

ERWIN KREYSZIG

$$
\begin{gathered}
\text { ADVANCED ENGINEERING } \\
\text { MATHEMATICS }
\end{gathered}
$$

Systems of Units. Some Important Conversion Factors

The most important systems of units are shown in the table below. The mks system is also known as the International System of Units (abbreviated SI), and the abbreviations sec (instead of s), gm (instead of g), and nt (instead of N) are also used.

System of units	Length	Mass	Time	Force
cgs system	centimeter (cm)	gram (g)	second (s)	dyne
mks system	meter (m)	kilogram (kg)	second (s)	newton (nt)
Engineering system	foot (ft)	slug	second (s)	pound (lb)

1 inch (in.) $=2.540000 \mathrm{~cm}$
1 foot $(\mathrm{ft})=12 \mathrm{in} .=30.480000 \mathrm{~cm}$
$1 \operatorname{yard}(\mathrm{yd})=3 \mathrm{ft}=91.440000 \mathrm{~cm}$
1 statute mile $(\mathrm{mi})=5280 \mathrm{ft}=1.609344 \mathrm{~km}$
1 nautical mile $=6080 \mathrm{ft}=1.853184 \mathrm{~km}$
1 acre $=4840 \mathrm{yd}^{2}=4046.8564 \mathrm{~m}^{2} \quad 1 \mathrm{mi}^{2}=640$ acres $=2.5899881 \mathrm{~km}^{2}$
1 fluid ounce $=1 / 128$ U.S. gallon $=231 / 128 \mathrm{in}^{3}=29.573730 \mathrm{~cm}^{3}$
1 U.S. gallon $=4$ quarts (liq) $=8$ pints (liq) $=128 \mathrm{fl} \mathrm{oz}=3785.4118 \mathrm{~cm}^{3}$
1 British Imperial and Canadian gallon $=1.200949$ U.S. gallons $=4546.087 \mathrm{~cm}^{3}$
$1 \mathrm{slug}=14.59390 \mathrm{~kg}$
1 pound $(\mathrm{lb})=4.448444 \mathrm{nt} \quad 1$ newton $(\mathrm{nt})=10^{5}$ dynes
1 British thermal unit $(\mathrm{Btu})=1054.35$ joules $\quad 1$ joule $=10^{7} \mathrm{ergs}$
1 calorie $(\mathrm{cal})=4.1840$ joules
1 kilowatt-hour $(\mathrm{kWh})=3414.4 \mathrm{Btu}=3.6 \cdot 10^{6}$ joules
1 horsepower $(\mathrm{hp})=2542.48 \mathrm{Btu} / \mathrm{h}=178.298 \mathrm{cal} / \mathrm{sec}=0.74570 \mathrm{~kW}$
1 kilowatt $(\mathrm{kW})=1000$ watts $=3414.43 \mathrm{Btu} / \mathrm{h}=238.662 \mathrm{cal} / \mathrm{s}$
${ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C} \cdot 1.8+32 \quad 1^{\circ}=60^{\prime}=3600^{\prime \prime}=0.017453293$ radian

For further details see, for example, D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics. 9th ed., Hoboken, N. J: Wiley, 2011. See also AN American National Standard, ASTM/IEEE Standard Metric Practice, Institute of Electrical and Electronics Engineers, Inc. (IEEE), 445 Hoes Lane, Piscataway, N. J. 08854, website at www.ieee.org.

Differentiation

$(c u)^{\prime}=c u^{\prime} \quad(c$ constant $)$
$(u+v)^{\prime}=u^{\prime}+v^{\prime}$
$(u v)^{\prime}=u^{\prime} v+u v^{\prime}$
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$
$\frac{d u}{d x}=\frac{d u}{d y} \cdot \frac{d y}{d x} \quad$ (Chain rule)
$\left(x^{n}\right)^{\prime}=n x^{n-1}$
$\left(e^{x}\right)^{\prime}=e^{x}$
$\left(e^{a x}\right)^{\prime}=a e^{a x}$
$\left(a^{x}\right)^{\prime}=a^{x} \ln a$
$(\sin x)^{\prime}=\cos x$
$(\cos x)^{\prime}=-\sin x$
$(\tan x)^{\prime}=\sec ^{2} x$
$(\cot x)^{\prime}=-\csc ^{2} x$
$(\sinh x)^{\prime}=\cosh x$
$(\cosh x)^{\prime}=\sinh x$
$(\ln x)^{\prime}=\frac{1}{x}$
$\left(\log _{a} x\right)^{\prime}=\frac{\log _{a} e}{x}$
$(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$
$(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}$
$(\arctan x)^{\prime}=\frac{1}{1+x^{2}}$
$(\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}}$

