM  Page A33



11. Solve the problem in the disk subject to (given) on the upper semicircle
and on the lower semicircle.

13. Increase by a factor 15. 
17. No 25. See Table A1 in App. 5.

Problem Set 12.11, page 598

5. 
9. 

13. is smaller than the potential in Prob. 12 for 
17. 
19. 
25. Set Then 

Substitute this and etc. into (7) [written in terms of ] and divide by 

Problem Set 12.12, page 602

5. 

7. take to get and from

11. Set Use z as a new variable of integration. Use 

Chapter 12 Review Questions and Problems, page 603

17. 19. Hyperbolic, 
21. Hyperbolic, 23. 
25. 
27. 
29. 
39. 

Problem Set 13.1, page 612

1. 3. 
5. 9. 

11. 13. 
15. 17. 
19. 

Problem Set 13.2, page 618

1. 
3. 2(cos 12 p � i sin 12 p), 2(cos 12 p � i sin 12 p)
12 (cos 14 p � i sin 14 p)

(x2 � y2)>(x2 � y2), 2xy>(x2 � y2)
�4x2y23 � i
�120 � 40i�8 � 6i
�117, 4x � iy � �(x � iy), x � 0
4.8 � 1.4i1>i � i>i2 � �i, 1>i3 � i>i4 � i

u � (u1 � u0)(ln r)>ln (r1>r0) � (u0 ln r1 � u1 ln r0)>ln (r1>r0)
100 cos 2x e�4t

3
4 sin 0.01px e�0.001143t � 1

4 sin 0.03px e�0.01029t
sin 0.01px e�0.001143t

3
4 cos 2t sin x � 1

4 cos 6t sin 3xf1( y � 2x) � f2( y � 2x)
f1(x) � f2( y � x)u � c1(x)e�3y � c2(x)e2y � 3

erf (�) � 1.x2>(4c2t) � z2.
w(x, 0) � x(c � 1) � 0.

c � 1g � ce�t � t � 1f (x) � xw � f (x)g(t), xf rg � fg
#
� xt,

W �
c(s)

x s
�

x

s2(s � 1)
 , W(0, s) � 0, c(s) � 0, w(x, t) � x(t � 1 � e�t)

r 5.ru�� � rv��

urr � (2vr � rvrr)(1>r
4) � (v � rvr)(2>r

3), urr � (2>r)ur � r 5(vrr � (2>r)vr).
u(r, u, �) � rv(r, u, �), ur � (v � rvr)(�1>r2), 1>r � r.

cos 2� � 2 cos2 � � 1, 2w2 � 1 � 4
3 P2(w) � 1

3, u � 4
3r 2P2(cos �) � 1

3

u � 1
2 � r � 4.u � 320>r � 60

ur � c~>r 2, u � c>r � k
�2u � us � 2ur>r � 0, us>ur � �2>r, ln ƒ ur ƒ � �2 ln ƒ r ƒ � c1,
A4 � A6 � A8 � A10 � 0, A5 � 605>16, A7 � �4125>128, A9 � 7315>256

a11>(2p) � 0.6098;
T � 6.826rR2f 1

212

u �
4u0

p
 a r

a
 sin u �

1
3a3 r 3 sin 3u �

1

5a5 r 5 sin 5u � Á b
�u0

u0r � a

A34 App. 2 Answers to Odd-Numbered Problems

bapp02.qxd  11/4/10  7:49 AM  Page A34



5. 7. 
9. 11. 

13. 15. 
17. 21. 
23. 
25. 
27. 
29. 31. 
33. Multiply out and use

(Prob. 34).

Hence Taking
square roots gives (6).

35. 

Problem Set 13.3, page 624

1. Closed disk, center radius 
3. Annulus (circular ring), center radii and 
5. Domain between the bisecting straight lines of the first quadrant and the fourth

quadrant.
7. Half-plane extending from the vertical straight line to the right.

11. 

15. Yes, since 
17. Yes, because and as 
19. Now hence 
21. 23. 

Problem Set 13.4, page 629

1. 
(a)
(b)
Multiply (a) by (b) by , and add. Etc.

3. Yes 5. No, 
7. Yes, when Use (7). 9. Yes, when 

11. Yes 13. c real
15. (c real) 17. (c real)
19. No 21. 
23. 27. implies 
29. Use (4), (5), and (1).

Problem Set 13.5, page 632

3. 5. 
7. 9. 

11. 13. 12epi>46.3epi
5ei arctan (3>4) � 5e0.644ie12i � 4.113i

e2(�1) � �7.389e2pie�2p � e�2p � 0.001867

if � �v � iu.f � u � iva � 0, v � 1
2 b( y2 � x2) � c

a � p, v � epx sin py
f (z) � z2 � z � cf (z) � 1>z � c
f (z) � �1

2 i(z2 � c),
z � 0, �2pi, 2piz � 0.

f (z) � (z2)
sin ucos u,

0 � uy � vx � ur sin u � uu(cos u)>r � vr cos u � vu(�sin u)>r
0 � ux � vy � ur cos u � uu(�sin u)>r � vr sin u � vu (cos u)>r

rx � x>r � cos u, ry � sin u, ux � �(sin u)>r, uy � (cos u)>r

3iz2>(z � i)4, �3i>16n(1 � z) �n�1i, ni
f r(3 � 4i) � 8 # 37 � 17,496.z � 4i � 3,f r(z) � 8(z � 4i)7.

r : 0.1 � ƒ z ƒ : 1Re z � r cos u: 0
Im ( ƒ z ƒ

2>z) � Im ( ƒ z ƒ
2

 z>(zz)) � Im z � �r sin u: 0.
v(x, y) � y((1 � x)2 � y2), v(1, �1) � �1
u(x, y) � (1 � x)>((1 � x)2 � y2), u(1, �1) � 0,

x � �1

3pp4 � 2i,

3
2 �1 � 5i,

[(x1 � x2)2 � ( y1 � y2)2] � [(x1 � x2)2 � ( y1 � y2)2] � 2(x1
2 � y1

2 � x2
2 � y2

2)

ƒ z1 � z1 ƒ
2 � ( ƒ z1 ƒ � ƒ z2 ƒ )2.� ( ƒ z1 ƒ � ƒ z2 ƒ )2.� 2 ƒ z1 ƒ ƒ z2 ƒ � ƒ z2 ƒ

2
z1z1 � z1z2 � z2z1 � z2z2 � ƒ z1 ƒ

2 � 2 Re z1z2 � ƒ z2 ƒ
2 � ƒ z1 ƒ

2
Re z1z2 � ƒ z1z2 ƒ

ƒ z1 � z2 ƒ
2 � (z1 � z2)( z1 � z2 ) � (z1 � z2)( z 1 � z 2).


(1 � i), 
(2 � 2i)i, �1 � i
cos 15 p 
 i sin 15 p, cos 35 p 
 i sin 35 p, �1
cos (1

8 p � 1
2 kp) � i sin (1

8 p � 1
2 kp), k � 0, 1, 2, 3

6, �3 
 313i
2
6 2 (cos 1

12 kp � i sin 1
12 p), k � 1, 9, 172 � 2i

�3i�1024. Answer: p

arctan ( 

4
3 ) � 
0.92733p>4

21 � 1
4 p2 (cos arctan 12 p � i sin arctan 12 p)1

2 
(cos p � i sin p)

App. 2 Answers to Odd-Numbered Problems A35

bapp02.qxd  11/4/10  7:49 AM  Page A35



15. 
17. 
19. 

Problem Set 13.6, page 636

1. Use (11), then (5) for and simplify. 7.
9. Both Why? 11. both

15. Insert the definitions on the left, multiply out, and simplify.
17. 19. 

Problem Set 13.7, page 640

5. 7. 
9. 11. 

13. 

15. 

17. 
19. 
21. 
23. 
25. 
27. 

Chapter 13 Review Questions and Problems, page 641

1. 3. 
11. 13. 
15. i 17. 
19. 21. 
23. 25. 
27. 29. 
31. 
33. 
35. 

Problem Set 14.1, page 651

1. Straight segment from (2, 1) to (5, 2.5).
3. Parabola from (1, 2) to (2, 8).
5. Circle through (0, 0), center radius oriented clockwise.
7. Semicircle, center 2, radius 4.
9. Cubic parabola 

11.
13. z(t) � 2 � i � 2eit (0 � t � p)

z(t) � t � (2 � t)i (�1 � t � 1)
y � x3 (�2 � x � 2)

110,(3, �1),
y � x2

cosh p cos p � i sinh p sin p � �11.592
i tanh 1 � 0.7616i
cos 3 cosh 1 � i sin 3 sinh 1 � �1.528 � 0.166i

f (z) � e�z2>2f (z) � e�2z
f (z) � �iz2>2(
1 
 i)>12

3, 
3i15e�pi>2
412e�3pi>4
0.16 � 0.12i�5 � 12i
27.46e0.9929i, 7.616e1.976i2 � 3i

e(2�i) Ln (�1) � e(2�i)pi � ep � 23.14
e(3�i)(ln 3�pi) � 27ep(cos (3p � ln 3) � i sin (3p � ln 3)) � �284.2 � 556.4i
e(1�i) Ln (1�i) � eln12�pi>4�i ln12�p>4 � 2.8079 � 1.3179i
e0.6e0.4i � e0.6 (cos 0.4 � i sin 0.4) � 1.678 � 0.710i
e4�3i � e4 (cos 3 � i sin 3) � �54.05 � 7.70i
ln (i2) � ln (�1) � (1 
 2n)pi, 2 ln i � (1 
 4n)pi, n � 0, 1, Á

ln ƒ ei
ƒ � i arctan 

sin 1
cos 1

  
 2npi � 0 � i � 2npi, n � 0, 1, Á


2npi, n � 0, 1, Á

ln e � pi>2 � 1 � pi>2i arctan (0.8>0.6) � 0.927i

1
2 ln 32 � pi>4 � 1.733 � 0.785iln 11 � pi

z � 
npiz � 
(2n � 1)i>2

i sinh p � 11.55i,�0.642 � 1.069i.
cosh 1 � 1.543, i sinh 1 � 1.175ieiy,

z � 2npi, n � 0, 1, Á

Re (exp (z3)) � exp (x3 � 3xy2) cos (3x2y � y3)
exp (x2 � y2) cos 2xy, exp (x2 � y2) sin 2xy
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15.
17. Circle 
19.
21.
23. 
25.
27.
29. on the axes. 

integrated: 
35.

Problem Set 14.2, page 659

1. Use (12), Sec. 14.1, with 3. Yes 5. 5
7. (a) Yes. (b) No, we would have to move the contour across 
9. 0, yes 11. no

13. 0, yes 15. no
17. 0, no 19. 0, yes
21. 23. hence 
25. 0 (Why?) 27. 0 (Why?)
29. 0

Problem Set 14.3, page 663

1. 3. 0
5. 7.

11. 13.

15. since 
and 

17.

19.

Problem Set 14.4, page 667

1. 3.

5.

7.

9.

11.

 � 2.821i
 � 1

2 pi(sin 12 � 3
2 cos 12 )

2pi
4

 ((1 � z)sin z)r `
z�1>2

� 1
2 pi(sin z � (1 � z) cos z) ƒ z�1>2

�2pi(tan pz)r `
z�0

�
�2pi � p

cos2 pz
`
z�0

� �2p2i

(2pi>(2n)!) (cos z)(2n)
ƒ z�0 � (2pi>(2n)!)(�1)n cos 0 � (�1)n2pi>(2n)!

2pi
3!

 (cosh 2z)t �
pi
3

� 8 sinh 1 � 9.845i

(2pi>(n � 1)!)e0(2pi>3!)(�cos 0) � �pi>3

2pie2i>(2i) � pe2i

2pi 
Ln (z � 1)

z � i
 `

z�i

� 2pi 
Ln (1 � i)

2i
 � p(ln12 � ip>4) � 1.089 � 2.467i

sinh pi � i sin p � 0.
cosh pi � cos p � �12pi cosh (�p2 � pi) � �2pi cosh p2 � �60,739i

2pi(z � 2) ƒ z�2 � 8pi2pi �
1

z � 2i
`
z�2i

�
p

2

2pi(i>2)3>2 � p>82pi(cos 3z)>6 ƒ z�0 � pi>3
2piz2>(z � 1) ƒ z��1 � �pi

2pi � 2pi � 4pi.1>z � 1>(z � 1),2pi

�p,
pi,


2i.
m � 2.

ƒ Re z ƒ � ƒ x ƒ � 3 � M on C, L � 18
(�1 � i)>3.y(�1 � i)(Im z2)  

#
z � 2(1 � t)

z � 1 � (�1 � i)t (0 � t � 1),Im z2 � 2xy � 0
tan 14 pi � tan 14 � i tanh 14 � 1

1
2 exp z2

ƒ

i
1 � 1

2 (e�1 � e1) � �sinh 1
e2pi � epi � 1 � (�1) � 2
z(t) � (1 � i)t (1 � t � 3), Re z � t, zr  (t) � 1 � i. Answer: 4 � 4i
z(t) � t � (1 � 1

4 t 2)i (�2 � t � 2)
z(t) � �a � ib � re�it (0 � t � 2p)

z(t) � 2 cosh t � i sinh t (�� � t � �)
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13. 15. 0. Why?

17. 0 by Cauchy’s integral theorem for a doubly connected domain; see (6) in Sec. 14.2.
19.

Chapter 14 Review Questions and Problems, page 668

21.
23. by Cauchy’s integral formula.
25.

27. 0 since and 
29.

Problem Set 15.1, page 679

1. bounded, divergent, 
3. by algebra; convergent to 
5. Bounded, divergent, 
7. Unbounded, hence divergent
9. Convergent to 0, hence bounded

17. Divergent; use 19. Convergent; use 
21. Convergent 23. Convergent
25. Divergent
29. By absolute convergence and Cauchy’s convergence principle, for given we

have for every and 

hence by Sec. 13.2, hence convergence by Cauchy’s
principle.

Problem Set 15.2, page 684

1. No! Nonnegative integer powers of z (or only!
3. At the center, in a disk, in the whole plane
5. hence 

7. 9. 11.
13. 15. 2i, 1 17.

Problem Set 15.3, page 689

3. Apply l’Hôpital’s rule to 
5. 2 7. 9.

11. 13. 1 15.

Problem Set 15.4, page 697

3. 2z2 �
(2z2)3

3!
 � Á � 2z2 �

4
3

 z6 �
4

15
 z10 � � Á , R � �

3
42

7
3

1>1213
ln f � (ln n)>n.f � 2

n
n.

1>12�i, 12 

0,226
5i,13p>2, �

ƒ z ƒ � 1R.Sanz2n � San(z2)n, ƒ z2
ƒ � R � lim ƒ an>an�1 ƒ ;

z � z0)

(6*),ƒ zn�1 � Á � zn�p ƒ � P

ƒ zn�1 ƒ � Á � ƒ zn�p ƒ � P,

p � 1, 2, Án � N(P)
P � 0

S1>n2.1>ln n � 1>n.


1 � 10i
�pi>2zn � �1

2 pi>(1 � 2>(ni))

1, 
izn � (2i>2)n;

�4pi
y � xz2 � z � 2 � 2(x2 � y2)

�2pi(tan pz)r|z�1 � �2p2i>cos2 pz|z�1 � �2p2i
2pi(ez)(4)

ƒ z�0 � iez>12 ƒ z�0 � pi>12

1
2 cosh (�1

4 p2) � 1
2 � 2.469

(2pi>2!)4�3(e3z)s ƒ z�pi>4 � �9p(1 � i)>(6412)

2pi #
1
z  `

z�2
� pi
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5.

7.

9.

11.
13. 
17. Team Project. (a)
(c) Use that the terms of are all positive, so that the sum cannot be zero.
19. 

21. 

23. 

25. 

Problem Set 15.5, page 704

3. 
5. 
7. Nowhere
9. 

11. and converges. Use Theorem 5.
13. for all z, and converges. Use Theorem 5.
15. by Theorem 2 in Sec. 15.2; use Theorem 1.
17. use Theorem 1.

Chapter 15 Review Questions and Problems, page 706

11. 1 13. 3
15. 17. 
19. 

21. 

23. 

25. 

27. 

29. ln 3 �
1
3

 (z � 3) �
1

2 � 9
 (z � 3)2 �

1
3 � 27

 (z � 3)3 � � Á , R � 3

cos [(z � 1
2 
p) � 1

2 
p] � �(z � 1

2 
p) � 1

6(z � 1
2 
p)3 � � Á � �sin (z � 1

2 
p)

a
�

n�1

(�1)n�1

n!
  z2n�2, R � �

1
2

�
1
2 cos 2z � 1 �

1
2

 a
�

n�1

 
(�1)n

(2n)!
 (2z)2n, R � �

a
�

n�0

 
z4n

(2n � 1)!
 , R � �

�, cosh 1z
�, e2z1

2

R � 1>1p � 0.56;
R � 4

S1>n2
ƒ sinn ƒ z ƒ ƒ � 1

S1>n2
ƒ zn

ƒ � 1
ƒ z � 2i ƒ � 2 � d, d � 0

ƒ z � 1
2 

i ƒ � 1
4 � d, d � 0

ƒ z � i ƒ � 13 � d, d � 0

2 az �
1
2 

ib �
23

3!
 az �

1
2 

ib
3

�
25

5!
 az �

1
2 

ib
5

� Á , R � �

�1
4 � 2

8 
i(z � i) � 3

16 
(z � i)2 � 4

32 
i(z � i)3 � 5

64 
(z � i)4 � Á , R � 2

1 �
1
2!

  az �
1
2

 pb
2

�
1
4!

  az �
1
2 
pb

4

�
1
6!

  az �
1
2 
pb

6

� � Á , R � �

1
2 � 1

2 i � 1
2 i(z � i) � (�1

4 � 1
4 i)(z � i)2 � 1

4 (z � i)3 � Á , R � 12
(sin iy)>(iy)

(Ln (1 � z))r � 1 � z � z2 � � Á � 1>(1 � z).
(2>1p)(z � z3>3 � z5>(2!5) � z7>(3!7) � Á ), R � �

z3>(1!3) � z7>(3!7) � z11>(5!11) � � Á , R � �

�
z

0

a1 �
1
2 t

2 �
1
8

 t 4 � � Áb dt � z �
1
6

 z3 �
1

40
 z5 � � Á , R � �

1
2

�
1
2
 cos z � 1 �

1
2 � 2!

 z2 �
1

2 � 4!
 z4 �

1
2 � 6!

 z6 � � Á , R � �

1
2 � 1

4 
z4 � 1

8 
z8 � 1

16 
z12 � 1

32 
z16 � � Á , R � 2

4 2
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A40 App. 2 Answers to Odd-Numbered Problems

Problem Set 16.1, page 714

1.
3. 
5. 
7. 
9.

11. 

13. 

15. 

19. 

21. 

23. 

25. 

Section 16.2, page 719

1. fourth order 3. fourth order
5. second order 7. simple
9. simple

11. hence 
13. Second-order poles at i and 
15. Simple pole at essential singularity at 
17. Fourth-order poles at essential singularity at 
19. simple zeros. Answer: simple poles at 

essential singularity at 
21. essential singularities, simple poles

Section 16.3, page 725

3. at 0 5. 
7. at 9. at 

11. at 
15. Simple pole at inside C, residue Answer: 
17. Simple poles at residue and at residue

Answer: 
19. 
21. Answer: 2p5i>24z�5 cos pz � Á � p4>(4!z) � � Á .

2pi (sinh 12 i)>2 � �p sin 12 

�4pi sinh p>2e�p>2>sin p>2 � e�p>2.
�p>2,ep>2>(�sin p>2),p>2,
�i�1>(2p).1

4 

z � pi(ez)s>2! ƒ z�pi � �1
2 

�2npi�10, �1, Á1>p
�4i at � i4

15 

�2npi, n � 0, 1, Á ,1, �
�

�2npi,ez(1 � ez) � 0, ez � 1, z � �2npi
��npi, n � 0, 1, Á ,

1 � i�,
�2i

f 2(z) � (z � z0)2ng2(z).f (z) � (z � z0)ng(z), g(z0) � 0,

1
2 sin 4z, z � 0, �p>4, �p>2, Á ,

�(2 � 2i), �i,�1, �2, Á ,
�81i,0 � 2p, �4p, Á ,

i
(z � i)2  �

1
z � i

 � i � (z � i)

ƒ z ƒ 	 1z8 � z12 � z16 � Á , ƒ z ƒ 
 1, �z4 � 1 � z�4 � z�8 � Á ,
ƒ z � 1

2 p ƒ 	 0

�(z � 1
2 p)�1 cos (z � 1

2 p) � �(z � 1
2 p)�1 � 1

2 (z � 1
2 p) � 1

24 (z � 1
2 p)3 � � Á ,

ƒ z ƒ 	 1a
�

n�0

 z
2n, ƒ z ƒ 
 1, � a

�

n�0

  
1

z2n�2
,

0 
 ƒ z � p ƒ 
 �
(�cos (z � p))(z � p)�2 � �(z � p)�2 � 1

2 � 1
24 (z � p)2 � � Á ,

0 
 ƒ z � i ƒ 
 1�3(z � i)�1 � 6i � 10(z � i) � Á ,

� i(z � i)�2i�3 a1 �
z � i

i
b

�3

(z � i)�2 � a
�

n�0

 a�3

n
b i�3�n(z � i)n�2

[pi � (z � pi)]2

(z � pi)4
 �

(pi)2

(z � pi)4
 �

2pi

(z � pi)3
 �

1

(z � pi)2
 

0 
 ƒ z � 1 ƒ 
 �
exp [1 � (z � 1)] (z � 1)�2 � e � [(z � 1)�2 � (z � 1)�1 � 1

2 � 1
6 (z � 1) � Á ],

z3 � 1
2 z � 1

24 z�1 � 1
720 z3 � Á , 0 
 ƒ z ƒ 
 �

z�2 � z�1 � 1 � z � z2 � Á , 0 
 ƒ z ƒ 
 1
z�3 � z�1 � 1

2 z � 1
6 z3 � 1

24 z5 � Á , 0 
 ƒ z ƒ 
 �

z�4 � 1
2 z�2 � 1

24 � 1
720 z2 � � Á , 0 
 ƒ z ƒ 
 �
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23. Residues at at Answer: 
25. Simple poles inside C at residues 

respectively. Answer: 

Problem Set 16.4, page 733

1. 3. 
5. 7. 
9. 0. Why? (Make a sketch.) 11. 

13. 0. Why? 15. 
17. 0. Why?
19. Simple poles at (and 

21. Simple poles at 1 and residues i and Answer: 

23. 25. 0
27. Let Use (4) in Sec. 16.3 to form the sum of

the residues and show that this sum is 0; here 

Chapter 16 Review Questions and Problems, page 733

11. 13. 
15. 17. 0 (n even), (n odd)
19. 21. 
23. 0. Why? 25. Answer: 

Problem Set 17.1, page 741

5. Only in size
7.
9. Parallel displacement; each point is moved 2 to the right and 1 up.

11. 13.
15. 17. Annulus 
19.
21.
23.
25. at 
29. on the unit circle, 
31. on the unit circle, 
33. for the y-axis, 
35. on the unit circle, 

Problem Set 17.2, page 745

7. 9.

11. 13. z � 0, �1
2 , � � �i>2z � 0, 1>(a � ib)

z �
4w � i

�3iw � 1
z �

w � i
2w

J � 1> ƒ z ƒ
2M � 1> ƒ z ƒ � 1

J � e2xx � 0,M � ex � 1
J � 1> ƒ z ƒ

4
ƒ wr ƒ � 1> ƒ z ƒ

2 � 1
J � ƒ z ƒ

2M � ƒ z ƒ � 1
z � 0, �pi, �2pi, Ásinh z � 0

z � (�1 � 13)>2
z3 � az2 � bz � c, z � � 

1
3 (a � 2a2 � 3b)

0 
 u 
 ln 4, p>4 
 v � 3p>4

1
2 � ƒ w ƒ � 4u � 1

�5 � Re z � �2ƒ w ƒ � 1
4 , �p>4 
 Arg w 
 p>4

x � c, w � �y � ic; y � k, w � �k � ix

p>e.Res
z�i

  e
iz>(z2 � 1) � 1>(2ie).

p>60p>6
(�1)(n�1)>22pi>(n � 1)!2pi(25z2)r ƒ z�5 � 500pi

2pi(�10 � 10)6pi

k 	 1.1>qr(a1) � Á � 1>qr(ak)
q(z) � (z � a1)(z � a2) Á (z � ak).

�p>2

p

5
 (cos 1 � e�2)�i.�2pi,

�i); 2pi � 1
4 i � pi(�1

4 � 1
4 ) � �1

2 p�1, i

p>3
p>2
2ap>2a2 � 15p>12
p>122p>2k2 � 1

2pi � 4
10

1
10 , 1

10 , 1
10 , 1

10 ,
(2i cosh 2i)>(4z3 � 26z) ƒ z�2i �2i, �2i, 3i, �3i,

5piz � 1
3 .z � 1

2 , 21
2 
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15. 17. 19.

Problem Set 17.3, page 750

3. Apply the inverse g of f on both sides of to get 
9. a rotation. Sketch to see. 11.

13. almost by inspection 15.
17. 19.

Problem Set 17.4, page 754

1. Circle 3. Annulus 
5. w-plane without 7.
9.

11.
13. Elliptic annulus bounded by and

15.
17. is the image of R under Answer:
19. Hyperbolas when and

(thus when 
21. Interior of in the fourth quadrant, or map

by (why?).
23.
25. The images of the five points in the figure can be obtained directly from the

function w.

Problem Set 17.5, page 756

1. w moves once around the circle 
3. Four sheets, branch point at 
5. three sheets
7. n sheets
9. two sheets

Chapter 17 Review Questions and Problems, page 756

11. 13. Horizontal strip 
15. same (why?) 17.
19. 21.

23. 25. Rotation 

27. 29.
31. 33.
35. 37.
39. w � z2>(2c)

w � iz2 � 1w � e4z
z � 0, �i, �3iz � 2 �16
z � 0w � 1>z

w � izw �
10z � 5i

z � 2i

w � 1 � iv, v 
 01
3 
 ƒ w ƒ 
 1

2 , v 
 0
ƒ w ƒ 	 1u � 1 � 1

4 v2,
�8 
 v 
 81 
 ƒ w ƒ 
 4, ƒ arg w ƒ 
 p>4

1z (z � i)(z � i), 0, �i,
z0,
�i>4,

z � �1
ƒ w ƒ � 1

2 .

v 
 0
w � sin zp>2 
 x 
 p, 0 
 y 
 2

u2>cosh2 2 � v2>sinh2 2 � 1
c � 0, p.ƒ u ƒ � 1), v � 0u � �cosh y

c � 0, p,u2>cos2 c � v2>sin2 c � cosh2 c � sinh2 c � 1
et � ez2>2.t � z2>2.0 
 Im t 
 p

cosh z � cos iz � sin (iz � 1
2 p)

u2>cosh2 3 � v2>sinh2 3 � 1
u2>cosh2 1 � v2>sinh2 1 � 1

u2>cosh2 2 � v2>sinh2 2 
 1, u 	 0, v 	 0
�(2n � 1)p>2, n � 0, 1, Á

1 
 ƒ w ƒ 
 e, v 	 0w � 0
1>1e � ƒ w ƒ � 1eƒ w ƒ � ec

w � (z4 � i)(�iz4 � 1)w � (2z � i)>(�iz � 2)
w � 1>z � 1w � 1>z,
w � (z � i)>(z � i)w � iz,

g(z1) � g( f (z1)) � z1.z1 � f (z1)

w �
az � b

�bz � a
w �

az

cz � a
z � i, 2i
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Problem Set 18.1, page 762

1.

3. 

5. 
7. 

13. Use Fig. 391 in Sec. 17.4 with the z- and w-planes interchanged and

15. 

Problem Set 18.2, page 766

3. maps R onto the strip and 

5. (a) (b)

7. See Fig. 392 in Sec. 17.4. 

9. 

13. Corresponding rays in the w-plane make equal angles, and the mapping is conformal.
15. Apply 
17. by (3) in Sec. 17.3.

19. 

Problem Set 18.3, page 769

1. Rotate through 

5. 

7. 

9. 

11. 

13. from and Prob. 11.

15. 

17. Re (arcsin z)

Problem Set 18.4, page 776

1. V(z) continuously differentiable.
3. is maximum at namely, 2.y � �1,ƒ Fr(iy) ƒ � 1 � 1>y2, ƒ y ƒ � 1,

Re F(z) � 100 � (200>p)

�20 � (320>p) Arg z � Re a�20 �
320i
p  Ln zb

w � z2100
p  [Arg (z2 � 1) � Arg (z2 � 1)]

100
p  (Arg (z � 1) � Arg (z � 1)) � Re a100i

p  Ln 
z � 1
z � 1b

T1

p aarctan 
y

x � b � arctan 
y

x � ab � Re a iT1

p  Ln 
z � a
z � bb

T1 �
2
p (T2 � T1) arctan 

y
x � Re aT1 �

2i
p (T2 � T1) Ln zb

80
p  arctan 

y
x � Re a� 

80i
p  Ln zb

p>2.(80>d ) y � 20.

£ �
5
p Arg (z � 2), F � � 

5i
p Ln (z � 2)

z � (2Z � i)>(�iZ � 2)
w � z2.

 cos2 x (y � 0), cos2 x cosh2 1 � sin2 x sinh2 1 (y � 1)
�sinh y (x � p

2 ),£  (x, y) � cos2 x cosh2 y � sin2 x sinh2 y; cosh2 y (x � 0),
sinh2 1 (y � 1), �sinh2 y (x � 0, p).

sin2 x cosh2 1 � cos2 xsin2 x (y � 0),£ � Re (sin2 z),

x2 � y2 � c, xy � c, ex cos y � c
(x � 2) (2x � 1) � 2y2

(x � 2)2 � y2
� c,

U2 � (U1 � U2) (1 � xy).
£* � U2 � (U1 � U2) (1 � 1

2 u) ��2 � u � 0;w � iz2

£ � 220 (x3 � 3xy2) � Re (220z3)

cos z � sin (z � 1
2 p).

£  (r) � Re (32 � z)
£  (x) � Re (375 � 25z)

£ � Re a30 �
20

ln 10
 Ln zb

2.5 mm � 0.25 cm; £ � Re 110 (1 � (Ln z)>ln 4)
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5. Calculate or note that div grad and curl grad is the zero vector; see Sec. 9.8 and
Problem Set 9.7.

7. Horizontal parallel flow to the right.
9. 

11. Uniform parallel flow upward, 
13. 
15. 
17. Use that gives and interchanging the roles of the z- and 

w-planes.
19. or 

Problem Set 18.5, page 781

5. 
7. 

9.

11. 

13. 

15. 

17. 

Problem Set 18.6, page 784

1. Use (2). etc. 
3. Use (2). etc. 
5. No, because is not analytic.

7.

9. 

13. 
15. 

17.
19. No. Make up a counterexample.

ƒ F(z) ƒ
2 � 4(2 � 2 cos 2u), z � p>2, 3p>2, Max � 4

Max � sinh 2 � 3.627
1 � sin2 2y, z � 1,ƒ F(z) ƒ

2 � sinh2 2x cos2 2y � cosh2 2x sin2 2y � sinh2 2x �

ƒ F(z) ƒ � [cos2 x � sinh2 y]1>2, z � �i, Max � [1 � sinh2 1]1>2 � 1.543

 �
1
p �

3
2 � 2p

 £  (1, 1) � 3 �
1
p  �

1

0
�

2p

0
  
(3 � r cos a � r sin a � r 2 cos a sin a)r dr da

 �
1
p �

1

0
�

2p

0
  
(�3r � Á ) dr da �

1
p

 a� 
3
2

 b � 2p

 £  (2, �2) � �3 �
1
p  �

1

0
�

2p

0
  
(1 � r cos a) (�3 � r sin a)r dr da

ƒ z ƒ

F(4) � 100F(z0 � eia) � (2 � 3eia)2,
F(5

2 ) � 343
8  F(z0 � eia) � (7

2 � eia)3,

£ �
1
3

 �
4
p2  ar cos u �

1
4

 r 2 cos 2u �
1
9

 r 3 cos 3u � � Á b
£ �

1
2

 �
2
p

 ar cos u �
1
3

 r 3 cos 3u �
1
5

 r 5 cos 5u � � Á b
£ �

2
p

 r sin u �
1
2

 r 2 sin 2u �
2

9p
 r 3 sin 3u �

1
4

 r 4 sin 4u � � � Á

£ �
2
p

 ar sin u �
1
2

 r 2 sin 2u �
1
3

 r 3 sin 3u � � Á b
£ � 3 � 4r 2 cos 2u � r 4 cos 4u

£ � 1
2 a � 1

2 ar 8 cos 8u

£ � 3
2  r 3 sin 3u

x2 � (y � k)2 � k2y>(x2 � y2) � c

z � cos ww � arccos z
F(z) � z>r0 � r0>z
F(z) � z3

V � F r � iK, V1 � 0, V2 � K
F(z) � z4

2 �
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Chapter 18 Review Questions and Problems, page 785

11. 

13.

17. 
19. 
21. parallel flow
23. 
25. 

Problem Set 19.1, page 796

1.
3. 6.3698, 6.794, 8.15, impossible
5. Add first, then round.
7. (6S-exact)
9. 

11.

13. 

hence 

15. is 6S-exact.
19. In the present case, (b) is slightly more accurate than (a) (which may produce

nonsensical results; cf. Prob. 20).
21. 
23. The algorithm in Prob. 22 repeats 0011 infinitely often.
25. The beginning is 0.09375 
27. 

etc.
29.

Problem Set 19.2, page 807

3.
5. Convergence to 4.7 for all these starting values.
7. converges to 0.58853 (5S-exact) in 14 steps.
9. (6S-exact)

11. 4S-exact
13. This follows from the intermediate value theorem of calculus.
15. 
17. Convergence to respectively. Reason seen easily from the

graph of f.
x � 4.7, 4.7, 0.8, �0.5,

x3 � 0.450184

g � 4>x � x3>16 � x5>576; x0 � 2, xn � 2.39165 (n � 6), 2.405
x � x4 � 0.12; x0 � 0, x3 � �0.119794
x � x>(ex sin x); 0.5, 0.63256, Á

g � 0.5 cos x, x � 0.450184 (� x10, exact to 6S)

�0.126 # 10�2, �0.402 # 10�3; �0.266 # 10�6, �0.847 # 10�7
I11 � 0.2102 (0.2103),

I12 � 0.1951 (0.1951),I14 � 0.1812 (0.1705 4S-exact), I13 � 0.1812 (0.1820),
(n � 1).n � 26.

c4
# 24 � Á � c0

# 20 � (1 0 1 1 1.)2, NOT (1 1 1 0 1.)2

(a) 1.38629 � 1.38604 � 0.00025, (b) ln 1.00025 � 0.000249969

` aa1

a2
 �

a�1

a�2
b^ ` a1

a2
` � ` P1

a1
 �

P2

a2
` � ƒ Pr1 ƒ � ƒ Pr2 ƒ � br1 � br2

a1

a2
 �

a�1 � P1

a�2 � P2
 �

a�1 � P1

a�2
 a1 �

P2

a�2
 �

P2
2

a�2
2  � � Á b �

a�1

a�2
 �

P1

a�2
 �

P2

a�2

#
a�1

a�2
 ,

� ƒ Px ƒ � ƒ Py ƒ � bx � by

ƒ P ƒ � ƒ x � y � (x� � y�) ƒ � ƒ (x � x�) � ( y � y�) ƒ � ƒ Px � Py ƒ

29.97, 0.035; 29.97, 0.03337;  30, 0.0; 30, 0.033
29.9667, 0.0335; 29.9667, 0.0333704

0.84175 # 102, �0.52868 # 103, 0.92414 # 10�3, �0.36201 # 106

Fr(z) � z � 1 � x � 1 � iy
T(x, y) � x (2y � 1) � const
£ � x � y � const, V � Fr(z) � 1 � i,
30(1 � (2>p) Arg (z � 1))
2(1 � (2>p) Arg z)

£ � Re (220 � 95.54 Ln z) � 220 �
220

ln 10
 ln r � 220 � 95.54 ln r.

£ � 10(1 � x � y), F � 10 � 10(1 � i)z
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19. 
21. 
23. (6S-exact)
25. (a) ALGORITHM BISECT Bisection Method

This algorithm computes the solution c of ( f continuous) within the
tolerance given an initial interval such that 

INPUT: Continuous function f, initial interval tolerance maximum
number of iterations N.

OUTPUT: A solution c (within the tolerance or a message of failure.
For do:

If then OUTPUT c Stop. [Procedure completed]
Else if then set and 
Else set and 
If then OUTPUT c. Stop. [Procedure completed]

End
OUTPUT and a message “Failure”. Stop.
[Unsuccessful completion; N iterations did not give an interval of length not
exceeding the tolerance.]

End BISECT

Note that gives as an approximation of the zero and 
as a corresponding error bound.

(b) 0.739085; (c) 1.30980, 0.429494
27. (6S-exact)
29. 0.904557 (6S-exact)

Problem Set 19.3, page 819

1.

3. 

5. 

7. 

9.

11. 

13. 
15. 
17.

� 0.3293
r � �1.5, p2(0.3) � 0.6039 � (�1.5) # 0.1755 � 1

2 (�1.5)(�0.5) # (�0.0302)
p3(x) � 2.1972 � (x � 9) # 0.1082 � (x � 9)(x � 9.5) # 0.005235
2x2 � 4x � 2
p2(0.5) � 0.943654, p3(1.5) � 0.510116, p3(2.5) � �0.047991

p3(x) � 1 � 0.039740x � 0.335187x2 � 0.060645x3;L3 � 1
6 x(x � 1)(x � 2);

L0 � �1
6 (x � 1)(x � 2)(x � 3), L1 � 1

2 x(x � 2)(x � 3), L2 � �1
2 x(x � 1)(x � 3),

(5S-exact 0.71116)
p2(x) � �0.44304x2 � 1.30896x � 0.023220, p2(0.75) � 0.70929
0.9053 (0.0186), 0.9911 (�0.0672)
p2(x) � 1.1640x � 0.3357x2; �0.5089 (error 0.1262), 0.4053 (�0.0226),
0.4678 (0.0046)
0.8033 (error �0.0245), 0.4872 (error �0.0148); quadratic: 0.7839 (�0.0051),

�
(x � 1)(x � 1.02)

0.04 # 0.02
 # 0.9784 � x2 � 2.580x � 2.580; 0.9943, 0.9835

p2(x) �
(x � 1.02)(x � 1.04)

(�0.02)(�0.04)
 # 1.0000 �

(x � 1)(x � 1.04)

0.02 (�0.02)
 # 0.9888

� 0.1086 # 9.3 � 1.230 � 2.2297
L0(x) � �2x � 19, L1(x) � 2x � 18, p1(9.3) � L0(9.3) # f0 � L1(9.3) # f1

x2 � 1.5, x3 � 1.76471, Á , x7 � 1.83424

(bN � aN)>2(aN � bN)>2[aN, bN]

[aN, bN]

ƒ an�1 � bn�1 ƒ 
 P ƒ c ƒ

bn�1 � bn.an�1 � c,
bn�1 � c.an�1 � anf (an) f (bn) 
 0

f (c) � 0
c � 1

2 
(an � bn)

n � 0, 1, Á , N � 1
P),

P,[a0, b0],
f (a0) f (b0) 
 0.[a0, b0]P,

f (x) � 0
( f, a0, b0, P, N )

x0 � 4.5, x4 � 4.73004 
1.834243 (� x4), 0.656620 (� x4), �2.49086 (� x4)
0.5, 0.375, 0.377968, 0.377964; (b) 1>17
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Problem Set 19.4, page 826

9. at (due to roundoff; 
should be 0).

11. 
13.

15. 

17. Use the fact that the third derivative of a cubic polynomial is constant, so that 
is piecewise constant, hence constant throughout under the present assumption.
Now integrate three times.

19. Curvature if is small.

Problem Set 19.5, page 839

1. 0.747131, which is larger than 0.746824. Why?
3. (exact)
5. 
7. 0.693254 (6S-exact 0.693147)
9. 0.073930 (6S-exact 0.073928)

11. 0.785392 (6S-exact 0.785398)
13. 
15. (a) (b)

hence 14.
17. 0.94614588, (8S-exact 0.94608307)
19. 0.9460831 (7S-exact)
21. 0.9774586 (7S-exact 0.9774377)
23. Set 
25.
27.
29.

Chapter 19 Review Questions and Problems, page 841

17.
19.
21. The same as that of 
23.