Integration

$\int u v^{\prime} d x=u v-\int u^{\prime} v d x$ (by parts)
$\int x^{n} d x=\frac{x^{n+1}}{n+1}+c \quad(n \neq-1)$
$\int \frac{1}{x} d x=\ln |x|+c$
$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\int \sin x d x=-\cos x+c$
$\int \cos x d x=\sin x+c$
$\int \tan x d x=-\ln |\cos x|+c$
$\int \cot x d x=\ln |\sin x|+c$
$\int \sec x d x=\ln |\sec x+\tan x|+c$
$\int \csc x d x=\ln |\csc x-\cot x|+c$
$\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \arctan \frac{x}{a}+c$
$\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+c$
$\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\operatorname{arcsinh} \frac{x}{a}+c$
$\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\operatorname{arccosh} \frac{x}{a}+c$
$\int \sin ^{2} x d x=\frac{1}{2} x-\frac{1}{4} \sin 2 x+c$
$\int \cos ^{2} x d x=\frac{1}{2} x+\frac{1}{4} \sin 2 x+c$
$\int \tan ^{2} x d x=\tan x-x+c$
$\int \cot ^{2} x d x=-\cot x-x+c$
$\int \ln x d x=x \ln x-x+c$
$\int e^{a x} \sin b x d x$

$$
=\frac{e^{a x}}{a^{2}+b^{2}}(a \sin b x-b \cos b x)+c
$$

$\int e^{a x} \cos b x d x$

$$
=\frac{e^{a x}}{a^{2}+b^{2}}(a \cos b x+b \sin b x)+c
$$

Software (p. 788-789)
CHAPTER 19 Numerics in General
CHAPTER 20 Numeric Linear Algebra
CHAPTER 21 Numerics for ODEs and PDEs

Numeric analysis or briefly numerics continues to be one of the fastest growing areas of engineering mathematics. This is a natural trend with the ever greater availability of computing power and global Internet use. Indeed, good software implementation of numerical methods are readily available. Take a look at the updated list of Software starting on p . 788. It contains software for purchase (commercial software) and software for free download (public-domain software). For convenience, we provide Internet addresses and phone numbers. The software list includes computer algebra systems (CASs), such as Maple and Mathematica, along with the Maple Computer Guide, 10th ed., and Mathematica Computer Guide, 10th ed., by E. Kreyszig and E. J. Norminton related to this text that teach you stepwise how to use these computer algebra systems and with complete engineering examples drawn from the text. Furthermore, there is scientific software, such as IMSL, LAPACK (free download), and scientific calculators with graphic capabilities such as TI-Nspire. Note that, although we have listed frequently used quality software, this list is by no means complete.

In your career as an engineer, appplied mathematician, or scientist you are likely to use commercially available software or proprietary software, owned by the company you work for, that uses numeric methods to solve engineering problems, such as modeling chemical or biological processes, planning ecologically sound heating systems, or computing trajectories of spacecraft or satellites. For example, one of the collaborators of this book (Herbert Kreyszig) used proprietary software to determine the value of bonds, which amounted to solving higher degree polynomial equations, using numeric methods discussed in Sec. 19.2.

However, the availability of quality software does not alleviate your effort and responsibility to first understand these numerical methods. Your effort will pay off because, with your mathematical expertise in numerics, you will be able to plan your solution approach, judiciously select and use the appropriate software, judge the quality of software, and, perhaps, even write your own numerics software.

Numerics extends your ability to solve problems that are either difficult or impossible to solve analytically. For example, certain integrals such as error function [see App. 3, formula (35)] or large eigenvalue problems that generate high-degree characteristic polynomials cannot be solved analytically. Numerics is also used to construct approximating polynomials through data points that were obtained from some experiments.

Part E is designed to give you a solid background in numerics. We present many numeric methods as algorithms, which give these methods in detailed steps suitable for software implementation on your computer, CAS, or programmable calculator. The first chapter, Chap. 19, covers three main areas. These are general numerics (floating point, rounding errors, etc.), solving equations of the form $f(x)=0$ (using Newton's method and other methods), interpolation along with methods of numeric integration that make use of it, and differentiation.

Chapter 20 covers the essentials of numeric linear algebra. The chapter breaks into two parts: solving linear systems of equations by methods of Gauss, Doolittle, Cholesky, etc. and solving eigenvalue problems numerically. Chapter 21 again has two themes: solving ordinary differential equations and systems of ordinary differential equations as well as solving partial differential equations.

Numerics is a very active area of research as new methods are invented, existing methods improved and adapted, and old methods-impractical in precomputer times-are rediscovered. A main goal in these activities is the development of well-structured software. And in large-scale work-millions of equations or steps of iterations-even small algorithmic improvements may have a large significant effect on computing time, storage demand, accuracy, and stability.

Remark on Software Use. Part E is designed in such a way as to allow compelete flexibility on the use of CASs, software, or graphing calculators. The computational requirements range from very little use to heavy use. The choice of computer use is at the discretion of the professor. The material and problem sets (except where clearly indicated such as in CAS Projects, CAS Problems, or CAS Experiments, which can be omitted without loss of continuity) do not require the use of a CAS or software. A scientific calculator perhaps with graphing capabilities is all that is required.

Software

See also http://www.wiley.com/college/kreyszig/

The following list will help you if you wish to find software. You may also obtain information on known and new software from websites such as Dr. Dobb's Portal, from articles published by the American Mathematical Society (see also its website at www.ams.org), the Society for Industrial and Applied Mathematics (SIAM, at www.siam.org), the Association for Computing Machinery (ACM, at www.acm.org), or the Institute of Electrical and Electronics Engineers (IEEE, at www.ieee.org). Consult also your library, computer science department, or mathematics department.

TI-Nspire. Includes TI-Nspire CAS and programmable graphic calculators. Texas Instruments, Inc., Dallas, TX. Telephone: 1-800-842-2737 or (972) 917-8324; website at www.education.ti.com.

EISPACK. See LAPACK.
GAMS (Guide to Available Mathematical Software). Website at http://gams.nist.gov. Online cross-index of software development by NIST.

IMSL (International Mathematical and Statistical Library). Visual Numerics, Inc., Houston, TX. Telephone: 1-800-222-4675 or (713) 784-3131; website at www.vni.com. Mathematical and statistical FORTRAN routines with graphics.

LAPACK. FORTRAN 77 routines for linear algebra. This software package supersedes LINPACK and EISPACK. You can download the routines from www.netlib.org/lapack. The LAPACK User's Guide is available at www.netlib.org.

LINPACK see LAPACK

Maple. Waterloo Maple, Inc., Waterloo, ON, Canada. Telephone: 1-800-267-6583 or (519) 747-2373; website at www.maplesoft.com.

Maple Computer Guide. For Advanced Engineering Mathematics, 10th edition. By E. Kreyszig and E. J. Norminton. John Wiley and Sons, Inc., Hoboken, NJ. Telephone: 1-800-225-5945 or (201) 748-6000.

Mathcad. Parametric Technology Corp. (PTC), Needham, MA. Website at www.ptc.com.
Mathematica. Wolfram Research, Inc., Champaign, IL. Telephone: 1-800-965-3726 or (217) 398-0700; website at www.wolfram.com.

Mathematica Computer Guide. For Advanced Engineering Mathematics, 10th edition. By E. Kreyszig and E. J. Norminton. John Wiley and Sons, Inc., Hoboken, NJ. Telephone: 1-800-225-5945 or (201) 748-6000.

Matlab. The MathWorks, Inc., Natick, MA. Telephone: (508) 647-7000; website at www.mathworks.com.

NAG. Numerical Algorithms Group, Inc., Lisle, IL. Telephone: (630) 971-2337; website at www.nag.com. Numeric routines in FORTRAN 77, FORTRAN 90, and C.

NETLIB. Extensive library of public-domain software. See at www.netlib.org.
NIST. National Institute of Standards and Technology, Gaithersburg, MD. Telephone:
(301) 975-6478; website at www.nist.gov. For Mathematical and Computational Science Division telephone: (301) 975-3800. See also http://math.nist.gov.

Numerical Recipes. Cambridge University Press, New York, NY. Telephone: 1-800-2214512 or (212) 924-3900; website at www.cambridge.org/us. Book, 3rd ed. (in C++) see App. 1, Ref. [E25]; source code on CD ROM in C ++ , which also contains old source code (but not text) for (out of print) 2nd ed. C, FORTRAN 77, FORTRAN 90 as well as source code for (out of print) 1st ed. To order, call office at West Nyack, NY, at 1-800-872-7423 or (845) 353-7500 or online at www.nr.com.

FURTHER SOFTWARE IN STATISTICS. See Part G.

chapter 19

Numerics in General

Numeric analysis or briefly numerics has a distinct flavor that is different from basic calculus, from solving ODEs algebraically, or from other (nonnumeric) areas. Whereas in calculus and in ODEs there were very few choices on how to solve the problem and your answer was an algebraic answer, in numerics you have many more choices and your answers are given as tables of values (numbers) or graphs. You have to make judicous choices as to what numeric method or algorithm you want to use, how accurate you need your result to be, with what value (starting value) do you want to begin your computation, and others. This chapter is designed to provide a good transition from the algebraic type of mathematics to the numeric type of mathematics.

We begin with the general concepts such as floating point, roundoff errors, and general numeric errors and their propagation. This is followed in Sec. 19.2 by the important topic of solving equations of the type $f(x)=0$ by various numeric methods, including the famous Newton method. Section 19.3 introduces interpolation methods. These are methods that construct new (unknown) function values from known function values. The knowledge gained in Sec. 19.3 is applied to spline interpolation (Sec. 19.4) and is useful for understanding numeric integration and differentiation covered in the last section.