(error less than 1 unit of the last digit)
25.
27. 0.824
29.
31. 
33.
35. (a) (b) (exact)(0.33 � 2 � 0.23 � 0.13)>0.01 � 1.2(0.43 � 2 � 0.23 � 0)>0.04 � 1.2,

0.90443, 0.90452 (5S-exact 0.90452)
0.26, M2 � 6, M*2 � 0, �0.02 � P � 0, 0.01
�x � x3, 2(x � 1) � 3(x � 1)2 � (x � 1)3

x � x4 � 0.1, �0.1, �0.999, �0.99900399
� 0.05006
x � 20 � 1398 � 20.00 � 19.95, x1 � 39.95, x2 � 0.05, x2 � 2>39.95

�a.
44.885 � s � 44.995
4.375, 4.50, 6.0, impossible

5(0.1040 � 1
2 � 0.1760 � 1

3 � 0.1344 � 1
4 � 0.0384) � 0.256

0.08, 0.32, 0.176, 0.256 (exact)
x � 1

2 (t � 1), dx � 1
2 

dt, 0.746824127 (9S-exact 0.746824133)
x � 1

2 (t � 1), 0.2642411177 (10S-exact), 1 � 2>e

0.94608693
ƒ CM4 ƒ � 24>(180 � (2m)4) � 10�5>2, 2m � 12.8,

f iv � 24>x5, M4 � 24,M2 � 2, ƒ KM2 ƒ � 2>(12n2) � 10�5>2, n � 183.
(0.785398126 � 0.785392156)>15 � 0.39792 # 10�6

P0.5 � 0.03452 (P0.5 � 0.03307), P0.25 � 0.00829 (P0.25 � 0.00820)
0.5, 0.375, 0.34375, 0.335

ƒ  f r ƒf s>(1 � f r2)3>2 � f s

gt
4 � 32(x � 4) � 25(x � 4)2 � 11(x � 4)3
4 � x2 � x3, �8(x � 2) � 5(x � 2)2 � 5(x � 2)3,
� 6(x � 2)3

�1 � 2(x � 2) � 5(x � 2)21 � x2, �2(x � 1) � (x � 1)2 � 2(x � 1)3,
1 � 5

4 x2 � 1
4 x4

x � 5.8[�1.39 (x � 5)2 � 0.58 (x � 5)3]s � 0.004
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Problem Set 20.1, page 851

1. 3. No solution 5. 

7. 

9. 

11. 

13. 

15. 

Problem Set 20.2, page 857

1.

3. 

5. D1 0 0

6 1 0

3 9 1

T  D3 9 6

0 �6 3

0 0 �3

T , x1 � � 1
15 

x2 � 4
15 

x3 � 2
5 

D1 0 0

2 1 0

2 5 1

T  D5 4 1

0 1 2

0 0 3

T , x1 � 0.4

x2 � 0.8

x3 � 1.6

c1 0

3 1
d  c4 5

0 �1
d  , x1 � �4

x2 � 6

x1 � 4.2, x2 � 0, x3 � �1.8, x4 � 2.0

E�1 �3.1 2.5 0 �8.7

0 2.2 1.5 �3.3 �9.3

0 0 �1.493182 �0.825 1.03773

0 0 0 6.13826 12.2765

U
x1 � 0.142856, x2 � 0.692307, x3 � �0.173912

D5 0 6 �0.329193

0 �4 �3.6 �2.143144

0 0 2.3 �0.4

T
x1 � t1 arbitrary, x2 � (3.4>6.12)t1, x3 � 0

D3.4 �6.12 �2.72 0

0 0 4.32 0

0 0 0 0

T
x1 � 6.78, x2 � �11.3, x3 � 15.82

D13 �8 0 178.54

0 6 13 137.86

0 0 �16 �253.12

T
x1 � 3.908, x2 � �1.998, x3 � 2.557

D�3   6 �9 �46.725

  0 9 �13 �51.223

  0   0 �2.88889 �7.38689

T
x1 � 2, x2 � 1x1 � 7.3, x2 � �3.2
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7. 

9. 

11. 

13. No, since 

15. 

17. 

19. 

Problem Set 20.3, page 863

5. Exact 7. 
9. Exact 

11. (a)
(b)

13. steps; spectral radius approximately
15. (Jacobi, Step 5); 

(Gauss–Seidel)
19. 

Problem Set 20.4, page 871

1. 
3. 
5. 7. ab � bc � ca � 05, 15, 1, [1 1 1 1 1]

5.9, 113.81 � 3.716, 3, 1
3 [0.2 0.6 �2.1 3.0]

18, 1110 � 10.49, 8, [0.125 �0.375 1 0 �0.75 0]

1306 � 17.49, 12, 12

[2.00004 0.998059 4.00072]T[1.99934 1.00043 3.99684]T
0.09, 0.35, 0.72, 0.85,8, �16, 43, 86

x(3)T � [0.50333 0.49985 0.49968]
x(3)T � [0.49983 0.50001 0.500017],

2, 1, 4
x1 � 2, x2 � �4, x3 � 80.5, 0.5, 0.5

1
16

  E 21 �6 �14 6

�6 36 �12 �4

�14 �12 20 �4

6 �4 �4 4

U
1
36

  D 584 104 �66

104 20 �12

�66 �12 9

T
c�3.5 1.25

3.0 �1.0
d

xT
 
 (�A)x � �xT Ax 
 0; yes; yes; no

E 1 0 0 0

�1 2 0 0

3 �1 3 0

2 0 �1 4

U E1 �1 3 2

0 2 �1 0

0 0 3 �1

0 0 0 4

U , x1 � 2

x2 � �3

x3 � 4

x4 � �1

D 0.1  0 0

 0  0.4 0

 0.3  0.2 0.1

T  D0.1 0 0.3

0 0.4 0.2

0 0 0.1

T , x1 � 2

x2 � �1

x3 � 4

1

D 3 0 0

2 3 0

4 1 3

T  D3 2 4

0 3 1

0 0 3

T , x1 � 0.6

x2 � 1.2

x3 � 0.4
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9. 11. 
13. 
15. 
17. 
19. extremely ill-conditioned
21. Small residual but large deviation of .
23. 

Problem Set 20.5, page 875

1. 3. 
5. 9. 

11. 
13. 

Problem Set 20.7, page 884

1. Spectrum 
3. Centers Skew-symmetric, hence 
5. 
7. 
9. They lie in the intervals with endpoints Why?

11. 

13. 
15. 
17. Show that 
19. 0 lies in no Gerschgorin disk, by (3) with hence 

Problem Set 20.8, page 887

1.
3. 
5. Same answer as in Prob. 3, possibly except for small roundoff errors.
7. eigenvalues (4S) 1.697,

3.382, 5.303, 5.618
9. 

11. 
(Step 8)

Problem Set 20.9, page 896

1. D 0.98 �0.4418 0

�0.4418 0.8702 0.3718

0 0.3718 0.4898

T
ƒ P ƒ � 1.633, Á , 0.7024
q � 1, Á , �2.8993 approximates �3 (0 of the given matrix),
P

2 � yTy>xTx � (yTx>xTx)2 � l2 � l2 � 0
x � lxTx, yTy � l2xTx,y � Ax � lx, yT

q � 5.5, 5.5738, 5.6018; ƒ P ƒ � 0.5, 0.3115, 0.1899;

q � d � 4 � 1.633, 4.786 � 0.619, 4.917 � 0.398
q � 10, 10.9908, 10.9999; ƒ P ƒ � 3, 0.3028, 0.0275

det A � l1
Á ln � 0.	;

AA 
T

� A 
TA.

10.52 � 0.7211
1122 � 11.05

r (A) � Row sum norm � A �� � max
j
a
k

 ƒ ajk ƒ � max
j

( ƒ ajj ƒ � Gerschgorin radius)

ajj � (n � 1) # 10�5.
t11 � 100, t22 � t33 � 1
2, 3, 8; radii 1 � 12, 1, 12; actually (4S) 1.163, 3.511, 8.326

l � i�, �0.7 � � � 0.7.0; radii 0.5, 0.7, 0.4.
{�1, 4, 9}5, 0, 7; radii 6, 4, 6.

� 1.778x2 � 2.852x3
2.552 � 16.23x, �4.114 � 13.73x � 2.500x2, 2.730 � 1.466x
1.89 � 0.739x � 0.207x2

�11.36 � 5.45x � 0.589x2s � 90t � 675, vav � 90 km>hr
1.48 � 0.09x1.846 � 1.038x

27, 748, 28,375, 943,656, 29,070,279
x~[0.145 0.120],

[�2 4]T, [�144.0 184.0]T, � � 25,921,
167 � 21 # 15 � 315
� � 20 # 20 � 400; ill-conditioned
� � 19 # 13 � 247; ill-conditioned

� � (5 � 15)(1 � 1>15) � 6 � 215� � 5 # 1
2 � 2.5
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3. 

5. 

7. Eigenvalues 16, 6, 2

9. Eigenvalues (4S) 

Chapter 20 Review Questions and Problems, page 896

15.
17. 

19. 

21. 

Exact: 

23. 

Exact: 
25. 27. 30
29. 5 31. 
33. 35. 
37. Centers respectively. Eigenvalues (3S) 
39. Centers respectively; eigenvalues 0, 4.446, �9.4460, �1, �4; radii 9, 6, 7,

2.63, 40.8, 96.615, 35, 90; radii 30, 35, 25,
1.514 � 1.129x � 0.214x25 # 21

63 � 5
3 

115 # 0.4458 � 51.27
42, 1674 � 25.96, 21

[2 1 4]T

D1.700

1.180

4.043

T , D1.986

0.999

4.002

T , D2.000

1.000

4.000

T
[6.4 3.6 1.0]T

D5.750

3.600

0.838

T , D6.400

3.559

1.000

T , D6.390

3.600

0.997

T
D 0.28193 �0.15904 �0.00482

�0.15904 0.12048 �0.00241

�0.00482 �0.00241 0.01205

T
[�2 0 5]T
[3.9 4.3 1.8]T

D141.4 1.166 0

1.166 68.66 0.1661

0 0.1661 �30.04

TD141.1 4.926 0

4.926 68.97 0.8691

0 0.8691 �30.03

T , D141.3 2.400 0

2.400 68.72 0.3797

0 0.3797 �30.04

T ,
141.4, 68.64, �30.04

 D  15.8299 �1.2932 0

�1.2932 6.1692 0.0625

0 0.0625 2.0010

TD  11.2903 �5.0173 0

�5.0173 10.6144 0.7499

0 0.7499 2.0952

T , D  14.9028 �3.1265 0

�3.1265 7.0883 0.1966

0 0.1966 2.0089

T ,

E 3 �67.59 0 0

�67.59 143.5 45.35 0

0 45.35 23.34 3.126

0 0 3.126 �33.87

U
D 7 �3.6056 0

�3.6056 13.462 3.6923

0 3.6923 3.5385

T
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Problem Set 21.1, page 910

1. (errors of 
3. (set (errors of 
5. 0.0013, 0.0042 (errors of 
7. 0.00029, 0.01187 (errors of 
9. Errors 0.03547 and 0.28715 of and much larger

11. error 
(use RK with 

13. error 
15. 0.18, 0.74, 1.73, 3.28, 5.59, 9.04, 14.3, 22.8,

36.8, 61.4
17. 0.2, 3.1, 10.7, 23.2, 28.5, 

19. Errors for Euler–Cauchy 0.02002, 0.06286, 0.05074; for improved Euler–Cauchy
0.012086, 0.009601; for Runge–Kutta. 0.0000011, 0.000016, 0.000536

Problem Set 21.2, page 915

1.

3.

5. RK error smaller in absolute value, 
(for 

7. 0.232490 (0.34), 0.236787 (0.44),
0.240075 (0.42), 0.242570 (0.35), 0.244453 (0.25), 0.245867 (0.16), 0.246926 (0.09)

9.

13. from to 
15. (a) 0, 0.02, 0.0884, 0.215848, (poor) 

(b) By 30–

Problem Set 21.3, page 922

1. errors of (of from 0.002 to 0.5 
(from to 0.1), monotone

3. error 
exact 

5.
(error 0.005), 0.61 (0.01), 0.429 (0.012), 0.2561 (0.0142), 0.0905 (0.0160)

7. By about a factor 

9. Errors of (of from to (from to 
11.

continuation will give an “ellipse.”(�0.81);(�0.59),
 �0.91), (�0.42, �0.97), (�0.23,Á , 0.92), (0.39, 0.98), (0.20, 1),y2) � (0,(y1,

0.6 # 10�5)0.3 # 10�51.3 # 10�50.3 # 10�5y2)y1

Pn(y2) # 106 � 0.08, Á , 0.27
105. Pn (y1) # 106 � �0.082, Á , �0.27,

y1r � y2, y2r � y1 � x, y1 (0) � 1, y2 (0) � �2, y � y1 � e�x � x, y � 0.8
y � cos 12 x�0.005, �0.01, �0.015, �0.02, �0.0229;

y1r � y2, y2r � �1
4 y1, y � y1 � 1, 0.99, 0.97, 0.94, 0.9005,

�0.01
y2)y1y1 � �e�2x � 4ex, y2 � �e�2x � ex;

50%
y4 � 0.417818, y5 � 0.708887

0.7: �5, �11, �19, �31, �41x � 0.3y � exp (x2). Errors # 105
0.133156 (�74)

0.095411 (�54),0.066096 (�39),0.043810 (�26),0.027370 (�17),
0.015749 (�10),y10 (error # 107) 0.008032 (�4),Á , y4,y � exp (x3) � 1,

y � 1>(4 � e�3x),  y4, Á , y10 (error # 105)
x � 0.4, 0.6, 0.8, 1.0)

error # 105 � 0.4, 0.3, 0.2, 5.6
1.557626 (�22)

1.260288 (�13),1.029714 (�7.5), 0.842332 (�4.4),0.684161 (�2.4),
0.546315 (�1.2), y10 (error # 105) 0.422798 (�0.49),Á , y4,y � tan x,

 P10 � �1.8 # 10�6y10 � 2.718284,y10* � 2.718276,
 P5 � �3.8 # 10�8, y5 � 1.648722, y5* � 1.648717,y � ex,

�0.000455,

�3489, �80444
�1656,�376,�32.3,yr � 1>(2 � x4); error # 109:

y � 3 cos x � 2 cos2 x; error # 107:
0.83 # 10�7, 0.16 # 10�6, Á , �0.56 # 10�6, �0.13 # 10�5y � tan x;

h � 0.2)P � 0.0002>15 � 1.3 # 10�5
�9 # 10�6;�4 # 10�8, Á , �6 # 10�7,�10�8,y � 1>(1 � x2>2);

y10y5

y5, y10)y � 1>(1 � x2>2),
y5, y10)y � ex,

y5, y10)y � x � u), 0.00929, 0.01885y � x � tanh x
y5, y10)y � 5e�0.2x, 0.00458, 0.00830
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Problem Set 21.4, page 930

3.
5. 105, 155, 105, 115; Step 5: 104.94, 154.97, 104.97, 114.98
7. 0, 0, 0, 0. All equipotential lines meet at the corners (why?). 

Step 5: 0.29298, 0.14649, 0.14649, 0.073245
9. 0.108253, 0.108253, 0.324760, 0.324760; Step 10: 0.108538, 0.108396, 

0.324902, 0.324831
11. (a) . (b) Reduce to 4 equations by symmetry.

13. at the others
15. otherwise
17. (0.1083, 0.3248 are 4S-values

of the solution of the linear system of the problem.)

Problem Set 21.5, page 935

5.
7. A, as in Example 1, right sides 

Solution 
13. 

Here with from the stencil.
15. (4S)

Problem Set 21.6, page 941

5. 0, 0.6625, 1.25, 1.7125, 2, 2.1, 2, 1.7125, 1.25, 0.6625, 0
7. Substantially less accurate, 0.15, 0.25 0.100, 0.163 
9. Step 5 gives 0, 0.06279, 0.09336, 0.08364, 0.04707, 0.

11. Step 2: 0 (exact 0), 0.0453 (0.0422), 0.0672 (0.0658), 0.0671 (0.0628), 0.0394
(0.0373), 0 (0)

13. 0.3301, 0.5706, 0.4522, 0.2380 0.06538, 0.10603, 0.10565, 0.6543

15. 

Problem Set 21.7, page 944

1.
3. For we obtain 

etc.
5. 

7. 0.190, 0.308, 0.308, 0.190, (3S-exact: 0.178, 0.288, 0.288, 0.178)

Á  (t � 0.2)1.357,
1.296,1.135,0.935,Á  (t � 0.1); 0, 0.575,1.834,1.679,1.271,0.766,0.354,0,

�0.08, �0.16 (t � 0.6),
0.24, 0.40 (t � 0.2), 0.08, 0.16 (t � 0.4),x � 0.2, 0.4

u (x, 1) � 0, �0.05, �0.10, �0.15, �0.20, 0

0.1018, 0.1673, 0.1673, 0.1018 (t � 0.04), 0.0219, 0.0355, Á (t � 0.20)
(t � 0.20)

(t � 0.04),

(t � 0.08)(t � 0.04),

b � [�200, �100, �100, 0]T; u11 � 73.68, u21 � u12 � 47.37, u22 � 15.79

4
3�14

3  � �4
3 (1 � 2.5)

 u12 � 1. u21 � 4, u11 � u22 � 2,2u21 � 2u12 � 12u22 � �14,
 u11 � 4u12 � u22 � 0, u11 � 4u21 � u22 � �12,�4u11 � u21 � u12 � �3,

u11 � u21 � 125.7, u21 � u22 � 157.1
�220, �220, �220, �220.

u11 � 0.766, u21 � 1.109, u12 � 1.957, u22 � 3.293

13, u11 � u21 � 0.0849, u12 � u22 � 0.3170.
u21 � u23 � 0.25, u12 � u32 � �0.25, ujk � 0
u12 � u32 � 31.25, u21 � u23 � 18.75, ujk � 25
u13 � u23 � u33 � 0
u12 � u32 � �u14 � �u34 � �64.22, u22 � �u24 � �53.98,
u11 � u31 � �u15 � �u35 � �92.92, u21 � �u25 � �87.45,

u11 � �u12 � �66

�3u11 � u12 � �200, u11 � 3u12 � �100
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Chapter 21 Review Questions and Problems, page 945

17. 0.038, 0.125 (errors of and 
19. 

21. 

23. 

25. 
27. 

errors between and 
29. 3.93, 15.71, 58.93
31. 0, 0.04, 0.08, 0.12, 0.15, 0.16, 0.15, 0.12, 0.08, 0.04, 0 3 time steps)
33. 

35. 0.043330, 0.077321, 0.089952, 0.058488 0.010956, 0.017720, 0.017747,
0.010964 

Problem Set 22.1, page 953

3.
9. Step 5: value 0.000016

Problem Set 22.2, page 957

7. No
9. is the unused time on respectively.

11.
13.
15.
17. (copper), 

19.
21.

Problem Set 22.3, page 961

3.
5. Eliminate in Column 3, so that 20 goes. 
7.
9. on the segment from (3, 0, 0) to (0, 0, 2)

11. We minimize! The augmented matrix is

T0 � D1 1.8 2.1 0 0 0

0 15 30 1 0 150

0 600 500 0 1 3900

T .
fmax � 6
fmax � f (60

21 , 0, 1500
105  , 0) � 2200

7  

fmin � f (0, 12 ) � �10.
f (120>11, 60>11) � 480>11

37,500
fmax � f (210, 60) �x1>3 � x2>2 � 100, x1>3 � x2>6 � 80, f � 150x1 � 100x2,

f � x1 � x2, 2x1 � 3x2 � 1200, 4x1 � 2x2 � 1600,  fmax � f (300, 200) � 500
fmax � f (45, 30) � 8400

0.5x1 � 0.25x2 � 30, f � 120x1 � 100x2,0.5x1 � 0.75x2 � 45
f (9, 6) � 360
f (�11

3  , 26
3  ) � 198 13 

f (2.5, 2.5) � 100
M1, M2,x3, x4

(0.11247, �0.00012),
f (x) � 2(x1 � 1)2 � (x2 � 2)2 � 6; Step 3:  (1.037, �1.926), value �5.992

(t � 0.20)
(t � 0.04),

u (P22) � 60u (P12) � u (P32) � 90,
u (P21) � u (P13) � u (P23) � u (P33) � 30,u (P11) � u (P31) � 270,

(t � 0.3.

10�510�6
y1r � y2, y2r � 2ex � y1, y � ex � cos x, y � y1 � 0, 0.241, 0.571, Á ;
y1r � y2, y2r � x2y1, y � y1 � 1, 1, 1, 1.0001, 1.0006, 1.002
�2.5 # 10�5)
y � sin x, y0.8 � 0.717366, y1.0 � 0.841496 (errors �1.0 # 10�5,

0.5463023 (1.8 # 10�7)0.4227930 (2.3 # 10�7),
0.3093360 (2.1 # 10�7),0.1003346 (0.8 # 10�7) 0.2027099 (1.6 # 10�7),

1.5538 (0.0036)1.2593 (0.0009),1.0299 (�0.0002),0.84295 (�0.00066),
0.68490 (�0.00076),0.54702 (�0.00072),0.42341 (�0.00062),

0.30981 (�0.00048),0.20304 (�0.00033),0.10050 (�0.00017),y � tan x; 0 (0),
y10)y5y � ex,
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The pivot is 600. The calculation gives

The next pivot is The calculation gives

Hence has the maximum value so that f has the minimum value 13.5, at
the point

13.

Problem Set 22.4, page 968

1.
3.
5.
7.
9.

Chapter 22 Review Questions and Problems, page 968

9. Step 5: Slower. Why?
11. Of course! Step 5: 
17.
19.

Problem Set 23.1, page 974

9. 11.

13. D0 1 1

0 0 1

1 1 0

T
E0 1 1 1

0 0 0 0

1 0 0 0

0 0 0 0

UD0 1 0

0 0 1

1 0 0

T
f (3, 6) � �54
f (2, 4) � 100

[�1.003 1.897]T
[0.353 �0.028]T.

f (4, 0, 12) � 9
f (1, 1, 0) � 13
f (10, 5) � 5500
f (20, 20) � 40
f (6, 3) � 84

fmax � f (5, 4, 6) � 478

(x1, x2) � a2400

600
, 

105>2

35>2
b � (4, 3).

�13.5,�f

T2 � D1 0 0 � 6
175 � 3

1400 �27
2  

0 0 35
2  1 � 1

40 
105

2  

0 600 0 �200
7  

12
7  2400

T  Row 1 � 1.2
35  Row 2

  Row 2

  Row 3 � 1000
35  Row 2

35
2  .

T1 � D1 0 6
10 0 � 3

1000 �117
10  

0 0 35
2  1 � 1

40 
105
2  

0 600 500 0 1 3900

T  Row 1 � 1.8
600 Row 3

  Row 2 � 15
600  Row 3

  Row 3
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17. If G is complete.
Edge

19.

Problem Set 23.2, page 979

1. 5 3. 4
5. The idea is to go backward. There is a adjacent to and labeled etc.

Now the only vertex labeled 0 is s. Hence implies so that
is a path that has length k.

15. Delete the edge 
17. No

Problem Set 23.3, page 983

1.
5.
7.
9.

Problem Set 23.4, page 987

2
1. 4 � 3 � 5 L � 10

1

1
3. 5 � 3 � 6 

ì

ê
L � 17

2 � 4

2
5. 1 

ì

ê 3 L � 12
4 ì

ê

5

9. Yes
2

11. 1 � 3 � 4 
ì

ê
L � 38

5 � 6
13. New York–Washington–Chicago–Dalles–Denver–Los Angeles
15. G is connected. If G were not a tree, it would have a cycle, but this cycle would

provide two paths between any pair of its vertices, contradicting the uniqueness.

(1, 5), (2, 3), (2, 6), (3, 4), (3, 5); L2 � 9, L3 � 7, L4 � 8, L5 � 4, L6 � 14
(1, 2), (2, 4), (3, 4); L2 � 10, L3 � 15, L4 � 13
(1, 2), (2, 4), (3, 4), (3, 5); L2 � 2, L3 � 4, L4 � 3, L5 � 6
(1, 2), (2, 4), (4, 3); L2 � 12, L3 � 36, L4 � 28

(2, 4).
s : vkv0 � v1 � Á � vk�1 � vk

v0 � s,l(v0) � 0
k � 1,vkvk�1

E�1 �1 1 �1

1 0 0 0

0 1 �1 0

0 0 0 1

U1

2

3

4

e1    e2    e3    e4
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19. If we add an edge to T, then since T is connected, there is a path in T
which, together with forms a cycle.

Problem Set 23.5, page 990

1. If G is a tree.
3. A shortest spanning tree of the largest connected graph that contains vertex 1.
7.
9.

11.

Problem Set 23.6, page 997

1. 
3.
5.
7.
9. One is interested in flows from s to t, not in the opposite direction.

13.

15.
17.

is unique.
19. For instance, 

is unique.

Problem Set 23.7, page 1000

3.
5. By considering only edges with one labeled end and one unlabeled end
7. where 6 is

the given flow
9. where 4

is the given flow
15.

Problem Set 23.8, page 1005

1. No 3. No
5. Yes, 
7. Yes, 11.

13. is augmenting and gives and 
is of maximum cardinality.

15. is augmenting and gives and
is of maximum cardinality.

19. 3 21. 2
23. 3 25. K4

(1, 4), (3, 6), (7, 8)
1 � 4 � 3 � 6 � 7 � 81 � 4 � 3 � 6 � 7 � 8

(3, 7), (5, 4)
(1, 2),1 � 2 � 3 � 7 � 5 � 41 � 2 � 3 � 7 � 5 � 4

1 � 2 � 3 � 7 � 5 � 4S � {1, 3, 5}
S � {1, 4, 5, 8}

S � {1, 2, 4, 5}, T � {3, 6}, cap (S, T) � 14

1 � 2 � 4 � 6, ¢t � 2; 1 � 3 � 5 � 6, ¢t � 1; f � 4 � 2 � 1 � 7,

1 � 2 � 5, ¢t � 2; 1 � 4 � 2 � 5, ¢t � 1; f � 6 � 2 � 1 � 9,

(2, 3) and (5, 6)

f � 3 � 5 � 7 � 15, f � 15
f12 � 10, f24 � f45 � 7, f13 � f25 � 5, f35 � 3, f32 � 2,

f � 17
f13 � f35 � 8, f14 � f45 � 5, f12 � f24 � f46 � 4, f56 � 13, f � 4 � 13 � 17,
1 � 2 � 5, ¢f � 2; 1 � 4 � 2 � 5, ¢f � 2, etc.
P1:  1 � 2 � 4 � 5, ¢f � 2; P2:  1 � 2 � 5, ¢f � 3; P3:  1 � 3 � 5, ¢f � 4
¢12 � 5, ¢24 � 8, ¢45 � 2; ¢12 � 5, ¢25 � 3; ¢13 � 4, ¢35 � 9

S � {1, 4}, 8 � 6 � 14
{3, 6, 7}, 8 � 4 � 4 � 16
{4, 5, 6}, 10 � 5 � 13 � 28
{3, 6}, 11 � 3 � 14

(1, 4), (4, 3), (4, 5), (1, 2); L � 12
(1, 4), (4, 3), (4, 2), (3, 5); L � 20
(1, 4), (1, 3), (1, 2), (2, 6), (3, 5); L � 32

(u, v),
u : v(u, v)
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Chapter 23 Review Questions and Problems, page 1006

11.

13. To vertex 
From vertex

15.

17.
Vertex Incident Edges

1 (1, 2), (1, 4)
2 (2, 1), (2, 4)
3 (3, 4)
4 (4, 1), (4, 2), (4, 3)

19.
23.

Problem Set 24.1, page 1015

1. 3. 
5. 7. 
9. 11. 

13. 15.
17. 3.54, 1.29

Problem Set 24.2, page 1017

1. outcomes: RRR, RRL, RLR, LRR, RLL, LRL, LLR, LLL
3. outcomes first number (second number) referring

to the first die (second die)
5. Infinitely many outcomes 
7. The space of ordered pairs of numbers
9. 10 outcomes: 

11. Yes
17. implies by the definition of union. Conversely. implies

that because always and if we must have equality
in the previous relation.

A � B,B � A �B,A �B � B
A � BA � BA �B � B

 D ND NND Á  NNNNNNNNND

H TH TTH TTTH Á  (H � Head, T � Tail)

(1, 1), (1, 2), Á , (6, 6),62 � 36
23

x � 1.355, s � 0.136, IQR � 0.15x � 144.67, s � 8.9735, IQR � 16
x � 19.875, s � 0.835, IQR � 1.5qL � 89.9, qM � 91.0, qU � 91.8
qL � 1.3, qM � 1.4, qU � 1.45qL � 199, qM � 201, qU � 201
qL � 138, qM � 144, qU � 154qL � 19, qM � 20, qU � 20.5

(1, 6), (4, 5), (2, 3), (7, 8)
(1, 2), (1, 4), (2, 3); L2 � 2, L3 � 5, L4 � 5

1 2

4 3

E0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

U1

2

3

4

1   2  3   4

E0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

U
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Problem Set 24.3, page 1024

1. by Theorem 1
3. 
5. 
7. Small sample from a large population containing many items in each class we are

interested in (defectives and nondefectives, etc.)
9. 

11. (a) (c) same as (a).
Why?

13. 
15. 
17. hence by disjointedness of B

and 

Problem Set 24.4, page 1028

1. In ways
3. 

5. 7. 

9. In ways 11. 
13. (b)
15. P (No two people have a birthday in common)

Answer: which is surprisingly large.

Problem Set 24.5, page 1034

1. by (6)
3. by (10), 
5. No, because of (6)
7. because of (6) and 
9. 

11. 
13. if if 

if if 
Answer: 500 cans, 

15. etc.

Problem Set 24.6, page 1038

1. 3. cf. Example 2
5. 7. 
9. 11. 

13. 15. 
17. Product of the 2 numbers. cents
19. (0 � 1 � 3 � 3 � 8 � 1 � 27)>8 � 54>8 � 6 � 75

E (X ) � 12.25, 12X �

1
2 , 1

20 , (X � 1
2 )120$643.50

c � 0.073750,  1,  0.002
C � 1

2 , � � 2, s2 � 4� � 1
4 , s2 � 1

16 

� � p, s2 � p2>3;k � 1
2 , � � 4

3 , s2 � 2
9 

X 	 b, X � b, X 
 c, X � c,
P � 0.125, 0

x � 10 � x 
 1, F(x) � 1F(x) � 1 � 1
2 (x � 1)2

�1 � x 
 0x 
 �1, F(x) � 1
2(x � 1)2F(x) � 0

0.53 � 12.5%
k � 5; 50%

1 � 8 � 27 � 64 � 100k � 1
100

P(0 � X � 2) � 1
2k � 1

4

k � 1
55

41%,
� 365 � 364 Á 346>36520 � 0.59.

1>(12n)
9 � 8 � 726!>6 � 120

210, 70, 112, 28A10
3 B  A

5
2 B  A

6
2 B � 18,000

2
6 � 1

5 � 4
4 � 3

3 � 2
2 � 1

1 � 4
6 � 3

5 � 2
4 � 1

3 � 2
2 � 1

1 � 4!2!
6! � 2

6 � 1
5 � 1

15 

10! � 3,628,800

A�Bc
P(A) � P(B) � P(A�Bc) � P (B)A � B � (A�Bc),

1 � 0.8754 � 0.4138 
 1 � 0.752 � 0.4375 
 0.5 (c 
 b 
 a)
1 � 0.963 � 11.5%
(a) � (b) � (c) � 1.

100
200 � 99

199 � 24.874%, (b) 100
200 � 100

199 � 100
200 � 100

199 � 50.25%,

498
500 � 497

499 � 496
498 � 495

497 � 494
496 � 0.98008

8
9 

(a) 0.93 � 72.9%, (b) 90
100 � 89

99 � 88
98 � 72.65%

1 � 4>216 � 98.15%,
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Problem Set 24.7, page 1044

3.
5. 
7. 
9. Answer: 

11. 
13. 
15. 

Problem Set 24.8, page 1050

1. 3. 
5. 7.
9. About 11. hours

13. About 683 (Fig. 521a)

Problem Set 24.9, page 1059

1. 3. 
5. if 
7. 27.45 mm, 0.38 mm

11. 25.26 cm, 0.0078 cm 13. 
15. The distributions in Prob. 17 and Example 1
17. No

Chapter 24 Review Questions and Problems, page 1060

11. 
13. 
21. Sum over j from 1.
17. 
19. 

21. 23. 
25. 

Problem Set 25.2, page 1067

1. In Example 1, so and is as before.

3.

5. 
7.
9. 

11. 
13.
15. Variability larger than perhaps expected
û � 1
û � n>S  x j � 1>x
l � f � p(1 � p)x�1, etc., p̂ � 1>x
7>12
l � pk(1 � p)n�k, p̂ � k>n, k � number of successes in n trails

�̂ � x � 15.3n�̂ � nx,
/ � e�n��(x1� Á �xn)>(x1! Á xn!), 0 ln />0� � �n � (x1 � Á � xn)>� � 0,

s� 2
a
n

j�1

 x j � 0. 0 ln />0/ � 0� � 0

0.1587,  0.6306,  0.5,  0.4950
1, 12 f (x) � 2�x, x � 1, 2, Á

f (x) � A50
x B0.03x0.9750�x � 1.5xe�1.5>x!

x � 6, s � 3.65
xmin � x j � xmax.
x � 111.9, s � 4.0125, s2 � 16.1
QL � 110, QM � 112, QU � 115

50%

a2 
 y 
 b2f2(y) � 1>(b2 � a2)

2
9 , 19 , 12 

1
8 , 3

16 , 38 

t � 108458%
31.1%, 95.4%15.9%
45.065, 56.978, 2.0220.1587, 0.5, 0.6915, 0.6247

1 � e�0.2 � 18%
42%, 47.2%, 10.5%, 0.3%
131

4 %
9%f (x) � 0.5xe�0.5>x!,  f (0) � f (1) � e�0.5(1.0 � 0.5) � 0.91.

0.265
A5x B  0.55, 0.03125, 0.15625, 1 � f (0) � 0.96875, 0.96875
38%
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Problem Set 25.3, page 1077

3. Shorter by a factor 5. 
7. 

9. 
11. 

13.
15. degrees of freedom. 

Hence 
17.
19. is normal with mean 105 and variance 1.25.

Answer:

Problem Set 25.4, page 1086

3. accept the hypothesis.
5. do not reject the hypothesis.
7. accept the hypothesis.
9. 

11. Alternative 
(Table A9, Appendix 5). Reject the hypothesis 

13. Two-sided. (Table A9, Appendix 5),
no difference

15. (Table A10. Appendix 5), accept the
hypothesis

17. By (12), Assert that B is better.

Problem Set 25.5, page 1091

1.
3. 27
5. Choose 4 times the original sample size
9. 

11. 
13. In about of the cases
15. is negative in (b) and we set 

Problem Set 25.6, page 1095

1. 3. 
5. 7. 
9. 11. 

13. (by the normal approximation)

15. (1 � u)5, 3u(1 � u)5�14r � 0, u � 1
6, AOQL � 6.7%

a
9

x�0

 a100

x
 b 0.12x 0.88100�x � 22%

(1 � 1
2 )3 � 3 # 1

2 (1 � 1
2 )2 � 1

2 (1 � u)n � nu(1 � u)n�1
19.5%, 14.7%e�25u(1 � 25u), P(A; 1.5) � 94.5, a � 5.5%
0.8187, 0.6703, 0.13530.9825, 0.9384, 0.4060

UCL � � � 31� � 9.3.
LCL � 0, CL � � � 3.6,LCL � � � 31�

30% (5%)
LCL � np � 31np(1 � p), CL � np, UCL � np � 31np(1 � p)
2.5810.0004>12 � 0.036, LCL � 3.464, UCL � 3.536

LCL � 1 � 2.58 # 0.02>2 � 0.974, UCL � 1.026

t0 � 116(20.2 � 19.6)>10.16 � 0.36 	 c � 1.70.

19 � 1.02>0.82 � 29.69 
 c � 30.14

t � (0.55 � 0)>10.546>8 � 2.11 
 c � 2.37
� � 5000 g.

� � 5000, t � (4990 � 5000)>(20>150) � �3.54 
 c � �2.01
� 
 58.69 or � 	 61.31
s2>n � 1.8, c � 57.8,
c � 6090 	 6019:
t � (0.286 � 0)>(4.31>17) � 0.18 
 c � 1.94;

P (104 � Z � 106) � 63%
Z � X � Y
CONF0.95{0.74 � s2 � 5.19}

k1 � 12.41, k2 � 7.10. CONF0.95 {7.10 � s2 � 12.41}.c2 � 129.6.
F(c2) � 0.975,c1 � 74.2,F (c1) � 0.025,n � 1 � 99

CONF0.95{0.023 � s2 � 0.085}
k � 366.66 (Table 25.2), CONF0.99{9166.7 � � � 9900}
n � 1 � 5, F(c) � 0.995, c � 4.03, x � 9533.33, s2 � 49,666.67,
CONF0.99{63.72 � � � 66.28}
CONF0.95{125.3 � � � 126.7}, CONF0.95{0.1566 � p � 0.1583}
c � 1.96, x � 126, s2 � 126 # 674>800 � 106.155, k � cs>1n � 0.714,

4, 1612
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Problem Set 25.7, page 1099

3.
5. 
7. 
9. 42 even digits, accept.

13. (1 degree of

freedom, 95%)
15. Combining the last three nonzero values, we have since we

estimated the mean, Accept the hypothesis.

Problem Set 25.8, page 1102

3. is the probability that 7 cases in 8 trials favor A under the
hypothesis that A and B are equally good. Reject.

5.
7.

Hypothesis rejected.
9. Hypothesis Alternative 

Hypothesis rejected.
11. Consider 
13. transpositions, Assert that fertilizing increases yield.
15. Assert that there is an increase.

Problem Set 25.9, page 1111

1. 3. 
5. 7.
9.

13.

15. 

Chapter 25 Review Questions and Problems, page 1111

15. 17.
19. 
21.
23. when For we obtain

If n increases, so does whereas decreases.
25. y � 3.4 � 1.85x

ba,b � (1 � u)6 � 37.7%.
u � 15%u � 0.01.a � 1 � (1 � u)6 � 5.85%,

2.58 � 10.00024>12 � 0.028, LCL � 2.722, UCL � 2.778
c � 14.74 	 14.5, reject �0; £((14.74 � 14.50)>10.025) � 0.9353

CONF0.99{27.94 � � � 34.81}�̂ � 20.325, ŝ2 � (7
8)s2 � 3.982

CONF0.95{0.046 � �1 � 0.088}
y � 1.875 � 0.067(x � 25), 3sx

2 � 500, q0 � 0.023, K � 0.021,
CONF0.95{41.7 � �1 � 44.7}.
c � 3.18 (Table A9), k1 � 43.2, q0 � 54,878, K � 1.502,
y � 0.32923 � 0.00032x, y(66) � 0.35035

y � 0.5932 � 0.1138x, R � 1>0.1138y � �10 � 0.55x
y � �11,457.9 � 43.2xy � 0.98 � 0.495x

P(T � 2) � 2.8%.
P(T � 4) � 0.007.n � 8; 4

yj � x j � �0
� .

t � 110 � 1.58>1.23 � 4.06 	 c � 1.83 (a � 5%).
�� 	 0, x � 1.58,�� � 0.

x � 9.67, s � 11.87. t0 � 9.67>(11.87>115) � 3.16 	 c � 1.76 (a � 5%).
(1
2)18(1 � 18 � 153 � 816) � 0.0038

(1
2)8 � 8 # (1

2)8 � 3.5%

10,094
2608  � 3.87). �0

2 � 12.8 
 c � 16.92.
K � r � 1 � 9 (r � 1

�0
2 �

(355 � 358.5)2

358.5
 �

(123 � 119.5)2

119.5
 � 0.137 
 c � 3.84

�0
2 � 10.264 
 11.07; yes

�0
2 � 16

10 	 11.07; yes
�0

2 � (40 � 50)2>50 � (60 � 50)2>50 � 4 	 c � 3.84; no
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A3.1 Formulas for Special Functions
For tables of numeric values, see Appendix 5.

Exponential function ex (Fig. 545)

e � 2.71828 18284 59045 23536 02874 71353

(1) exey � ex�y, ex/ey � ex�y, (ex)y � exy

Natural logarithm (Fig. 546)

(2) ln (xy) � ln x � ln y, ln (x/y) � ln x � ln y, ln (xa) � a ln x

ln x is the inverse of ex, and eln x � x, e�ln x � eln (1/x) � 1/x.

Logarithm of base ten log10x or simply log x

(3) log x � M ln x, M � log e � 0.43429 44819 03251 82765 11289 18917

(4) ln x � log x, � ln 10 � 2.30258 50929 94045 68401 79914 54684

log x is the inverse of 10x, and 10log x � x, 10�log x � 1/x.

Sine and cosine functions (Figs. 547, 548). In calculus, angles are measured in radians,
so that sin x and cos x have period 2�.

sin x is odd, sin (�x) � �sin x, and cos x is even, cos (�x) � cos x.