Numerics provides an invaluable extension to the knowledge base of the problemsolving engineer. Many problems have no solution formula (think of a complicated integral or a polynomial of high degree or the interpolation of values obtained by measurements). In other cases a complicated solution formula may exist but may be practically useless. It is for these kinds of problems that a numerical method may generate a good answer. Thus, it is very important that the applied mathematician, engineer, physicist, or scientist becomes familiar with the essentials of numerics and its ideas, such as estimation of errors, order of convergence, numerical methods expressed in algorithms, and is also informed about the important numeric methods.

Prerequisite: Elementary calculus.
References and Answers to Problems: App. 1 Part E, App. 2.

19.1 Introduction

As an engineer or physicist you may deal with problems in elasticity and need to solve an equation such as $x \cosh x=1$ or a more difficult problem of finding the roots of a higher order polynomial. Or you encounter an integral such as

$$
\int_{0}^{1} \exp \left(-x^{2}\right) d x
$$

[see App. 3, formula (35)] that you cannot solve by elementary calculus. Such problems, which are difficult or impossible to solve algebraically, arise frequently in applications. They call for numeric methods, that is, systematic methods that are suitable for solving, numerically, the problems on computers or calculators. Such solutions result in tables of numbers, graphical representation (figures), or both. Typical numeric methods are iterative in nature and, for a well-choosen problem and a good starting value, will frequently converge to a desired answer. The evolution from a given problem that you observed in an experimental lab or in an industrial setting (in engineering, physics, biology, chemistry, economics, etc.) to an approximation suitable for numerics to a final answer usually requires the following steps.

1. Modeling. We set up a mathematical model of our problem, such as an integral, a system of equations, or a differential equation.
2. Choosing a numeric method and parameters (e.g., step size), perhaps with a preliminary error estimation.
3. Programming. We use the algorithm to write a corresponding program in a CAS, such as Maple, Mathematica, Matlab, or Mathcad, or, say, in Java, C or C^{++}, or FORTRAN, selecting suitable routines from a software system as needed.
4. Doing the computation.
5. Interpreting the results in physical or other terms, also deciding to rerun if further results are needed.

Steps 1 and 2 are related. A slight change of the model may often admit of a more efficient method. To choose methods, we must first get to know them. Chapters 19-21 contain efficient algorithms for the most important classes of problems occurring frequently in practice.

In Step 3 the program consists of the given data and a sequence of instructions to be executed by the computer in a certain order for producing the answer in numeric or graphic form.

To create a good understanding of the nature of numeric work, we continue in this section with some simple general remarks.

Floating-Point Form of Numbers

We know that in decimal notation, every real number is represented by a finite or an infinite sequence of decimal digits. Now most computers have two ways of representing numbers, called fixed point and floating point. In a fixed-point system all numbers are given with a fixed number of decimals after the decimal point; for example, numbers given with 3 decimals are $62.358,0.014,1.000$. In a text we would write, say, 3 decimals as 3D. Fixed-point representations are impractical in most scientific computations because of their limited range (explain!) and will not concern us.

In a floating-point system we write, for instance,

$$
0.6247 \cdot 10^{3}, \quad 0.1735 \cdot 10^{-13}, \quad-0.2000 \cdot 10^{-1}
$$

or sometimes also

$$
6.247 \cdot 10^{2}, \quad 1.735 \cdot 10^{-14}, \quad-2.000 \cdot 10^{-2}
$$

We see that in this system the number of significant digits is kept fixed, whereas the decimal point is "floating." Here, a significant digit of a number c is any given digit of c, except
possibly for zeros to the left of the first nonzero digit; these zeros serve only to fix the position of the decimal point. (Thus any other zero is a significant digit of c.) For instance,

$$
13600, \quad 1.3600, \quad 0.0013600
$$

all have 5 significant digits. In a text we indicate, say, 5 significant digits, by 5 S .
The use of exponents permits us to represent very large and very small numbers. Indeed, theoretically any nonzero number a can be written as

$$
\begin{equation*}
a= \pm m \cdot 10^{n}, \quad 0.1 \leqq|m|<1, \quad n \text { integer } \tag{1}
\end{equation*}
$$

On modern computers, which use binary (base 2) numbers, m is limited to k binary digits (e.g., $k=8$) and n is limited (see below), giving representations (for finitely many numbers only!)

$$
\begin{equation*}
\bar{a}= \pm \bar{m} \cdot 2^{n}, \quad \bar{m}=0 . d_{1} d_{2} \cdots d_{k}, \quad d_{1}>0 \tag{2}
\end{equation*}
$$

These numbers \bar{a} are called k-digit binary machine numbers. Their fractional part m ($\operatorname{or} \bar{m}$) is called the mantissa. This is not identical with "mantissa" as used for logarithms. n is called the exponent of \bar{a}.

It is important to realize that there are only finitely many machine numbers and that they become less and less "dense" with increasing a. For instance, there are as many numbers between 2 and 4 as there are between 1024 and 2048. Why?

The smallest positive machine number eps with $1+\mathrm{eps}>1$ is called the machine accuracy. It is important to realize that there are no numbers in the intervals $[1,1+\mathrm{eps}]$, $[2,2+2 \cdot \mathrm{eps}], \cdots,[1024,1024+1024 \cdot \mathrm{eps}], \cdots$. This means that, if the mathematical answer to a computation would be $1024+1024 \cdot \mathrm{eps} / 2$, the computer result will be either 1024 or $1024 \cdot$ eps so it is impossible to achieve greater accuracy.

Underflow and Overflow. The range of exponents that a typical computer can handle is very large. The IEEE (Institute of Electrical and Electronic Engineers) floating-point standard for single precision is from 2^{-126} to $2^{128}\left(1.175 \times 10^{-38}\right.$ to $\left.3.403 \times 10^{38}\right)$ and for double precision it is from 2^{-1022} to $2^{1024}\left(2.225 \times 10^{-308}\right.$ to $\left.1.798 \times 10^{308}\right)$.

As a minor technicality, to avoid storing a minus in the exponent, the ranges are shifted from $[-126,128]$ by adding 126 (for double precision 1022). Note that shifted exponents of 255 and 1047 are used for some special cases such as representing infinity.

If, in a computation a number outside that range occurs, this is called underflow when the number is smaller and overflow when it is larger. In the case of underflow, the result is usually set to zero and computation continues. Overflow might cause the computer to halt. Standard codes (by IMSL, NAG, etc.) are written to avoid overflow. Error messages on overflow may then indicate programming errors (incorrect input data, etc.). From here on, we will be discussing the decimal results that we obtain from our computations.

Roundoff

An error is caused by chopping (= discarding all digits from some decimal on) or rounding. This error is called roundoff error, regardless of whether we chop or round. The rule for rounding off a number to k decimals is as follows. (The rule for rounding off to k significant digits is the same, with "decimal" replaced by "significant digit.")

Roundoff Rule. To round a number x to k decimals, and $5 \cdot 10^{-(k+1)}$ to x and chop the digits after the $(k+1)$ st digit.

EXAMPLE 1 Roundoff Rule

Round the number 1.23454621 to (a) 2 decimals, (b) 3 decimals, (c) 4 decimals, (d) 5 decimals, and (e) 6 decimals.
Solution. (a) For 2 decimals we add $5 \cdot 10^{-(k+1)}=5 \cdot 10^{-3}=0.005$ to the given number, that is, $1.2345621+0.005=1.23954621$. Then we chop off the digits " 954621 " after the space or equivalently $1.23954621-0.00954621=1.23$.
(b) $1.23454621+0.0005=1.23504621$, so that for 3 decimals we get 1.234 .
(c) 1.23459621 after chopping give us 1.2345 (4 decimals).
(d) 1.23455121 yields 1.23455 (5 decimals).
(e) 1.23454671 yields 1.234546 (6 decimals).

Can you round the number to 7 decimals?
Chopping is not recommended because the corresponding error can be larger than that in rounding. (Nevertheless, some computers use it because it is simpler and faster. On the other hand, some computers and calculators improve accuracy of results by doing intermediate calculations using one or more extra digits, called guarding digits.)

Error in Rounding. Let $\bar{a}=\mathrm{fl}(a)$ in (2) be the floating-point computer approximation of a in (1) obtained by rounding, where fl suggests floating. Then the roundoff rule gives (by dropping exponents) $|m-\bar{m}| \leqq \frac{1}{2} \cdot 10^{-k}$. Since $|m| \geqq 0.1$, this implies (when $a \neq 0$)

$$
\begin{equation*}
\left|\frac{a-\bar{a}}{a}\right| \approx\left|\frac{m-\bar{m}}{m}\right| \leqq \frac{1}{2} \cdot 10^{1-k} . \tag{3}
\end{equation*}
$$

The right side $u=\frac{1}{2} \cdot 10^{1-k}$ is called the rounding unit. If we write $\bar{a}=a(1+\delta)$, we have by algebra $(\bar{a}-a) / a=\delta$, hence $|\delta| \leqq u$ by (3). This shows that the rounding unit u is an error bound in rounding.

Rounding errors may ruin a computation completely, even a small computation. In general, these errors become the more dangerous the more arithmetic operations (perhaps several millions!) we have to perform. It is therefore important to analyze computational programs for expected rounding errors and to find an arrangement of the computations such that the effect of rounding errors is as small as possible.

As mentioned, the arithmetic in a computer is not exact and causes further errors; however, these will not be relevant to our discussion.

Accuracy in Tables. Although available software has rendered various tables of function values superfluous, some tables (of higher functions, of coefficients of integration formulas, etc.) will still remain in occasional use. If a table shows k significant digits, it is conventionally assumed that any value \widetilde{a} in the table deviates from the exact value a by at most $\pm \frac{1}{2}$ unit of the k th digit.