Fig. 545. Exponential function ex Fig. 546. Natural logarithm ln x

5 10

–2

0

2

y

x

y

x

5

–2 0 2

1
�
M

1
�
M
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Fig. 547. sin x Fig. 548. cos x

1° � 0.01745 32925 19943 radian

1 radian � 57° 17� 44.80625�

� 57.29577 95131°

(5) sin2 x � cos2 x � 1

(6) w

(7) sin 2x � 2 sin x cos x, cos 2x � cos2 x � sin2 x

(8) w

(9) sin (� � x) � sin x, cos (� � x) � �cos x

(10) cos2 x � 1_
2 (1 � cos 2x), sin2 x � 1_

2 (1 � cos 2x)

(11) y

(12) s

(13) A cos x � B sin x � �A2 � B�2� cos (x 	 
), tan 
 � � �

(14) A cos x � B sin x � �A2 � B�2� sin (x 	 
), tan 
 � � 	
A
�
B

sin 

�
cos 


B
�
A

sin 

�
cos 


sin u � sin v � 2 sin �
u �

2

v
� cos �

u �

2

v
�

cos u � cos v � 2 cos �
u �

2

v
� cos �

u �

2

v
�

cos v � cos u � 2 sin �
u �

2

v
� sin �

u �

2

v
�

sin x sin y � 1_
2[�cos (x � y) � cos (x � y)]

cos x cos y � 1_
2[cos (x � y) � cos (x � y)]

sin x cos y � 1_
2[sin (x � y) � sin (x � y)]

sin x � cos (x � �
�

2
�) � cos (�

�

2
� � x)

cos x � sin (x � �
�

2
�) � sin (�

�

2
� � x)

sin (x � y) � sin x cos y � cos x sin y

sin (x � y) � sin x cos y � cos x sin y

cos (x � y) � cos x cos y � sin x sin y

cos (x � y) � cos x cos y � sin x sin y

y

1

–1
x

y

1

–1
x
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Fig. 549. tan x Fig. 550. cot x

Tangent, cotangent, secant, cosecant (Figs. 549, 550)

(15) tan x � , cot x � , sec x � , csc x �

(16) tan (x � y) � , tan (x � y) �

Hyperbolic functions (hyperbolic sine sinh x, etc.; Figs. 551, 552)

(17) sinh x � 1_
2 (ex � e�x), cosh x � 1_

2 (ex � e�x)

(18) tanh x � , coth x �

(19) cosh x � sinh x � ex, cosh x � sinh x � e�x

(20) cosh2 x � sinh2 x � 1

(21) sinh2 x � 1_
2 (cosh 2x � 1), cosh2 x � 1_

2 (cosh 2x � 1)

Fig. 551. sinh x (dashed) and cosh x Fig. 552. tanh x (dashed) and coth x

y

2

4

2–2 x

–2

–4

y

2

4

–2

–4

2–2 x

cosh x
�
sinh x

sinh x
�
cosh x

tan x � tan y
��
1 � tan x tan y

tan x � tan y
��
1 � tan x tan y

1
�
sin x

1
�
cos x

cos x
�
sin x

sin x
�
cos x

y

5

–5

x

y

5

–5

x
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(22) {

(23) tanh (x 	 y) �

Gamma function (Fig. 553 and Table A2 in App. 5). The gamma function �() is defined
by the integral

(24) �() � ��

0
e�tt�1 dt ( � 0),

which is meaningful only if  � 0 (or, if we consider complex , for those  whose real
part is positive). Integration by parts gives the important functional relation of the gamma
function,

(25) �( � 1) � �().

From (24) we readily have �(1) � 1; hence if  is a positive integer, say k, then by
repeated application of (25) we obtain

(26) �(k � 1) � k! (k � 0, 1, • • •).

This shows that the gamma function can be regarded as a generalization of the elementary
factorial function. [Sometimes the notation ( � 1)! is used for �(), even for noninteger
values of , and the gamma function is also known as the factorial function.]

By repeated application of (25) we obtain

�() � � � • • • �
�( � k � 1)

����
( � 1)( � 2) • • • ( � k)

�( � 2)
��
( � 1)

�( � 1)
��



tanh x 	 tanh y
��
1 	 tanh x tanh y

sinh (x 	 y) � sinh x cosh y 	 cosh x sinh y

cosh (x 	 y) � cosh x cosh y 	 sinh x sinh y

A66 APP. 3 Auxiliary Material

5

–2

–4

–2–4 42

Γ( )α

α

Fig. 553. Gamma function
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and we may use this relation

(27) �() � ( � 0, �1, �2, • • •),

for defining the gamma function for negative  (� �1, �2, • • •), choosing for k the
smallest integer such that  � k � 1 � 0. Together with (24), this then gives a definition
of �() for all  not equal to zero or a negative integer (Fig. 553).

It can be shown that the gamma function may also be represented as the limit of a
product, namely, by the formula

(28) �() � lim
n*�

( � 0, �1, • • •).

From (27) or (28) we see that, for complex , the gamma function �() is a meromorphic
function with simple poles at  � 0, �1, �2, • • • .

An approximation of the gamma function for large positive  is given by the Stirling
formula

(29) �( � 1) � �2�� ( )

where e is the base of the natural logarithm. We finally mention the special value

(30) �(1_
2) � ���.

Incomplete gamma functions 

(31) P(, x) � �x

0
e�tt�1 dt, Q(, x) � ��

x
e�tt�1 dt ( � 0)

(32) �() � P(, x) � Q(, x)

Beta function 

(33) B(x, y) � �1

0
tx�1(1 � t)y�1 dt (x � 0, y � 0)

Representation in terms of gamma functions:

(34) B(x, y) �

Error function (Fig. 554 and Table A4 in App. 5)

(35) erf x � �x

0
e�t2

dt

(36) erf x � (x � � � � � • • •)x7

�
3!7

x5

�
2!5

x3

�
1!3

2
�
���

2
�
���

�(x)�(y)
�
�(x � y)


�
e

n! n

����
( � 1)( � 2) • • • ( � n)

�( � k � 1)
���
( � 1) • • • ( � k)
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erf (�) � 1, complementary error function

(37) erfc x � 1 � erf x � ��

x
e�t2

dt

Fresnel integrals1 (Fig. 555)

(38) C(x) � �x

0
cos (t2) dt, S(x) � �x

0
sin (t2) dt

C(�) � ��/8�, S(�) � ��/8�, complementary functions

(39)

c(x) � �� � C(x) � ��

x
cos (t2) dt

s(x) � �� � S(x) � ��

x
sin (t2) dt

Sine integral (Fig. 556 and Table A4 in App. 5)

(40) Si(x) � �x

0
dt

sin t
�

t

�
�
8

�
�
8

2
�
���

A68 APP. 3 Auxiliary Material

erf x
1

0.5

–0.5

–1

–2 –1 21 x

Fig. 554. Error function

1AUGUSTIN FRESNEL (1788–1827), French physicist and mathematician. For tables see Ref. [GenRef1].

1

0.5

0 1 2 3 4

C(x)

y

S(x) 

x

Fig. 555. Fresnel integrals
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Si(�) � �/2, complementary function

(41) si(x) � � Si(x) � ��

x
dt

Cosine integral (Table A4 in App. 5)

(42) ci(x) � ��

x
dt (x � 0)

Exponential integral 

(43) Ei(x) � ��

x
dt (x � 0)

Logarithmic integral 

(44) li(x) � �x

0

A3.2 Partial Derivatives
For differentiation formulas, see inside of front cover.

Let z � ƒ(x, y) be a real function of two independent real variables, x and y. If we keep
y constant, say, y � y1, and think of x as a variable, then ƒ(x, y1) depends on x alone. If
the derivative of ƒ(x, y1) with respect to x for a value x � x1 exists, then the value of this
derivative is called the partial derivative of ƒ(x, y) with respect to x at the point (x1, y1)
and is denoted by

j
(x1,y1)

or by j
(x1,y1)

.

Other notations are

ƒx (x1, y1) and zx (x1, y1);

these may be used when subscripts are not used for another purpose and there is no danger
of confusion.

�z
�
�x

�ƒ
�
�x

dt
�
ln t

e�t

�
t

cos t
�

t

sin t
�

t

�
�
2

0 5 10

1

2

Si(x)

x

Fig. 556. Sine integral
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We thus have, by the definition of the derivative,

(1) j
(x1,y1)

� lim
�x*0

.

The partial derivative of z � ƒ(x, y) with respect to y is defined similarly; we now keep
x constant, say, equal to x1, and differentiate ƒ(x1, y) with respect to y. Thus

(2) j
(x1,y1)

� j
(x1,y1)

� lim
�y*0

.

Other notations are ƒy (x1, y1) and zy (x1, y1).
It is clear that the values of those two partial derivatives will in general depend on the

point (x1, y1). Hence the partial derivatives �z /�x and �z /�y at a variable point (x, y) are
functions of x and y. The function �z /�x is obtained as in ordinary calculus by
differentiating z � ƒ(x, y) with respect to x, treating y as a constant, and �z /�y is obtained
by differentiating z with respect to y, treating x as a constant.

E X A M P L E  1 Let z � ƒ(x, y) � x2y � x sin y. Then

� 2xy � sin y, � x2 � x cos y. �

The partial derivatives �z /�x and �z /�y of a function z � ƒ(x, y) have a very simple
geometric interpretation. The function z � ƒ(x, y) can be represented by a surface in
space. The equation y � y1 then represents a vertical plane intersecting the surface in a
curve, and the partial derivative �z/�x at a point (x1, y1) is the slope of the tangent (that
is, tan � where � is the angle shown in Fig. 557) to the curve. Similarly, the partial
derivative �z /�y at (x1, y1) is the slope of the tangent to the curve x � x1 on the surface
z � ƒ(x, y) at (x1, y1).

�ƒ
�
�y

�ƒ
�
�x

ƒ(x1, y1 � �y) � ƒ(x1, y1)
���

�y

�z
�
�y

�ƒ
�
�y

ƒ(x1 � �x, y1) � ƒ(x1, y1)
���

�x

�ƒ
�
�x

A70 APP. 3 Auxiliary Material

x
y

y
1 x

1

z

Fig. 557. Geometrical interpretation of first partial derivatives
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The partial derivatives �z /�x and �z /�y are called first partial derivatives or partial
derivatives of first order. By differentiating these derivatives once more, we obtain the
four second partial derivatives (or partial derivatives of second order)2

� ( ) � ƒxx

� ( ) � ƒyx

(3)

� ( ) � ƒxy

� ( ) � ƒyy.

It can be shown that if all the derivatives concerned are continuous, then the two mixed
partial derivatives are equal, so that the order of differentiation does not matter (see Ref.
[GenRef4] in App. 1), that is,

(4) � .

E X A M P L E  2 For the function in Example 1.

ƒxx � 2y, ƒxy � 2x � cos y � ƒyx, ƒyy � �x sin y. �

By differentiating the second partial derivatives again with respect to x and y,
respectively, we obtain the third partial derivatives or partial derivatives of the third
order of ƒ, etc.

If we consider a function ƒ(x, y, z) of three independent variables, then we have the
three first partial derivatives ƒx (x, y, z), ƒy (x, y, z), and ƒz(x, y, z). Here ƒx is obtained by
differentiating ƒ with respect to x, treating both y and z as constants. Thus, analogous to
(1), we now have

j
(x1,y1,z1)

� lim
�x*0

,

etc. By differentiating ƒx, ƒy, ƒz again in this fashion we obtain the second partial
derivatives of ƒ, etc.

E X A M P L E  3 Let ƒ(x, y, z) � x2 � y2 � z2 � xy ez. Then

�

2z � xy ez,

ƒzx � y ez,

2 � xy ez.

ƒz �

ƒxz �

ƒzz �

2y � x ez,

ƒyx � ez,

ƒzy � x ez,

ƒy �

ƒxy �

ƒyz �

2x � y ez,

2,

2,

ƒx �

ƒxx �

ƒyy �

ƒ(x1 � �x, y1, z1) � ƒ(x1, y1, z1)
����

�x

�ƒ
�
�x

�2z
�
�y �x

�2z
�
�x �y

�ƒ
�
�y

�
�
�y

�2ƒ
�
�y2

�ƒ
�
�x

�
�
�y

�2ƒ
�
�y �x

�ƒ
�
�y

�
�
�x

�2ƒ
�
�x �y

�ƒ
�
�x

�
�
�x

�2ƒ
�
�x2

2 CAUTION! In the subscript notation, the subscripts are written in the order in which we differentiate,
whereas in the “�” notation the order is opposite.

bapp03.qxd  11/3/10  8:27 PM  Page A71



A3.3 Sequences and Series
See also Chap. 15.

Monotone Real Sequences
We call a real sequence x1, x2, • • • , xn, • • • a monotone sequence if it is either monotone
increasing, that is,

x1 � x2 � x3 � • • •

or monotone decreasing, that is,

x1 � x2 � x3 � • • • .

We call x1, x2, • • • a bounded sequence if there is a positive constant K such that �xn � � K
for all n.

T H E O R E M  1 If a real sequence is bounded and monotone, it converges.

P R O O F Let x1, x2, • • • be a bounded monotone increasing sequence. Then its terms are smaller
than some number B and, since x1 � xn for all n, they lie in the interval x1 � xn � B,
which will be denoted by I0. We bisect I0; that is, we subdivide it into two parts of equal
length. If the right half (together with its endpoints) contains terms of the sequence, we
denote it by I1. If it does not contain terms of the sequence, then the left half of I0 (together
with its endpoints) is called I1. This is the first step.

In the second step we bisect I1, select one half by the same rule, and call it I2, and so
on (see Fig. 558).

In this way we obtain shorter and shorter intervals I0, I1, I2, • • • with the following
properties. Each Im contains all In for n � m. No term of the sequence lies to the right
of Im, and, since the sequence is monotone increasing, all xn with n greater than some
number N lie in Im; of course, N will depend on m, in general. The lengths of the Im

approach zero as m approaches infinity. Hence there is precisely one number, call it L,
that lies in all those intervals,3 and we may now easily prove that the sequence is
convergent with the limit L.

In fact, given an � � 0, we choose an m such that the length of Im is less than �. Then
L and all the xn with n � N(m) lie in Im, and, therefore, �xn � L � � � for all those n.
This completes the proof for an increasing sequence. For a decreasing sequence the proof
is the same, except for a suitable interchange of “left” and “right” in the construction of
those intervals. �

A72 APP. 3 Auxiliary Material

3This statement seems to be obvious, but actually it is not; it may be regarded as an axiom of the real number
system in the following form. Let J1, J2, • • • be closed intervals such that each Jm contains all Jn with n � m,
and the lengths of the Jm approach zero as m approaches infinity. Then there is precisely one real number that
is contained in all those intervals. This is the so-called Cantor–Dedekind axiom, named after the German
mathematicians GEORG CANTOR (1845–1918), the creator of set theory, and RICHARD DEDEKIND
(1831–1916), known for his fundamental work in number theory. For further details see Ref. [GenRef2] in App. 1.
(An interval I is said to be closed if its two endpoints are regarded as points belonging to I. It is said to be open
if the endpoints are not regarded as points of I.)
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Real Series

T H E O R E M  2 Leibniz Test for Real Series

Let x1, x2, • • • be real and monotone decreasing to zero, that is,

(1) (a) x1 � x2 � x3 � • • • , (b) lim
m*�

xm � 0.

Then the series with terms of alternating signs

x1 � x2 � x3 � x4 � � • • •

converges, and for the remainder Rn after the nth term we have the estimate

(2) �Rn� � xn�1.

P R O O F Let sn be the nth partial sum of the series. Then, because of (1a),

so that s2 � s3 � s1. Proceeding in this fashion, we conclude that (Fig. 559)

(3) s1 � s3 � s5 � • • • � s6 � s4 � s2

which shows that the odd partial sums form a bounded monotone sequence, and so do the
even partial sums. Hence, by Theorem 1, both sequences converge, say,

lim
n*�

s2n�1 � s, lim
n*�

s2n � s*.

s2 � x1 � x2 � s1,

s3 � s1 � (x2 � x3) � s1,

s1 � x1,

s3 � s2 � x3 � s2,

–x
4

x
3

–x
2

s
2

s
4

s
3

s
1

Fig. 559. Proof of the Leibniz test

x
1

x
2

x
3 B

I
0

I
1

I
2

Fig. 558. Proof of Theorem 1
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Now, since s2n�1 � s2n � x2n�1, we readily see that (lb) implies

s � s* � lim
n*�

s2n�1 � lim
n*�

s2n � lim
n*�

(s2n�1 � s2n) � lim
n*�

x2n�1 � 0.

Hence s* � s, and the series converges with the sum s.
We prove the estimate (2) for the remainder. Since sn * s, it follows from (3) that

s2n�1 � s � s2n and also s2n�1 � s � s2n.

By subtracting s2n and s2n�1, respectively, we obtain

s2n�1 � s2n � s � s2n � 0, 0 � s � s2n�1 � s2n � s2n�1.

In these inequalities, the first expression is equal to x2n�1, the last is equal to �x2n, and
the expressions between the inequality signs are the remainders R2n and R2n�1. Thus the
inequalities may be written

x2n�1 � R2n � 0, 0 � R2n�1 � �x2n

and we see that they imply (2). This completes the proof. �

A3.4 Grad, Div, Curl, �2

in Curvilinear Coordinates
To simplify formulas, we write Cartesian coordinates x � x1, y � x2, z � x3. We denote
curvilinear coordinates by q1, q2, q3. Through each point P there pass three coordinate
surfaces q1 � const, q2 � const, q3 � const. They intersect along coordinate curves. We
assume the three coordinate curves through P to be orthogonal (perpendicular to each
other). We write coordinate transformations as

(1) x1 � x1(q1, q2, q3), x2 � x2(q1, q2, q3), x3 � x3(q1, q2, q3).

Corresponding transformations of grad, div, curl, and �2 can all be written by using

(2) hj
2 � 	

3

k�1

( )2

.

Next to Cartesian coordinates, most important are cylindrical coordinates q1 � r, q2 � �,
q3 � z (Fig. 560a) defined by

(3) x1 � q1 cos q2 � r cos �, x2 � q1 sin q2 � r sin �, x3 � q3 � z

and spherical coordinates q1 � r, q2 � �, q3 � � (Fig. 560b) defined by4

(4)
x1 � q1 cos q2 sin q3 � r cos � sin �, x2 � q1 sin q2 sin q3 � r sin � sin �

x3 � q1 cos q3 � r cos �.

�xk
�
�qj

A74 APP. 3 Auxiliary Material

4This is the notation used in calculus and in many other books. It is logical since in it, � plays the same role
as in polar coordinates. CAUTION! Some books interchange the roles of � and �.
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In addition to the general formulas for any orthogonal coordinates q1, q2, q3, we shall give
additional formulas for these important special cases.

Linear Element ds. In Cartesian coordinates,

ds2 � dx1
2 � dx2

2 � dx3
2 (Sec. 9.5).

For the q-coordinates,

(5) ds2 � h1
2 dq1

2 � h2
2 dq2

2 � h3
2 dq3

2.

(5�) ds2 � dr2 � r2 d�2 � dz2 (Cylindrical coordinates).

For polar coordinates set dz2 � 0.

(5 �) ds2 � dr2 � r2 sin2 � d�2 � r2 d�2 (Spherical coordinates).

Gradient. grad ƒ � �ƒ � [ƒx1
, ƒx2

, ƒx3
] (partial derivatives; Sec. 9.7). In the 

q-system, with u, v, w denoting unit vectors in the positive directions of the q1, q2, q3

coordinate curves, respectively,

(6) grad ƒ � �ƒ � u � v � w

(6�) grad ƒ � �ƒ � u � v � w (Cylindrical coordinates)

(6 �) grad ƒ � �ƒ � u � v � w (Spherical coordinates).

Divergence div F � � •F � (F1)x1
� (F2)x2

� (F3)x3
(F � [F1, F2, F3], Sec. 9.8);

(7) div F � � •F � [ (h2h3F1) � (h3h1F2) � (h1h2F3)]

(7�) div F � � • F � (rF1) � � (Cylindrical coordinates)
�F3
�
�z

�F2
�
��

1
�
r

�
�
�r

1
�
r

�
�
�q3

�
�
�q2

�
�
�q1

1
�
h1h2h3

�ƒ
�
��

1
�
r

�ƒ
�
��

1
�
r sin �

�ƒ
�
�r

�ƒ
�
�z

�ƒ
�
��

1
�
r

�ƒ
�
�r

�ƒ
�
�q3

1
�
h3

�ƒ
�
�q2

1
�
h2

�ƒ
�
�q1

1
�
h1

z

z

r
x

z

r

y y

x

(a) Cylindrical coordinates (b) Spherical coordinates

Fig. 560. Special curvilinear coordinates
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(7 �) div F � � • F � (r2F1) � � (sin � F3)

(Spherical coordinates).

Laplacian �2ƒ � � •�ƒ � div (grad ƒ) � ƒx1x1
� ƒx2x2

� ƒx3x3
(Sec. 9.8):

(8) �2ƒ � [ ( )� ( )� ( )]

(8�) �2ƒ � � � � (Cylindrical coordinates)

(8 �) �2ƒ � � � � �

(Spherical coordinates).

Curl (Sec. 9.9):

(9) curl F � � � F � �
h1h

1

2h3

� l l .

For cylindrical coordinates we have in (9) (as in the previous formulas)

h1 � hr � 1, h2 � h� � q1 � r, h3 � hz � 1

and for spherical coordinates we have

h1 � hr � 1, h2 � h� � q1 sin q3 � r sin �, h3 � h� � q1 � r.

h3w

�
�

�

q3

�

h3F3

h2v

�
�

�

q2

�

h2F2

h1u

�
�

�

q1

�

h1F1

�ƒ
�
��

cot �
�

r2

�2ƒ
�
��2

1
�
r2

�2ƒ
�
��2

1
�
r2 sin2 �

�ƒ
�
�r

2
�
r

�2ƒ
�
�r2

�2ƒ
�
�z2

�2ƒ
�
��2

1
�
r2

�ƒ
�
�r

1
�
r

�2ƒ
�
�r2

�ƒ
�
�q3

h1h2
�

h3

�
�
�q3

�ƒ
�
�q2

h3h1
�

h2

�
�
�q2

�ƒ
�
�q1

h2h3
�

h1

�
�
�q1

1
�
h1h2h3

�
�
��

1
�
r sin �

�F2
�
��

1
�
r sin �

�
�
�r

1
�
r2
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Section 2.6, page 74

P R O O F  O F  T H E O R E M  1 Uniqueness1

Assuming that the problem consisting of the ODE

(1) y� � p(x)y� � q(x)y � 0

and the two initial conditions

(2) y(x0) � K0, y�(x0) � K1

has two solutions y1(x) and y2(x) on the interval I in the theorem, we show that their
difference

y(x) � y1(x) � y2(x)

is identically zero on I; then y1 � y2 on I, which implies uniqueness.
Since (1) is homogeneous and linear, y is a solution of that ODE on I, and since y1 and

y2 satisfy the same initial conditions, y satisfies the conditions

(11) y(x0) � 0, y�(x0) � 0.

We consider the function

z(x) � y(x)2 � y�(x)2

and its derivative

z� � 2yy� � 2y�y�.

From the ODE we have

y� � �py� � qy.

By substituting this in the expression for z� we obtain

(12) z� � 2yy� � 2py�2 � 2qyy�.

Now, since y and y� are real,

(y � y�)2 � y2 � 2yy� � y�2 � 0.

A P P E N D I X 4
Additional Proofs

1This proof was suggested by my colleague, Prof. A. D. Ziebur. In this proof, we use some formula numbers
that have not yet been used in Sec. 2.6.

A77
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A78 APP. 4 Additional Proofs

From this and the definition of z we obtain the two inequalities

(13) (a) 2yy� 	 y2 � y�2 � z, (b) �2yy� 	 y2 � y�2 � z.

From (13b) we have 2yy� � �z. Together, �2yy�� 	 z. For the last term in (12) we now
obtain

�2qyy� 	 ��2qyy�� � �q��2yy�� 	 �q�z.

Using this result as well as �p 	 �p� and applying (13a) to the term 2yy� in (12), we find

z� 	 z � 2�p�y�2 � �q�z.

Since y�2 	 y2 � y�2 � z, from this we obtain

z� 	 (1 � 2�p� � �q�)z

or, denoting the function in parentheses by h,

(14a) z� 	 hz for all x on I.

Similarly, from (12) and (13) it follows that

(14b)
�z� � �2yy� � 2py�2 � 2qyy�

	 z � 2 �p�z � �q�z � hz.

The inequalities (14a) and (14b) are equivalent to the inequalities

(15) z� � hz 	 0, z� � hz � 0.

Integrating factors for the two expressions on the left are

F1 � e��h(x) dx and F2 � e�h(x) dx.

The integrals in the exponents exist because h is continuous. Since F1 and F2 are positive,
we thus have from (15)

F1(z� � hz) � (F1z)� 	 0 and F2(z� � hz) � (F2z)� � 0.

This means that F1z is nonincreasing and F2 z is nondecreasing on I. Since z(x0) � 0 by
(11), when x 	 x0 we thus obtain

F1z � (F1z)x0
� 0, F2z 	 (F2z)x0

� 0

and similarly, when x � x0,

F1z 	 0, F2z � 0.

Dividing by F1 and F2 and noting that these functions are positive, we altogether have

z 	 0, z � 0 for all x on I.

This implies that z � y2 � y�2 � 0 on I. Hence y � 0 or y1 � y2 on I. �
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Section 5.3, page 182

P R O O F  O F  T H E O R E M  2 Frobenius Method. Basis of Solutions. Three Cases
The formula numbers in this proof are the same as in the text of Sec. 5.3. An additional
formula not appearing in Sec. 5.3 will be called (A) (see below).

The ODE in Theorem 2 is

(1) y� � y� � y � 0,

where b(x) and c(x) are analytic functions. We can write it

(1�) x2y� � xb(x)y� � c(x)y � 0.

The indicial equation of (1) is

(4) r(r � 1) � b0r � c0 � 0.

The roots r1, r2 of this quadratic equation determine the general form of a basis of solutions
of (1), and there are three possible cases as follows.

Case 1. Distinct Roots Not Differing by an Integer. A first solution of (1) is of the form

(5) y1(x) � xr1 (a0 � a1x � a2x2 � • • •)

and can be determined as in the power series method. For a proof that in this case, the
ODE (1) has a second independent solution of the form

(6) y2(x) � xr2 (A0 � A1x � A2 x2 � • • •),

see Ref. [A11] listed in App. 1.

Case 2. Double Root. The indicial equation (4) has a double root r if and only if 
(b0 � 1)2 � 4c0 � 0, and then r � 1_

2 (1 � b0). A first solution

(7) y1(x) � xr (a0 � a1x � a2 x2 � • • •), r � 1_
2 (1 � b0),

can be determined as in Case 1. We show that a second independent solution is of the
form

(8) y2(x) � y1(x) ln x � xr (A1x � A2 x2 � • • •) (x 
 0).

We use the method of reduction of order (see Sec. 2.1), that is, we determine u(x) such
that y2(x) � u(x)y1(x) is a solution of (1). By inserting this and the derivatives

y�2 � u�y1 � uy�1, y�2 � u�y1 � 2u�y�1 � uy�1

into the ODE (1�) we obtain

x2(u�y1 � 2u�y�1 � uy�1) � xb(u�y1 � uy�1) � cuy1 � 0.

c(x)
�
x2

b(x)
�

x
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Since y1 is a solution of (1�), the sum of the terms involving u is zero, and this equation
reduces to

x2y1u� � 2x2y�1u� � xby1u� � 0.

By dividing by x2y1 and inserting the power series for b we obtain

u� � (2 � � • • •) u� � 0.

Here, and in the following, the dots designate terms that are constant or involve positive
powers of x. Now, from (7), it follows that

�

� ( ) � � • • • .

Hence the previous equation can be written

(A) u� � ( � • • •) u� � 0.

Since r � (1 � b0) /2, the term (2r � b0) /x equals 1/x, and by dividing by u� we thus
have

� � � • • • .

By integration we obtain ln u� � �ln x � • • • , hence u� � (1/x)e(• • •). Expanding the
exponential function in powers of x and integrating once more, we see that u is of the form

u � ln x � k1x � k2 x2 � • • • .

Inserting this into y2 � uy1, we obtain for y2 a representation of the form (8).

Case 3. Roots Differing by an Integer. We write r1 � r and r2 � r � p where p is a
positive integer. A first solution

(9) y1(x) � xr1 (a0 � a1x � a2x2 � • • •)

can be determined as in Cases 1 and 2. We show that a second independent solution is
of the form

(10) y2(x) � ky1(x) ln x � xr2 (A0 � A1x � A2x2 � • • •)

where we may have k � 0 or k � 0. As in Case 2 we set y2 � uy1. The first steps are
literally as in Case 2 and give Eq. (A),

u� � ( � • • •) u� � 0.
2r � b0
�

x

1
�
x

u�
�
u�

2r � b0
�

x

r
�
x

ra0 � (r � 1)a1x � • • •
���

a0 � a1x � • • •

1
�
x

xr�1[ra0 � (r � 1)a1x � • • •]
����

xr[a0 � a1x � • • •]

y�1
�
y1

b0
�
x

y�1
�
y1
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Now by elementary algebra, the coefficient b0 � 1 of r in (4) equals minus the sum of
the roots,

b0 � 1 � �(r1 � r2) � �(r � r � p) � �2r � p.

Hence 2r � b0 � p � 1, and division by u� gives

� � ( � • • •) .

The further steps are as in Case 2. Integrating, we find

ln u� � �(p � 1) ln x � • • • , thus u� � x
�( p�1)

e
(• • •)

where dots stand for some series of nonnegative integer powers of x. By expanding the
exponential function as before we obtain a series of the form

u� � � � • • • � � � kp�1 � kp�2 x � • • • .

We integrate once more. Writing the resulting logarithmic term first, we get

u � kp ln x � (� � • • • � � kp�1x � • • •) .

Hence, by (9) we get for y2 � uy1 the formula

y2 � kpy1 ln x � x
r1�p (� � • • • � kp�1x

p�1
� • • •) (a0 � a1x � • • •).

But this is of the form (10) with k � kp since r1 � p � r2 and the product of the two
series involves nonnegative integer powers of x only. �

Section 7.7, page 293

T H E O R E M Determinants

The definition of a determinant

(7) D � det A � l l

as given in Sec. 7.7 is unambiguous, that is, it yields the same value of D no matter
which rows or columns we choose in the development.

a1n

a2n

•

•

ann

• • •

• • •

• • •

• • •

• • •

a12

a22

•

•

an2

a11

a21

•

•

an1

1
�
p

kp�1
�

x

1
�
pxp

kp
�
x

kp�1
�

x2

k1
�
xp

1
�
xp�1

p � 1
�

x

u�
�
u�
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P R O O F In this proof we shall use formula numbers not yet used in Sec. 7.7.
We shall prove first that the same value is obtained no matter which row is chosen.
The proof is by induction. The statement is true for a second-order determinant, for

which the developments by the first row a11a22 � a12(�a21) and by the second row
a21(�a12) � a22a11 give the same value a11a22 � a12a21. Assuming the statement to be
true for an (n � 1)st-order determinant, we prove that it is true for an nth-order determinant.

For this purpose we expand D in terms of each of two arbitrary rows, say, the ith and
the jth, and compare the results. Without loss of generality let us assume i � j.

First Expansion. We expand D by the ith row. A typical term in this expansion is

(19) aikCik � aik � (�1)i�kMik.

The minor Mik of aik in D is an (n � 1)st-order determinant. By the induction hypothesis
we may expand it by any row. We expand it by the row corresponding to the jth row of
D. This row contains the entries ajl (l � k). It is the ( j � 1)st row of Mik, because Mik

does not contain entries of the ith row of D, and i � j. We have to distinguish between
two cases as follows.

Case I. If l � k, then the entry ajl belongs to the l th column of Mik (see Fig. 561). Hence
the term involving ajl in this expansion is

(20) ajl � (cofactor of ajl in Mik) � ajl � (�1)(j�1)�lMikjl

where Mikjl is the minor of ajl in Mik. Since this minor is obtained from Mik by deleting
the row and column of ajl, it is obtained from D by deleting the ith and j th rows and the
kth and lth columns of D. We insert the expansions of the Mik into that of D. Then it follows
from (19) and (20) that the terms of the resulting representation of D are of the form

(21a) aikajl � (�1)bMikjl (l � k)

where

b � i � k � j � l � 1.

Case II. If l � k, the only difference is that then ajl belongs to the (l � 1)st column of
Mik, because Mik does not contain entries of the kth column of D, and k � l. This causes
an additional minus sign in (20), and, instead of (21a), we therefore obtain

(21b) �aikajl � (�1)bMikjl (l � k)

where b is the same as before.

A82 APP. 4 Additional Proofs

Case I Case II

ajl ajl

aik aikith row

jth row

lth
col.

kth
col.

kth
col.

lth
col.

Fig. 561. Cases I and II of the two expansions of D
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Second Expansion. We now expand D at first by the jth row. A typical term in this
expansion is

(22) ajlCjl � ajl � (�1) j�lMjl.

By the induction hypothesis we may expand the minor Mjl of ajl in D by its ith row, which
corresponds to the ith row of D, since j 
 i.

Case I. If k 
 l, the entry aik in that row belongs to the (k � 1)st column of Mjl, because
Mjl does not contain entries of the l th column of D, and l  k (see Fig. 561). Hence the
term involving aik in this expansion is

(23) aik � (cofactor of aik in Mjl) � aik � (�1)i�(k�1)Mikjl,

where the minor Mikjl of aik in Mjl is obtained by deleting the i th and j th rows and the
kth and lth columns of D [and is, therefore, identical with Mikjl in (20), so that our notation
is consistent]. We insert the expansions of the Mjl into that of D. It follows from (22) and
(23) that this yields a representation whose terms are identical with those given by (21a)
when l  k.

Case II. If k  l, then aik belongs to the k th column of Mjl, we obtain an additional minus
sign, and the result agrees with that characterized by (21b).

We have shown that the two expansions of D consist of the same terms, and this proves
our statement concerning rows.

The proof of the statement concerning columns is quite similar; if we expand D in
terms of two arbitrary columns, say, the k th and the l th, we find that the general term
involving ajlaik is exactly the same as before. This proves that not only all column
expansions of D yield the same value, but also that their common value is equal to the
common value of the row expansions of D.

This completes the proof and shows that our definition of an nth-order determinant is
unambiguous. �

Section 9.3, page 368

P R O O F  O F  F O R M U L A  ( 2 )

We prove that in right-handed Cartesian coordinates, the vector product

v � a � b � [a1, a2, a3] � [b1, b2, b3]

has the components

(2) v1 � a2b3 � a3b2, v2 � a3b1 � a1b3, v3 � a1b2 � a2b1.

We need only consider the case v � 0. Since v is perpendicular to both a and b, Theorem
1 in Sec. 9.2 gives a • v � 0 and b • v � 0; in components [see (2), Sec. 9.2],

(3)
a1v1 � a2v2 � a3v3 � 0

b1v1 � b2v2 � b3v3 � 0.
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Multiplying the first equation by b3, the last by a3, and subtracting, we obtain

(a3b1 � a1b3)v1 � (a2b3 � a3b2)v2.

Multiplying the first equation by b1, the last by a1, and subtracting, we obtain

(a1b2 � a2b1)v2 � (a3b1 � a1b3)v3.

We can easily verify that these two equations are satisfied by

(4) v1 � c(a2b3 � a3b2), v2 � c(a3b1 � a1b3), v3 � c(a1b2 � a2b1)

where c is a constant. The reader may verify, by inserting, that (4) also satisfies (3). Now
each of the equations in (3) represents a plane through the origin in v1v2v3-space. The
vectors a and b are normal vectors of these planes (see Example 6 in Sec. 9.2). Since 
v � 0, these vectors are not parallel and the two planes do not coincide. Hence their
intersection is a straight line L through the origin. Since (4) is a solution of (3) and, for
varying c, represents a straight line, we conclude that (4) represents L, and every solution
of (3) must be of the form (4). In particular, the components of v must be of this form,
where c is to be determined. From (4) we obtain

�v�2 � v1
2 � v2

2 � v3
2 � c2[(a2b3 � a3b2)2 � (a3b1 � a1b3)2 � (a1b2 � a2b1)2].

This can be written

�v�2 � c2[(a1
2 � a2

2 � a3
2)(b1

2 � b2
2 � b3

2) � (a1b1 � a2b2 � a3b3)2],

as can be verified by performing the indicated multiplications in both formulas and
comparing. Using (2) in Sec. 9.2, we thus have

�v�2 � c2[(a • a)(b • b) � (a • b)2].

By comparing this with formula (12) in Prob. 4 of Problem Set 9.3 we conclude that 
c � �1.

We show that c � �1. This can be done as follows.
If we change the lengths and directions of a and b continuously and so that at the end

a � i and b � j (Fig. 188a in Sec. 9.3), then v will change its length and direction
continuously, and at the end, v � i � j � k. Obviously we may effect the change so that
both a and b remain different from the zero vector and are not parallel at any instant.
Then v is never equal to the zero vector, and since the change is continuous and c can
only assume the values �1 or �1, it follows that at the end c must have the same value
as before. Now at the end a � i, b � j, v � k and, therefore, a1 � 1, b2 � 1, v3 � 1,
and the other components in (4) are zero. Hence from (4) we see that v3 � c � �1. This
proves Theorem 1.

For a left-handed coordinate system, i � j � �k (see Fig. 188b in Sec. 9.3), resulting
in c � �1. This proves the statement right after formula (2). �

A84 APP. 4 Additional Proofs
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Section 9.9, page 408

P R O O F  O F  T H E  I N V A R I A N C E  O F  T H E  C U R L
This proof will follow from two theorems (A and B), which we prove first.

T H E O R E M  A Transformation Law for Vector Components

For any vector v the components v1, v2, v3 and v1*, v2*, v3* in any two systems of
Cartesian coordinates x1, x2, x3 and x1*, x2*, x3*, respectively, are related by

(1)

and conversely

(2)

with coefficients

(3)

satisfying

(4) �
3

j�1

ckjcmj � �km (k, m � 1, 2, 3),

where the Kronecker delta2 is given by

�km � {

and i, j, k and i*, j*, k* denote the unit vectors in the positive x1-, x2-, x3- and
x1*-, x2*-, x3*-directions, respectively.

(k � m)

(k � m)

0

1

c13 � i* • k

c23 � j* • k

c33 � k*�k

c12 � i* • j

c22 � j* • j

c32 � k* • j

c11 � i* • i

c21 � j* • i

c31 � k* • i

v1 � c11v1* � c21v2* � c31v3*

v2 � c12v1* � c22v2* � c32v3*

v3 � c13v1* � c23v2* � c33v3*

v1* � c11v1 � c12v2 � c13v3

v2* � c21v1 � c22v2 � c23v3

v3* � c31v1 � c32v2 � c33v3,

2LEOPOLD KRONECKER (1823–1891), German mathematician at Berlin, who made important
contributions to algebra, group theory, and number theory.

We shall keep our discussion completely independent of Chap. 7, but readers familiar with matrices should
recognize that we are dealing with orthogonal transformations and matrices and that our present theorem
follows from Theorem 2 in Sec. 8.3.
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P R O O F The representation of v in the two systems are

(5) (a) v � v1i � v2 j � v3k (b) v � v1*i* � v2*j* � v3*k*.

Since i* • i* � 1, i* • j* � 0, i* • k* � 0, we get from (5b) simply i* • v � v1* and
from this and (5a)

v1* � i* • v � i* • v1i � i* • v2 j � i* • v3k � v1i* • i � v2i* • j � v3i* • k.

Because of (3), this is the first formula in (1), and the other two formulas are obtained
similarly, by considering j* • v and then k* • v. Formula (2) follows by the same idea,
taking i • v � v1 from (5a) and then from (5b) and (3)

v1 � i • v � v1*i • i* � v2*i • j* � v3*i • k* � c11v1* � c21v2* � c31v3*,

and similarly for the other two components.
We prove (4). We can write (1) and (2) briefly as

(6) (a) vj � �
3

m�1

cmjvm* , (b) vk* � �
3

j�1

ckjvj.

Substituting vj into vk*, we get

vk* � �
3

j�1

ckj �
3

m�1

cmjvm* � �
3

m�1

vm* (�
3

j�1

ckjcmj) ,

where k � 1, 2, 3. Taking k � 1, we have

v1* � v1* (�
3

j�1

c1 jc1j) � v2* (�
3

j�1

c1 jc2j) � v3* (�
3

j�1

c1 jc3j) .

For this to hold for every vector v, the first sum must be 1 and the other two sums 0. This
proves (4) with k � 1 for m � 1, 2, 3. Taking k � 2 and then k � 3, we obtain (4) with
k � 2 and 3, for m � 1, 2, 3. �

T H E O R E M  B Transformation Law for Cartesian Coordinates

The transformation of any Cartesian x1x2x3-coordinate system into any other
Cartesian x1*x2*x3*-coordinate system is of the form

(7) xm* � �
3

j�1

cmjxj � bm, m � 1, 2, 3,

with coefficients (3) and constants b1, b2, b3; conversely,

(8) xk � �
3

n�1

cnk xn* � b�k, k � 1, 2, 3.

A86 APP. 4 Additional Proofs
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Theorem B follows from Theorem A by noting that the most general transformation of a
Cartesian coordinate system into another such system may be decomposed into a
transformation of the type just considered and a translation; and under a translation,
corresponding coordinates differ merely by a constant.

P R O O F  O F  T H E  I N V A R I A N C E  O F  T H E  C U R L
We write again x1, x2, x3 instead of x, y, z, and similarly x1*, x2*, x3* for other Cartesian
coordinates, assuming that both systems are right-handed. Let a1, a2, a3 denote the
components of curl v in the x1x2x3-coordinates, as given by (1), Sec. 9.9, with

x � x1, y � x2, z � x3.

Similarly, let a1*, a2*, a3* denote the components of curl v in the x1*x2*x3*-coordinate system.
We prove that the length and direction of curl v are independent of the particular choice
of Cartesian coordinates, as asserted. We do this by showing that the components of curl
v satisfy the transformation law (2), which is characteristic of vector components. We
consider a1. We use (6a), and then the chain rule for functions of several variables (Sec.
9.6). This gives

a1 � � � �
3

m�1

(cm3 � cm2 )

� �
3

m�1

�
3

j�1

(cm3 � cm2 ) .

From this and (7) we obtain

a1 � �
3

m�1

�
3

j�1

(cm3cj2 � cm2cj3) 

� (c33c22 � c32c23) ( � ) � • • •

� (c33c22 � c32c23)a1* � (c13c32 � c12c33)a2* � (c23c12 � c22c13)a3*.

Note what we did. The double sum had 3 � 3 � 9 terms, 3 of which were zero (when 
m � j), and the remaining 6 terms we combined in pairs as we needed them in getting
a1*, a2*, a3*.

We now use (3), Lagrange’s identity (see Formula (15) in Team Project 24 in Problem  
Set 9.3) and k* � j* � �i* and k � j � �i. Then

c33c22 � c32c23 � (k* • k)(j* • j) � (k* • j)(j* • k)

� (k* � j*) • (k � j) � i* • i � c11, etc.

�v2*
	
�x3*

�v3*
	
�x2*

�vm*
	

�xj*

�xj*
	
�x3

�vm*
	
�xj*

�xj*
	
�x2

�vm*
	
�xj*

�vm*
	

�x3

�vm*
	

�x2

�v2
	
�x3

�v3
	
�x2
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Hence a1 � c11a1* � c21a2* � c31a3*. This is of the form of the first formula in (2) in
Theorem A, and the other two formulas of the form (2) are obtained similarly. This proves
the theorem for right-handed systems. If the x1x2x3-coordinates are left-handed, then 
k � j � �i, but then there is a minus sign in front of the determinant in (1), Sec. 9.9. �

Section 10.2, page 420

P R O O F  O F  T H E O R E M  1 ,  P A R T  ( b ) We prove that if

(1) �
C

F(r) • dr � �
C

(F1 dx � F2 dy � F3 dz)

with continuous F1, F2, F3 in a domain D is independent of path in D, then F � grad ƒ
in D for some ƒ; in components

(2
) F1 � , F2 � , F3 � .

We choose any fixed A: (x0, y0, z0) in D and any B: (x, y, z) in D and define ƒ by

(3) ƒ(x, y, z) � ƒ0 � �B

A
(F1 dx* � F2 dy* � F3 dz*)

with any constant ƒ0 and any path from A to B in D. Since A is fixed and we have
independence of path, the integral depends only on the coordinates x, y, z, so that (3)
defines a function ƒ(x, y, z) in D. We show that F � grad ƒ with this ƒ, beginning with
the first of the three relations (2
). Because of independence of path we may integrate
from A to B1: (x1, y, z) and then parallel to the x-axis along the segment B1B in Fig. 562
with B1 chosen so that the whole segment lies in D. Then

ƒ(x, y, z) � ƒ0 � �B1

A
(F1 dx* � F2 dy* � F3 dz*) � �B

B1

(F1 dx* � F2 dy* � F3 dz*).

We now take the partial derivative with respect to x on both sides. On the left we get
�ƒ/�x. We show that on the right we get F1. The derivative of the first integral is zero
because A: (x0, y0, z0) and B1: (x1, y, z) do not depend on x. We consider the second
integral. Since on the segment B1B, both y and z are constant, the terms F2 dy* and 

�ƒ
	
�z

�ƒ
	
�y

�ƒ
	
�x

z

y

x

B

B
1

A

Fig. 562. Proof of Theorem 1
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F3 dz* do not contribute to the derivative of the integral. The remaining part can be written
as a definite integral,

�B

B1

F1 dx* � �x

x1

F1(x*, y, z) dx*.

Hence its partial derivative with respect to x is F1(x, y, z), and the first of the relations
(2
) is proved. The other two formulas in (2
) follow by the same argument. �

Section 11.5, page 500

T H E O R E M Reality of Eigenvalues

If p, q, r, and p
 in the Sturm–Liouville equation (1) of Sec. 11.5 are real-valued and
continuous on the interval a � x � b and r(x) � 0 throughout that interval (or 
r(x)  0 throughout that interval), then all the eigenvalues of the Sturm–Liouville
problem (1), (2), Sec. 11.5, are real.

P R O O F Let � � � � i� be an eigenvalue of the problem and let

y(x) � u(x) � iv(x)

be a corresponding eigenfunction; here �, �, u, and v are real. Substituting this into (1),
Sec. 11.5, we have

(pu
 � ipv
)
 � (q � �r � i�r)(u � iv) � 0.

This complex equation is equivalent to the following pair of equations for the real and
the imaginary parts:

Multiplying the first equation by v, the second by �u and adding, we get

��(u2 � v2)r � u(pv
)
 � v(pu
)


� [(pv
)u � (pu
)v]
.

The expression in brackets is continuous on a � x � b, for reasons similar to those in
the proof of Theorem 1, Sec. 11.5. Integrating over x from a to b, we thus obtain

�� �b

a
(u2 � v2)r dx � [p(uv
 � u
v)]b

a

.

Because of the boundary conditions, the right side is zero; this is as in that proof. Since
y is an eigenfunction, u2 � v2 � 0. Since y and r are continuous and r � 0 (or r  0)
on the interval a � x � b, the integral on the left is not zero. Hence, � � 0, which means
that � � � is real. This completes the proof. �

(pu
)
 � (q � �r)u � �rv � 0

(pv
)
 � (q � �r)v � �ru � 0.

bapp04b.qxd  11/3/10  8:39 PM  Page A89



A90 APP. 4 Additional Proofs

Section 13.4, page 627

P R O O F  O F  T H E O R E M  2 Cauchy–Riemann Equations
We prove that Cauchy–Riemann equations

(1) ux � vy, uy � �vx

are sufficient for a complex function ƒ(z) � u(x, y) � iv(x, y) to be analytic; precisely, if
the real part u and the imaginary part v of ƒ(z) satisfy (1) in a domain D in the complex
plane and if the partial derivatives in (1) are continuous in D, then ƒ(z) is analytic in D.

In this proof we write �z � �x � i�y and �ƒ � ƒ(z � �z) � ƒ(z). The idea of proof
is as follows.

(a) We express �ƒ in terms of first partial derivatives of u and v, by applying the mean
value theorem of Sec. 9.6.

(b) We get rid of partial derivatives with respect to y by applying the Cauchy–Riemann
equations.

(c) We let �z approach zero and show that then �ƒ/�z, as obtained, approaches a limit,
which is equal to ux � ivx, the right side of (4) in Sec. 13.4, regardless of the way of
approach to zero.

(a) Let P: (x, y) be any fixed point in D. Since D is a domain, it contains a neighborhood
of P. We can choose a point Q: (x � �x, y � �y) in this neighborhood such that the
straight-line segment PQ is in D. Because of our continuity assumptions we may apply
the mean value theorem in Sec. 9.6. This yields

where M1 and M2 (� M1 in general!) are suitable points on that segment. The first line
is Re �ƒ and the second is Im �ƒ, so that

�ƒ � (�x)ux(M1) � (�y)uy(M1) � i [(�x)vx(M2) � (�y)vy(M2)].

(b) uy � �vx and vy � ux by the Cauchy–Riemann equations, so that

�ƒ � (�x)ux(M1) � (�y)vx(M1) � i [(�x)vx (M2) � (�y)ux (M2)].

Also �z � �x � i�y, so that we can write �x � �z � i�y in the first term and 
�y � (�z � �x) /i � �i (�z � �x) in the second term. This gives

�ƒ � (�z � i�y)ux(M1) � i (�z � �x)vx(M1) � i [(�x)vx(M2) � (�y)ux(M2)].

By performing the multiplications and reordering we obtain

�ƒ � (�z)ux(M1) � i�y{ux(M1) � ux(M2)}

� i[(�z)vx(M1) � �x{vx(M1) � vx(M2)}].

u(x � �x, y � �y) � u(x, y) � (�x)ux(M1) � (�y)uy(M1)

v(x � �x, y � �y) � v(x, y) � (�x)vx(M2) � (�y)vy(M2)
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Division by �z now yields

(A) � ux(M1) � ivx(M1) � {ux(M1) � ux(M2)} � {vx(M1) � vx(M2)}.

(c) We finally let �z approach zero and note that ��y/�z� � 1 and ��x/�z� � 1 in (A).
Then Q: (x � �x, y � �y) approaches P: (x, y), so that M1 and M2 must approach P.
Also, since the partial derivatives in (A) are assumed to be continuous, they approach
their value at P. In particular, the differences in the braces {• • •} in (A) approach zero.
Hence the limit of the right side of (A) exists and is independent of the path along which
�z * 0. We see that this limit equals the right side of (4) in Sec. 13.4. This means that
ƒ(z) is analytic at every point z in D, and the proof is complete. �

Section 14.2, pages 653–654

G O U R S A T ’ S  P R O O F  O F  C A U C H Y ’ S  I N T E G R A L  T H E O R E M Goursat proved Cauchy’s
integral theorem without assuming that ƒ�(z) is continuous, as follows.

We start with the case when C is the boundary of a triangle. We orient C
counterclockwise. By joining the midpoints of the sides we subdivide the triangle into
four congruent triangles (Fig. 563). Let CI, CII, CIII, CIV denote their boundaries. We
claim that (see Fig. 563).

(1) �
C

ƒ dz � �
CI

ƒ dz � �
CII

ƒ dz � �
CIII

ƒ dz � �
CIV

ƒ dz.

Indeed, on the right we integrate along each of the three segments of subdivision in both
possible directions (Fig. 563), so that the corresponding integrals cancel out in pairs, and
the sum of the integrals on the right equals the integral on the left. We now pick an integral
on the right that is biggest in absolute value and call its path C1. Then, by the triangle
inequality (Sec. 13.2),

j�
C

ƒ dzj � j�
CI

ƒ dzj � j�
CII

ƒ dzj � j�
CIII

ƒ dzj � j�
CIV

ƒ dzj � 4 j�
C1

ƒ dzj .

We now subdivide the triangle bounded by C1 as before and select a triangle of
subdivision with boundary C2 for which

j�
C1

ƒ dzj � 4 j�
C2

ƒ dzj . Then j�
C

ƒ dzj � 42 j�
C2

ƒ dzj .

i�x
�
�z

i�y
�
�z

�ƒ
�
�z

Fig. 563. Proof of Cauchy’s integral theorem
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Continuing in this fashion, we obtain a sequence of triangles T1, T2, • • • with boundaries
C1, C2, • • • that are similar and such that Tn lies in Tm when n � m, and

(2) j�
C

ƒ dzj � 4n j�
Cn

ƒ dzj , n � 1, 2, • • • .

Let z0 be the point that belongs to all these triangles. Since ƒ is differentiable at z � z0,
the derivative ƒ
(z0) exists. Let

(3) h(z) � � ƒ
(z0).

Solving this algebraically for ƒ(z) we have

ƒ(z) � ƒ(z0) � (z � z0)ƒ
(z0) � h(z)(z � z0).

Integrating this over the boundary Cn of the triangle Tn gives

�
Cn

ƒ(z) dz � �
Cn

ƒ(z0) dz � �
Cn

(z � z0)ƒ
(z0) dz � �
Cn

h(z)(z � z0)dz.

Since ƒ(z0) and ƒ
(z0) are constants and Cn is a closed path, the first two integrals on the
right are zero, as follows from Cauchy’s proof, which is applicable because the integrands
do have continuous derivatives (0 and const, respectively). We thus have

�
Cn

ƒ(z) dz � �
Cn

h(z)(z � z0) dz.

Since ƒ
(z0) is the limit of the difference quotient in (3), for given � � 0 we can find a
� � 0 such that

(4) �h(z)�  � when �z � z0�  �.

We may now take n so large that the triangle Tn lies in the disk �z � z0�  �. Let Ln be
the length of Cn. Then �z � z0�  Ln for all z on Cn and z0 in Tn. From this and (4) we
have �h(z)(z � z0)�  �Ln. The ML-inequality in Sec. 14.1 now gives

(5) j�
Cn

ƒ(z) dzj � j�
Cn

h(z)(z � z0) dzj � � Ln � Ln � � Ln
2.

Now denote the length of C by L. Then the path C1 has the length L1 � L/2, the path C2

has the length L2 � L1/2 � L/4, etc., and Cn has the length Ln � L/2n. Hence 
Ln

2 � L2/4n. From (2) and (5) we thus obtain

j�
C

ƒ dzj � 4n j�
Cn

ƒ dzj � 4n� Ln
2 � 4n� � � L2.

By choosing � (� 0) sufficiently small we can make the expression on the right as small
as we please, while the expression on the left is the definite value of an integral.
Consequently, this value must be zero, and the proof is complete.

L2

	
4n

ƒ(z) � ƒ(z0)
		

z � z0
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The proof for the case in which C is the boundary of a polygon follows from the previous
proof by subdividing the polygon into triangles (Fig. 564). The integral corresponding to
each such triangle is zero. The sum of these integrals is equal to the integral over C,
because we integrate along each segment of subdivision in both directions, the
corresponding integrals cancel out in pairs, and we are left with the integral over C.

The case of a general simple closed path C can be reduced to the preceding one by
inscribing in C a closed polygon P of chords, which approximates C “sufficiently
accurately,” and it can be shown that there is a polygon P such that the integral over P
differs from that over C by less than any preassigned positive real number 	̃, no matter
how small. The details of this proof are somewhat involved and can be found in Ref. [D6]
listed in App. 1. �

Fig. 564. Proof of Cauchy’s integral theorem for a polygon

Section 15.1, page 674

P R O O F  O F  T H E O R E M  4 Cauchy’s Convergence Principle for Series

(a) In this proof we need two concepts and a theorem, which we list first.

1. A bounded sequence s1, s2, • • • is a sequence whose terms all lie in a disk of
(sufficiently large, finite) radius K with center at the origin; thus �sn� 
 K for all n.

2. A limit point a of a sequence s1, s2, • • • is a point such that, given an 	 � 0, there
are infinitely many terms satisfying �sn � a� 
 	. (Note that this does not imply
convergence, since there may still be infinitely many terms that do not lie within that
circle of radius 	 and center a.)

Example: 1_
4, 3_

4, 1_
8, 7_

8, _116, _15
16, • • • has the limit points 0 and 1 and diverges.

3. A bounded sequence in the complex plane has at least one limit point.
(Bolzano–Weierstrass theorem; proof below. Recall that “sequence” always means infinite
sequence.)

(b) We now turn to the actual proof that z1 � z2 � • • • converges if and only if, for
every 	 � 0, we can find an N such that

(1) �zn�1 � • • • � zn�p� 
 	 for every n � N and p � 1, 2, • • • .

Here, by the definition of partial sums,

sn�p � sn � zn�1 � • • • � zn�p.

Writing n � p � r, we see from this that (1) is equivalent to

(1*) �sr � sn� 
 	 for all r � N and n � N.
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Suppose that s1, s2, • • • converges. Denote its limit by s. Then for a given � � 0 we can
find an N such that

�sn � s�  for every n � N.

Hence, if r � N and n � N, then by the triangle inequality (Sec. 13.2),

�sr � sn� � �(sr � s) � (sn � s)� � �sr � s� � �sn � s�  � � �,

that is, (1*) holds.

(c) Conversely, assume that s1, s2, • • • satisfies (1*). We first prove that then the
sequence must be bounded. Indeed, choose a fixed � and a fixed n � n0 � N in (1*).
Then (1*) implies that all sr with r � N lie in the disk of radius � and center sn0

and only
finitely many terms s1, • • • , sN may not lie in this disk. Clearly, we can now find a circle
so large that this disk and these finitely many terms all lie within this new circle. Hence
the sequence is bounded. By the Bolzano–Weierstrass theorem, it has at least one limit
point, call it s.

We now show that the sequence is convergent with the limit s. Let � � 0 be given.
Then there is an N* such that �sr � sn�  � /2 for all r � N* and n � N*, by (1*). Also,
by the definition of a limit point, �sn � s�  � /2 for infinitely many n, so that we can find
and fix an n � N* such that �sn � s�  � /2. Together, for every r � N*,

�sr � s� � �(sr � sn) � (sn � s)� � �sr � sn� � �sn � s�  � � �;

that is, the sequence s1, s2, • • • is convergent with the limit s. �

T H E O R E M Bolzano–Weierstrass Theorem3

A bounded infinite sequence z1, z2, z3, • • • in the complex plane has at least one
limit point.

P R O O F It is obvious that we need both conditions: a finite sequence cannot have a limit point,
and the sequence 1, 2, 3, • • • , which is infinite but not bounded, has no limit point. To
prove the theorem, consider a bounded infinite sequence z1, z2, • • • and let K be such that
�zn�  K for all n. If only finitely many values of the zn are different, then, since the
sequence is infinite, some number z must occur infinitely many times in the sequence,
and, by definition, this number is a limit point of the sequence.

We may now turn to the case when the sequence contains infinitely many different
terms. We draw a large square Q0 that contains all zn. We subdivide Q0 into four congruent
squares, which we number 1, 2, 3, 4. Clearly, at least one of these squares (each taken
with its complete boundary) must contain infinitely many terms of the sequence. The
square of this type with the lowest number (1, 2, 3, or 4) will be denoted by Q1. This is

�
	
2

�
	
2

�
	
2

�
	
2

�
	
2

3BERNARD BOLZANO (1781–1848), Austrian mathematician and professor of religious studies, was a
pioneer in the study of point sets, the foundation of analysis, and mathematical logic.

For Weierstrass, see Sec. 15.5.

bapp04b.qxd  11/3/10  8:39 PM  Page A94



APP. 4 Additional Proofs A95

the first step. In the next step we subdivide Q1 into four congruent squares and select a
square Q2 by the same rule, and so on. This yields an infinite sequence of squares Q0,
Q1, Q2, • • • , Qn, • • • with the property that the side of Qn approaches zero as n approaches
infinity, and Qm contains all Qn with n � m. It is not difficult to see that the number
which belongs to all these squares,4 call it z � a, is a limit point of the sequence. In fact,
given an � � 0, we can choose an N so large that the side of the square QN is less than
� and, since QN contains infinitely many zn, we have �zn � a�  � for infinitely many n.
This completes the proof. �

Section 15.3, pages 688–689

P A R T  ( b )  O F  T H E  P R O O F  O F  T H E O R E M  5
We have to show that

�
`

n�2

an [ � nzn�1]

� �
`

n�2

an �z[(z � �z)n�2 � 2z (z � �z)n�3 � • • • � (n � 1)zn�2],

thus,

� nzn�1

� �z[(z � �z)n�2 � 2z (z � �z)n�3 � • • • � (n � 1)zn�2].

If we set z � �z � b and z � a, thus �z � b � a, this becomes simply

(7a) � nan�1 � (b � a)An (n � 2, 3, • • •),

where An is the expression in the brackets on the right,

(7b) An � bn�2 � 2abn�3 � 3a2bn�4 � • • • � (n � 1)an�2;

thus, A2 � 1, A3 � b � 2a, etc. We prove (7) by induction. When n � 2, then (7) holds,
since then

� 2a � � 2a � b � a � (b � a)A2.

Assuming that (7) holds for n � k, we show that it holds for n � k � 1. By adding and
subtracting a term in the numerator and then dividing we first obtain

� � b � ak.
bk � ak

	
b � a

bk�1 � bak � bak � ak�1

			
b � a

bk�1 � ak�1

		
b � a

(b � a)(b � a)
		

b � a

b2 � a2

	
b � a

bn � an

	
b � a

(z � �z)n � zn

		
�z

(z � �z)n � zn

		
�z

4The fact that such a unique number z � a exists seems to be obvious, but it actually follows from an axiom
of the real number system, the so-called Cantor–Dedekind axiom: see footnote 3 in App. A3.3.
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By the induction hypothesis, the right side equals b[(b � a)Ak � kak�1] � ak. Direct
calculation shows that this is equal to

(b � a){bAk � kak�1} � akak�1 � ak.

From (7b) with n � k we see that the expression in the braces {• • •} equals

bk�1 � 2abk�2 � • • • � (k � 1)bak�2 � kak�1 � Ak�1.

Hence our result is

� (b � a)Ak�1 � (k � 1)ak.

Taking the last term to the left, we obtain (7) with n � k � 1. This proves (7) for any
integer n � 2 and completes the proof. �

Section 18.2, page 763

A N O T H E R  P R O O F  O F  T H E O R E M  1 without the use of a harmonic conjugate
We show that if w � u � iv � ƒ(z) is analytic and maps a domain D conformally onto
a domain D* and �*(u, v) is harmonic in D*, then

(1) �(x, y) � �*(u(x, y), v(x, y))

is harmonic in D, that is, �2� � 0 in D. We make no use of a harmonic conjugate of
�*, but use straightforward differentiation. By the chain rule,

�x � �u* ux � �v* vx.

We apply the chain rule again, underscoring the terms that will drop out when we form
�2�:

�xx � �*u———
uxx—

� (�*uuux � �*uv————
vx)ux

� �*u———
vxx—

� (�*vu————
ux � �*vvvx)vx.

�yy is the same with each x replaced by y. We form the sum �2�. In it, �*vu � �*uv is
multiplied by

uxvx � uyvy

which is 0 by the Cauchy–Riemann equations. Also �2u � 0 and �2v � 0. There remains

�2� � �*uu(ux
2 � uy

2) � �*vv(vx
2 � vy

2).

By the Cauchy–Riemann equations this becomes

�2� � (�*uu � �*vv)(ux
2 � vx

2)

and is 0 since �* is harmonic. �

bk�1 � ak�1

		
b � a

A96 APP. 4 Additional Proofs
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A97

A P P E N D I X 5
Tables

For Tables of Laplace Transforms see Secs. 6.8 and 6.9.
For Tables of Fourier Transforms see Sec. 11.10.
If you have a Computer Algebra System (CAS), you may not need the present tables,
but you may still find them convenient from time to time.

Table A1 Bessel Functions
For more extensive tables see Ref. [GenRef1] in App. 1.

x J0(x) J1(x) x J0(x) J1(x) x J0(x) J1(x)

0.0 1.0000 0.0000 3.0 �0.2601 0.3391 6.0 0.1506 �0.2767
0.1 0.9975 0.0499 3.1 �0.2921 0.3009 6.1 0.1773 �0.2559
0.2 0.9900 0.0995 3.2 �0.3202 0.2613 6.2 0.2017 �0.2329
0.3 0.9776 0.1483 3.3 �0.3443 0.2207 6.3 0.2238 �0.2081
0.4 0.9604 0.1960 3.4 �0.3643 0.1792 6.4 0.2433 �0.1816

0.5 0.9385 0.2423 3.5 �0.3801 0.1374 6.5 0.2601 �0.1538
0.6 0.9120 0.2867 3.6 �0.3918 0.0955 6.6 0.2740 �0.1250
0.7 0.8812 0.3290 3.7 �0.3992 0.0538 6.7 0.2851 �0.0953
0.8 0.8463 0.3688 3.8 �0.4026 0.0128 6.8 0.2931 �0.0652
0.9 0.8075 0.4059 3.9 �0.4018 �0.0272 6.9 0.2981 �0.0349

1.0 0.7652 0.4401 4.0 �0.3971 �0.0660 7.0 0.3001 �0.0047
1.1 0.7196 0.4709 4.1 �0.3887 �0.1033 7.1 0.2991 0.0252
1.2 0.6711 0.4983 4.2 �0.3766 �0.1386 7.2 0.2951 0.0543
1.3 0.6201 0.5220 4.3 �0.3610 �0.1719 7.3 0.2882 0.0826
1.4 0.5669 0.5419 4.4 �0.3423 �0.2028 7.4 0.2786 0.1096

1.5 0.5118 0.5579 4.5 �0.3205 �0.2311 7.5 0.2663 0.1352
1.6 0.4554 0.5699 4.6 �0.2961 �0.2566 7.6 0.2516 0.1592
1.7 0.3980 0.5778 4.7 �0.2693 �0.2791 7.7 0.2346 0.1813
1.8 0.3400 0.5815 4.8 �0.2404 �0.2985 7.8 0.2154 0.2014
1.9 0.2818 0.5812 4.9 �0.2097 �0.3147 7.9 0.1944 0.2192

2.0 0.2239 0.5767 5.0 �0.1776 �0.3276 8.0 0.1717 0.2346
2.1 0.1666 0.5683 5.1 �0.1443 �0.3371 8.1 0.1475 0.2476
2.2 0.1104 0.5560 5.2 �0.1103 �0.3432 8.2 0.1222 0.2580
2.3 0.0555 0.5399 5.3 �0.0758 �0.3460 8.3 0.0960 0.2657
2.4 0.0025 0.5202 5.4 �0.0412 �0.3453 8.4 0.0692 0.2708

2.5 �0.0484 0.4971 5.5 �0.0068 �0.3414 8.5 0.0419 0.2731
2.6 �0.0968 0.4708 5.6 0.0270 �0.3343 8.6 0.0146 0.2728
2.7 �0.1424 0.4416 5.7 0.0599 �0.3241 8.7 �0.0125 0.2697
2.8 �0.1850 0.4097 5.8 0.0917 �0.3110 8.8 �0.0392 0.2641
2.9 �0.2243 0.3754 5.9 0.1220 �0.2951 8.9 �0.0653 0.2559

J0(x) � 0 for x � 2.40483, 5.52008, 8.65373, 11.7915, 14.9309, 18.0711, 21.2116, 24.3525, 27.4935, 30.6346

J1(x) � 0 for x � 3.83171, 7.01559, 10.1735, 13.3237, 16.4706, 19.6159, 22.7601, 25.9037, 29.0468, 32.1897
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Table A1 (continued)

x Y0(x) Y1(x) x Y0(x) Y1(x) x Y0(x) Y1(x)

0.0 (��) (��) 2.5 0.498 0.146 5.0 �0.309 0.148
0.5 �0.445 �1.471 3.0 0.377 0.325 5.5 �0.339 �0.024
1.0 0.088 �0.781 3.5 0.189 0.410 6.0 �0.288 �0.175
1.5 0.382 �0.412 4.0 �0.017 0.398 6.5 �0.173 �0.274
2.0 0.510 �0.107 4.5 �0.195 0.301 7.0 �0.026 �0.303

Table A2 Gamma Function [see (24) in App. A3.1]

� �(�) � �(�) � �(�) � �(�) � �(�)

1.00 1.000 000 1.20 0.918 169 1.40 0.887 264 1.60 0.893 515 1.80 0.931 384

1.02 0.988 844 1.22 0.913 106 1.42 0.886 356 1.62 0.895 924 1.82 0.936 845
1.04 0.978 438 1.24 0.908 521 1.44 0.885 805 1.64 0.898 642 1.84 0.942 612
1.06 0.968 744 1.26 0.904 397 1.46 0.885 604 1.66 0.901 668 1.86 0.948 687
1.08 0.959 725 1.28 0.900 718 1.48 0.885 747 1.68 0.905 001 1.88 0.955 071

1.10 0.951 351 1.30 0.897 471 1.50 0.886 227 1.70 0.908 639 1.90 0.961 766

1.12 0.943 590 1.32 0.894 640 1.52 0.887 039 1.72 0.912 581 1.92 0.968 774
1.14 0.936 416 1.34 0.892 216 1.54 0.888 178 1.74 0.916 826 1.94 0.976 099
1.16 0.929 803 1.36 0.890 185 1.56 0.889 639 1.76 0.921 375 1.96 0.983 743
1.18 0.923 728 1.38 0.888 537 1.58 0.891 420 1.78 0.926 227 1.98 0.991 708

1.20 0.918 169 1.40 0.887 264 1.60 0.893 515 1.80 0.931 384 2.00 1.000 000

Table A3 Factorial Function and Its Logarithm with Base 10

n n! log (n!) n n! log (n!) n n! log (n!)

1 1 0.000 000 6 720 2.857 332 11 39 916 800 7.601 156
2 2 0.301 030 7 5 040 3.702 431 12 479 001 600 8.680 337
3 6 0.778 151 8 40 320 4.605 521 13 6 227 020 800 9.794 280
4 24 1.380 211 9 362 880 5.559 763 14 87 178 291 200 10.940 408
5 120 2.079 181 10 3 628 800 6.559 763 15 1 307 674 368 000 12.116 500

Table A4 Error Function, Sine and Cosine Integrals [see (35), (40), (42) in App. A3.1]

x erf x Si(x) ci(x) x erf x Si(x) ci(x)

0.0 0.0000 0.0000 � 2.0 0.9953 1.6054 �0.4230

0.2 0.2227 0.1996 1.0422 2.2 0.9981 1.6876 �0.3751
0.4 0.4284 0.3965 0.3788 2.4 0.9993 1.7525 �0.3173
0.6 0.6039 0.5881 0.0223 2.6 0.9998 1.8004 �0.2533
0.8 0.7421 0.7721 �0.1983 2.8 0.9999 1.8321 �0.1865
1.0 0.8427 0.9461 �0.3374 3.0 1.0000 1.8487 �0.1196

1.2 0.9103 1.1080 �0.4205 3.2 1.0000 1.8514 �0.0553
1.4 0.9523 1.2562 �0.4620 3.4 1.0000 1.8419 0.0045
1.6 0.9763 1.3892 �0.4717 3.6 1.0000 1.8219 0.0580
1.8 0.9891 1.5058 �0.4568 3.8 1.0000 1.7934 0.1038
2.0 0.9953 1.6054 �0.4230 4.0 1.0000 1.7582 0.1410
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Table A5 Binomial Distribution
Probability function ƒ(x) [see (2), Sec. 24.7] and distribution function F(x)

p � 0.1 p � 0.2 p � 0.3 p � 0.4 p � 0.5
n x ƒ(x) F(x) ƒ(x) F(x) ƒ(x) F(x) ƒ(x) F(x) ƒ(x) F(x)

0. 0. 0. 0. 0.
1 0 9000 0.9000 8000 0.8000 7000 0.7000 6000 0.6000 5000 0.5000

1 1000 1.0000 2000 1.0000 3000 1.0000 4000 1.0000 5000 1.0000

0 8100 0.8100 6400 0.6400 4900 0.4900 3600 0.3600 2500 0.2500
2 1 1800 0.9900 3200 0.9600 4200 0.9100 4800 0.8400 5000 0.7500

2 0100 1.0000 0400 1.0000 0900 1.0000 1600 1.0000 2500 1.0000

0 7290 0.7290 5120 0.5120 3430 0.3430 2160 0.2160 1250 0.1250
1 2430 0.9720 3840 0.8960 4410 0.7840 4320 0.6480 3750 0.5000

3
2 0270 0.9990 0960 0.9920 1890 0.9730 2880 0.9360 3750 0.8750
3 0010 1.0000 0080 1.0000 0270 1.0000 0640 1.0000 1250 1.0000

0 6561 0.6561 4096 0.4096 2401 0.2401 1296 0.1296 0625 0.0625
1 2916 0.9477 4096 0.8192 4116 0.6517 3456 0.4752 2500 0.3125

4 2 0486 0.9963 1536 0.9728 2646 0.9163 3456 0.8208 3750 0.6875
3 0036 0.9999 0256 0.9984 0756 0.9919 1536 0.9744 2500 0.9375
4 0001 1.0000 0016 1.0000 0081 1.0000 0256 1.0000 0625 1.0000

0 5905 0.5905 3277 0.3277 1681 0.1681 0778 0.0778 0313 0.0313
1 3281 0.9185 4096 0.7373 3602 0.5282 2592 0.3370 1563 0.1875
2 0729 0.9914 2048 0.9421 3087 0.8369 3456 0.6826 3125 0.5000

5
3 0081 0.9995 0512 0.9933 1323 0.9692 2304 0.9130 3125 0.8125
4 0005 1.0000 0064 0.9997 0284 0.9976 0768 0.9898 1563 0.9688
5 0000 1.0000 0003 1.0000 0024 1.0000 0102 1.0000 0313 1.0000

0 5314 0.5314 2621 0.2621 1176 0.1176 0467 0.0467 0156 0.0156
1 3543 0.8857 3932 0.6554 3025 0.4202 1866 0.2333 0938 0.1094
2 0984 0.9841 2458 0.9011 3241 0.7443 3110 0.5443 2344 0.3438

6 3 0146 0.9987 0819 0.9830 1852 0.9295 2765 0.8208 3125 0.6563
4 0012 0.9999 0154 0.9984 0595 0.9891 1382 0.9590 2344 0.8906
5 0001 1.0000 0015 0.9999 0102 0.9993 0369 0.9959 0938 0.9844
6 0000 1.0000 0001 1.0000 0007 1.0000 0041 1.0000 0156 1.0000

0 4783 0.4783 2097 0.2097 0824 0.0824 0280 0.0280 0078 0.0078
1 3720 0.8503 3670 0.5767 2471 0.3294 1306 0.1586 0547 0.0625
2 1240 0.9743 2753 0.8520 3177 0.6471 2613 0.4199 1641 0.2266
3 0230 0.9973 1147 0.9667 2269 0.8740 2903 0.7102 2734 0.5000

7
4 0026 0.9998 0287 0.9953 0972 0.9712 1935 0.9037 2734 0.7734
5 0002 1.0000 0043 0.9996 0250 0.9962 0774 0.9812 1641 0.9375
6 0000 1.0000 0004 1.0000 0036 0.9998 0172 0.9984 0547 0.9922
7 0000 1.0000 0000 1.0000 0002 1.0000 0016 1.0000 0078 1.0000

0 4305 0.4305 1678 0.1678 0576 0.0576 0168 0.0168 0039 0.0039
1 3826 0.8131 3355 0.5033 1977 0.2553 0896 0.1064 0313 0.0352
2 1488 0.9619 2936 0.7969 2965 0.5518 2090 0.3154 1094 0.1445
3 0331 0.9950 1468 0.9437 2541 0.8059 2787 0.5941 2188 0.3633

8 4 0046 0.9996 0459 0.9896 1361 0.9420 2322 0.8263 2734 0.6367
5 0004 1.0000 0092 0.9988 0467 0.9887 1239 0.9502 2188 0.8555
6 0000 1.0000 0011 0.9999 0100 0.9987 0413 0.9915 1094 0.9648
7 0000 1.0000 0001 1.0000 0012 0.9999 0079 0.9993 0313 0.9961
8 0000 1.0000 0000 1.0000 0001 1.0000 0007 1.0000 0039 1.0000
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Table A6 Poisson Distribution
Probability function ƒ(x) [see (5), Sec. 24.7] and distribution function F(x)

� � 0.1 � � 0.2 � � 0.3 � � 0.4 � � 0.5
x ƒ(x) F(x) ƒ(x) F(x) ƒ(x) F(x) ƒ(x) F(x) ƒ(x) F(x)

0. 0. 0. 0. 0.
0 9048 0.9048 8187 0.8187 7408 0.7408 6703 0.6703 6065 0.6065

1 0905 0.9953 1637 0.9825 2222 0.9631 2681 0.9384 3033 0.9098
2 0045 0.9998 0164 0.9989 0333 0.9964 0536 0.9921 0758 0.9856
3 0002 1.0000 0011 0.9999 0033 0.9997 0072 0.9992 0126 0.9982
4 0000 1.0000 0001 1.0000 0003 1.0000 0007 0.9999 0016 0.9998
5 0001 1.0000 0002 1.0000

� � 0.6 � � 0.7 � � 0.8 � � 0.9 � � 1
x ƒ(x) F(x) ƒ(x) F(x) ƒ(x) F(x) ƒ(x) F(x) ƒ(x) F(x)

0. 0. 0. 0. 0.
0 5488 0.5488 4966 0.4966 4493 0.4493 4066 0.4066 3679 0.3679

1 3293 0.8781 3476 0.8442 3595 0.8088 3659 0.7725 3679 0.7358
2 0988 0.9769 1217 0.9659 1438 0.9526 1647 0.9371 1839 0.9197
3 0198 0.9966 0284 0.9942 0383 0.9909 0494 0.9865 0613 0.9810
4 0030 0.9996 0050 0.9992 0077 0.9986 0111 0.9977 0153 0.9963
5 0004 1.0000 0007 0.9999 0012 0.9998 0020 0.9997 0031 0.9994

6 0001 1.0000 0002 1.0000 0003 1.0000 0005 0.9999
7 0001 1.0000

� � 1.5 � � 2 � � 3 � � 4 � � 5
x ƒ(x) F(x) ƒ(x) F(x) ƒ(x) F(x) ƒ(x) F(x) ƒ(x) F(x)

0. 0. 0. 0. 0.
0 2231 0.2231 1353 0.1353 0498 0.0498 0183 0.0183 0067 0.0067

1 3347 0.5578 2707 0.4060 1494 0.1991 0733 0.0916 0337 0.0404
2 2510 0.8088 2707 0.6767 2240 0.4232 1465 0.2381 0842 0.1247
3 1255 0.9344 1804 0.8571 2240 0.6472 1954 0.4335 1404 0.2650
4 0471 0.9814 0902 0.9473 1680 0.8153 1954 0.6288 1755 0.4405
5 0141 0.9955 0361 0.9834 1008 0.9161 1563 0.7851 1755 0.6160

6 0035 0.9991 0120 0.9955 0504 0.9665 1042 0.8893 1462 0.7622
7 0008 0.9998 0034 0.9989 0216 0.9881 0595 0.9489 1044 0.8666
8 0001 1.0000 0009 0.9998 0081 0.9962 0298 0.9786 0653 0.9319
9 0002 1.0000 0027 0.9989 0132 0.9919 0363 0.9682

10 0008 0.9997 0053 0.9972 0181 0.9863

11 0002 0.9999 0019 0.9991 0082 0.9945
12 0001 1.0000 0006 0.9997 0034 0.9980
13 0002 0.9999 0013 0.9993
14 0001 1.0000 0005 0.9998
15 0002 0.9999

16 0000 1.0000
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Table A7 Normal Distribution
Values of the distribution function �(z) [see (3), Sec. 24.8]. �(�z) � 1 � �(z)

z �(z) z �(z) z �(z) z �(z) z �(z) z �(z)

0. 0. 0. 0. 0. 0.
0.01 5040 0.51 6950 1.01 8438 1.51 9345 2.01 9778 2.51 9940
0.02 5080 0.52 6985 1.02 8461 1.52 9357 2.02 9783 2.52 9941
0.03 5120 0.53 7019 1.03 8485 1.53 9370 2.03 9788 2.53 9943
0.04 5160 0.54 7054 1.04 8508 1.54 9382 2.04 9793 2.54 9945
0.05 5199 0.55 7088 1.05 8531 1.55 9394 2.05 9798 2.55 9946

0.06 5239 0.56 7123 1.06 8554 1.56 9406 2.06 9803 2.56 9948
0.07 5279 0.57 7157 1.07 8577 1.57 9418 2.07 9808 2.57 9949
0.08 5319 0.58 7190 1.08 8599 1.58 9429 2.08 9812 2.58 9951
0.09 5359 0.59 7224 1.09 8621 1.59 9441 2.09 9817 2.59 9952
0.10 5398 0.60 7257 1.10 8643 1.60 9452 2.10 9821 2.60 9953

0.11 5438 0.61 7291 1.11 8665 1.61 9463 2.11 9826 2.61 9955
0.12 5478 0.62 7324 1.12 8686 1.62 9474 2.12 9830 2.62 9956
0.13 5517 0.63 7357 1.13 8708 1.63 9484 2.13 9834 2.63 9957
0.14 5557 0.64 7389 1.14 8729 1.64 9495 2.14 9838 2.64 9959
0.15 5596 0.65 7422 1.15 8749 1.65 9505 2.15 9842 2.65 9960

0.16 5636 0.66 7454 1.16 8770 1.66 9515 2.16 9846 2.66 9961
0.17 5675 0.67 7486 1.17 8790 1.67 9525 2.17 9850 2.67 9962
0.18 5714 0.68 7517 1.18 8810 1.68 9535 2.18 9854 2.68 9963
0.19 5753 0.69 7549 1.19 8830 1.69 9545 2.19 9857 2.69 9964
0.20 5793 0.70 7580 1.20 8849 1.70 9554 2.20 9861 2.70 9965

0.21 5832 0.71 7611 1.21 8869 1.71 9564 2.21 9864 2.71 9966
0.22 5871 0.72 7642 1.22 8888 1.72 9573 2.22 9868 2.72 9967
0.23 5910 0.73 7673 1.23 8907 1.73 9582 2.23 9871 2.73 9968
0.24 5948 0.74 7704 1.24 8925 1.74 9591 2.24 9875 2.74 9969
0.25 5987 0.75 7734 1.25 8944 1.75 9599 2.25 9878 2.75 9970

0.26 6026 0.76 7764 1.26 8962 1.76 9608 2.26 9881 2.76 9971
0.27 6064 0.77 7794 1.27 8980 1.77 9616 2.27 9884 2.77 9972
0.28 6103 0.78 7823 1.28 8997 1.78 9625 2.28 9887 2.78 9973
0.29 6141 0.79 7852 1.29 9015 1.79 9633 2.29 9890 2.79 9974
0.30 6179 0.80 7881 1.30 9032 1.80 9641 2.30 9893 2.80 9974

0.31 6217 0.81 7910 1.31 9049 1.81 9649 2.31 9896 2.81 9975
0.32 6255 0.82 7939 1.32 9066 1.82 9656 2.32 9898 2.82 9976
0.33 6293 0.83 7967 1.33 9082 1.83 9664 2.33 9901 2.83 9977
0.34 6331 0.84 7995 1.34 9099 1.84 9671 2.34 9904 2.84 9977
0.35 6368 0.85 8023 1.35 9115 1.85 9678 2.35 9906 2.85 9978

0.36 6406 0.86 8051 1.36 9131 1.86 9686 2.36 9909 2.86 9979
0.37 6443 0.87 8078 1.37 9147 1.87 9693 2.37 9911 2.87 9979
0.38 6480 0.88 8106 1.38 9162 1.88 9699 2.38 9913 2.88 9980
0.39 6517 0.89 8133 1.39 9177 1.89 9706 2.39 9916 2.89 9981
0.40 6554 0.90 8159 1.40 9192 1.90 9713 2.40 9918 2.90 9981

0.41 6591 0.91 8186 1.41 9207 1.91 9719 2.41 9920 2.91 9982
0.42 6628 0.92 8212 1.42 9222 1.92 9726 2.42 9922 2.92 9982
0.43 6664 0.93 8238 1.43 9236 1.93 9732 2.43 9925 2.93 9983
0.44 6700 0.94 8264 1.44 9251 1.94 9738 2.44 9927 2.94 9984
0.45 6736 0.95 8289 1.45 9265 1.95 9744 2.45 9929 2.95 9984

0.46 6772 0.96 8315 1.46 9279 1.96 9750 2.46 9931 2.96 9985
0.47 6808 0.97 8340 1.47 9292 1.97 9756 2.47 9932 2.97 9985
0.48 6844 0.98 8365 1.48 9306 1.98 9761 2.48 9934 2.98 9986
0.49 6879 0.99 8389 1.49 9319 1.99 9767 2.49 9936 2.99 9986
0.50 6915 1.00 8413 1.50 9332 2.00 9772 2.50 9938 3.00 9987
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Table A8 Normal Distribution
Values of z for given values of �(z) [see (3), Sec. 24.8] and D(z) � �(z) � �(�z)
Example: z � 0.279 if �(z) � 61%; z � 0.860 if D(z) � 61%.