Loss of Significant Digits

This means that a result of a calculation has fewer correct digits than the numbers from which it was obtained. This happens if we subtract two numbers of about the same size, for example, $0.1439-0.1426$ ("subtractive cancellation"). It may occur in simple problems, but it can be avoided in most cases by simple changes of the algorithm-if one is aware of it! Let us illustrate this with the following basic problem.

EXAMPLE 2 Quadratic Equation. Loss of Significant Digits

Find the roots of the equation

$$
x^{2}+40 x+2=0
$$

using 4 significant digits (abbreviated $4 S$) in the computation.

Solution. A formula for the roots x_{1}, x_{2} of a quadratic equation $a x^{2}+b x+c=0$ is

$$
\begin{equation*}
x_{1}=\frac{1}{2 a}\left(-b+\sqrt{b^{2}-4 a c}\right), \quad x_{2}=\frac{1}{2 a}\left(-b-\sqrt{b^{2}-4 a c}\right) . \tag{4}
\end{equation*}
$$

Furthermore, since $x_{1} x_{2}=c / a$, another formula for those roots

$$
\begin{equation*}
x_{1}=\frac{c}{a x_{2}}, \quad x_{2} \text { as in (4). } \tag{5}
\end{equation*}
$$

We see that this avoids cancellation in x_{1} for positive b.
If $b<0$, calculate x_{1} from (4) and then $x_{2}=c /\left(a x_{1}\right)$.
For $x^{2}+40 x+2=0$ we obtain from (4) $x=-20 \pm \sqrt{398}=-20 \pm 19.95$, hence $x_{2}=-20.00-19.95$,
involving no difficulty, and $x_{1}=-20.00+19.95=-0.05$, a poor value involving loss of digits by subtractive cancellation.

In contrast, (5) gives $x_{1}=2.000 /(-39.95)=-0.05006$, the absolute value of the error being less than one unit of the last digit, as a computation with more digits shows. The 10 S -value is -0.05006265674 .

Errors of Numeric Results

Final results of computations of unknown quantities generally are approximations; that is, they are not exact but involve errors. Such an error may result from a combination of the following effects. Roundoff errors result from rounding, as discussed above. Experimental errors are errors of given data (probably arising from measurements). Truncating errors result from truncating (prematurely breaking off), for instance, if we replace a Taylor series with the sum of its first few terms. These errors depend on the computational method used and must be dealt with individually for each method. ["Truncating" is sometimes used as a term for chopping off (see before), a terminology that is not recommended.]

Formulas for Errors. If \widetilde{a} is an approximate value of a quantity whose exact value is a, we call the difference

$$
\begin{equation*}
\epsilon=a-\widetilde{a} \tag{6}
\end{equation*}
$$

the error of \tilde{a}. Hence

$$
\begin{equation*}
a=\widetilde{a}+\epsilon, \quad \text { True value }=\text { Approximation }+ \text { Error } . \tag{*}
\end{equation*}
$$

For instance, if $\widetilde{a}=10.5$ is an approximation of $a=10.2$, its error is $\epsilon=-0.3$. The error of an approximation $\widetilde{a}=1.60$ of $a=1.82$ is $\epsilon=0.22$.

CAUTION! In the literature $|a-\widetilde{a}|$ ("absolute error") or $\widetilde{a}-a$ are sometimes also used as definitions of error.

The relative error ϵ_{r} of \widetilde{a} is defined by

$$
\begin{equation*}
\epsilon_{r}=\frac{\epsilon}{a}=\frac{a-\widetilde{a}}{a}=\frac{\text { Error }}{\text { True value }} \quad(a \neq 0) \tag{7}
\end{equation*}
$$

This looks useless because a is unknown. But if $|\epsilon|$ is much less than $|\widetilde{a}|$, then we can use \widetilde{a} instead of a and get

$$
\epsilon_{r} \approx \frac{\epsilon}{\widetilde{a}} .
$$

This still looks problematic because ϵ is unknown-if it were known, we could get $a=\widetilde{a}+\epsilon$ from (6) and we would be done. But what one often can obtain in practice is an error bound for \tilde{a}, that is, a number β such that

$$
|\epsilon| \leqq \beta, \quad \text { hence } \quad|a-\widetilde{a}| \leqq \beta
$$

This tells us how far away from our computed \widetilde{a} the unknown a can at most lie. Similarly, for the relative error, an error bound is a number β_{r} such that

$$
\left|\epsilon_{r}\right| \leqq \beta_{r}, \quad \text { hence } \quad\left|\frac{a-\widetilde{a}}{a}\right| \leqq \beta_{r}
$$

Error Propagation

This is an important matter. It refers to how errors at the beginning and in later steps (roundoff, for example) propagate into the computation and affect accuracy, sometimes very drastically. We state here what happens to error bounds. Namely, bounds for the error add under addition and subtraction, whereas bounds for the relative error add under multiplication and division. You do well to keep this in mind.