% z(�) z(D) % z(�) z(D) % z(�) z(D)

1 �2.326 0.013 41 �0.228 0.539 81 0.878 1.311
2 �2.054 0.025 42 �0.202 0.553 82 0.915 1.341
3 �1.881 0.038 43 �0.176 0.568 83 0.954 1.372
4 �1.751 0.050 44 �0.151 0.583 84 0.994 1.405
5 �1.645 0.063 45 �0.126 0.598 85 1.036 1.440

6 �1.555 0.075 46 �0.100 0.613 86 1.080 1.476
7 �1.476 0.088 47 �0.075 0.628 87 1.126 1.514
8 �1.405 0.100 48 �0.050 0.643 88 1.175 1.555
9 �1.341 0.113 49 �0.025 0.659 89 1.227 1.598

10 �1.282 0.126 50 0.000 0.674 90 1.282 1.645

11 �1.227 0.138 51 0.025 0.690 91 1.341 1.695
12 �1.175 0.151 52 0.050 0.706 92 1.405 1.751
13 �1.126 0.164 53 0.075 0.722 93 1.476 1.812
14 �1.080 0.176 54 0.100 0.739 94 1.555 1.881
15 �1.036 0.189 55 0.126 0.755 95 1.645 1.960

16 �0.994 0.202 56 0.151 0.772 96 1.751 2.054
17 �0.954 0.215 57 0.176 0.789 97 1.881 2.170
18 �0.915 0.228 58 0.202 0.806 97.5 1.960 2.241
19 �0.878 0.240 59 0.228 0.824 98 2.054 2.326
20 �0.842 0.253 60 0.253 0.842 99 2.326 2.576

21 �0.806 0.266 61 0.279 0.860 99.1 2.366 2.612
22 �0.772 0.279 62 0.305 0.878 99.2 2.409 2.652
23 �0.739 0.292 63 0.332 0.896 99.3 2.457 2.697
24 �0.706 0.305 64 0.358 0.915 99.4 2.512 2.748
25 �0.674 0.319 65 0.385 0.935 99.5 2.576 2.807

26 �0.643 0.332 66 0.412 0.954 99.6 2.652 2.878
27 �0.613 0.345 67 0.440 0.974 99.7 2.748 2.968
28 �0.583 0.358 68 0.468 0.994 99.8 2.878 3.090
29 �0.553 0.372 69 0.496 1.015 99.9 3.090 3.291
30 �0.524 0.385 70 0.524 1.036

31 �0.496 0.399 71 0.553 1.058 99.91 3.121 3.320
32 �0.468 0.412 72 0.583 1.080 99.92 3.156 3.353
33 �0.440 0.426 73 0.613 1.103 99.93 3.195 3.390
34 �0.412 0.440 74 0.643 1.126 99.94 3.239 3.432
35 �0.385 0.454 75 0.674 1.150 99.95 3.291 3.481

36 �0.358 0.468 76 0.706 1.175 99.96 3.353 3.540
37 �0.332 0.482 77 0.739 1.200 99.97 3.432 3.615
38 �0.305 0.496 78 0.772 1.227 99.98 3.540 3.719
39 �0.279 0.510 79 0.806 1.254 99.99 3.719 3.891
40 �0.253 0.524 80 0.842 1.282
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Table A9 t-Distribution
Values of z for given values of the distribution function F(z) (see (8) in Sec. 25.3).
Example: For 9 degrees of freedom, z � 1.83 when F(z) � 0.95.

Number of Degrees of Freedom
F(z)

1 2 3 4 5 6 7 8 9 10

0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.6 0.32 0.29 0.28 0.27 0.27 0.26 0.26 0.26 0.26 0.26
0.7 0.73 0.62 0.58 0.57 0.56 0.55 0.55 0.55 0.54 0.54
0.8 1.38 1.06 0.98 0.94 0.92 0.91 0.90 0.89 0.88 0.88
0.9 3.08 1.89 1.64 1.53 1.48 1.44 1.41 1.40 1.38 1.37

0.95 6.31 2.92 2.35 2.13 2.02 1.94 1.89 1.86 1.83 1.81
0.975 12.7 4.30 3.18 2.78 2.57 2.45 2.36 2.31 2.26 2.23
0.99 31.8 6.96 4.54 3.75 3.36 3.14 3.00 2.90 2.82 2.76
0.995 63.7 9.92 5.84 4.60 4.03 3.71 3.50 3.36 3.25 3.17
0.999 318.3 22.3 10.2 7.17 5.89 5.21 4.79 4.50 4.30 4.14

Number of Degrees of Freedom
F(z)

11 12 13 14 15 16 17 18 19 20

0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.6 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26
0.7 0.54 0.54 0.54 0.54 0.54 0.54 0.53 0.53 0.53 0.53
0.8 0.88 0.87 0.87 0.87 0.87 0.86 0.86 0.86 0.86 0.86
0.9 1.36 1.36 1.35 1.35 1.34 1.34 1.33 1.33 1.33 1.33

0.95 1.80 1.78 1.77 1.76 1.75 1.75 1.74 1.73 1.73 1.72
0.975 2.20 2.18 2.16 2.14 2.13 2.12 2.11 2.10 2.09 2.09
0.99 2.72 2.68 2.65 2.62 2.60 2.58 2.57 2.55 2.54 2.53
0.995 3.11 3.05 3.01 2.98 2.95 2.92 2.90 2.88 2.86 2.85
0.999 4.02 3.93 3.85 3.79 3.73 3.69 3.65 3.61 3.58 3.55

Number of Degrees of Freedom
F(z)

22 24 26 28 30 40 50 100 200 `
0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.6 0.26 0.26 0.26 0.26 0.26 0.26 0.25 0.25 0.25 0.25
0.7 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.52
0.8 0.86 0.86 0.86 0.85 0.85 0.85 0.85 0.85 0.84 0.84
0.9 1.32 1.32 1.31 1.31 1.31 1.30 1.30 1.29 1.29 1.28

0.95 1.72 1.71 1.71 1.70 1.70 1.68 1.68 1.66 1.65 1.65
0.975 2.07 2.06 2.06 2.05 2.04 2.02 2.01 1.98 1.97 1.96
0.99 2.51 2.49 2.48 2.47 2.46 2.42 2.40 2.36 2.35 2.33
0.995 2.82 2.80 2.78 2.76 2.75 2.70 2.68 2.63 2.60 2.58
0.999 3.50 3.47 3.43 3.41 3.39 3.31 3.26 3.17 3.13 3.09
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Table A10 Chi-square Distribution
Values of x for given values of the distribution function F(z) (see Sec. 25.3 before (17)). 
Example: For 3 degrees of freedom, z � 11.34 when F(z) � 0.99.

Number of Degrees of Freedom
F(z)

1 2 3 4 5 6 7 8 9 10

0.005 0.00 0.01 0.07 0.21 0.41 0.68 0.99 1.34 1.73 2.16
0.01 0.00 0.02 0.11 0.30 0.55 0.87 1.24 1.65 2.09 2.56
0.025 0.00 0.05 0.22 0.48 0.83 1.24 1.69 2.18 2.70 3.25
0.05 0.00 0.10 0.35 0.71 1.15 1.64 2.17 2.73 3.33 3.94

0.95 3.84 5.99 7.81 9.49 11.07 12.59 14.07 15.51 16.92 18.31
0.975 5.02 7.38 9.35 11.14 12.83 14.45 16.01 17.53 19.02 20.48
0.99 6.63 9.21 11.34 13.28 15.09 16.81 18.48 20.09 21.67 23.21
0.995 7.88 10.60 12.84 14.86 16.75 18.55 20.28 21.95 23.59 25.19

Number of Degrees of Freedom
F(z)

11 12 13 14 15 16 17 18 19 20

0.005 2.60 3.07 3.57 4.07 4.60 5.14 5.70 6.26 6.84 7.43
0.01 3.05 3.57 4.11 4.66 5.23 5.81 6.41 7.01 7.63 8.26
0.025 3.82 4.40 5.01 5.63 6.26 6.91 7.56 8.23 8.91 9.59
0.05 4.57 5.23 5.89 6.57 7.26 7.96 8.67 9.39 10.12 10.85

0.95 19.68 21.03 22.36 23.68 25.00 26.30 27.59 28.87 30.14 31.41
0.975 21.92 23.34 24.74 26.12 27.49 28.85 30.19 31.53 32.85 34.17
0.99 24.72 26.22 27.69 29.14 30.58 32.00 33.41 34.81 36.19 37.57
0.995 26.76 28.30 29.82 31.32 32.80 34.27 35.72 37.16 38.58 40.00

Number of Degrees of Freedom
F(z)

21 22 23 24 25 26 27 28 29 30

0.005 8.0 8.6 9.3 9.9 10.5 11.2 11.8 12.5 13.1 13.8
0.01 8.9 9.5 10.2 10.9 11.5 12.2 12.9 13.6 14.3 15.0
0.025 10.3 11.0 11.7 12.4 13.1 13.8 14.6 15.3 16.0 16.8
0.05 11.6 12.3 13.1 13.8 14.6 15.4 16.2 16.9 17.7 18.5

0.95 32.7 33.9 35.2 36.4 37.7 38.9 40.1 41.3 42.6 43.8
0.975 35.5 36.8 38.1 39.4 40.6 41.9 43.2 44.5 45.7 47.0
0.99 38.9 40.3 41.6 43.0 44.3 45.6 47.0 48.3 49.6 50.9
0.995 41.4 42.8 44.2 45.6 46.9 48.3 49.6 51.0 52.3 53.7

Number of Degrees of Freedom
F(z)

40 50 60 70 80 90 100 	 100 (Approximation)

0.005 20.7 28.0 35.5 43.3 51.2 59.2 67.3 1_
2 (h � 2.58)2

0.01 22.2 29.7 37.5 45.4 53.5 61.8 70.1 1_
2 (h � 2.33)2

0.025 24.4 32.4 40.5 48.8 57.2 65.6 74.2 1_
2 (h � 1.96)2

0.05 26.5 34.8 43.2 51.7 60.4 69.1 77.9 1_
2 (h � 1.64)2

0.95 55.8 67.5 79.1 90.5 101.9 113.1 124.3 1_
2 (h 
 1.64)2

0.975 59.3 71.4 83.3 95.0 106.6 118.1 129.6 1_
2 (h 
 1.96)2

0.99 63.7 76.2 88.4 100.4 112.3 124.1 135.8 1_
2 (h 
 2.33)2

0.995 66.8 79.5 92.0 104.2 116.3 128.3 140.2 1_
2 (h 
 2.58)2

In the last column, h � �2�m� �� 1�, where m is the number of degrees of freedom.
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Table A11 F-Distribution with (m, n) Degrees of Freedom
Values of z for which the distribution function F(z) [see (13), Sec. 25.4] has the value 
Example: For (7, 4) d.f., z � 6.09 if F(z) � 0.95.

n m � 1 m � 2 m � 3 m � 4 m � 5 m � 6 m � 7 m � 8 m � 9

1 161 200 216 225 230 234 237 239 241
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21

32 4.15 3.29 2.90 2.67 2.51 2.40 2.31 2.24 2.19
34 4.13 3.28 2.88 2.65 2.49 2.38 2.29 2.23 2.17
36 4.11 3.26 2.87 2.63 2.48 2.36 2.28 2.21 2.15
38 4.10 3.24 2.85 2.62 2.46 2.35 2.26 2.19 2.14
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04
70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02
80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00
90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97
150 3.90 3.06 2.66 2.43 2.27 2.16 2.07 2.00 1.94
200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93

1000 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89
� 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88

0.95
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Table A11 F-Distribution with (m, n) Degrees of Freedom (continued)
Values of z for which the distribution function F(z) [see (13), Sec. 25.4] has the value 

n m � 10 m � 15 m � 20 m � 30 m � 40 m � 50 m � 100 `
1 242 246 248 250 251 252 253 254
2 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5
3 8.79 8.70 8.66 8.62 8.59 8.58 8.55 8.53
4 5.96 5.86 5.80 5.75 5.72 5.70 5.66 5.63
5 4.74 4.62 4.56 4.50 4.46 4.44 4.41 4.37

6 4.06 3.94 3.87 3.81 3.77 3.75 3.71 3.67
7 3.64 3.51 3.44 3.38 3.34 3.32 3.27 3.23
8 3.35 3.22 3.15 3.08 3.04 3.02 2.97 2.93
9 3.14 3.01 2.94 2.86 2.83 2.80 2.76 2.71

10 2.98 2.85 2.77 2.70 2.66 2.64 2.59 2.54

11 2.85 2.72 2.65 2.57 2.53 2.51 2.46 2.40
12 2.75 2.62 2.54 2.47 2.43 2.40 2.35 2.30
13 2.67 2.53 2.46 2.38 2.34 2.31 2.26 2.21
14 2.60 2.46 2.39 2.31 2.27 2.24 2.19 2.13
15 2.54 2.40 2.33 2.25 2.20 2.18 2.12 2.07

16 2.49 2.35 2.28 2.19 2.15 2.12 2.07 2.01
17 2.45 2.31 2.23 2.15 2.10 2.08 2.02 1.96
18 2.41 2.27 2.19 2.11 2.06 2.04 1.98 1.92
19 2.38 2.23 2.16 2.07 2.03 2.00 1.94 1.88
20 2.35 2.20 2.12 2.04 1.99 1.97 1.91 1.84

22 2.30 2.15 2.07 1.98 1.94 1.91 1.85 1.78
24 2.25 2.11 2.03 1.94 1.89 1.86 1.80 1.73
26 2.22 2.07 1.99 1.90 1.85 1.82 1.76 1.69
28 2.19 2.04 1.96 1.87 1.82 1.79 1.73 1.65
30 2.16 2.01 1.93 1.84 1.79 1.76 1.70 1.62

32 2.14 1.99 1.91 1.82 1.77 1.74 1.67 1.59
34 2.12 1.97 1.89 1.80 1.75 1.71 1.65 1.57
36 2.11 1.95 1.87 1.78 1.73 1.69 1.62 1.55
38 2.09 1.94 1.85 1.76 1.71 1.68 1.61 1.53
40 2.08 1.92 1.84 1.74 1.69 1.66 1.59 1.51

50 2.03 1.87 1.78 1.69 1.63 1.60 1.52 1.44
60 1.99 1.84 1.75 1.65 1.59 1.56 1.48 1.39
70 1.97 1.81 1.72 1.62 1.57 1.53 1.45 1.35
80 1.95 1.79 1.70 1.60 1.54 1.51 1.43 1.32
90 1.94 1.78 1.69 1.59 1.53 1.49 1.41 1.30

100 1.93 1.77 1.68 1.57 1.52 1.48 1.39 1.28
150 1.89 1.73 1.64 1.54 1.48 1.44 1.34 1.22
200 1.88 1.72 1.62 1.52 1.46 1.41 1.32 1.19

1000 1.84 1.68 1.58 1.47 1.41 1.36 1.26 1.08
� 1.83 1.67 1.57 1.46 1.39 1.35 1.24 1.00
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Table A11 F-Distribution with (m, n) Degrees of Freedom (continued)
Values of z for which the distribution function F(z) [see (13), Sec. 25.4] has the value

n m � 1 m � 2 m � 3 m � 4 m � 5 m � 6 m � 7 m � 8 m � 9

1 4052 4999 5403 5625 5764 5859 5928 5981 6022
2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3
4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7
5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2

6 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98
7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72
8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91
9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35

10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07

32 7.50 5.34 4.46 3.97 3.65 3.43 3.26 3.13 3.02
34 7.44 5.29 4.42 3.93 3.61 3.39 3.22 3.09 2.98
36 7.40 5.25 4.38 3.89 3.57 3.35 3.18 3.05 2.95
38 7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.92
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89

50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72
70 7.01 4.92 4.07 3.60 3.29 3.07 2.91 2.78 2.67
80 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64
90 6.93 4.85 4.01 3.54 3.23 3.01 2.84 2.72 2.61

100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59
150 6.81 4.75 3.91 3.45 3.14 2.92 2.76 2.63 2.53
200 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50

1000 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43
� 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41
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Table A11 F-Distribution with (m, n) Degrees of Freedom (continued)
Values of z for which the distribution function F(z) [see (13), Sec. 25.4] has the value

n m � 10 m � 15 m � 20 m � 30 m � 40 m � 50 m � 100 `
1 6056 6157 6209 6261 6287 6303 6334 6366
2 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5
3 27.2 26.9 26.7 26.5 26.4 26.4 26.2 26.1
4 14.5 14.2 14.0 13.8 13.7 13.7 13.6 13.5
5 10.1 9.72 9.55 9.38 9.29 9.24 9.13 9.02

6 7.87 7.56 7.40 7.23 7.14 7.09 6.99 6.88
7 6.62 6.31 6.16 5.99 5.91 5.86 5.75 5.65
8 5.81 5.52 5.36 5.20 5.12 5.07 4.96 4.86
9 5.26 4.96 4.81 4.65 4.57 4.52 4.42 4.31

10 4.85 4.56 4.41 4.25 4.17 4.12 4.01 3.91

11 4.54 4.25 4.10 3.94 3.86 3.81 3.71 3.60
12 4.30 4.01 3.86 3.70 3.62 3.57 3.47 3.36
13 4.10 3.82 3.66 3.51 3.43 3.38 3.27 3.17
14 3.94 3.66 3.51 3.35 3.27 3.22 3.11 3.00
15 3.80 3.52 3.37 3.21 3.13 3.08 2.98 2.87

16 3.69 3.41 3.26 3.10 3.02 2.97 2.86 2.75
17 3.59 3.31 3.16 3.00 2.92 2.87 2.76 2.65
18 3.51 3.23 3.08 2.92 2.84 2.78 2.68 2.57
19 3.43 3.15 3.00 2.84 2.76 2.71 2.60 2.49
20 3.37 3.09 2.94 2.78 2.69 2.64 2.54 2.42

22 3.26 2.98 2.83 2.67 2.58 2.53 2.42 2.31
24 3.17 2.89 2.74 2.58 2.49 2.44 2.33 2.21
26 3.09 2.81 2.66 2.50 2.42 2.36 2.25 2.13
28 3.03 2.75 2.60 2.44 2.35 2.30 2.19 2.06
30 2.98 2.70 2.55 2.39 2.30 2.25 2.13 2.01

32 2.93 2.65 2.50 2.34 2.25 2.20 2.08 1.96
34 2.89 2.61 2.46 2.30 2.21 2.16 2.04 1.91
36 2.86 2.58 2.43 2.26 2.18 2.12 2.00 1.87
38 2.83 2.55 2.40 2.23 2.14 2.09 1.97 1.84
40 2.80 2.52 2.37 2.20 2.11 2.06 1.94 1.80

50 2.70 2.42 2.27 2.10 2.01 1.95 1.82 1.68
60 2.63 2.35 2.20 2.03 1.94 1.88 1.75 1.60
70 2.59 2.31 2.15 1.98 1.89 1.83 1.70 1.54
80 2.55 2.27 2.12 1.94 1.85 1.79 1.65 1.49
90 2.52 2.24 2.09 1.92 1.82 1.76 1.62 1.46

100 2.50 2.22 2.07 1.89 1.80 1.74 1.60 1.43
150 2.44 2.16 2.00 1.83 1.73 1.66 1.52 1.33
200 2.41 2.13 1.97 1.79 1.69 1.63 1.48 1.28

1000 2.34 2.06 1.90 1.72 1.61 1.54 1.38 1.11
� 2.32 2.04 1.88 1.70 1.59 1.52 1.36 1.00
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APP. 5 Tables A109

Table A12 Distribution Function F (x ) � P (T �� x ) of the Random Variable T in 
Section 25.8

n
x �11

0.
8 001
9 002

10 003
11 005
12 008
13 013
14 020
15 030
16 043
17 060
18 082
19 109
20 141
21 179
22 223
23 271
24 324
25 381
26 440
27 500

n
x �10

0.
6 001
7 002
8 005
9 008

10 014
11 023
12 036
13 054
14 078
15 108
16 146
17 190
18 242
19 300
20 364
21 431
22 500

n
x �9

0.
4 001
5 003
6 006
7 012
8 022
9 038

10 060
11 090
12 130
13 179
14 238
15 306
16 381
17 460

n
x �8

0.
2 001
3 003
4 007
5 016
6 031
7 054
8 089
9 138

10 199
11 274
12 360
13 452

n
x �7

0.
1 001
2 005
3 015
4 035
5 068
6 119
7 191
8 281
9 386

10 500

n
x �6

0.
0 001
1 008
2 028
3 068
4 136
5 235
6 360
7 500

n
x �5

0.
0 008
1 042
2 117
3 242
4 408

n
x �4

0.
0 042
1 167
2 375

n
x �3

0.
0 167
1 500

n
x �12

0.
11 001
12 002
13 003
14 004
15 007
16 010
17 016
18 022
19 031
20 043
21 058
22 076
23 098
24 125
25 155
26 190
27 230
28 273
29 319
30 369
31 420
32 473

n
x �13

0.
14 001
15 001
16 002
17 003
18 005
19 007
20 011
21 015
22 021
23 029
24 038
25 050
26 064
27 082
28 102
29 126
30 153
31 184
32 218
33 255
34 295
35 338
36 383
37 429
38 476

n
x �14

0.
18 001
19 002
20 002
21 003
22 005
23 007
24 010
25 013
26 018
27 024
28 031
29 040
30 051
31 063
32 079
33 096
34 117
35 140
36 165
37 194
38 225
39 259
40 295
41 334
42 374
43 415
44 457
45 500

n
x �15

0.
23 001
24 002
25 003
26 004
27 006
28 008
29 010
30 014
31 018
32 023
33 029
34 037
35 046
36 057
37 070
38 084
39 101
40 120
41 141
42 164
43 190
44 218
45 248
46 279
47 313
48 349
49 385
50 423
51 461
52 500

n
x �16

0.
27 001
28 002
29 002
30 003
31 004
32 006
33 008
34 010
35 013
36 016
37 021
38 026
39 032
40 039
41 048
42 058
43 070
44 083
45 097
46 114
47 133
48 153
49 175
50 199
51 225
52 253
53 282
54 313
55 345
56 378
57 412
58 447
59 482

n
x �17

0.
32 001
33 002
34 002
35 003
36 004
37 005
38 007
39 009
40 011
41 014
42 017
43 021
44 026
45 032
46 038
47 046
48 054
49 064
50 076
51 088
52 102
53 118
54 135
55 154
56 174
57 196
58 220
59 245
60 271
61 299
62 328
63 358
64 388
65 420
66 452
67 484

n
x �18

0.
38 001
39 002
40 003
41 003
42 004
43 005
44 007
45 009
46 011
47 013
48 016
49 020
50 024
51 029
52 034
53 041
54 048
55 056
56 066
57 076
58 088
59 100
60 115
61 130
62 147
63 165
64 184
65 205
66 227
67 250
68 275
69 300
70 327
71 354
72 383
73 411
74 441
75 470
76 500

n
x �19

0.
43 001
44 002
45 002
46 003
47 003
48 004
49 005
50 006
51 008
52 010
53 012
54 014
55 017
56 021
57 025
58 029
59 034
60 040
61 047
62 054
63 062
64 072
65 082
66 093
67 105
68 119
69 133
70 149
71 166
72 184
73 203
74 223
75 245
76 267
77 290
78 314
79 339
80 365
81 391
82 418
83 445
84 473
85 500

n
x �20

0.
50 001
51 002
52 002
53 003
54 004
55 005
56 006
57 007
58 008
59 010
60 012
61 014
62 017
63 020
64 023
65 027
66 032
67 037
68 043
69 049
70 056
71 064
72 073
73 082
74 093
75 104
76 117
77 130
78 144
79 159
80 176
81 193
82 211
83 230
84 250
85 271
86 293
87 315
88 339
89 362
90 387
91 411
92 436
93 462
94 487
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I1

I N D E X

Abel, Niels Henrik, 79n.6
Abel’s formula, 79
Absolute convergence (series):

defined, 674
and uniform convergence, 704

Absolute frequency (probability):
of an event, 1019
cumulative, 1012
of a value, 1012

Absolutely integrable nonperiodic
function, 512–513

Absolute value (complex numbers),
613

Acceleration, 386–389
Acceleration of gravity, 8
Acceleration vector, 386
Acceptable lots, 1094
Acceptable quality level (AQL), 

1094
Acceptance:

of a hypothesis, 1078
of products, 1092

Acceptance number, 1092
Acceptance sampling, 1092–1096,

1113
errors in, 1093–1094
rectification, 1094–1095

Adams, John Couch, 912n.2
Adams–Bashforth methods, 911–914,

947
Adams–Moulton methods, 913–914,

947
Adaptive integration, 835–836, 843
Addition:

for arbitrary events, 1021–1022
of complex numbers, 609, 610
of matrices and vectors, 126,

259–261
of means, 1057–1058
for mutually exclusive events,

1021
of power series, 687
termwise, 173, 687
of variances, 1058–1059
vector, 309, 357–359

ADI (alternating direction implicit)
method, 928–930

Adjacency matrix:
of a digraph, 973
of a graph, 972–973

Adjacent vertices, 971, 977
Airy, Sir George Bidell, 556n.2,

918n.4
Airy equation, 556

RK method, 917–919
RKN method, 919–920

Airy function:
RK method, 917–919
RKN method, 919–920

Algebraic equations, 798
Algebraic multiplicity, 326, 

878
Algorithms:

complexity of, 978–979
defined, 796
numeric analysis, 796
numeric methods as, 788
numeric stability of, 796, 842

ALGORITHMS:
BISECT, A46
DIJKSTRA, 982
EULER, 903
FORD–FULKERSON, 998
GAUSS, 849
GAUSS–SEIDEL, 860
INTERPOL, 814
KRUSKAL, 985
MATCHING, 1003
MOORE, 977
NEWTON, 802
PRIM, 989
RUNGE–KUTTA, 905
SIMPSON, 832

Aliasing, 531
Alternating direction implicit (ADI)

method, 928–930
Alternating path, 1002
Alternative hypothesis, 1078
Ampère, André Marie, 93n.7
Amplification, 91
Amplitude, 90
Amplitude spectrum, 511
Analytic functions, 172, 201, 641

complex analysis, 623–624
conformal mapping, 737–742
derivatives of, 664–668, 688–689,

A95–A96
integration of:

indefinite, 647
by use of path, 647–650

Analytic functions (Cont.)
Laurent series:

analytics at infinity, 718–719
zeros of, 717–718

maximum modulus theorem,
782–783

mean value property, 781–782
power series representation of,

688–689
real functions vs., 694

Analyticity, 623
Angle of intersection:

conformal mapping, 738
between two curves, 36

Angular speed (rotation), 372
Angular velocity (fluid flow), 

775
AOQ (average outgoing quality),

1095
AOQL (average outgoing quality

limit), 1095
Apparent resistance (RLC circuits),

95
Approximation(s):

errors involved in, 794
polynomial, 808
by trigonometric polynomials,

495–498
Approximation theory, 495
A priori estimates, 805
AQL (acceptable quality level), 1094
Arbitrary positive, 191
Arc, of a curve, 383
Archimedes, 391n.4
Arc length (curves), 385–386
Area:

of a region, 428
of region bounded by ellipses,

436
of a surface, 448–450

Argand, Jean Robert, 611n.2
Argand diagram, 611n.2
Argument (complex numbers), 613
Artificial variables, 965–968
Assignment problems (combinatorial

optimization), 1001–1006
Associative law, 264
Asymptotically equal, 189, 1027,

1050
Asymptotically normal, 1076
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I2 Index

Asymptotically stable critical points,
149

Augmented matrices, 258, 272, 273,
321, 845, 959

Augmenting path, 1002–1003. See
also Flow augmenting paths

Autonomous ODEs, 11, 33
Autonomous systems, 152, 165
Auxiliary equation, 54. See also

Characteristic equation
Average flow, 458
Average outgoing quality (AOQ),

1095
Average outgoing quality limit

(AOQL), 1095
Axioms of probability, 1020

Back substitution (linear systems),
274–276, 846

Backward edges:
cut sets, 994
initial flow, 998
of a path, 992

Backward Euler formula, 909
Backward Euler method (BEM):

first-order ODEs, 909–910
stiff systems, 920–921

Backward Euler scheme, 909
Balance law, 14
Band matrices, 928
Bashforth, Francis, 912n.2
Basic feasible solution:

normal form of linear optimization
problems, 957

simplex method, 959
Basic Rule (method of undetermined

coefficients):
higher-order homogeneous linear

ODEs, 115
second-order nonhomogeneous

linear ODEs, 81, 82
Basic variables, 960
Basis:

eigenvectors, 339–340
of solutions:

higher-order linear ODEs, 106,
113, 123

homogeneous linear systems,
290

homogeneous ODEs, 50–52,
75, 104, 106, 113

second-order homogeneous
linear ODEs, 50–52, 75,
104

systems of ODEs, 139
standard, 314
vector spaces, 286, 311, 314

Beats (oscillation), 89

Bellman, Richard, 981n.3
Bellman equations, 981
Bellman’s principle, 980–981
Bell-shaped curve, 13, 574
BEM, see Backward Euler method
Benoulli, Niklaus, 31n.7
Bernoulli, Daniel, 31n.7
Bernoulli, Jakob, 31n.7
Bernoulli, Johann, 31n.7
Bernoulli distribution, 1040. See also

Binomial distributions
Bernoulli equation, 45

defined, 31
linear ODEs, 31–33

Bernoulli’s law of large numbers,
1051

Bessel, Friedrich Wilhelm, 187n.6
Bessel functions, 167, 187–191, 202

of the first kind, 189–190
with half-integer v, 193–194
of order 1, 189
of order v, 191

orthogonality of, 506
of the second kind:

general solution, 196–200
of order v, 198–200

table, A97–A98
of the third kind, 200

Bessel’s equation, 167, 187–196, 
202

Bessel functions, 167, 187–191,
196–200

circular membrane, 587
general solution, 194–200

Bessel’s inequality:
for Fourier coefficients, 497
orthogonal series, 508–509

Beta function, formula for, A67
Bezier curve, 827
BFS algorithms, see Breadth First

search algorithms
Bijective mapping, 737n.1
Binomial coefficients:

Newton’s forward difference
formula, 816

probability theory, 1027–1028
Binomial distributions, 1039–1041,

1061
normal approximation of,

1049–1050
sampling with replacement for,

1042
table, A99

Binomial series, 696
Binomial theorem, 1029
Bipartite graphs, 1001–1006, 1008
BISECT, ALGORITHM, A46
Bisection method, 807–808
Bolzano, Bernard, A94n.3

Bolzano–Weierstrass theorem,
A94–A95

Bonnet, Ossian, 180n.3
Bonnet’s recursion, 180
Borda, J. C., 16n.4
Boundaries:

ODEs, 39
of regions, 426n.2
sets in complex plane, 620

Boundary conditions:
one-dimensional heat equation,

559
PDEs, 541, 605
periodic, 501
two-dimensional wave equation,

577
vibrating string, 545–547

Boundary points, 426n.2
Boundary value problem (BVP), 499

conformal mapping for, 763–767,
A96

first, see Dirichlet problem
mixed, see Mixed boundary value

problem
second, see Neumann problem
third, see Mixed boundary value

problem
two-dimensional heat equation,

564
Bounded domains, 652
Bounded regions, 426n.2
Bounded sequence, A93–A95
Boxplots, 1013
Boyle, Robert, 19n.5
Boyle–Mariotte’s law for idea gases,

19
Bragg, Sir William Henry, 938n.5
Bragg, Sir William Lawrence, 938n.5
Branch, of logarithm, 639
Branch cut, of logarithm, 639
Branch point (Riemann surfaces), 755
Breadth First search (BFS)

algorithms, 977
defined, 977, 998
Moore’s, 977–980

BVP, see Boundary value problem

CAD (computer-aided design), 820
Cancellation laws, 306–307
Canonical form, 344
Cantor, Georg, A72n.3
Cantor–Dedekind axiom, A72n.3,

A95n.4
Capacity:

cut sets, 994
networks, 991

Cardano, Girolamo, 608n.1
Cardioid, 391, 437
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Cartesian coordinates:
linear element in, A75
transformation law, A86–A87
vector product in, A83–A84
writing, A74

Cartesian coordinate systems:
complex plane, 611
left-handed, 369, 370, A84
right-handed, 368–369, A83–A84
in space, 315, 356
transformation law for vector

components, A85–A86
Cartesius, Renatus, 356n.1
Cauchy, Augustin-Louis, 71n.4,

625n.4, 683n.1
Cauchy determinant, 113
Cauchy–Goursat theorem, see

Cauchy’s integral theorem
Cauchy–Hadamard formula, 683
Cauchy principal value, 727, 730
Cauchy–Riemann equations, 38, 642

complex analysis, 623–629
proof of, A90–A91

Cauchy–Schwarz inequality, 363,
871–782

Cauchy’s convergence principle,
674–675, A93–A94

Cauchy’s inequality, 666
Cauchy’s integral formula, 660–663,

670
Cauchy’s integral theorem, 652–660,

669
existence of indefinite integral,

656–658
Goursat’s proof of, A91–A93
independence of path, 655
for multiply connected domains,

658–659
principle of deformation of path,

656
Cayley, Arthur, 748n.2
c-charts, 1092
Center:

as critical point, 144, 165
of a graph, 991
of power series, 680

Center control line (CL), 1088
Center of gravity, of mass in a

region, 429
Central difference notation, 819
Central limit theorem, 1076
Central vertex, 991
Centrifugal force, 388
Centripetal acceleration, 387–388
Chain rules, 392–394
Characteristics, 555
Characteristics, method of, 555
Characteristic determinant, of a

matrix, 129, 325, 326, 353, 877

Characteristic equation:
matrices, 129, 325, 326, 353, 877
PDEs, 555
second-order homogeneous linear

ODEs, 54
Characteristic matrix, 326
Characteristic polynomial, 325, 353,

877
Characteristic values, 87, 324, 353.

See also Eigenvalues
Characteristic vectors, 324, 877. See

also eigenvectors
Chebyshev, Pafnuti, 504n.6
Chebyshev equation, 504
Chebyshev polynomials, 504
Checkerboard pattern (determinants),

294
Chi-square ( ) distribution,

1074–1076, A104
Chi-square ( ) test, 1096–1097,

1113
Choice of numeric method, for matrix

eigenvalue problems, 879
Cholesky, André-Louis, 855n.3
Cholesky’s method, 855–856, 898
Chopping, error caused by, 792
Chromatic number, 1006
Circle, 386
Circle of convergence (power series),

682
Circulation, of flow, 467, 774
CL (center control line), 1088
Clairaut equation, 35
Clamped condition (spline

interpolation), 823
Class intervals, 1012
Class marks, 1012
Closed annulus, 619
Closed circular disk, 619
Closed integration formulas, 833, 838
Closed intervals, A72n.3
Closed Newton–Cotes formulas, 833
Closed paths, 414, 645, 975–976
Closed regions, 426n.2
Closed sets, 620
Closed trails, 975–976
Closed walks, 975–976
CN (Crank–Nicolson) method,

938–941
Coefficients:

binomial:
Newton’s forward difference

formula, 816
probability theory, 1027–1028

constant:
higher-order homogeneous

linear ODEs, 111–116
second-order homogeneous

linear ODEs, 53–60

�2

�2

Coefficients: (Cont.)
second-order nonhomogeneous

linear ODEs, 81
systems of ODEs, 140–151

correlation, 1108–1111, 1113
Fourier, 476, 484, 538, 582–583
of kinetic friction, 19
of linear systems, 272, 845
of ODEs, 47

higher-order homogeneous
linear ODEs, 105

second-order homogeneous
linear ODEs, 53–60, 73

second-order nonhomogeneous
linear ODEs, 81–85

series of ODEs, 168, 174
variable, 167, 240–241

of power series, 680
regression, 1105, 1107–1108
variable:

Frobenius method, 180–187
Laplace transforms ODEs

with, 240–241
of ODEs, 167, 240–241
power series method, 167–175
second-order homogeneous

linear ODEs, 73
Coefficient matrices, 257, 273

Hermitian or skew-Hermitian
forms, 351

linear systems, 845
quadratic form, 343

Cofactor (determinants), 294
Collatz, Lothar, 883n.9
Collatz inclusion theorem, 883–884
Columns:

determinants, 294
matrix, 125, 257, 320

Column “sum” norm, 861
Column vectors, 126

matrices, 257, 284–285, 320
rank in terms of, 284–285

Combinations (probability theory),
1024, 1026–1027

of n things taken k at a time
without repetitions, 1026

of n things taken k at a time with
repetitions, 1026

Combinatorial optimization, 970,
975–1008

assignment problems, 1001–1006
flow problems in networks,

991–997
cut sets, 994–996
flow augmenting paths,

992–993
paths, 992

Ford–Fulkerson algorithm for
maximum flow, 998–1001
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Combinatorial optimization (Cont.)
shortest path problems, 975–980

Bellman’s principle, 980–981
complexity of algorithms,

978–980
Dijkstra’s algorithm, 981–983
Moore’s BFS algorithm,

977–980
shortest spanning trees:

Greedy algorithm, 984–988
Prim’s algorithm, 988–991

Commutation (matrices), 271
Complements:

of events, 1016
of sets in complex plane, 620

Complementation rule, 
1020–1021

Complete bipartite graphs, 1005
Complete graphs, 974
Complete matching, 1002
Completeness (orthogonal series),

508–509
Complete orthonormal set, 508
Complex analysis, 607

analytic functions, 623–624
Cauchy–Riemann equations,

623–629
circles and disks, 619
complex functions, 620–623

exponential, 630–633
general powers, 639–640
hyperbolic, 635
logarithm, 636–639
trigonometric, 633–635

complex integration, 643–670
Cauchy’s integral formula,

660–663, 670
Cauchy’s integral theorem,

652–660, 669
derivatives of analytic

functions, 664–668
Laurent series, 708–719
line integrals, 643–652, 669
power series, 671–707
residue integration, 719–733

complex numbers, 608–619
addition of, 609, 610
conjugate, 612
defined, 608
division of, 610
multiplication of, 609, 610
polar form of, 613–618
subtraction of, 610

complex plane, 611
conformal mapping, 736–757

geometry of analytic functions,
737–742

linear fractional
transformations,
742–750

Complex analysis (Cont.)
Riemann surfaces, 754–756
by trigonometric and

hyperbolic analytic
functions, 750–754

half-planes, 619–620
harmonic functions, 628–629
Laplace’s equation, 628–629
Laurent series, 708–719, 734

analytic or singular at infinity,
718–719

point at infinity, 718
Riemann sphere, 718
singularities, 715–717
zeros of analytic functions, 717

power series, 168, 671–707
convergence behavior of,

680–682
convergence tests, 674–676,

A93–A94
functions given by, 685–690
Maclaurin series, 690
in powers of x, 168
radius of convergence,

682–684
ratio test, 676–678
root test, 678–679
sequences, 671–673
series, 673–674
Taylor series, 690–697
uniform convergence, 

698–705
residue integration, 719–733

formulas for residues, 721–722
of real integrals, 725–733
several singularities inside

contour, 723–725
Taylor series, 690–697, 707

Complex conjugate numbers, 612
Complex conjugate roots, 72–73
Complex Fourier integral, 523
Complex functions, 620–623

exponential, 630–633
general powers, 639–640
hyperbolic, 635
logarithm, 636–639
trigonometric, 633–635

Complex heat potential, 767
Complex integration, 643–670

Cauchy’s integral formula,
660–663, 670

Cauchy’s integral theorem,
652–660, 669

existence of indefinite integral,
656–658

independence of path, 655
for multiply connected

domains, 658–659
principle of deformation of

path, 656

Complex integration (Cont.)
derivatives of analytic functions,

664–668
Laurent series, 708–719

analytic or singular at infinity,
718–719

point at infinity, 718
Riemann sphere, 718
singularities, 715–717
zeros of analytic functions,

717–718
line integrals, 643–652, 669

basic properties of, 645
bounds for, 650–651
definition of, 643–645
existence of, 646
indefinite integration and

substitution of limits,
646–647

representation of a path,
647–650

power series, 671–707
convergence behavior of,

680–682
convergence tests, 674–676
functions given by, 685–690
Maclaurin series, 690
radius of convergence of,

682–684
ratio test, 676–678
root test, 678–679
sequences, 671–673
series, 673–674
Taylor series, 690–697
uniform convergence, 

698–705
residue integration, 719–733

formulas for residues, 721–722
of real integrals, 725–733
several singularities inside

contour, 723–725
Complexity, of algorithms, 978–979
Complex line integrals, see Line

integrals
Complex matrices and forms,

346–352
Complex numbers, 608–619, 641

addition of, 609, 610
conjugate, 612
defined, 608
division of, 610
multiplication of, 609, 610
polar form of, 613–618
subtraction of, 610

Complex plane, 611
extended, 718, 744–745
sets in, 620

Complex potential, 786
electrostatic fields, 760–761
of fluid flow, 771, 773–774
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Complex roots:
higher-order homogeneous linear

ODEs:
multiple, 115
simple, 113–114
second-order homogeneous linear

ODEs, 57–59
Complex trigonometric polynomials,

529
Complex variables, 620–621
Complex vector space, 309, 310, 

349
Components (vectors), 126, 356, 365
Composition, of linear

transformations, 316–317
Computer-aided design (CAD), 820
Condition:

of incompressibility, 405
spline interpolation, 823

Conditionally convergent series, 675
Conditional probability, 1022–1023,

1061
Condition number, 868–870, 899
Confidence intervals, 1063,

1068–1077, 1113
interval estimates, 1065
for mean of normal distribution:

with known variance,
1069–1071

with unknown variance,
1071–1073

for parameters of distributions
other than normal, 1076

in regression analysis, 1107–1108
for variance of a normal

distribution, 1073–1076
Confidence level, 1068
Conformality, 738
Conformal mapping, 736–757

boundary value problems,
763–767, A96

defined, 738
geometry of analytic functions,

737–742
linear fractional transformations,

742–750
extended complex plane,

744–745
mapping standard domains,

747–750
Riemann surfaces, 754–756
by trigonometric and hyperbolic

analytic functions, 
750–754

Connected graphs, 977, 981, 984
Connected set, in complex plane, 

620
Conservative physical systems, 422
Conservative vector fields, 400, 408
Consistent linear systems, 277

Constant coefficients:
higher-order homogeneous linear

ODEs, 111–116
distinct real roots, 112–113
multiple real roots, 114–115
simple complex roots, 113–114

second-order homogeneous linear
ODEs, 53–60

complex roots, 57–59
real double root, 55–56
two distinct real roots, 54–55

second-order nonhomogeneous
linear ODEs, 81

systems of ODEs, 140–151
critical points, 142–146,

148–151
graphing solutions in phase

plane, 141–142
Constant of gravity, at the Earth’s

surface, 63
Constant of integration, 18
Constant revenue, lines of, 954
Constrained (linear) optimization,

951, 954–958, 969
normal form of problems, 955–957
simplex method, 958–968

degenerate feasible solution,
962–965

difficulties in starting, 965–968
Constraints, 951
Consumers, 1092
Consumer’s risk, 1094
Consumption matrix, 334
Continuity equation (compressible

fluid flow), 405
Continuous complex functions, 621
Continuous distributions, 1029,

1032–1034
marginal distribution of, 1055
two-dimensional, 1053

Continuous random variables, 1029,
1032–1034, 1061

Continuous vector functions, 378–379
Contour integral, 653
Contour lines, 21, 36
Control charts, 1088

for mean, 1088–1089
for range, 1090–1091
for standard deviation, 1090
for variance, 1089–1090

Controlled variables, in regression
analysis, 1103

Control limits, 1088, 1089
Control variables, 951
Convergence:

absolute:
defined, 674
and uniform convergence, 704

of approximate and exact
solutions, 936

Convergence: (Cont.)
circle of, 682
defined, 861
Gauss–Seidel iteration, 861–862
mean square (orthogonal series),

507–508
in the norm, 507
power series, 680–682

convergence tests, 674–676,
A93–A94

radius of convergence of,
682–684, 706

uniform convergence, 698–705
radius of, 172

defined, 172
power series, 682–684, 706

sequence of vectors, 378
speed of (numeric analysis),

804–805
superlinear, 806
uniform:

and absolute convergence, 704
power series, 698–705

Convergence interval, 171, 683
Convergence tests, 674–676

power series, 674–676, A93–A94
uniform convergence, 698–705

Convergent iteration processes, 
800

Convergent sequence of functions,
507–508, 672

Convergent series, 171, 673
Convolution:

defined, 232
Fourier transforms, 527–528
Laplace transforms, 232–237

Convolution theorem, 232–233
Coriolis, Gustave Gaspard, 389n.3
Coriolis acceleration, 388–389
Corrector (improved Euler method),

903
Correlation analysis, 1063,

1108–1111, 1113
defined, 1103
test for correlation coefficient,

1110–1111
Correlation coefficient, 1108–1111,

1113
Cosecant, formula for, A65
Cosine function:

conformal mapping by, 752
formula for, A63–A65

Cosine integral:
formula for, A69
table, A98

Cosine series, 781
Cotangent, formula for, A65
Coulomb, Charles Augustin de,

19n.6, 93n.7, 401n.6
Coulomb’s law, 19, 401
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Covariance:
in correlation analysis, 1109
defined, 1058

Cramer, Gabriel, 31n.7, 298n.2
Cramer’s rule, 292, 298–300, 321

for three equations, 293
for two equations, 292

Cramer’s Theorem, 298
Crank, John, 938n.5
Crank–Nicolson (CN) method,

938–941
Critical damping, 65, 66
Critical points, 33, 165

asymptotically stable, 149
and conformal mapping, 738, 757
constant-coefficient systems of

ODEs, 142–146
center, 144
criteria for, 148–151
degenerate node, 145–146
improper node, 142
proper node, 143
saddle point, 143
spiral point, 144–145
stability of, 149–151

isolated, 152
nonlinear systems, 152
stable, 140, 149
stable and attractive, 140, 149
unstable, 140, 149

Critical region, 1079
Cross product, 368, 410. See also

Vector product
Crout, Prescott Durand, 853n.2
Crout’s method, 853, 898
Cubic spline, 821
Cumulative absolute frequencies (of

values), 1012
Cumulative distribution functions,

1029
Cumulative relative frequencies (of

values), 1012
Curl, A76

invariance of, A85–A88
of vector fields, 406–409, 412

Curvature, of a curve, 389–390
Curves:

arc of, 383
bell-shaped, 13, 574
Bezier, 827
deflection, 120
elastic, 120
equipotential, 36, 759, 761
one-parameter family of, 36–37
operating characteristic, 1081,

1092, 1095
oriented, 644
orthogonal coordinate, A74
parameter, 442
plane, 383

Curves: (Cont.)
regression, 1103
simple, 383
simple closed, 646
smooth, 414, 644
solution, 4–6
twisted, 383
vector differential calculus,

381–392, 411
arc length of, 385–386
length of, 385
in mechanics, 386–389
tangents to, 384–385
and torsion, 389–390

Curve fitting, 872–876
method of least squares, 872–874
by polynomials of degree m,

874–875
Curvilinear coordinates, 354, 412, A74
Cut sets, 994–996, 1008
Cycle (paths), 976, 984
Cylindrical coordinates, 593–594,

A74–A76

D’Alembert, Jean le Rond, 554n.1
D’Alembert’s solution, 553–556
Damped oscillations, 67
Damping constant, 65
Dantzig, George Bernard, 959
Data processing:

frequency distributions,
1011–1012

and randomness, 1064
Data representation:

frequency distributions,
1011–1015

Empirical Rule, 1014
graphic, 1012
mean, 1013–1014
standard deviation, 1014
variation, 1014

and randomness, 1064
Decisions:

false, risks of making, 1080
statistics for, 1077–1078

Dedekind, Richard, A72n.3
Defect (eigenvalue), 328
Defectives, 1092
Definite integrals, complex, see Line

integrals
Deflection curve, 120
Deformation of path, principle of,

656
Degenerate feasible solution (simplex

method), 962–965
Degenerate node, 145–146
Degrees of freedom (d.f.), number of,

1071, 1074
Degree of incidence, 971

Degree of precision (DP), 833
Deleted neighborhood, 720
Demand vector, 334
De Moivre, Abraham, 616n.3
De Moivre–Laplace limit theorem,

1050
De Moivre’s formula, 616
De Morgan’s laws, 1018
Density, 1061

continuous two-dimensional
distributions, 1053

of a distribution, 1033
Dependent random variables, 1055,

1056
Dependent variables, 393, 1055, 1056
Depth First Search (DFS) algorithms,

977
Derivatives:

of analytic functions, 664–668,
688–689, A95–A96

of complex functions, 622, 641
Laplace transforms of, 211–212
of matrices or vectors, 127
of vector functions, 379–380

Derived series, 687
Descartes, René, 356n.1, 391n.4
Determinants, 293–301, 321

Cauchy, 113
Cramer’s rule, 298–300
defined, A81
general properties of, 295–298
of a matrix, 128
of matrix products, 307–308
of order n, 293
proof of, A81–A83
second-order, 291–292
second-order homogeneous linear

ODEs, 76
third-order, 292–293
Vandermonde, 113
Wronski:

second-order homogeneous
linear ODEs, 75–78

systems of ODEs, 139
Developed, in a power series, 683
D.f. (degrees of freedom), number of,

1071, 1074
DFS (Depth First Search) algorithms,

977
DFTs (discrete Fourier transforms),

528–531
Diagonalization of matrices, 341–342
Diagonally dominant matrices, 881
Diagonal matrices, 268

inverse of, 305–306
scalar, 268

Diameter (graphs), 991
Difference:

complex numbers, 610
scalar multiplication, 260
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Difference equations (elliptic PDEs),
923–925

Difference quotients, 923
Difference table, 814
Differentiable complex functions,

622–623
Differentiable vector functions, 379
Differential (total differential), 

20, 45
Differential equations:

applications of, 3
defined, 2

Differential form, 422
exact, 21, 470
first fundamental form, of S, 451
floating-point, of numbers,

791–792
path independence and exactness

of, 422, 470
Differential geometry, 381
Differential operators:

second-order, 60
for second-order homogeneous

linear ODEs, 60–62
Differentiation:

of Laplace transforms, 238–240
matrices or vectors, 127
numeric, 838–839
of power series, 687–688, 703
termwise, 173, 687–688, 703

Diffusion equation, 459–460, 558.
See also Heat equation

Digraphs (directed graphs), 971–972,
1007

computer representation of,
972–974

defined, 972
incidence matrix of, 975
subgraphs, 972

Dijkstra, Edsger Wybe, 981n.4
Dijkstra’s algorithm, 981–983, 

1008
DIJKSTRA, ALGORITHM, 982
Dimension of vector spaces, 286,

311, 359
Diocles, 391n.4
Dirac, Paul, 226n.2
Dirac delta function, 226–228, 237
Directed graphs, see Digraphs

(directed graphs)
Directed path, 1000
Directional derivatives (scalar

functions), 396–397, 411
Direction field (slope field), 9–10, 44
Direct methods (linear system

solutions), 858, 898. See also
iteration

Dirichlet, Peter Gustav LeJeune,
462n.8

Dirichlet boundary condition, 564

Dirichlet problem, 605, 923
ADI method, 929
heat equation, 564–566
Laplace equation, 593–596,

925–928, 934–935
Poisson equation, 925–928
two-dimensional heat equation,

564–565
uniqueness theorem for, 462, 784

Dirichlet’s discontinuous factor, 514
Discharge (flow modeling), 776
Discrete distributions, 1029–1032

marginal distributions of,
1053–1054

two-dimensional, 1052–1053
Discrete Fourier transforms (DFTs),

528–531
Discrete random variables, 1029,

1030–1032, 1061
defined, 1030
marginal distributions of, 1054

Discrete spectrum, 525
Disjoint events, 1016
Disks:

circular, open and closed, 619
mapping, 748–750
Poisson’s integral formula, 779–780

Dissipative physical systems, 422
Distance:

graphs, 991
vector norms, 866

Distinct real roots:
higher-order homogeneous linear

ODEs, 112–113
second-order homogeneous linear

ODEs, 54–55
Distinct roots (Frobenius method),

182
Distributions, 226n.2. See also

Frequency distributions;
Probability distributions

Distribution-free tests, 1100
Distribution function, 1029–1032

cumulative, 1029
normal distributions, 1046–1047
of random variables, 1056, A109
sample, 1096
two-dimensional probability

distributions, 1051–1052
Distributive laws, 264
Distributivity, 363
Divergence, A75

fluid flow, 775
of vector fields, 402–406
of vector functions, 411, 453

Divergence theorem of Gauss, 405,
470

applications, 458–463
vector integral calculus, 453–457

Divergent sequence, 672

Divergent series, 171, 673
Division, of complex numbers, 610,

615–616
Domain(s), 393

bounded, 652
doubly connected, 658, 659
of f, 620
holes of, 653
mapping, 737, 747–750
multiply connected:

Cauchy’s integral formula,
662–663

Cauchy’s integral theorem,
658–659

p-fold connected, 652–653
sets in complex plane, 620
simply connected, 423, 646, 652,

653
triply connected, 653, 658, 659

Dominant eigenvalue, 883
Doolittle, Myrick H., 853n.1
Doolittle’s method, 853–855, 898
Dot product, 312, 410. See also Inner

product
Double Fourier series:

defined, 582
rectangular membrane, 577–585

Double integrals (vector integral
calculus), 426–432, 470

applications of, 428–429
change of variables in, 429–431
evaluation of, by two successive

integrations, 427–428
Double precision, floating-point

standard for, 792
Double root (Frobenius method), 183
Double subscript notation, 125
Doubly connected domains, 658, 659
DP (degree of precision), 833
Driving force, see Input (driving

force)
Duffing equation, 160
Duhamel, Jean-Marie Constant,

603n.4
Duhamel’s formula, 603

Eccentricity, of vertices, 991
Edges:

backward:
cut sets, 994
initial flow, 998
of a path, 992

forward:
cut sets, 994
initial flow, 998
of a path, 992

graphs, 971, 1007
incident, 971

Edge chromatic number, 1006
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Edge condition, 991
Edge incidence list (graphs), 973
Efficient algorithms, 979
Eigenbases, 339–341
Eigenfunctions, 605

circular membrane, 588
one-dimensional heat equation,

560
Sturm–Liouville Problems,

499–500
two-dimensional heat equation,

565
two-dimensional wave equation,

578, 580
vibrating string, 547

Eigenfunction expansion, 504
Eigenspaces, 326, 878
Eigenvalues, 129–130, 166, 353, 605,

877, 899. See also Matrix
eigenvalue problems

circular membrane, 588
complex matrices, 347–351
and critical points, 149
defined, 324
determining, 323–329
dominant, 883
finding, 324–328
one-dimensional heat equation,

560
Sturm–Liouville Problems,

499–500, A89
two-dimensional wave equation,

580
vibrating string, 547

Eigenvalues of A, 322
Eigenvalue problem, 140
Eigenvectors, 129–130, 166, 353,

877, 899
basis of, 339–340
convergent sequence of, 886
defined, 324
determining, 323–329
finding, 324–328

Eigenvectors of A, 322
EISPACK, 789
Elastic curve, 120
Electric circuits:

analogy of electrical and
mechanical quantities,
97–98

second-order nonhomogeneous
linear ODEs, 93–99

Electrostatic fields (potential theory),
759–763

complex potential, 760–761
superposition, 761–762

Electrostatic potential, 759
Electrostatics (Laplace’s equation),

593
Elementary matrix, 281

Elementary row operations (linear
systems), 277

Ellipses, area of region bounded by,
436

Elliptic PDEs:
defined, 923
numeric analysis, 922–936

ADI method, 928–930
difference equations, 923–925
Dirichlet problem, 925–928
irregular boundary, 933–935
mixed boundary value

problems, 931–933
Neumann problem, 931

Empirical Rule, 1014
Energies, 157
Entire function, 630, 642, 707, 718
Entries:

determinants, 294
matrix, 125, 257

Equal complex numbers, 609
Equality:

of matrices, 126, 259
of vectors, 355

Equally likely events, 1018
Equal spacing (interpolation):

Newton’s backward difference
formula, 818–819

Newton’s forward difference
formula, 815–818

Equilibrium harvest, 36
Equilibrium solutions (equilibrium

points), 33–34
Equipotential curves, 36, 759, 761
Equipotential lines, 38

electrostatic fields, 759, 761
fluid flow, 771

Equipotential surfaces, 759
Equivalent vector norms, 871
Error(s):

in acceptance sampling,
1093–1094

of approximations, 495
in numeric analysis, 842

basic error principle, 796
error propagation, 795
errors of numeric results,

794–795
roundoff, 792

in statistical tests, 1080–1081
and step size control, 906–907
trapezoidal rule, 830
vector norms, 866

Error bounds, 795
Error estimate, 908
Error function, 828, A67–A68, A98
Essential singularity, 715–716
Estimation of parameters, 1063
EULER, ALGORITHM, 903
Euler, Leonhard, 31n.7, 71n.4

Euler–Cauchy equations, 71–74, 
104

higher-order nonhomogeneous
linear ODEs, 119–120

Laplace’s equation, 595
third-order, IVP for, 108

Euler–Cauchy method, 901
Euler constant, 198
Euler formulas, 58

complex Fourier integral, 523
derivation of, 479–480
exponential function, 631
Fourier coefficients given by, 476,

484
generalized, 582
Taylor series, 694
trigonometric function, 634

Euler graph, 980
Euler’s method:

defined, 10
error of, 901–902, 906, 908
first-order ODEs, 10–11, 901–902

backward method, 909–910
improved method, 902–904

higher order ODEs, 916–917
Euler trail, 980
Even functions, 486–488
Even periodic extension, 488–490
Events (probability theory),

1016–1017, 1060
addition rule for, 1021–1022
arbitrary, 1021–1022
complements of, 1016
defined, 1015
disjoint, 1016
equally likely, 1018
independent, 1022–1023
intersection, 1016, 1017
mutually exclusive, 1016, 1021
simple, 1015
union, 1016–1017

Exact differential equation, 21
Exact differential form, 422, 470
Exact ODEs, 20–27, 45

defined, 21
integrating factors, 23–26

Existence, problem of, 39
Existence theorems:

cubic splines, 822
first-order ODEs, 39–42
homogeneous linear ODEs:

higher-order, 108
second-order, 74

of the inverse, 301–302
Laplace transforms, 209–210
linear systems, 138
power series solutions, 172
systems of ODEs, 137

Expectation, 1035, 1037–1038, 
1057
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Experiments:
defined, 1015, 1060
in probability theory, 1015–1016
random, 1011, 1015–1016, 1060

Experimental error, 794
Explicit formulas, 913
Explicit method:

heat equation, 937, 940–941
wave equation, 943

Explicit solution, 21
Exponential decay, 5, 7
Exponential function, 630–633, 642

formula for, A63
Taylor series, 694

Exponential growth, 5
Exponential integral, formula for, A69
Exposed vertices, 1001, 1003
Extended complex plane:

conformal mapping, 744–745
defined, 718

Extended method (separable ODEs),
17–18

Extended problems, 966
Extrapolation, 808
Extrema (unconstrained

optimization), 951

Factorial function, 1027, A66, A98.
See also Gamma functions

Failing to reject a hypothesis, 1081
Fair die, 1018, 1019
False decisions, risks of making,

1080
False position, method of, 807–808
Family of curves, one-parameter,

36–37
Family of solutions, 5
Faraday, Michael, 93n.7
Fast Fourier transforms (FFTs),

531–532
F-distribution, 1086, A105–A108
Feasibility region, 954
Feasible solutions, 954–955

basic, 957, 959
degenerate, 962–965
normal form of linear optimization

problems, 957
Fehlberg, E., 907
Fehlberg’s fifth-order RK method,

907–908
Fehlberg’s fourth-order RK method,

907–908
FFTs (fast Fourier transforms),

531–532
Fibonacci (Leonardo of Pisa), 690n.2
Fibonacci numbers, 690
Fibonacci’s rabbit problem, 690
Finite complex plane, 718. See also

Complex plane

Finite jumps, 209
First boundary value problem, see

Dirichlet problem
First fundamental form, of S, 451
First-order method, Euler method as,

902
First-order ODEs, 2–45, 44

defined, 4
direction fields, 9–10
Euler’s method, 10–11
exact, 20–27, 45

defined, 21
integrating factors, 23–26

explicit form, 4
geometric meanings of, 9–12
implicit form, 4
initial value problem, 38–43
linear, 27–36

Bernoulli equation, 31–33
homogeneous, 28
nonhomogeneous, 28–29
population dynamics, 33–34

modeling, 2–8
numeric analysis, 901–915

Adams–Bashforth methods,
911–914

Adams–Moulton methods,
913–914

backward Euler method,
909–910

Euler’s method, 901–902
improved Euler’s method,

902–904
multistep methods, 911–915
Runge–Kutta–Fehlberg

method, 906–908
Runge–Kutta methods,

904–906
orthogonal trajectories, 36–38
separable, 12–20, 44

extended method, 17–18
modeling, 13–17

systems of, 165
transformation of systems to,

157–159
First (first order) partial derivatives,

A71
First shifting theorem (s-shifting),

208–209
First transmission line equation, 599
Fisher, Sir Ronald Aylmer, 1086
Fixed points:

defined, 799
of a mapping, 745

Fixed-point iteration (numeric
analysis), 798–801, 842

Fixed-point systems, numbers in, 791
Floating, 793
Floating-point form of numbers,

791–792

Flow augmenting paths, 992–993,
998, 1008

Flow problems in networks
(combinatorial optimization),
991–997

cut sets, 994–996
flow augmenting paths, 992–993
paths, 992

Fluid flow:
Laplace’s equation, 593
potential theory, 771–777

Fluid state, 404
Flux (motion of a fluid), 404
Flux integral, 444, 450
Forced motions, 68, 86
Forced oscillations:

Fourier analysis, 492–495
second-order nonhomogeneous

linear ODEs, 85–92
damped, 89–90
resonance, 88–91
undamped, 87–89

Forcing function, 86
Ford, Lester Randolph, Jr., 998n.7
FORD–FULKERSON,

ALGORITHM, 998
Ford–Fulkerson algorithm for

maximum flow, 998–1001,
1008

Forest (graph), 987
Form(s):

canonical, 344
complex, 351
differential, 422

exact, 21, 470
path independence and

exactness of, 422
Hesse’s normal, 366
Lagrange’s, 812
normal (linear optimization

problems), 955–957, 959,
969

Pfaffian, 422
polar, of complex numbers,

613–618, 631
quadratic, 343–344, 346
reduced echelon, 279
row echelon, 279–280
skew-Hermitian and Hermitian,

351
standard:

first-order ODEs, 27
higher-order homogeneous

linear ODEs, 105
higher-order linear ODEs, 123
power series method, 172
second-order linear ODEs, 46,

103
triangular (Gauss elimination),

846
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Forward edge:
cut sets, 994
initial flow, 998
of a path, 992

Four-color theorem, 1006
Fourier, Jean-Baptiste Joseph, 473n.1
Fourier analysis, 473–539

approximation by trigonometric
polynomials, 495–498

forced oscillations, 492–495
Fourier integral, 510–517

applications, 513–515
complex form of, 522–523
sine and cosine, 515–516

Fourier series, 474–483
convergence and sum of,

480–481
derivation of Euler formulas,

479–480
even and odd functions,

486–488
half-range expansions, 488–490
from period 2 to 2L,

483–486
Fourier transforms, 522–536

complex form of Fourier
integral, 522–523

convolution, 527–528
cosine, 518–522, 534
discrete, 528–531
fast, 531–532
and its inverse, 523–524
linearity, 526–527
sine, 518–522, 535
spectrum representation, 525

orthogonal series (generalized
Fourier series), 504–510

completeness, 508–509
mean square convergence,

507–508
Sturm–Liouville Problems,

498–504
eigenvalues, eigenfunctions,

499–500
orthogonal functions, 500–503

Fourier–Bessel series, 506–507, 589
Fourier coefficients, 476, 484, 538,

582–583
Fourier constants, 504–505
Fourier cosine integral, 515–516
Fourier cosine series, 484, 486, 538
Fourier cosine transforms, 518–522,

534
Fourier cosine transform method, 518
Fourier integrals, 510–517, 539

applications, 513–515
complex form of, 522–523
heat equation, 568–571
residue integration, 729–730
sine and cosine, 515–516

p

Fourier–Legendre series, 505–506,
596–598

Fourier matrix, 530
Fourier series, 473–483, 538

convergence and sum or, 480–481
derivation of Euler formulas,

479–480
double, 577–585
even and odd functions, 486–488
half-range expansions, 488–490
heat equation, 558–563
from period 2 to 2L, 483–486

Fourier sine integral, 515–516
Fourier sine series, 477, 486, 538

one-dimensional heat equation,
561

vibrating string, 548
Fourier sine transforms, 518–522,

535
Fourier transforms, 522–536, 539

complex form of Fourier integral,
522–523

convolution, 527–528
cosine, 518–522, 534, 539
defined, 522, 523
discrete, 528–531
fast, 531–532
heat equation, 571–574
and its inverse, 523–524
linearity of, 526–527
sine, 518–522, 535, 539
spectrum representation, 525

Fourier transform method, 524
Four-point formulas, 841
Fraction defective chars, 1091–1092
Francis, J. G. F., 892
Fredholm, Erik Ivar, 198n.7, 263n.3
Free condition (spline interpolation),

823
Free oscillations of mass–spring

system (second-order ODEs),
62–70

critical damping, 65, 66
damped system, 64–65
overdamping, 65–66
undamped system, 63–64
underdamping, 65, 67

Frenet, Jean-Frédéric, 392
Frenet formulas, 392
Frequency (in statistics):

absolute, 1012, 1019
cumulative absolute, 1012
cumulative relative, 1012
relative class, 1012

Frequency (of vibrating string), 547
Frequency distributions, mean and

variance of:
expectation, 1037–1038
moments, 1038
transformation of, 1036–1037

p

Fresnel, Augustin, 697n.4, A68n.1
Fresnel integrals, 697, A68
Frobenius, Georg, 180n.4
Frobenius method, 167, 180–187,

201
indicial equation, 181–183
proof of, A77–A81
typical applications, 183–185

Frobenius norm, 861
Fulkerson, Delbert Ray, 998n.7
Function, of complex variable,

620–621
Function spaces, 313
Fundamental matrix, 139
Fundamental period, 475
Fundamental region (exponential

function), 632
Fundamental system, 50, 104. See

also Basis, of solutions
Fundamental Theorem:

higher-order homogeneous linear
ODEs, 106

for linear systems, 288
PDEs, 541–542
second-order homogeneous linear

ODEs, 48

Galilei, Galileo, 16n.4
Gamma functions, 190–191, 208

formula for, A66–A67
incomplete, A67
table, A98

GAMS (Guide to Available
Mathematical Software), 789

GAUSS, ALGORITHM, 849
Gauss, Carl Friedrich, 186n.5,

608n.1, 1103
Gauss distribution, 1045. See also

Normal distributions
Gauss “Double Ring,” 451
Gauss elimination, 320, 849

linear systems, 274–280,
844–852, 898

back substitution, 274–276,
846

elementary row operations,
277

if infinitely many solutions
exist, 278

if no solution exists, 278–279
operation count, 850–851
row echelon form, 279–280

operation count, 850–851
Gauss integration formulas, 807,

836–838, 843
Gauss–Jordan elimination, 302–304,

856–857
GAUSS–SEIDEL, ALGORITHM,

860
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Gauss–Seidel iteration, 858–863, 
898

Gauss’s hypergeometric ODE, 186,
202

Geiger, H., 1044, 1100
Generalized Euler formula, 582
Generalized Fourier series, see

Orthogonal series
Generalized solution (vibrating

string), 550
Generalized triangle inequality, 615
General powers, 639–640, 642
General solution:

Bessel’s equation, 194–200
first-order ODEs, 6, 44
higher-order linear ODEs, 106,

110–111, 123
nonhomogeneous linear systems,

160
second-order linear ODEs:

homogeneous, 49–51, 77–78,
104

nonhomogeneous, 80–81
systems of ODEs, 131–132, 139

Generating functions, 179, 241
Geometric interpretation:

partial derivatives, A70
scalar triple product, 373, 374

Geometric multiplicity, 326, 878
Geometric series, 168, 675

Taylor series, 694
uniformly convergent, 698

Gerschgorin, Semyon Aranovich,
879n.6

Gerschgorin’s theorem, 879–881, 899
Gibbs phenomenon, 515
Global error, 902
Golden Rule, 15, 24
Gompertz model, 19
Goodness of fit, 1096–1100
Gosset, William Sealy, 1086n.4
Goursat, Édouard, 654n.1
Goursat’s proof, 654
Gradient, A75

fluid flow, 771
of a scalar field, 395–402

directional derivatives,
396–397

maximum increase, 398
as surface normal vector,

398–399
vector fields that are, 400–401

of a scalar function, 396, 411
unconstrained optimization, 952

Gradient method, 952. See also
Method of steepest descent

Graphs, 970–971, 1007
bipartite, 1001–1006, 1008
center of, 991
complete, 974

Graphs (Cont.)
complete bipartite, 1005
computer representation of,

972–974
connected, 977, 981, 984
diameter of, 991
digraphs (directed graphs),

971–974, 1007
computer representation of,

972–974
defined, 972
incidence matrix of, 975
subgraphs, 972

Euler, 980
forest, 987
incidence matrix of, 975
planar, 1005
radius of, 991
sparse, 974
subgraphs, 972
trees, 984
vertices, 971, 977, 1007

adjacent, 971, 977
central, 991
coloring, 1005–1006
double labeling of, 986
eccentricity of, 991
exposed, 1001, 1003
four-color theorem, 1006
scanning, 998

weighted, 976
Graphic data representation, 1012
Gravitation (Laplace’s equation), 

593
Gravity, acceleration of, 8
Gravity constant, at the Earth’s

surface, 63
Greedy algorithm, 984–988
Green, George, 433n.4
Green’s first formula, 461, 470
Green’s second formula, 461, 470
Green’s theorem:

first and second forms of, 
461

in the plane, 433–438, 470
Gregory, James, 816n.2
Gregory–Newton’s (Newton’s)

backward difference
interpolation formula, 
818–819

Gregory–Newton’s (Newton’s)
forward difference
interpolation formula, 
815–818

Growth restriction, 209
Guidepoints, 827
Guide to Available Mathematical

Software (GAMS), 789
Guldin, Habakuk, 452n.7
Guldin’s theorem, 452n.7

Hadamard, Jacques, 683n.1
Half-planes:

complex analysis, 619–620
mapping, 747–749

Half-range expansions (Fourier
series), 488–490, 538

Hamilton, William Rowan, 976n.1
Hamiltonian cycle, 976
Hankel, Hermann, 200n.8
Hankel functions, 200
Harmonic conjugate function

(Laplace’s equation), 629
Harmonic functions, 460, 462, 758

complex analysis, 628–629
under conformal mapping, 763
defined, 758
Laplace’s equation, 593, 628–629
maximum modulus theorem,

783–784
potential theory, 781–784, 786

Harmonic oscillation, 63–64
Heat equation, 459–460, 557–558

Dirichlet problem, 564–566
Laplace’s equation, 564
numeric analysis, 936–941, 948

Crank–Nicolson method,
938–941

explicit method, 937, 940–941
one-dimensional, 559
solution:

by Fourier integrals, 568–571
by Fourier series, 558–563
by Fourier transforms,

571–574
steady two-dimensional heat

problems, 546–566
two-dimensional, 564–566
unifying power of methods, 566

Heat flow:
Laplace’s equation, 593
potential theory, 767–770

Heat flow lines, 767
Heaviside, Oliver, 204n.1
Heaviside calculus, 204n.1
Heaviside expansions, 228
Heaviside function, 217–219
Helix, 386
Henry, Joseph, 93n.7
Hermite, Charles, 510n.8
Hermite interpolation, 826
Hermitian form, 351
Hermitian matrices, 347, 348, 350, 353
Hertz, Heinrich, 63n.3
Hesse, Ludwig Otto, 366n.2
Hesse’s normal form, 366
Heun, Karl, 905n.1
Heun’s method, 903. See also

Improved Euler’s method
Higher functions, 167. See also

Special functions
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Higher-order linear ODEs, 105–123
homogeneous, 105–116, 123
nonhomogeneous, 116–123
systems of, see Systems 

of ODEs
Higher order ODEs (numeric

analysis), 915–922
Euler method, 916–917
Runge–Kutta methods, 917–919
Runge–Kutta–Nyström methods,

919–921
Higher transcendental functions, 920
High-frequency line equations, 600
Hilbert, David, 198n.7, 312n.4
Hilbert spaces, 363
Histograms, 1012
Holes, of domains, 653
Homogeneous first-order linear

ODEs, 28
Homogeneous higher-order linear

ODEs, 105–111
Homogeneous linear systems, 138,

165, 272, 290–291, 845
constant-coefficient systems,

140–151
matrices and vectors, 124–130, 321
trivial solution, 290

Homogeneous PDEs, 541
Homogeneous second-order linear

ODEs, 46–48
basis, 50–52
with constant coefficients, 53–60

complex roots, 57–59
real double root, 55–56
two distinct real-roots, 54–55

differential operators, 60–62
Euler–Cauchy equations, 71–74
existence and uniqueness of

solutions, 74–79
general solution, 49–51, 77–78
initial value problem, 49–50
modeling free oscillations of

mass–spring system, 62–70
particular solution, 49–51
reduction of order, 51–52
Wronskian, 75–78

Hooke, Robert, 62
Hooke’s law, 62
Householder, Alston Scott, 888n.11
Householder’s tridiagonalization

method, 888–892
Hyperbolic analytic functions

(conformal mapping), 750–754
Hyperbolic cosine, 635, 752
Hyperbolic functions, 635, 642

formula for, A65–A66
inverse, 640
Taylor series, 695

Hyperbolic PDEs:
defined, 923
numeric analysis, 942–945

Hyperbolic sine, 635, 752
Hypergeometric distributions,

1042–1044, 1061
Hypergeometric equations, 167,

185–187
Hypergeometric functions, 167, 186
Hypergeometric series, 186
Hypothesis, 1077
Hypothesis testing (in statistics),

1063, 1077–1087
comparison of means, 1084–1085
comparison of variances, 1086
errors in tests, 1080–1081
for mean of normal distribution

with known variance,
1081–1083

for mean of normal distribution
with unknown variance,
1083–1084

one- and two-sided alternatives,
1079–1080

Idempotent matrices, 270
Identity mapping, 745
Identity matrices, 268
Identity operator (second-order

homogeneous linear ODEs), 60
Ill-conditioned equations, 805
Ill-conditioned problems, 864
Ill-conditioned systems, 864, 865,

899
Ill-conditioning (linear systems),

864–872
condition number of a matrix,

868–870
matrix norms, 866–868
vector norms, 866

Image:
conformal mapping, 737
linear transformations, 313

Imaginary axis (complex plane), 611
Imaginary part (complex numbers),

609
Imaginary unit, 609
Impedance (RLC circuits), 95
Implicit formulas, 913
Implicit method:

backward Euler scheme as, 909
for hyperbolic PDEs, 943

Implicit solution, 21
Improper integrals:

defined, 205
residue integration, 726–732

Improper node, 142
Improved Euler’s method:

error of, 904, 906, 908
first-order ODEs, 902–904

Impulse, of a force, 225
short impulses, 225–226
unit impulse function, 226

Incidence matrices (graphs and
digraphs), 975

Incident edges, 971
Inclusion theorems:

defined, 882
matrix eigenvalue problems,

879–884
Incomplete gamma functions, 

formula for, A67
Inconsistent linear systems, 277
Indefinite (quadratic form), 346
Indefinite integrals:

defined, 643
existence of, 656–658

Indefinite integration (complex line
integral), 646–647

Independence:
of path, 669
of path in domain (integrals), 470,

655
of random variables, 1055–1056

Independent events, 1022–1023, 
1061

Independent sample values, 1064
Independent variables:

in calculus, 393
in regression analysis, 1103

Indicial equation, 181–183, 188, 202
Indirect methods (solving linear

systems), 858, 898
Inference, statistical, 1059, 1063
Infinite dimensional vector space,

311
Infinite populations, 1044
Infinite sequences:

bounded, A93–A95
monotone real, A72–A73
power series, 671–673

Infinite series, 673–674
Infinity:

analytic of singular at, 718–719
point at, 718

Initial conditions:
first-order ODEs, 6, 7, 44
heat equation, 559, 568, 569
higher-order linear ODEs:

homogeneous, 107
nonhomogeneous, 117

one-dimensional heat equation,
559

PDEs, 541, 605
second-order homogeneous linear

ODEs, 49–50, 104
systems of ODEs, 137
two-dimensional wave equation,

577
vibrating string, 545

Initial point (vectors), 355
Initial value problem (IVP):

defined, 6
first-order ODEs, 6, 39, 44, 901
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Initial value problem (IVP): (Cont.)
bell-shaped curve, 13
existence and uniqueness of

solutions for, 38–43
higher-order linear ODEs, 123

homogeneous, 107–108
nonhomogeneous, 117

Laplace transforms, 213–216
for RLC circuit, 99
second-order homogeneous linear

ODEs, 49, 74–75, 104
systems of ODEs, 137

Injective mapping, 737n.1
Inner product (dot product), 312

for complex vectors, 349
invariance of, 336
vector differential calculus,

361–367, 410
applications, 364–366
orthogonality, 361–363

Inner product spaces, 311–313
Input (driving force), 27, 86, 214
Instability, numeric vs. mathematical,

796
Integrals, see Line integrals
Integral equations:

defined, 236
Laplace transforms, 236–237

Integral of a function, Laplace
transforms of, 212–213

Integral transforms, 205, 518
Integrand, 414, 644
Integrating factors, 23–26, 45

defined, 24
finding, 24–26

Integration. See also Complex
integration

constant of, 18
of Laplace transforms, 238–240
numeric, 827–838

adaptive, 835–836
Gauss integration formulas,

836–838
rectangular rule, 828
Simpson’s rule, 831–835
trapezoidal rule, 828–831

termwise, of power series, 687,
688

Intermediate value theorem, 807–808
Intermediate variables, 393
Intermittent harvesting, 36
INTERPOL, ALGORITHM, 814
Interpolation, 529

defined, 808
numeric analysis, 808–820, 842

equal spacing, 815–819
Lagrange, 809–812
Newton’s backward difference

formula, 818–819
Newton’s divided difference,

812–815

Interpolation (Cont.)
Newton’s forward difference

formula, 815–818
spline, 820–827

Interpolation polynomial, 808, 842
Interquartile range, 1013
Intersection, of events, 1016, 1017
Intervals. See also Confidence

intervals
class, 1012
closed, A72n.3
convergence, 171, 683
open, 4, A72n.3

Interval estimates, 1065
Invariance, of curl, A85–A88
Invariant rank, 283
Invariant subspace, 878
Inverse cosine, 640
Inverse cotangent, 640
Inverse Fourier cosine transform, 518
Inverse Fourier sine transform, 519
Inverse Fourier sine transform

method, 519
Inverse Fourier transform, 524
Inverse hyperbolic function, 640
Inverse hyperbolic sine, 640
Inverse mapping, 741, 745
Inverse of a matrix, 128, 301–309,

321
cancellation laws, 306–307
determinants of matrix

products, 307–308
formulas for, 304–306
Gauss–Jordan method,

302–304, 856–857
Inverse sine, 640
Inverse tangent, 640
Inverse transform, 205, 253
Inverse transformation, 315
Inverse trigonometric function, 640
Irreducible, 883
Irregular boundary (elliptic PDEs),

933–935
Irrotational flow, 774
Isocline, 10
Isolated critical point, 152
Isolated essential singularity, 715
Isolated singularity, 715
Isotherms, 36, 38, 402, 767
Iteration (iterative) methods:

numeric analysis, 798–808
fixed-point iteration, 798–801
Newton’s (Newton–Raphson)

method, 801–805
secant method, 805–806
speed of convergence, 804–805

numeric linear algebra, 858–864,
898

Gauss–Seidel iteration, 858–862
Jacobi iteration, 862–863

IVP, see Initial value problem

Jacobi, Carl Gustav Jacob, 430n.3
Jacobians, 430, 741
Jacobi iteration, 862–863
Jordan, Wilhelm, 302n.3
Joukowski airfoil, 739–740

Kantorovich, Leonid Vitaliyevich,
959n.1

KCL (Kirchhoff’s Current Law),
93n.7, 274

Kernel, 205
Kinetic friction, coefficient of, 19
Kirchhoff, Gustav Robert, 93n.7
Kirchhoff’s Current Law (KCL),

93n.7, 274
Kirchhoff’s law, 991
Kirchhoff’s Voltage Law (KVL), 29,

93, 274
Koopmans, Tjalling Charles, 959n.1
Kreyszig, Erwin, 855n.3
Kronecker, Leopold, 500n.5
Kronecker delta, A85
Kronecker symbol, 500
Kruskal, Joseph Bernard, 985n.5
KRUSKAL, ALGORITHM, 985
Kruskal’s Greedy algorithm,

984–988, 1008
kth backward difference, 818
kth central moment, 1038
kth divided difference, 813
kth forward difference, 815–816
kth moment, 1038, 1065
Kublanovskaya, V. N., 892
Kutta, Wilhelm, 905n.1
Kutta’s third-order method, 911
KVL, see Kirchhoff’s Voltage Law

Lagrange, Joseph Louis, 51n.1
Lagrange interpolation, 809–812
Lagrange’s form, 812, 842
Laguerre, Edmond, 504n.7
Laguerre polynomials, 241, 504
Laguerre’s equation, 240–241
LAPACK, 789
Laplace, Pierre Simon Marquis de,

204n.1
Laplace equation, 400, 564, 593–600,

642, 923
boundary value problem in

spherical coordinates,
594–596

complex analysis, 628–629
in cylindrical coordinates,

593–594
Fourier–Legendre series, 596–598
heat equation, 564
numeric analysis, 922–936, 948

ADI method, 928–930
difference equations, 923–925
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Laplace equation (Cont.)
Dirichlet problem, 925–928,

934–935
Liebmann’s method, 926–928

in spherical coordinates, 594
theory of solutions of, 460, 786.