THEOREM 1

Error Propagation

(a) In addition and subtraction, a bound for the error of the results is given by the sum of the error bounds for the terms.
(b) In multiplication and division, an error bound for the relative error of the results is given (approximately) by the sum of the bounds for the relative errors of the given numbers.

PROOF (a) We use the notations $x=\tilde{x}+\epsilon_{x}, y=\tilde{y}+\epsilon_{y},\left|\epsilon_{x}\right| \leqq \beta_{x},\left|\epsilon_{y}\right| \leqq \beta_{y}$. Then for the error ϵ of the difference we obtain

$$
\begin{aligned}
|\epsilon| & =|x-y-(\tilde{x}-\tilde{y})| \\
& =|x-\tilde{x}-(y-\tilde{y})| \\
& =\left|\epsilon_{x}-\epsilon_{y}\right| \leqq\left|\epsilon_{x}\right|+\left|\epsilon_{y}\right| \leqq \beta_{x}+\beta_{y}
\end{aligned}
$$

The proof for the sum is similar and is left to the student.
(b) For the relative error ϵ_{r} of $\tilde{x} \tilde{y}$ we get from the relative errors $\epsilon_{r x}$ and $\epsilon_{r y}$ of \tilde{x}, \tilde{y} and bounds $\beta_{r x}, \beta_{r y}$

$$
\begin{aligned}
\left|\epsilon_{r}\right| & =\left|\frac{x y-\tilde{x} \tilde{y}}{x y}\right|=\left|\frac{x y-\left(x-\epsilon_{x}\right)\left(y-\epsilon_{y}\right)}{x y}\right|=\left|\frac{\epsilon_{x} y+\epsilon_{y} x-\epsilon_{x} \epsilon_{y}}{x y}\right| \\
& \approx\left|\frac{\epsilon_{x} y+\epsilon_{y} x}{x y}\right| \leqq\left|\frac{\epsilon_{x}}{x}\right|+\left|\frac{\epsilon_{y}}{y}\right|=\left|\epsilon_{r x}\right|+\left|\epsilon_{r y}\right| \leqq \beta_{r x}+\beta_{r y}
\end{aligned}
$$

This proof shows what "approximately" means: we neglected $\epsilon_{x} \epsilon_{y}$ as small in absolute value compared to $\left|\epsilon_{x}\right|$ and $\left|\epsilon_{y}\right|$. The proof for the quotient is similar but slightly more tricky (see Prob. 13).

Basic Error Principle

Every numeric method should be accompanied by an error estimate. If such a formula is lacking, is extremely complicated, or is impractical because it involves information (for instance, on derivatives) that is not available, the following may help.

Error Estimation by Comparison. Do a calculation twice with different accuracy. Regard the difference $\widetilde{a}_{2}-\widetilde{a}_{1}$ of the results $\widetilde{a}_{1}, \widetilde{a}_{2}$ as a (perhaps crude) estimate of the error ϵ_{1} of the inferior result \widetilde{a}_{1}. Indeed, $\widetilde{a}_{1}+\epsilon_{1}=\widetilde{a}_{2}+\epsilon_{2}$ by formula (4*). This implies $\widetilde{a}_{2}-\widetilde{a}_{1}=\epsilon_{1}-\epsilon_{2} \approx \epsilon_{1}$ because \widetilde{a}_{2} is generally more accurate than \widetilde{a}_{1}, so that $\left|\epsilon_{2}\right|$ is small compared to $\left|\epsilon_{1}\right|$.

Algorithm. Stability

Numeric methods can be formulated as algorithms. An algorithm is a step-by-step procedure that states a numeric method in a form (a "pseudocode") understandable to humans. (See Table 19.1 to see what an algorithm looks like.) The algorithm is then used to write a program in a programming language that the computer can understand so that it can execute the numeric method. Important algorithms follow in the next sections. For routine tasks your CAS or some other software system may contain programs that you can use or include as parts of larger programs of your own.

Stability. To be useful, an algorithm should be stable; that is, small changes in the initial data should cause only small changes in the final results. However, if small changes in the initial data can produce large changes in the final results, we call the algorithm unstable.

This "numeric instability," which in most cases can be avoided by choosing a better algorithm, must be distinguished from "mathematical instability" of a problem, which is called "ill-conditioning," a concept we discuss in the next section.

Some algorithms are stable only for certain initial data, so that one must be careful in such a case.