See also Potential theory
two-dimensional heat equation,

564
two-dimensional problems, 759
uniqueness theorem for, 462

Laplace integrals, 516
Laplace operator, 401. See also

Laplacian
Laplace transforms, 203–253

convolution, 232–237
defined, 204, 205
of derivatives, 211–212
differentiation of, 238–240
Dirac delta function, 226–228
existence, 209–210
first shifting theorem (s-shifting),

208–209
general formulas, 248
initial value problems, 213–216
integral equations, 236–237
of integral of a function, 212–213
integration of, 238–240
linearity of, 206–208
notation, 205
ODEs with variable coefficients,

240–241
partial differential equations,

600–603
partial fractions, 228–230
second shifting theorem 

(t-shifting), 219–223
short impulses, 225–226
systems of ODEs, 242–247
table of, 249–251
uniqueness, 210
unit step function (Heaviside

function), 217–219
Laplacian, 400, 463, 605, A76

in cylindrical coordinates,
593–594

heat equation, 557
Laplace’s equation, 593
in polar coordinates, 585–592
in spherical coordinates, 594
of u in polar coordinates, 586

Lattice points, 925–926
Laurent, Pierre Alphonse, 708n.1
Laurent series, 708–719, 734

analytic or singular at infinity,
718–719

point at infinity, 718
Riemann sphere, 718
singularities, 715–717
zeros of analytic functions, 717

Laurent’s theorem, 709
LCL (lower control limit), 1088
Least squares approximation, of a

function, 875–876
Least squares method, 872–876, 899
Least squares principle, 1103
Lebesgue, Henri, 876n.5
Left-handed Cartesian coordinate

system, 369, 370, A84
Left-hand limit (Fourier series), 480
Left-sided tests, 1079, 1082
Legendre, Adrien-Marie, 175n.1,

1103
Legendre function, 175
Legendre polynomials, 167, 177–179,

202
Legendre’s equation, 167, 175– 177,

201, 202
Laplace’s equation, 595–596
special, 169–170

Leibniz, Gottfried Wilhelm, 15n.3
Leibniz test for real series, A73–A74
Length:

curves, 385
vectors, 355, 356, 410

Leonardo of Pisa, 690n.2
Leontief, Wassily, 334n.1
Leontief input–output model, 334
Leslie model, 331
Level surfaces, 380, 398
LFTs, see Linear fractional

transformations
Libby, Willard Frank, 13n.2
Liebmann’s method, 926–928
Likelihood function, 1066
Limit (sequences), 672
Limit cycle, 158–159, 621
Limit l, 378
Limit point, A93
Limit vector, 378
Linear algebra, 255. See also

Numeric linear algebra
determinants, 293–301

Cramer’s rule, 298–300
general properties of, 295–298
of matrix products, 307–308
second-order, 291–292
third-order, 292–293

inverse of a matrix, 301–309
cancellation laws, 306–307
determinants of matrix

products, 307–308
formulas for, 304–306
Gauss–Jordan method,

302–304
linear systems, 272–274

back substitution, 274–276
elementary row operations, 277
Gauss elimination, 274–280
homogeneous, 290–291

Linear algebra (Cont.)
nonhomogeneous, 291
solutions of, 288–291

matrices and vectors, 257–262
addition and scalar

multiplication of,
259–261

diagonal matrices, 268
linear independence and

dependence of vectors,
282–283

matrix multiplication,
263–266, 269–279

notation, 258
rank of, 283–285
symmetric and skew-symmetric

matrices, 267–268
transposition of, 266–267
triangular matrices, 268

matrix eigenvalue problems,
322–353

applications, 329–334
complex matrices and forms,

346–352
determining eigenvalues and

eigenvectors, 323–329
diagonalization of matrices,

341–342
eigenbases, 339–341
orthogonal matrices, 337–338
orthogonal transformations, 336
quadratic forms, 343–344
symmetric and skew-

symmetric matrices,
334–336

transformation to principal
axes, 344

vector spaces:
inner product spaces, 311–313
linear transformations,

313–317
real, 309–311
special, 285–287

Linear combination:
homogeneous linear ODEs:

higher-order, 107
second-order, 48

of matrices, 129, 271
of vectors, 129, 282
of vectors in vector space, 311

Linear dependence, of vectors,
282–283

Linear element, 386
Linear equations, systems of, see

Linear systems
Linear fractional transformations

(LFTs), 742–750, 757
extended complex plane, 744–745
mapping standard domains,

747–750
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Linear independence:
scalar triple product, 373
of vectors, 282–283

Linear inequalities, 954
Linear interpolation, 809–810
Linearity:

Fourier transforms, 526–527
Laplace transforms, 206–208
line integrals, 645

Linearity principle, see Superposition
principle

Linearization, 152–155
Linearized system, 153
Linearly dependent functions:

higher-order homogeneous linear
ODEs, 106, 109

second-order homogeneous linear
ODEs, 50, 75

Linearly dependent sets, 129, 311
Linearly dependent vectors, 282–283,

285
Linearly independent functions:

higher-order homogeneous linear
ODEs, 106, 109, 113

second-order homogeneous linear
ODEs, 50, 75

Linearly independent sets, 128–129,
311

Linearly independent vectors, 282–283
Linearly related variables, 1109
Linear mapping, 314. See also Linear

transformations
Linear ODEs, 45, 46

first order, 27–36
Bernoulli equation, 31–33
homogeneous, 28
nonhomogeneous, 28–29
population dynamics, 33–34

higher-order, 105–123
homogeneous, 105–116
nonhomogeneous, 116–122

higher-order homogeneous, 105
second-order, 46–104

homogeneous, 46–78, 103
nonhomogeneous, 79–102, 103

Linear operations:
Fourier cosine and sine

transforms as, 520
integration as, 645

Linear operators (second-order
homogeneous linear ODEs), 61

Linear optimization, see Constrained
(linear) optimization

Linear PDEs, 541
Linear programming problems, 954–958

normal form of problems, 955–957
simplex method, 958–968

degenerate feasible solution,
962–965

difficulties in starting, 965–968

Linear systems, 138–139, 165,
272–274, 320, 845

back substitution, 274–276
defined, 267, 845
elementary row operations, 277
Gauss elimination, 274–280,

844–852
applications, 277–180
back substitution, 274–276
elementary row operations, 277
operation count, 850–851
row echelon form, 279–280

Gauss–Jordan elimination,
856–857

homogeneous, 138, 165, 272,
290–291

constant-coefficient systems,
140–151

matrices and vectors, 124–130
ill-conditioning, 864–872

condition number of a matrix,
868–870

matrix norms, 866–868
vector norms, 866

iterative methods, 858–864
Gauss–Seidel iteration,

858–882
Jacobi iteration, 862–863

LU-factorization, 852–855
Cholesky’s method, 855–856

of m equations in n unknowns, 272
nonhomogeneous, 138, 160–163,

272, 290, 291
solutions of, 288–291, 898

Linear transformations, 320
motivation of multiplication by,

265–266
vector spaces, 313–317

Line integrals, 643–652, 669
basic properties of, 645
bounds for, 650–651
definition of, 414, 643–645
existence of, 646
indefinite integration and

substitution of limits,
646–647

path dependence of, and
integration around closed
curves, 421–425

representation of a path, 647–650
vector integral calculus, 413–419

definition and evaluation of,
414–416

path dependence of, 418–426
work done by a force, 416–417

Lines of constant revenue, 954
Lines of force, 760–762
LINPACK, 789
Liouville, Joseph, 499n.4
Liouville’s theorem, 666–667

Lipschitz, Rudolf, 42n.9
Lipschitz condition, 42
Ljapunov, Alexander Michailovich,

149n.2
Local error, 830
Local maximum (unconstrained

optimization), 952
Local minimum (unconstrained

optimization), 951
Local truncation error, 902
Logarithm, 636–639

natural, 636–638, 642, A63
Taylor series, 695

Logarithmic decrement, 70
Logarithmic integral, formula for, A69
Logarithm of base ten, formula for,

A63
Logistic equation, 32–33
Longest path, 976
Loss of significant digits (numeric

analysis), 793–794
Lotka, Alfred J., 155n.3
Lotka–Volterra population model,

155–156
Lot tolerance percent defective

(LTPD), 1094
Lower confidence limits, 1068
Lower control limit (LCL), 1088
Lower triangular matrices, 268
LTPD (lot tolerance percent

defective), 1094
LU-factorization (linear systems),

852–855

Machine numbers, 792
Maclaurin, Colin, 690n.2, 712
Maclaurin series, 690, 694–696
Main diagonal:

determinants, 294
matrix, 125, 258

Malthus, Thomas Robert, 5n.1
Malthus’ law, 5, 33
Maple, 789
Maple Computer Guide, 789
Mapping, 313, 736, 737, 757

bijective, 737n.1
conformal, 736–757

boundary value problems,
763–767, A96

defined, 738
geometry of analytic functions,

737–742
linear fractional

transformations,
742–750

Riemann surfaces, 754–756
by trigonometric and

hyperbolic analytic
functions, 750–754
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Mapping (Cont.)
of disks, 748–750
fixed points of, 745
of half-planes onto half-planes, 748
identity, 745
injective, 737n.1
inverse, 741, 745
linear, 314. See also Linear

transformations
one-to-one, 737n.1
spectral mapping theorem, 878
surjective, 737n.1

Marconi, Guglielmo, 63n.3
Marginal distributions, 1053–1055,

1062
of continuous distributions, 1055
of discrete distributions,

1053–1054
Mariotte, Edme, 19n.5
Markov, Andrei Andrejevitch, 270n.1
Markov process, 270, 331
MATCHING, ALGORITHM, 1003
Matching, 1008

assignment problems, 1001
complete, 1002
maximum cardinality, 1001, 1008

Mathcad, 789
Mathematica, 789
Mathematica Computer Guide, 789
Mathematical models, see Models
Mathematical modeling, see

Modeling
Mathematical statistics, 1009,

1063–1113
acceptance sampling, 1092–1096

errors in, 1093–1094
rectification, 1094–1095

confidence intervals, 1068–1077
for mean of normal distribution

with known variance,
1069–1071

for mean of normal distribution
with unknown variance,
1071–1073

for parameters of distributions
other than normal, 1076

for variance of a normal
distribution, 1073–1076

correlation analysis, 1108–1111
defined, 1103
test for correlation coefficient,

1110–1111
defined, 1063
goodness of fit, 1096–1100
hypothesis testing, 1077–1087

comparison of means,
1084–1085

comparison of variances, 1086
errors in tests, 1080–1081

for mean of normal distribution
with known variance,
1081–1083

for mean of normal distribution
with unknown variance,
1083–1084

one- and two-sided
alternatives, 1079–1080

main purpose of, 1015
nonparametric tests, 1100–1102
point estimation of parameters,

1065–1068
quality control, 1087–1092

for mean, 1088–1089
for range, 1090–1091
for standard deviation, 1090
for variance, 1089–1090

random sampling, 1063–1065
regression analysis, 1103–1108

confidence intervals in,
1107–1108

defined, 1103
Matlab, 789
Matrices, 124–130, 256–262, 320

addition and scalar multiplication
of, 259–261

calculations with, 126–127
condition number of, 868–870
definitions and terms, 125–126,

128, 257
diagonal, 268
diagonalization of, 341–342
eigenvalues, 129–130
equality of, 126, 259
fundamental, 139
inverse of, 128, 301–309, 321

cancellation laws, 306–307
determinants of matrix

products, 307–308
formulas for, 304–306
Gauss–Jordan method,

302–304, 856–857
matrix multiplication, 127,

263–266, 269–279
applications of, 269–279
cancellation laws, 306–307
determinants of matrix

products, 307–308
scalar, 259–261

normal, 352, 882
notation, 258
orthogonal, 337–338
rank of, 283–285
square, 126
symmetric and skew-symmetric,

267–268
transposition of, 266–267
triangular, 268
unitary, 347–350, 353

Matrix eigenvalue problems,
322–353, 876–896

applications, 329–334
choice of numeric method for,

879
complex matrices and forms,

346–352
determining eigenvalues and

eigenvectors, 323–329
diagonalization of matrices,

341–342
eigenbases, 339–341
inclusion theorems, 879–884
orthogonal matrices, 337–338
orthogonal transformations, 336
power method, 885–888
QR-factorization, 892–896
quadratic forms, 343–344
symmetric and skew-symmetric

matrices, 334–336
transformation to principal axes,

344
tridiagonalization, 888–892

Matrix multiplication, 127, 263–266,
269–279

applications of, 269–279
cancellation laws, 306–307
determinants of matrix products,

307–308
scalar, 259–261

Matrix norms, 861, 866–868
Maximum cardinality matching,

1001, 1003–1004, 1008
Maximum flow:

Ford–Fulkerson algorithm,
998–1000

and minimum cut set, 996
Maximum increase:

gradient of a scalar field, 398
unconstrained optimization, 951

Maximum likelihood estimates
(MLEs), 1066–1067

Maximum likelihood method,
1066–1067, 1113

Maximum modulus theorem, 782–784
Maximum principle, 783
Mean(s), 1013–1014, 1061

comparison of, 1084–1085
control chart for, 1088–1089
of normal distributions:

confidence intervals for,
1069–1073

hypothesis testing for,
1081–1084

probability distributions,
1035–1039

addition of, 1057–1058
transformation of, 1036–1037

sample, 1064
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Mean square convergence (orthogonal
series), 507–508

Mean value (fluid flow), 774n.1
Mean value property:

analytic functions, 781–782
harmonic functions, 782

Mean value theorem, 395
for double integrals, 427
for surface integrals, 448
for triple integrals, 456–457

Median, 1013, 1100–1101
Mendel, Gregor, 1100
Meromorphic function, 719
Mesh incidence matrix, 262
Mesh points (lattice points, nodes),

925–926
Mesh size, 924
Method of characteristics (PDEs), 555
Method of least squares, 872–876,

899
Method of moments, 1065
Method of separating variables,

12–13
circular membrane, 587
partial differential equations,

545–553, 605
Fourier series, 548–551
satisfying boundary conditions,

546–548
two ODEs from wave

equation, 545–546
vibrating string, 545–546

Method of steepest descent, 952–954
Method of undetermined coefficients:

higher-order homogeneous linear
ODEs, 115, 123

nonhomogeneous linear systems
of ODEs, 161

second-order nonhomogeneous
linear ODEs, 81–85, 104

Method of variation of parameters:
higher-order nonhomogeneous

linear ODEs, 118–120, 123
nonhomogeneous linear systems

of ODEs, 162–163
second-order nonhomogeneous

linear ODEs, 99–102, 104
Minimization (normal form of linear

optimization problems), 957
Minimum (unconstrained

optimization), 951
Minimum cut set, 996
Minors, of determinants, 294
Mixed boundary condition (two-

dimensional heat equation),
564

Mixed boundary value problem, 605,
923. See also Robin problem

elliptic PDEs, 931–933
heat conduction, 768–769

Mixed type PDEs, 555
Mixing problems, 14
MLEs (maximum likelihood

estimates), 1066–1067
ML-inequality, 650–651
Möbius, August Ferdinand, 447n.5
Möbius strip, 447
Möbius transformations, 743. See

also Linear fractional
transformations (LFTs)

Models, 2
Modeling, 1, 2–8, 44

and concept of solution, 4–6
defined, 2
first-order ODEs, 2–8
initial value problem, 6
separable ODEs, 13–17
typical steps of, 6–7
and unifying power of

mathematics, 766
Modification Rule (method of

undetermined coefficients):
higher-order homogeneous linear

ODEs, 115–116
second-order nonhomogeneous

linear ODEs, 81, 83
Modulus (complex numbers), 613
Moments, method of, 1065
Moments of inertia, of a region, 429
Moment vector (vector moment), 

371
Monotone real sequences, 

A72–A73
Moore, Edward Forrest, 977n.2
MOORE, ALGORITHM, 977
Moore’s BFS algorithm, 977–980,

1008
Morera’s theorem, 667
Moulton, Forest Ray, 913n.3
Multinomial distribution, 1045
Multiple complex roots, 115
Multiple points, curves with, 383
Multiplication:

of complex numbers, 609, 610,
615

in conditional probability,
1022–1023

matrix, 127, 263–266
applications of, 269–279
cancellation laws, 306–307
determinants of matrix

products, 307–308
scalar, 259–261

of means, 1057–1058
of power series, 687
scalar, 126–127, 259–261, 310
termwise, 173, 687
of transforms, 232. See also

Convolution
Multiplicity, algebraic, 326, 878

Multiply connected domains, 652,
653

Cauchy’s integral formula,
662–663

Cauchy’s integral theorem,
658–659

Multistep methods, 911–915, 947
Adams–Bashforth methods,

911–914
Adams–Moulton methods,

913–914
defined, 908
first-order ODEs, 911

Mutually exclusive events, 1016,
1021

m n matrix, 258

Nabla, 396
NAG (Numerical Algorithms Group,

Inc.), 789
National Institute of Standards and

Technology (NIST), 789
Natural condition (spline

interpolation), 823
Natural frequency, 63
Natural logarithm, 636–638, 642,

A63
Natural spline, 823
n-dimensional vector spaces, 311
Negative (scalar multiplication), 260
Negative definite (quadratic form),

346
Neighborhood, 619, 720
Net flow, through cut set, 994–995
NETLIB, 789
Networks:

defined, 991
flow problems in, 991–997

cut sets, 994–996
flow augmenting paths,

992–993
paths, 992

Neumann, Carl, 198n.7
Neumann, John von, 959n.1
Neumann boundary condition, 564
Neumann problem, 605, 923

elliptic PDEs, 931
Laplace’s equation, 593
two-dimensional heat equation,

564
Neumann’s function, 198
NEWTON, ALGORITHM, 802
Newton, Sir Isaac, 15n.3
Newton–Cotes formulas, 833, 843
Newton’s (Gregory–Newton’s)

backward difference
interpolation formula, 818–819

Newton’s divided difference
interpolation, 812–815, 842

�
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Newton’s divided difference
interpolation formula, 814–815

Newton’s (Gregory–Newton’s)
forward difference
interpolation formula,
815–818, 842

Newton’s law of cooling, 15–16
Newton’s law of gravitation, 377
Newton’s (Newton–Raphson)

method, 801–805, 842
Newton’s second law, 11, 63, 245,

544, 576
Neyman, Jerzy, 1068n.1, 1077n.2
Nicolson, Phyllis, 938n.5
Nicomedes, 391n.4
Nilpotent matrices, 270
NIST (National Institute of Standards

and Technology), 789
Nodal incidence matrix, 262
Nodal lines, 580–581, 588
Nodes, 165, 925–926

degenerate, 145–146
improper, 142
interpolation, 808
proper, 143
spline interpolation, 820
trapezoidal rule, 829
vibrating string, 547

Nonbasic variables, 960
Nonconservative physical systems,

422
Nonhomogeneous linear ODEs:

convolution, 235–236
first-order, 28–29
higher-order, 106, 116–122
second-order, 79–102

defined, 47
method of undetermined

coefficients, 81–85
modeling electric circuits,

93–99
modeling forced oscillations,

85–92
particular solution, 80
solution by variation of

parameters, 99–102
Nonhomogeneous linear systems,

138, 160–163, 166, 272, 290,
291, 845

method of undetermined
coefficients, 161

method of variation of parameters,
162–163

Nonhomogeneous PDEs, 541
Nonlinear ODEs, 46

first-order, 27
higher-order homogeneous, 

105
second-order, 46

Nonlinear PDEs, 541

Nonlinear systems, qualitative
methods for, 152–160

linearization, 152–155
Lotka–Volterra population model,

155–156
transformation to first-order

equation in phase plane,
157–159

Nonparametric tests (statistics),
1100–1102, 1113

Nonsingular matrices, 128, 301
Norm(s):

matrix, 861, 866–868
orthogonal functions, 500
vector, 312, 355, 410, 866

Normal accelerations, 391
Normal acceleration vector, 387
Normal derivative, 437

defined, 437
mixed problems, 768, 931
Neumann problems, 931
solutions of Laplace’s equation,

460
Normal distributions, 1045–1051,

1062
as approximation of binomial

distribution, 1049–1050
confidence intervals:

for means of, 1069–1073
for variances of, 1073–1076

distribution function, 1046–1047
means of:

confidence intervals for,
1069–1073

hypothesis testing for,
1081–1084

numeric values, 1047–1048
tables, A101–A102
two-dimensional, 1110
working with normal tables,

1048–1049
Normal equations, 873, 1105–1106
Normal form (linear optimization

problems), 955–957, 959, 969
Normalizing, eigenvectors, 326
Normal matrices, 352, 882
Normal mode:

circular membrane, 588
vibrating string, 547–548

Normal plane, 390
Normal random variables, 1045
Normal vectors, 366, 441
Not rejecting a hypothesis, 1081
No trend hypothesis, 1101
nth order linear ODEs, 105, 123
nth-order ODEs, 134–135
nth partial sum, 170

Fourier series, 495
of series, 673

nth roots, 616

nth roots of unity, 617
Null hypothesis, 1078
Nullity, 287, 291
Null space, 287, 291
Numbers:

acceptance, 1092
Bernoulli’s law of large numbers,

1051
chromatic, 1006
complex, 608–619, 641

addition of, 609, 610
conjugate, 612
defined, 608
division of, 610
multiplication of, 609, 610
polar form of, 613–618
subtraction of, 610

condition, 868–870, 899
Fibonacci, 690
floating-point form of, 791–792
machine, 792
random, 1064

Number of degrees of freedom, 1071,
1074

Numerics, see Numeric analysis
Numerical Algorithms Group, Inc.

(NAG), 789
Numerically stable algorithms, 796,

842
Numerical Recipes, 789
Numeric analysis (numerics),

787–843
algorithms, 796
basic error principle, 796
error propagation, 795
errors of numeric results, 794–795
floating-point form of numbers,

791–792
interpolation, 808–820

equal spacing, 815–819
Lagrange, 809–812
Newton’s backward difference

formula, 818–819
Newton’s divided difference,

812–815
Newton’s forward difference

formula, 815–818
spline, 820–827

loss of significant digits, 793–794
numeric differentiation, 838–839
numeric integration, 827–838

adaptive, 835–836
Gauss integration formulas,

836–838
rectangular rule, 828

Simpson’s rule, 831–835
trapezoidal rule, 828–831

for ODEs, 901–922
first-order, 901–915
higher order, 915–922
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numeric integration (Cont.)
for PDEs, 922–945

elliptic, 922–936
hyperbolic, 942–945
parabolic, 936–942

roundoff, 792–793
software for, 788–789
solution of equations by iteration,

798–808
fixed-point iteration, 798–801
Newton’s (Newton–Raphson)

method, 801–805
secant method, 805–806
speed of convergence, 804–805

spline interpolation, 820–827
Numeric differentiation, 838–839
Numeric integration, 827–838

adaptive, 835–836
Gauss integration formulas,

836–838
rectangular rule, 828
Simpson’s rule, 831–835
trapezoidal rule, 828–831

Numeric linear algebra, 844–899
curve fitting, 872–876
least squares method, 872–876
linear systems, 845

Gauss elimination, 844–852
Gauss–Jordan elimination,

856–857
ill-conditioning norms,

864–872
iterative methods, 858–864
LU-factorization, 852–855

matrix eigenvalue problems,
876–896

inclusion theorems, 879–884
power method, 885–888
QR-factorization, 892–896
tridiagonalization, 888–892

Numeric methods:
choice of, 791, 879
defined, 791

n n matrix, 125
Nyström, E. J., 919

Objective function, 951, 969
OCs (operating characteristics), 1081
OC curve, see Operating

characteristic curve
Odd functions, 486–488
Odd periodic extension, 488–490
ODEs, see Ordinary differential

equations
Ohm, Georg Simon, 93n.7
Ohm’s law, 29
One-dimensional heat equation, 559
One-dimensional wave equation,

544–545

�

One-parameter family of curves, 36–37
One-sided alternative (hypothesis

testing), 1079–1080
One-sided tests, 1079
One-step methods, 908, 911, 947
One-to-one mapping, 737n.1
Open annulus, 619
Open circular disk, 619
Open integration formula, 838
Open intervals, 4, A72n.3
Open Leontief input–output model,

334
Open set, in complex plane, 620
Operating characteristic curve (OC

curve), 1081, 1092, 1095
Operating characteristics (OCs), 1081
Operational calculus, 60, 203
Operation count (Gauss elimination),

850
Operators, 60–61, 313
Optimal solutions (normal form of

linear optimization problems),
957

Optimization:
combinatorial, 970, 975–1008

assignment problems,
1001–1006

flow problems in networks,
991–997

Ford–Fulkerson algorithm for
maximum flow,
998–1001

shortest path problems,
975–980

constrained (linear), 951, 954–968
normal form of problems,

955–957
simplex method, 958–968

unconstrained:
basic concepts, 951–952
method of steepest descent,

952–954
Optimization methods, 949
Optimization problems, 949, 

954–958
normal form of problems,

955–957
objective, 951
simplex method, 958–968

degenerate feasible solution,
962–965

difficulties in starting, 965–968
Order:

and complexity of algorithms, 978
Gauss elimination, 850
of iteration process, 804
of PDE, 540
singularities, 714

Ordering (Greedy algorithm), 987
Order statistics, 1100

Ordinary differential equations
(ODEs), 44

autonomous, 11, 33
defined, 1, 3–4
first-order, 2–45

direction fields, 9–10
Euler’s method, 10–11
exact, 20–27
geometric meanings of, 9–12
initial value problem, 38–43
linear, 27–36
modeling, 2–8
numeric analysis, 901–915
orthogonal trajectories, 36–38
separable, 12–20

higher-order linear, 105–123
homogeneous, 105–116, 123
nonhomogeneous, 116–123
systems of, see Systems of

ODEs
Laplace transforms, 203–253

convolution, 232–237
defined, 204, 205
of derivatives, 211–212
differentiation of, 238–240
Dirac delta function, 226–228
existence, 209–210
first shifting theorem 

(s-shifting), 208–209
general formulas, 248
initial value problems, 

213–216
integral equations, 236–237
of integral of a function,

212–213
integration of, 238–240
linearity of, 206–208
notation, 205
ODEs with variable

coefficients, 240–241
partial differential equations,

600–603
partial fractions, 228–230
second shifting theorem 

(t-shifting), 219–223
short impulses, 225–226
systems of ODEs, 242–247
table of, 249–251
uniqueness, 210
unit step function (Heaviside

function), 217–219
linear, 46
nonlinear, 46
numeric analysis, 901–922

first-order ODEs, 901–915
higher order ODEs, 915–922

second-order linear, 46–104
homogeneous, 46–79
nonhomogeneous, 79–102

second-order nonlinear, 46
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Ordinary differential equations (Cont.)
series solutions of ODEs, 167–202

Bessel functions, 187–194,
196–200

Bessel’s equation, 187–200
Frobenius method, 180–187
Legendre polynomials,

177–179
Legendre’s equation, 175– 179
power series method, 167–175

systems of, 124–166
basic theory, 137–139
constant-coefficient, 140–151
conversion of nth-order ODEs

to, 134–135
homogeneous, 138
Laplace transforms, 242–247
linear, 124–130, 138–151,

160–163
matrices and vectors, 124–130
as models of applications,

130–134
nonhomogeneous, 138, 160–163
nonlinear, 152–160
in phase plane, 124, 141–146,

157–159
qualitative methods for

nonlinear systems,
152–160

Orientable surfaces, 446–447
Oriented curve, 644
Oriented surfaces, integrals over,

446–447
Origin (vertex), 980
Orthogonal, to a vector, 362
Orthogonal coordinate curves, A74
Orthogonal expansion, 504
Orthogonal functions:

defined, 500
Sturm–Liouville Problems,

500–503
Orthogonality:

trigonometric system, 479–480, 538
vector differential calculus,

361–363
Orthogonal matrices, 335, 337–338,

353, A85n.2
Orthogonal polynomials, 179
Orthogonal series (generalized

Fourier series), 504–510
completeness, 508–509
mean square convergence,

507–508
Orthogonal trajectories:

defined, 36
first-order ODEs, 36–38

Orthogonal transformations, 336,
A85n.2

Orthogonal vectors, 312, 362, 410
Orthonormal functions, 500, 501, 508

Orthonormal system, 337
Oscillations:

forced, 85–92
free, 62–70
harmonic, 63–64
second-order linear ODEs:

homogeneous, 62–70
nonhomogeneous, 85–92

Osculating plane, 389, 390
Outcomes:

of experiments, 1015, 1060
probability theory, 1015

Outer normal derivative, 460, 931
Outliers, 1013–1015
Output (response to input), 27, 86,

214
Overdamping, 65–66
Overdetermined linear systems, 277
Overflow (floating-point numbers),

792
Overrelaxation factor, 863

Paired comparison, 1084, 1113
Pappus, theorem of, 452
Pappus of Alexandria, 452n.7
Parabolic PDEs:

defined, 923
numeric analysis, 936–942

Parallelogram law, 357
Parallel processing of products (on

computer), 265
Parameters, 175, 381, 1112

estimation of, 1063
point estimation of, 1065–1068
probability distributions, 

1035
of a sample, 1065

Parameter curves, 442
Parametric representations, 381,

439–441
Parseval, Marc Antoine, 497n.3
Parseval equality, 509
Parseval’s identity, 497
Parseval’s theorem, 497
Partial derivatives, A69–A71

defined, A69
first (first order), A71
second (second order), A71
third (third order), A71
of vector functions, 380

Partial differential equations (PDEs),
473, 540–605

basic concepts of, 540–543
d’Alembert’s solution, 553–556
defined, 540
double Fourier series solution,

577–585
heat equation, 557–558

Dirichlet problem, 564–566

Partial differential equations (Cont.)
Laplace’s equation, 564
solution by Fourier integrals,

568–571
solution by Fourier series,

558–563
solution by Fourier transforms,

571–574
steady two-dimensional heat

problems, 546–566
unifying power of methods,

566
homogeneous, 541
Laplace’s equation, 593–600

boundary value problem in
spherical coordinates,
594–596

in cylindrical coordinates,
593–594

Fourier–Legendre series,
596–598

in spherical coordinates, 594
Laplace transforms, solution by,

600–603
Laplacian in polar coordinates,

585–592
linear, 541
method of separating variables,

545–553
Fourier series, 548–551
satisfying boundary conditions,

546–548
two ODEs from wave

equation, 545–546
nonhomogeneous, 541
nonlinear, 541
numeric analysis, 922–945

elliptic, 922–936
hyperbolic, 942–945
parabolic, 936–942

ODEs vs., 4
wave equation, 544–545

d’Alembert’s solution,
553–556

solution by separating
variables, 545–553

two-dimensional, 575–584
Partial fractions (Laplace transforms),

228–230
Partial pivoting, 276, 846–848, 898
Partial sums, of series, 477, 478, 495
Particular solution(s):

first-order ODEs, 6, 44
higher-order homogeneous linear

ODEs, 106
nonhomogeneous linear systems,

160
second-order linear ODEs:

homogeneous, 49–51, 104
nonhomogeneous, 80
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Partitioning, of a path, 645
Pascal, Blaise, 391n.4
Pascal, Étienne, 391n.4
Paths:

alternating, 1002
augmenting, 1002–1003
closed, 414, 645, 975–976
deformation of, 656
directed, 1000
flow augmenting, 992–993, 998,

1008
flow problems in networks, 992
integration by use of, 647–650
longest, 976
partitioning of, 645
principle of deformation of, 656
shortest, 976
shortest path problems, 975–976
simple closed, 652

Path dependence (line integrals),
418–426, 470, 649–650

defined, 418
and integration around closed

curves, 421–425
Path independence, 669

Cauchy’s integral theorem, 655
in a domain D in space, 419
proof of, A88–A89
Stokes’s Theorem applied to, 

468
Path of integration, 414, 644
Pauli spin matrices, 351
p-charts, 1091–1092
PDEs, see Partial differential

equations
Pearson, Egon Sharpe, 1077n.2
Pearson, Karl, 1077, 1086n.4
Period, 475
Periodic boundary conditions, 501
Periodic extensions, 488–490
Periodic function, 474–475, 538
Periodic Sturm–Liouville problem,

501
Permutations:

of n things taken k at a time, 
1025

of n things taken k at a time with
repetitions, 1025–1026

probability theory, 1024–1026
Perron, Oskar, 882n.8
Perron–Frobenius Theorem, 883
Perron’s theorem, 334, 882–883
Pfaff, Johann Friedrich, 422n.1
Pfaffian form, 422
p-fold connected domains, 652–653
Phase angle, 90
Phase lag, 90
Phase plane, 134, 165

linear systems, 141, 148
nonlinear systems, 152

Phase plane method, 124
linear systems:

critical points, 142–146
graphing solutions, 141–142

nonlinear systems, 152
linearization, 152–155
Lotka–Volterra population

model, 155–156
transformation to first-order

equation in, 157–159
Phase plane representations, 134
Phase portrait, 165

linear systems, 141–142, 148
nonlinear systems, 152

Picard, Emile, 42n.10
Picard’s Iteration Method, 42
Picard’s theorem, 716
Piecewise continuous functions, 209
Piecewise smooth path of integration,

414, 645
Piecewise smooth surfaces, 442, 447
Pivot, 276, 898, 960
Pivot equation, 276, 846, 898, 960
Planar graphs, 1005
Plane:

complex, 611
extended, 718, 744–745
finite, 718
sets in, 620

normal, 390
osculating, 389, 390
phase, 134, 165

linear systems, 141, 148
nonlinear systems, 152

rectifying, 390
tangent, 398, 441–442
vectors in, 309

Plane curves, 383
Planimeters, 436
Poincaré, Henri, 141n.1, 510n.8
Points:

boundary, 426n.2, 620
branch, 755
center, 144, 165
critical, 33, 144, 165

asymptotically stable, 149
and conformal mapping, 738,

757
constant-coefficient systems of

ODEs, 142–151
isolated, 152
nonlinear systems, 152
stable, 140, 149
stable and attractive, 140, 149
unstable, 140, 149

equilibrium, 33–34
fixed, 745, 799
guidepoints, 827
at infinity, 718
initial (vectors), 355

Points: (Cont.)
lattice, 925–926
limit, A93
mesh, 925–926
regular, 181
regular singular, 180n.4
saddle, 143, 165
sample, 1015
singular, 181, 201

analytic functions, 693
regular, 180n.4

spiral, 144–145, 165
stagnation, 773
stationary, 952
terminal (vectors), 355

Point estimation of parameters
(statistics), 1065–1068, 1113

defined, 1065
maximum likelihood method,

1066–1067
Point set, in complex plane, 620
Point source (flow modeling), 776
Point spectrum, 525
Poisson, Siméon Denis, 779n.2
Poisson distributions, 1041–1042,

1061, A100
Poisson equation:

defined, 923
numeric analysis, 922–936

ADI method, 928–930
difference equations, 923–925
Dirichlet problem, 925–928
mixed boundary value

problem, 931–933
Poisson’s integral formula:

derivation of, 778–778
potential theory, 777–781
series for potentials in disks,

779–780
Polar coordinates, 431

Laplacian in, 585–592
notation for, 594
two-dimensional wave equation

in, 586
Polar form, of complex numbers,

613–618, 631
Polar moment of inertia, of a region,

429
Poles (singularities), 714–715

of order m, 735
and zeros, 717

Polynomials, 624
characteristic, 325, 353, 877
Chebyshev, 504
interpolation, 808, 842
Laguerre, 241, 504
Legendre, 167, 177–179, 202
orthogonal, 179
trigonometric:

approximation by, 495–498
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Polynomials (Cont.)
complex, 529
of the same degree N, 495

Polynomial approximations, 808
Polynomial interpolation, 808, 842
Polynomially bounded, 979
Polynomial matrix, 334, 878–879
Populations:

infinite, 1044
for statistical sampling, 1063

Population dynamics:
defined, 33
logistic equation, 33–34

Position vector, 356
Positive correlation, 1111
Positive definite (quadratic form),

346
Positive sense, on curve, 644
Possible values (random variables),

1030
Postman problem, 980
Potential (potential function), 400

complex, 760–761
Laplace’s equation, 593
Poisson’s integral formula for,

777–781
Potential theory, 179, 420, 460,

758–786
conformal mapping for boundary

value problems, 763–767
defined, 758
electrostatic fields, 759–763

complex potential, 760–761
superposition, 761–762

fluid flow, 771–777
harmonic functions, 781–784
heat problems, 767–770
Laplace’s equation, 593, 628
Poisson’s integral formula, 777–781

Power function, of a test, 1081, 1113
Power method (matrix eigenvalue

problems), 885–888, 899
Power series, 168, 671–707

convergence behavior of, 680–682
convergence tests, 674–676,

A93–A94
functions given by, 685–690
Maclaurin series, 690
in powers of x, 168
radius of convergence, 682–684
ratio test, 676–678
root test, 678–679
sequences, 671–673
series, 673–674
Taylor series, 690–697
uniform convergence, 698–705

and absolute convergence, 704
properties of, 700–701
termwise integration, 701–703
test for, 703–704

Power series method, 167–175, 201
extension of, see Frobenius method
idea and technique of, 168–170
operations on, 173–174
theory of, 170–174

Practical resonance, 90
Predator–prey population model,

155–156
Predictor–corrector method, 913
PRIM, ALGORITHM, 989
Prim, Robert Clay, 988n.6
Prim’s algorithm, 988–991, 1008
Principal axes, transformation to, 344
Principal branch, of logarithm, 639
Principal directions, 330
Principal minors, 346
Principal part, 735

of isolated singularities, 715
of singularities, 708, 709

Principal value (complex numbers),
614, 617, 642

complex logarithm, 637
general powers, 639

Principle of deformation of path, 656
Prior estimates, 805
Probability, 1060

axioms of, 1020
basic theorems of, 1020–1022
conditional, 1022–1023
definitions of, 1018–1020
independent events, 1023

Probability distributions, 1029, 1061
binomial, 1039–1042
continuous, 1032–1034
discrete, 1030–1032
hypergeometric, 1042–1044
mean and variance of, 1035–1039
multinomial, 1045
normal, 1045–1051
Poisson, 1041–1042
of several random variables,

1051–1060
addition of means, 1057–1058
addition of variances,

1058–1059
continuous two-dimensional

distributions, 1053
discrete two-dimensional

distributions, 1052–1053
function of random variables,

1056
independence of random

variables, 1055–1056
marginal distributions,

1053–1055
symmetric, 1036
two-dimensional, 1051

continuous, 1053
discrete, 1052–1053

uniform, 1035–1036

Probability function, 1030–1032,
1052, 1061

Probability theory, 1009, 1015–1062
binomial coefficients, 1027–1028
combinations, 1024, 1026–1027
distributions (probability

distributions), 1029
binomial, 1039–1042
continuous, 1032–1034
discrete, 1030–1032
hypergeometric, 1042–1044
mean and variance of,

1035–1039
normal, 1045–1051
Poisson, 1041–1042
of several random variables,

1051–1060
events, 1016–1017
experiments, 1015–1016
factorial function, 1027
outcomes, 1015
permutations, 1024–1026
probability:

basic theorems of, 1020–1022
conditional, 1022–1023
definition of, 1018–1020
independent events, 1023

random variables, 1029–1030
continuous, 1032–1034
discrete, 1030–1032

Problem of existence, 39
Problem of uniqueness, 39
Producers, 1092
Producer’s risk, 1094
Product:

inner (dot), 312
for complex vectors, 349
invariance of, 336
vector differential calculus,

361–367, 410
of matrix, 260

determinants of, 307–308
inverting, 306

matrix multiplication, 263, 320
parallel processing of (on

computer), 265
scalar multiplication, 260
scalar triple, 373–374, 411
vector (cross):
in Cartesian coordinates,

A83–A84
vector differential calculus,

368–375, 410
Product method, 605. See also

Method of separating variables
Projection (vectors), 365
Proper node, 143
Pseudocode, 796
Pure imaginary complex numbers, 

609
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QR-factorization, 892–896
Quadrant, of a circle, 604
Quadratic forms (matrix eigenvalue

problems), 343–344
Quadratic interpolation, 

810–811
Qualitative methods, 124, 

141n.1
defined, 152
for nonlinear systems, 152–160

linearization, 152–155
Lotka–Volterra population

model, 155–156
transformation to first-order

equation in phase plane,
157–159

Quality control (statistics),
1087–1092, 1113

for mean, 1088–1089
for range, 1090–1091
for standard deviation, 1090
for variance, 1089–1090

Quantitative methods, 124
Quasilinear equations, 555, 923
Quotient:

complex numbers, 610
difference, 923
Rayleigh, 885, 899

Radius:
of convergence, 172

defined, 172
power series, 682–684, 706

of a graph, 991
Random experiments, 1011,

1015–1016, 1060
Randomly selected samples, 1064
Randomness, 1015, 1064. See also

Random variables
Random numbers, 1064
Random number generators, 1064
Random sampling (statistics),

1063–1065
Random selections, 1064
Random variables, 1011, 1029–1030,

1061
continuous, 1029, 1032–1034,

1055
defined, 1030
dependent, 1055
discrete, 1029–1032, 1054
function of, 1056
independence of, 1055–1056
marginal distribution of, 1054,

1055
normal, 1045
occurrence of, 1063
probability distributions of,

1051–1060

addition of means, 1057–1058
addition of variances, 1058–1059
continuous two-dimensional

distributions, 1053
discrete two-dimensional

distributions, 1052–1053
function of random variables,

1056
independence of random

variables, 1055–1056
marginal distributions,

1053–1055
skewness of, 1039
standardized, 1037
two-dimensional, 1051, 1062

Random variation, 1063
Range, 1013

control chart for, 1090–1091
defined, 1090
of f, 620

Rank:
of A, 279
of a matrix, 279, 283, 321

in terms of column vectors,
284–285

in terms of determinants, 297
of R, 279

Raphson, Joseph, 801n.1
Rational functions, 624, 725–729
Ratio test (power series), 676–678
Rayleigh, Lord (John William Strutt),

160n.5, 885n.10
Rayleigh equation, 160
Rayleigh quotient, 885, 899
Reactance (RLC circuits), 94
Real axis (complex plane), 611
Real different roots, 71
Real double root, 55–56, 72
Real functions, complex analytic

functions vs., 694
Real inner product space, 312
Real integrals, residue integration of,

725–733
Fourier integrals, 729–730
improper integrals, 730–732
of rational functions of cos 

sin , 725–729
Real part (complex numbers), 609
Real pre-Hilbert space, 312
Real roots:

different, 71
double, 55–56
higher-order homogeneous linear

ODEs:
distinct, 112–113
multiple, 114–115

second-order homogeneous linear
ODEs:

distinct, 54–55
double, 55–56

u
u

Real sequence, 671
Real series, A73–A74
Real vector spaces, 309–311, 359,

410
Recording, of sample values,

1011–1012
Rectangular cross-section, 120
Rectangular matrix, 258
Rectangular membrane R, 577–584
Rectangular rule (numeric

integration), 828
Rectifiable (curves), 385
Rectification (acceptance sampling),

1094–1095
Rectifying plane, 390
Recurrence formula, 201
Recurrence relation, 176
Recursion formula, 176
Reduced echelon form, 279
Reduction of order (second-order

homogeneous linear ODEs),
51–52

Regions, 426n.2
bounded, 426n.2
center of gravity of mass in, 429
closed, 426n.2
critical, 1079
feasibility, 954
fundamental (exponential

function), 632
moments of inertia of, 429
polar moment of inertia of, 429
rejection, 1079
sets in complex plane, 620
total mass of, 429
volume of, 428

Regression analysis, 1063,
1103–1108, 1113

confidence intervals in,
1107–1108

defined, 1103
Regression coefficient, 1105,

1107–1108
Regression curve, 1103
Regression line, 1103, 1104, 1106
Regular point, 181
Regular singular point, 180n.4
Regular Sturm–Liouville problem,

501
Rejectable quality level (RQL), 1094
Rejection:

of a hypothesis, 1078
of products, 1092

Rejection region, 1079
Relative class frequency, 1012
Relative error, 794
Relative frequency (probability):

of an event, 1019
class, 1012
cumulative, 1012
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Relaxation methods, 862
Remainder, 170

of a series, 673
of Taylor series, 691

Remarkable parallelogram, 375
Removable singularities, 717
Repeated factors, 220, 221
Representation, 315

by Fourier series, 476
by power series, 683
spectral, 525

Residual, 805, 862, 899
Residues, 708, 720, 735

at mth-order pole, 722
at simple poles, 721–722

Residue integration, 719–733
formulas for residues, 721–722
of real integrals, 725–733

Fourier integrals, 729–730
improper integrals, 730–732
of rational functions of cos 

sin , 725–729
several singularities inside

contour, 723–725
Residue theorem, 723–724
Resistance, apparent, 95
Resonance:

practical, 90
undamped forced oscillations,

88–89
Resonance factor, 88
Response to input, see Output

(response to input)
Resultant, of forces, 357
Riccati equation, 35
Riemann, Bernhard, 625n.4
Riemannian geometry, 625n.4
Riemann sphere, 718
Riemann surfaces (conformal

mapping), 754–757
Right-hand derivatives (Fourier

series), 480
Right-handed Cartesian coordinate

system, 368–369, A83–A84
Right-handed triple, 369
Right-hand limit (Fourier series), 480
Right-sided tests, 1079, 1082
Risks of making false decisions, 1080
RKF method, see

Runge–Kutta–Fehlberg method
RK methods, see Runge–Kutta

methods
RKN methods, see

Runge–Kutta–Nyström methods
Robin problem:

Laplace’s equation, 593
two-dimensional heat equation, 564

Rodrigues, Olinde, 179n.2
Rodrigues’s formula, 179, 241
Romberg integration, 840, 843

u
u

Roots:
complex:

higher-order homogeneous
linear ODEs, 113–115

second-order homogeneous
linear ODEs, 57–59

complex conjugate, 72–73
differing by an integer, 183

Frobenius method, 183
distinct (Frobenius method), 182
double (Frobenius method), 183
of equations, 798
multiple complex, 115
nth, 616
nth roots of unity, 617
simple complex, 113–114

Root test (power series), 678–679
Rotation (vorticity of flow), 774
Rounding, 792
Rounding unit, 793
Roundoff (numeric analysis), 792–793
Roundoff errors, 792, 794, 902
Roundoff rule, 793
Rows:

determinants, 294
matrix, 125, 257, 320

Row echelon form, 279–280
Row-equivalent matrices, 283–284
Row-equivalent systems, 277
Row operations (linear systems), 276,

277
Row scaling (Gauss elimination), 850
Row “sum” norm, 861
Row vectors, 126, 257, 320
RQL (rejectable quality level), 1094
Runge, Carl, 820n.3
Runge, Karl, 905n.1
RUNGE–KUTTA, ALGORITHM, 905
Runge–Kutta–Fehlberg (RKF)

method, 947
error of, 908
first-order ODEs, 906–908

Runge–Kutta (RK) methods, 915, 947
error of, 908
first-order ODEs, 904–906
higher order ODEs, 917–919

Runge–Kutta–Nyström (RKN)
methods, 919–921, 947

Rutherford, E., 1044, 1100
Rutherford–Geiger experiments,

1044, 1100
Rutishauser, Heinz, 892n.12

Saddle point, 143, 165
Samples:

for experiments, 1015
in mathematical statistics,

1063–1064
selection of, 1063–1064

Sample covariance, 1105
Sampled function, 529
Sample distribution function, 1096
Sample mean, 1064, 1113
Sample points, 1015
Sample regression line, 1104
Sample size, 1015, 1064
Sample space, 1015, 1016, 1060
Sample standard deviation, 1065
Sample variance, 1015, 1113
Sampling:

from a population, 1023
random, 1063–1065
with replacement, 1023

binomial distribution, 1042
hypergeometric distribution,

1043–1044
in statistics, 1063
without replacement, 1018, 1023

binomial distribution,
1042–1043

hypergeometric distribution,
1043–1044

Sampling plan, 1092–1093
Scalar(s), 260, 310, 354
Scalar fields, vector fields that are

gradients of, 400–401
Scalar functions:

defined, 376
vector differential calculus, 376

Scalar matrices, 268
Scalar multiplication, 126–127, 310

of matrices and vectors, 259–261
vectors in 2-space and 3-space,

358–359
Scalar triple product, 373–374, 411
Scale (vectors), 886–887
Scanning labeled vertices, 998
Schrödinger, Erwin, 226n.2
Schur, Issai, 882n.7
Schur’s inequality, 882
Schur’s theorem, 882
Schwartz, Laurent, 226n.2
Secant, formula for, A65
Secant method (numeric analysis),

805–806, 842
Second boundary value problem, see

Neumann problem
Second-order determinants, 291–292
Second-order differential operator, 60
Second-order linear ODEs, 46–104

homogeneous, 46–79
basis, 50–52
with constant coefficients,

53–60
differential operators, 60–62
Euler–Cauchy equations,

71–74
existence and uniqueness of

solutions, 74–79
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Second-order linear ODEs (Cont.)
general solution, 49–51, 77–78
initial value problem, 49–50
modeling free oscillations of

mass–spring system,
62–70

reduction of order, 51–52
superposition principle, 47–48
Wronskian, 75–78

nonhomogeneous, 79–102
defined, 47
general solution, 80–81
method of undetermined

coefficients, 81–85
modeling electric circuits, 93–99
modeling forced oscillations,

85–92
solution by variation of

parameters, 99–102
Second-order method, improved

Euler method as, 904
Second-order nonlinear ODEs, 46
Second-order PDEs, 540–541
Second (second order) partial

derivatives, A71
Second shifting theorem (t-shifting),

219–223
Second transmission line equation,

599
Seidel, Philipp Ludwig von, 858n.4
Self-starting methods, 911
Sense reversal (complex line

integrals), 645
Separable equations, 12–13
Separable ODEs, 44

first-order, 12–20
extended method, 17–18
modeling, 13–17

reduction of nonseparable ODEs
to, 17–18

Separating variables, method of,
12–13

circular membrane, 587
partial differential equations,

545–553, 605
Fourier series, 548–551
satisfying boundary conditions,

546–548
two ODEs from wave

equation, 545–546
vibrating string, 545–546

Separation constant, 546
Sequences (infinite sequences):

bounded, A93–A95
convergent, 507–508, 672
divergent, 672
limit point of, A93
monotone real, A72–A73
power series, 671–673
real, 671

Series, A73–A74
binomial, 696
conditionally convergent, 675
convergent, 171, 673
cosine, 781
derived, 687
divergent, 171, 673
double Fourier:

defined, 582
rectangular membrane,

577–585
Fourier, 473–483, 538

convergence and sum or,
480–481

derivation of Euler formulas,
479–480

double, 577–585
even and odd functions,

486–488
half-range expansions, 488–490
heat equation, 558–563
from period 2 to 2L,

483–486
Fourier–Bessel, 506–507, 589
Fourier cosine, 484, 486, 538
Fourier–Legendre, 505–506,

596–598
Fourier sine, 477, 486, 538

one-dimensional heat equation,
561

vibrating string, 548
geometric, 168, 675

Taylor series, 694
uniformly convergent, 698

hypergeometric, 186
infinite, 673–674
Laurent, 708–719, 734

analytic or singular at infinity,
718–719

point at infinity, 718
Riemann sphere, 718
singularities, 715–717
zeros of analytic functions, 717

Maclaurin, 690, 694–696
orthogonal, 504–510

completeness, 508–509
mean square convergence,

507–508
power, 168, 671–707

convergence behavior of,
680–682

convergence tests, 674–676,
A93–A94

functions given by, 685–690
Maclaurin series, 690
in powers of x, 168
radius of convergence,

682–684
ratio test, 676–678
root test, 678–679

p

Series (Cont.)
sequences, 671–673
series, 673–674
Taylor series, 690–697
uniform convergence, 698–705

real, A73–A74
Taylor, 690–697, 707
trigonometric, 476, 484
value (sum) of, 171, 673

Series solutions of ODEs, 167–202
Bessel functions, 187–188

of the first kind, 189–194
of the second kind, 196–200

Bessel’s equation, 187–196
Bessel functions, 187–188,

196–200
general solution, 194–200

Frobenius method, 180–187
indicial equation, 181–183
typical applications, 183–185

Legendre polynomials, 177–179
Legendre’s equation, 175– 179
power series method, 167–175

idea and technique of,
168–170

operations on, 173–174
theory of, 170–174

Sets:
complete orthonormal, 508
in the complex plane, 620
cut, 994–996, 1008
linearly dependent, 129, 311
linearly independent, 128–129,

311
Shewhart, W. A., 1088
Shifted function, 219
Shortest path, 976
Shortest path problems

(combinatorial optimization),
975–980, 1008

Bellman’s principle, 980–981
complexity of algorithms,

978–980
Dijkstra’s algorithm, 981–983
Moore’s BFS algorithm, 977–980

Shortest spanning trees:
combinatorial optimization, 1008

Greedy algorithm, 984–988
Prim’s algorithm, 988–991

defined, 984
Short impulses (Laplace transforms),

225–226
Sifting property, 226
Significance (in statistics), 1078
Significance level, 1078, 1080, 1113
Significance tests, 1078
Significant digits, 791–792
Similarity transformation, 340
Similar matrices, 340–341, 878
Simple closed curves, 646
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Simple closed path, 652
Simple complex roots, 113–114
Simple curves, 383
Simple events, 1015
Simple general properties of the line

integral, 415–416
Simple poles, 714
Simplex method, 958–968

degenerate feasible solution,
962–965

difficulties in starting, 965–968
Simplex table, 960
Simplex tableau, 960
Simple zero, 717
Simply connected domains, 423, 646,

652, 653
SIMPSON, ALGORITHM, 832
Simpson, Thomas, 832n.4
Simpson’s rule, 832, 843

adaptive integration with, 835–836
numeric integration, 831–835

Simultaneous corrections, 862
Sine function:

conformal mapping by, 750–751
formula for, A63–A65

Sine integral, 514, 697, A68–A69, A98
Single precision, floating-point

standard for, 792
Singularities (singular, having a

singularity), 693, 707, 715
analytic functions, 693
essential, 715–716
inside a contour, 723–725
isolated, 715
isolated essential, 715
Laurent series, 715–719
principal part of, 708
removable, 717

Singular matrices, 301
Singular point, 181, 201

analytic functions, 693
regular, 180n.4

Singular solutions:
first-order ODEs, 8, 35
higher-order homogeneous linear

ODEs, 110
second-order homogeneous linear

ODEs, 50, 78
Singular Sturm–Liouville problem,

501, 503
Sink(s):

motion of a fluid, 404, 458, 775,
776

networks, 991
Size:

of matrices, 258
sample, 1015, 1064

Skew-Hermitian form, 351
Skew-Hermitian matrices, 347, 348,

350, 353

Skewness, of a random variables, 1039
Skew-symmetric matrices, 268, 320,

334–336, 353
Slack variables, 956, 969
Slope field (direction field), 9–10
Smooth curves, 414, 644
Smooth surfaces, 442
Sobolev, Sergei L’Vovich, 226n.2
Software:

for data representation in statistics,
1011

numeric analysis, 788–789
variable step size selection in, 902

Solenoid, 405
Solutions. See also specific methods

defined, 4, 798
first-order ODEs:

concept of, 4–6
equilibrium solutions, 33–34
explicit solutions, 21
family of solutions, 5
general solution, 6, 44
implicit solutions, 21
particular solution, 6, 44
singular solution, 8, 35
solution by calculus, 5
trivial solution, 28, 35

graphing in phase plane, 141–142
higher-order homogeneous linear

ODEs, 106
general solution, 106, 110–111
particular solution, 106
singular solution, 110

linear systems, 273, 745
nonhomogeneous linear systems:

general solution, 160
particular solution, 160

PDEs, 541
second-order homogeneous linear

ODEs:
general solution, 49–51, 77–78
linear dependence and

independence of, 75
particular solution, 49–51
singular solution, 50, 78

second-order linear ODEs, 47
second-order nonhomogeneous

linear ODEs:
general solution, 80–81
particular solution, 80

systems of ODEs, 137, 139
Solution curves, 4–6
Solution space, 290
Solution vector, 273, 745
SOR (successive overrelaxation), 863
SOR formula for Gauss–Seidel, 863
Sorting, of sample values, 1011–1012
Source(s):

motion of a fluid, 404, 458, 775
networks, 991

Source intensity, 458
Source line (flow modeling), 776
Span, of vectors, 286
Spanning trees, 984, 988
Sparse graphs, 974
Sparse matrices, 823, 925
Sparse systems, 858
Special functions, 167, 202

formulas for, A63–A69
theory of, 175

Special vector spaces, 285–287
Specific circulation, of flow, 467
Spectral density, 525
Spectral mapping theorem, 878
Spectral radius, 324, 861
Spectral representation, 525
Spectral shift, 896
Spectrum, 877

of matrix, 324
vibrating string, 547

Speed, 386, 391
angular (rotation), 372
of convergence, 804–805

Spherical coordinates, A74–A76
boundary value problem in,

594–596
defined, 594
Laplacian in, 594

Spiral point, 144–145, 165
Spline, 821, 843
Spline interpolation, 820–827
Spring constant, 62
Square error, 496–497, 539
Square matrices, 126, 257, 258,

301–309, 320
s-shifting, 208–209
Stability:

of critical points, 165
of solutions, 33–34, 124, 936
of systems, 84, 124

Stability chart, 149
Stable algorithms, 796, 842
Stable and attractive critical points,

140, 149
Stable critical points, 140, 149
Stable equilibrium solution, 33–34
Stable systems, 84
Stagnation points, 773
Standard basis, 314, 359, 365
Standard deviation, 1014, 1035, 1090
Standard form:

first-order ODEs, 27
higher-order homogeneous linear

ODEs, 105
higher-order linear ODEs, 123
power series method, 172
second-order linear ODEs, 46,

103
Standardized normal distribution,

1046
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Standardized random variables, 1037
Standard trick (confidence intervals),

1068
Stationary point (unconstrained

optimization), 952
Statistics, 1015, 1063. See also

Mathematical statistics
Statistical inference, 1059, 1063
Steady flow, 405, 458
Steady heat flow, 767
Steady-state case (heat problems),

591
Steady-state current, 98
Steady-state heat flow, 460
Steady-state solution, 31, 84, 89–91
Steady two-dimensional heat

problems, 546–566, 605
Steepest descent, method of, 952–954
Steiner, Jacob, 451n.6
Stem-and-leaf plots, 1012
Stencil (pattern, molecule, star), 925
Step-by-step methods, 901
Step function, 828, 1031
Step size, 901, 902
Stereographic projection, 718
Stiff ODEs, 909–910
Stiff systems, 920–921
Stirling, James, 1027n.2
Stirling formula, 1027, A67
Stochastic matrices, 270
Stochastic variables, 1029. See also

Random variables
Stokes, Sir George Gabriel, 464n.9,

703n.5
Stokes’s Theorem, 463–470
Stream function, 771
Streamline, 771
Strength (flow modeling), 776
Strictly diagonally dominant matrices,

881
Sturm, Jacques Charles François,

499n.4
Sturm–Liouville equation, 499
Sturm–Liouville expansions, 474
Sturm–Liouville Problems, 498–504

eigenvalues, eigenfunctions,
499–500

orthogonal functions, 500–503
Subgraphs, 972
Submarine cable equations, 599
Submatrices, 288
Subsidiary equation, 203, 253
Subspace, of vector space, 286
Subtraction:

of complex numbers, 610
termwise, of power series, 687

Success corrections, 862
Successive overrelaxation (SOR), 863
Sufficient convergence condition, 

861

Sum:
of matrices, 320
partial, of series, 477, 478, 495
of a series, 171, 673
of vectors, 357

Sum Rule (method of undetermined
coefficients):

higher-order homogeneous linear
ODEs, 115

second-order nonhomogeneous
linear ODEs, 81, 83–84

Superlinear convergence, 806
Superposition (electrostatic fields),

761–762
Superposition (linearity) principle:

higher-order homogeneous linear
ODEs, 106

higher-order linear ODEs, 123
homogeneous linear systems, 

138
PDEs, 541–542
second-order homogeneous linear

ODEs, 47–48, 104
undamped forced oscillations, 87

Surfaces, for surface integrals,
439–443

orientation of, 446–447
representation of surfaces,

439–441
tangent plane and surface normal,

441–442
Surface integrals, 470

defined, 443
surfaces for, 439–443

orientation of, 446–447
representation of surfaces,

439–441
tangent plane and surface

normal, 441–442
vector integral calculus, 443–452

orientation of surfaces,
446–447

without regard to orientation,
448–450

Surface normal, 398–399, 442
Surface normal vector, 398–399
Surjective mapping, 737n.1
Sustainable yield, 36
Symbol O, 979
Symmetric coefficient matrix, 343
Symmetric distributions, 1036
Symmetric matrices, 267–268, 320,

334–336, 353
Systems of ODEs, 124–166

basic theory of, 137–139
constant-coefficient, 140–151

critical points, 142–146,
148–151

graphing solutions in phase
plane, 141–142

Systems of ODEs (Cont.)
conversion of nth-order ODEs to,

134–135
homogeneous, 138
Laplace transforms, 242–247
linear, 138–139. See also Linear

systems
constant-coefficient systems,

140–151
matrices and vectors, 124–130
nonhomogeneous, 160–163

matrices and vectors, 124–130
calculations with, 125–127
definitions and terms,

125–126, 128–129
eigenvalues and eigenvectors,

129–130
systems of ODEs as vector

equations, 127–128
as models of applications:

electrical network, 132–134
mixing problem involving two

tanks, 130–132
nonhomogeneous, 138, 160–163

method of undetermined
coefficients, 161

method of variation of
parameters, 162–163

nonlinear systems:
qualitative methods for,

152–160
transformation to first-order

equation in phase plane,
157–159

in phase plane, 124
critical points, 142–146
graphing solutions in, 141–142
transformation to first-order

equation in, 157–159
qualitative methods for nonlinear

systems, 152–160
linearization, 152–155
Lotka–Volterra population

model, 155–156

Tangent:
to a curve, 384
formula for, A65

Tangent function, conformal mapping
by, 752–753

Tangential accelerations, 391
Tangential acceleration vector, 387
Tangent plane, 398, 441–442
Tangent vector, 384, 411
Target (networks), 991
Taylor, Brook, 690n.2
Taylor series, 690–697, 707
Taylor’s formula, 691
Taylor’s theorem, 691
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t-distribution, 1071–1073, 1078,
A103

Telegraph equations, 599
Term(s):

of a sequence, 671
of a series, 673

Terminal point (vectors), 355
Termination criterion, 802–803
Termwise addition, 173, 687
Termwise differentiation, 173,

687–688, 703
Termwise integration, 687, 688,

701–703
Termwise multiplication, 173, 687
Termwise subtraction, 687
Tests, statistical, 1077, 1113
Theory of special functions, 175
Thermal diffusivity, 460
Third boundary value problem, see

Robin problem
Third-order determinants, 292–293
Third (third order) partial derivatives,

A71
3-space, vectors in, 309, 354

components of a vector, 356–357
scalar multiplication, 358–359
vector addition, 357–359

Three-sigma limits, 1047
Time (curves in mechanics), 386
TI-Nspire, 789
Todd, John, 855n.3
Tolerance (adaptive integration), 835
Torricelli, Evangelista, 16n.4
Torricelli’s law, 16–17
Torsion, curvature and, 389–390
Total differential, 20, 45
Total energy, of physical system, 525
Total error, 902
Total mass, of a region, 429
Total orthonormal set, 508
Total pivoting, 846
Trace, 345
Trail (shortest path problems), 975

closed trails, 975–976
Euler trail, 980

Trajectories, 134, 165
linear systems, 141–142, 148
nonlinear systems, 152

Transcendental equations, 798
Transducers, 98
Transfer function, 214
Transformation(s), 313

orthogonal, 336
to principal axes, 344

Transient solution, 84, 89
Transient-state solution, 31
Translation (vectors), 355
Transposition(s):

of matrices or vectors, 128, 320
in samples, 1101

Trapezoidal rule, 828, 843
error bounds and estimate for,

829–831
numeric integration, 828–831

Trees (graphs), 984, 988. See also
Shortest spanning trees

Trials (experiments), 1011, 1015
Triangle inequality, 363, 614–615
Triangular form (Gauss elimination),

846
Triangular matrices, 268
Tricomi, Francesco, 556n.2
Tricomi equation, 555, 556
Tridiagonalization (matrix eigenvalue

problems), 888–892
Tridiagonal matrices, 823, 888, 928
Trigonometric analytic functions

(conformal mapping), 750–754
Trigonometric function, 633–635, 

642
inverse, 640
Taylor series, 695

Trigonometric polynomials:
approximation by, 495–498
complex, 529
of the same degree N, 495

Trigonometric series, 476, 484
Trigonometric system, 475, 479–480,

538
Trihedron, 390
Triple integrals, 470

defined, 452
mean value theorem for, 456–457
vector integral calculus, 452–458

Triply connected domains, 653, 658,
659

Trivial solution, 28, 35
homogeneous linear systems, 

290
linear systems, 273
Sturm–Liouville problem, 499

Truncating, 794
t-shifting, 219–223
Tuning (vibrating string), 548
Twisted curves, 383
2-space (plane), vectors in, 354

components of a vector, 356–357
scalar multiplication, 358–359
vector addition, 357–359

2 2 matrix, 125
Two-dimensional heat equation,

564–566
Two-dimensional normal distribution,

1110
Two-dimensional probability

distributions:
continuous, 1053
discrete, 1052–1053

Two-dimensional problems (potential
theory), 759, 771

�

Two-dimensional random variables,
1051, 1062

Two-dimensional wave equation,
575–584, 586

Two-sided alternative (hypothesis
testing), 1079–1080

Two-sided tests, 1079, 1082–1083
Type I errors, 1080, 1081
Type II errors, 1080–1081

UCL (upper control limit), 1088
Unacceptable lots, 1094
Unconstrained optimization, 969

basic concepts, 951–952
method of steepest descent,

952–954
Uncorrelated related variables, 1109
Underdamping, 65, 67
Underdetermined linear systems, 277
Underflow (floating-point numbers),

792
Undetermined coefficients, method of:

higher-order homogeneous linear
ODEs, 115

higher-order linear ODEs, 123
nonhomogeneous linear systems

of ODEs, 161
second-order linear ODEs:

homogeneous, 104
nonhomogeneous, 81–85

Uniform convergence:
and absolute convergence, 704
power series, 698–705

properties of uniform
convergence, 700–701

termwise integration, 701–703
test for, 703–704

Uniform distributions, 1035–1036,
1053

Unifying power of mathematics, 97
Union, of events, 1016–1017
Uniqueness:

of Laplace transforms, 210
of Laurent series, 712
of power series representation,

685–686
problem of, 39

Uniqueness theorems:
cubic splines, 822
Dirichlet problem, 462, 784
first-order ODEs, 39–42
higher-order homogeneous linear

ODEs, 108
Laplace’s equation, 462
linear systems, 138
proof of, A77–A79
second-order homogeneous linear

ODEs, 74
systems of ODEs, 137
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Unitary matrices, 347–350, 353
Unitary systems, 349
Unitary transformation, 349
Unit binormal vector, 389
Unit circle, 617, 619
Unit impulse function, 226. See also

Dirac delta function
Unit matrices, 128, 268
Unit normal vectors, 366, 441
Unit principal normal vector, 389
Unit step function (Heaviside

function), 217–219
Unit tangent vector, 384
Unit vectors, 312, 355
Universal gravitational constant, 63
Unknowns, 257
Unrepeated factors, 220–221
Unstable algorithms, 796
Unstable critical points, 140, 149
Unstable equilibrium solution, 

33–34
Unstable systems, 84
Upper bound, for flows, 995
Upper confidence limits, 1068
Upper control limit (UCL), 1088
Upper triangular matrices, 268

Value (sum) of series, 171, 673
Vandermonde, Alexandre Théophile,

113n.1
Vandermonde determinant, 113
Van der Pol, Balthasar, 158n.4
Van der Pol equation, 158–160
Variables:

artificial, 965–968
basic, 960
complex, 620–621
control, 951
controlled, 1103
dependent, 393, 1055, 1056
independent, 393, 1103
intermediate, 393
linearly, 1109
nonbasic, 960
random, 1011, 1029–1030, 1061

continuous, 1029, 1032–1034,
1055

defined, 1030
dependent, 1055
discrete, 1029–1032, 1054
function of, 1056
independence of, 1055–1056
marginal distribution of, 1054,

1055
normal, 1045
occurrence of, 1063
probability distributions of,

1051–1060
skewness of, 1039

Variables: (Cont.)
standardized, 1037
two-dimensional, 1051, 1062

slack, 956, 969
stochastic, 1029
uncorrelated related, 1109

Variable coefficients:
Frobenius method, 180–187

indicial equation, 181–183
typical applications, 

183–185
Laplace transforms ODEs with,

240–241
power series method, 167–175

idea and technique of, 
168–170

operations on, 173–174
theory of, 170–174

second-order homogeneous linear
ODEs, 73

Variance(s), 1014, 1061
comparison of, 1086
control chart for, 1089–1090
equality of, 1084n.3
of normal distributions,

confidence intervals for,
1073–1076

of probability distributions,
1035–1039

addition of, 1058–1059
transformation of, 1036–1037

sample, 1015
Variation, random, 1063
Variation of parameters, method of:

higher-order linear ODEs, 123
high-order nonhomogeneous linear

ODEs, 118–120
nonhomogeneous linear systems

of ODEs, 162–163
second-order linear ODEs:

homogeneous, 104
nonhomogeneous, 99–102

Vectors, 256, 259
addition and scalar multiplication

of, 259–261
calculations with, 126–127
definitions and terms, 126,

128–129, 257, 259, 309
eigenvalues, 129–130
eigenvectors, 129–130
linear independence and

dependence of, 282–283
multiplying matrices by, 

263–265
in the plane, 309, 355
systems of ODEs as vector

equations, 127–128
in 3-space, 309
transposition of, 266–267

Vector addition, 309, 357–359

Vector calculus, 354, 378–380
differential, see Vector differential

calculus
integral, see Vector integral

calculus
Vector differential calculus, 354–412

curves, 381–392
arc length of, 385–386
length of, 385
in mechanics, 386–389
tangents to, 384–385
and torsion, 389–390

gradient of a scalar field, 395–402
directional derivatives,

396–397
maximum increase, 398
as surface normal vector,

398–399
vector fields that are, 

400–401
inner product (dot product),

361–367
applications, 364–366
orthogonality, 361–363

scalar functions, 376
and vector calculus, 378–380
vector fields, 377–378

curl of, 406–409
divergence of, 402–406
that are gradients of scalar

fields, 400–401
vector functions, 375–376

partial derivatives of, 380
of several variables, 392–395

vector product (cross product),
368–375

applications, 371–372
scalar triple product, 373–374

vectors in 2-space and 3-space:
components of a vector,

356–357
scalar multiplication, 358–359
vector addition, 357–359

Vector fields:
defined, 376
vector differential calculus,

377–378
curl of, 406–409, 412
divergence of, 402–406
that are gradients of scalar

fields, 400–401
Vector functions:

continuous, 378–379
defined, 375–376
differentiable, 379
divergence theorem of Gauss,

453–457
of several variables, 392–395

chain rules, 392–394
mean value theorem, 395
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Vector functions: (Cont.)
vector differential calculus,

375–376, 411
partial derivatives of, 380
of several variables, 392–395

Vectors in 2-space and 3-space:
components of a vector, 

356–357
scalar multiplication, 358–359
vector addition, 357–359

Vector integral calculus, 413–471
divergence theorem of Gauss,

453–463
double integrals, 426–432

applications of, 428–429
change of variables in,

429–431
evaluation of, by two

successive integrations,
427–428

Green’s theorem in the plane,
433–438

line integrals, 413–419
definition and evaluation of,

414–416
path dependence of, 418–426
work done by a force, 416–417

path dependence of line integrals,
418–426

defined, 418
and integration around closed

curves, 421–425
Stokes’s Theorem, 463–469
surface integrals, 443–452

orientation of surfaces,
446–447

without regard to orientation,
448–450

surfaces for surface integrals,
439–443

representation of surfaces,
439–441

Vector integral calculus (Cont.)
tangent plane and surface

normal, 441–442
triple integrals, 452–458

Vector moment, 371
Vector norms, 866
Vector product (cross product):

in Cartesian coordinates,
A83–A84

vector differential calculus,
368–375, 410

applications, 371–372
scalar triple product, 373–374

Vector spaces, 482
complex, 309–310, 349
inner product spaces, 311–313
linear transformations, 313–317
real, 309–311
special, 285–287

Velocity, 391, 411, 771
Velocity potential, 771
Velocity vector, 386, 771
Venn, John, 1017n.1
Venn diagrams, 1017
Verhulst, Pierre-François, 32n.8
Verhulst equation, 32–33
Vertices (graphs), 971, 977, 1007

adjacent, 971, 977
central, 991
coloring, 1005–1006
double labeling of, 986
eccentricity of, 991
exposed, 1001, 1003
four-color theorem, 1006
scanning, 998

Vertex condition, 991
Vertex incidence list (graphs), 973
Volta, Alessandro, 93n.7
Voltage drop, 29
Volterra, Vito, 155n.3, 198n.7, 236n.3
Volterra integral equations, of the

second kind, 236–237

Volume, of a region, 428
Vortex (fluid flow), 777
Vorticity, 774

Walk (shortest path problems), 975
Wave equation, 544–545, 942

d’Alembert’s solution, 553–556
numeric analysis, 942–944, 948
one-dimensional, 544–545
solution by separating variables,

545–553
two-dimensional, 575–584

Weber’s equation, 510
Weber’s functions, 198n.7
Weierstrass, Karl, 625n.4, 703n.5
Weierstrass approximation theorem,

809
Weierstrass M-test for uniform

convergence, 703–704
Weighted graphs, 976
Weight function, 500
Well-conditioned problems, 864
Well-conditioning (linear systems),

865
Wessel, Caspar, 611n.2
Work done by a force, 416–417
Work integral, 415
Wronski, Josef Maria Höne, 76n.5
Wronskian (Wronski determinant):

second-order homogeneous linear
ODEs, 75–78

systems of ODEs, 139

Zeros, of analytic functions, 717
Zero matrix, 260
Zero surfaces, 598
Zero vector, 129, 260, 357
z-score, 1014

bindex.qxd  11/4/10  6:06 PM  Page I30



P H O T O  C R E D I T S
Part A Opener: © Denis Jr. Tangney/iStockphoto
Part B Opener: © Jill Fromer/iStockphoto
Part C Opener: © Science Photo Library/Photo Researchers, Inc
Part D Opener: © Rafa Irusta/iStockphoto
Part E Opener: © Alberto Pomares/iStockphoto
Chapter 19, Figure 437: © Eddie Gerald/Alamy
Part F Opener: © Rainer Plendl/iStockphoto
Part G Opener: © Sean Locke/iStockphoto
Appendix 1 Opener: © Ricardo De Mattos/iStockphoto
Appendix 2 Opener: © joel-t/iStockphoto
Appendix 3 Opener: © Luke Daniek/iStockphoto
Appendix 4 Opener: © Andrey Prokhorov/iStockphoto
Appendix 5 Opener: © Pedro Castellano/iStockphoto

P1

bcredit.qxd  11/4/10  10:15 AM  Page 1



bcredit.qxd  11/4/10  10:15 AM  Page 2



Some Constants

e � 2.71828 18284 59045 23536
�e� � 1.64872 12707 00128 14685

e2 � 7.38905 60989 30650 22723

� � 3.14159 26535 89793 23846
�2 � 9.86960 44010 89358 61883

��� � 1.77245 38509 05516 02730

log10 � � 0.49714 98726 94133 85435
ln � � 1.14472 98858 49400 17414

log10 e � 0.43429 44819 03251 82765
ln 10 � 2.30258 50929 94045 68402

�2� � 1.41421 35623 73095 04880
�3 2� � 1.25992 10498 94873 16477
�3� � 1.73205 08075 68877 29353
�3 3� � 1.44224 95703 07408 38232
ln 2 � 0.69314 71805 59945 30942
ln 3 � 1.09861 22886 68109 69140

� � 0.57721 56649 01532 86061
ln � � �0.54953 93129 81644 82234

(see Sec. 5.6)
1° � 0.01745 32925 19943 29577 rad

1 rad � 57.29577 95130 82320 87680°
� 57°17�44.806�

Greek Alphabet

� Alpha 	 Nu 


 Beta � Xi

�, � Gamma  Omicron

�, � Delta � Pi 

�, � Epsilon � Rho

� Zeta �, � Sigma

� Eta � Tau 

�, �, � Theta �, � Upsilon

� Iota �, �,  Phi 

! Kappa " Chi

#, $ Lambda %, & Psi

' Mu (, ) Omega

Polar Coordinates

x � r cos � y � r sin �

r � �x2 * y�2� tan � �

dx dy � r dr d�

Series

� �
`

m�0

xm (�x� + 1)

ex � �
`

m�0

sin x � �
`

m�0

cos x � �
`

m�0

ln (1 � x) � � �
`

m�1

(�x� + 1)

arctan x � �
`

m�0

(�x� + 1)

Vectors

a • b � a1b1 * a2b2 * a3b3

a � b � l l

grad ƒ � ,ƒ � i * j * k

div v � , • v � * *

curl v � , � v � l l
k

-
.

.

z
-

v3

j

-
.

.

y
-

v2

i

-
.

.

x
-

v1

.v3
-
.z

.v2
-
.y

.v1
-
.x

.ƒ
-
.z

.ƒ
-
.y

.ƒ
-
.x

k

a3

b3

j

a2

b2

i

a1

b1

(�1)mx2m*1

--
2m * 1

xm

-
m

(�1)mx2m

--
(2m)!

(�1)mx2m*1

--
(2m * 1)!

xm

-
m!

1
-
1 � x

y
-
x
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