PROBH2

1. Floating point. Write $84.175,-528.685,0.000924138$, and -362005 in floating-point form, rounded to 5 S (5 significant digits).
2. Write $-76.437125,60100$, and -0.00001 in floatingpoint form, rounded to 4 S .
3. Small differences of large numbers may be particularly strongly affected by rounding errors. Illustrate this by computing $0.81534 /(35 \cdot 724-35.596)$ as given with 5 S , then rounding stepwise to $4 \mathrm{~S}, 3 \mathrm{~S}$, and 2 S , where "stepwise" means round the rounded numbers, not the given ones.
4. Order of terms, in adding with a fixed number of digits, will generally affect the sum. Give an example. Find empirically a rule for the best order.
5. Rounding and adding. Let a_{1}, \cdots, a_{n} be numbers with a_{j} correctly rounded to S_{j} digits. In calculating the sum $a_{1}+\cdots+a_{n}$, retaining $S=\min S_{j}$ significant digits, is it essential that we first add and then round the result or that we first round each number to S significant digits and then add?
6. Nested form. Evaluate

$$
\begin{aligned}
f(x) & =x^{3}-7.5 x^{2}+11.2 x+2.8 \\
& =((x-7.5) x+11.2) x+2.8
\end{aligned}
$$

at $x=3.94$ using 3 S arithmetic and rounding, in both of the given forms. The latter, called the nested form, is usually preferable since it minimizes the number of operations and thus the effect of rounding.
7. Quadratic equation. Solve $x^{2}-30 x+1=0$ by (4) and by (5), using 6 S in the computation. Compare and comment.
8. Solve $x^{2}-40 x+2=0$, using 4 S -computation.
9. Do the computations in Prob. 7 with 4 S and 2 S.
10. Instability. For small $|a|$ the equation $(x-k)^{2}=a$ has nearly a double root. Why do these roots show instability?
11. Theorems on errors. Prove Theorem 1(a) for addition.
12. Overflow and underflow can sometimes be avoided by simple changes in a formula. Explain this in terms of $\sqrt{x^{2}+y^{2}}=x \sqrt{1+(y / x)^{2}}$ with $x^{2} \geqq y^{2}$ and x so large that x^{2} would cause overflow. Invent examples of your own.
13. Division. Prove Theorem 1(b) for division.
14. Loss of digits. Square root. Compute $\sqrt{x^{2}+4}-2$ with 6 S arithmetic for $x=0.001$ (a) as given and (b) from $x^{2} /\left(\sqrt{x^{2}+4}+2\right)$ (derive!).
15. Logarithm. Compute $\ln a-\ln b$ with 6 S arithmetic for $a=4.00000$ and $b=3.99900$ (a) as given and (b) from $\ln (a / b)$.
16. Cosine. Compute $1-\cos x$ with 6 S arithmetic for $x=0.02$ (a) as given and (b) by $2 \sin ^{2} \frac{1}{2} x$ (derive!).
17. Discuss the numeric use of (12) in App. A3.1 for $\cos v-\cos u$ when $u \approx v$.
18. Quotient near 0/0. (a) Compute $(1-\cos x) / \sin x$ with 6 S arithmetic for $x=0.005$. (b) Looking at Prob. 16, find a much better formula.
19. Exponential function. Calculate $1 / e=0.367879$ (6S) from the partial sums of 5-10 terms of the Maclaurin series (a) of e^{-x} with $x=1$, (b) of e^{x} with $x=1$ and then taking the reciprocal. Which is more accurate?
20. Compute e^{-10} with 6 S arithmetic in two ways (as in Prob. 19).
21. Binary conversion. Show that

$$
\begin{aligned}
23 & =20 \cdot 10^{1}+3 \cdot 10^{0}=16+4+2+1 \\
& =2^{4}+2^{2}+2^{1}+2^{0}=\left(\begin{array}{lllll}
1 & 0 & 1 & 1 & 1 .)_{2}
\end{array}\right.
\end{aligned}
$$

can be obtained by the division algorithm

$2\lfloor 23$	Remainder	$1=c_{0}$
$2\lfloor 11$		$1=c_{1}$
$2\lfloor 5$		$1=c_{2}$
$2\lfloor 2$		$0=c_{3}$
0		$1=c_{4}$

22. Convert $(0.59375)_{10}$ to $(0.10011)_{2}$ by successive multiplication by 2 and dropping (removing) the integer parts, which give the binary digits c_{1}, c_{2}, \cdots :

$$
\begin{aligned}
& 0.59375 \cdot 2 \\
c_{1}= & 1.1875 \cdot 2 \\
c_{2}= & 0.375 \cdot 2 \\
c_{3}= & 0.75 \cdot 2 \\
c_{4}= & 1.5 \cdot 2 \\
c_{5}= & 1.0
\end{aligned}
$$

23. Show that 0.1 is not a binary machine number.
24. Prove that any binary machine number has a finite decimal representation. Is the converse true?
25. CAS EXPERIMENT. Approximations. Obtain $x=0.1=\frac{3}{2} \sum_{m=1}^{\infty} 2^{-4 m}$ from Prob. 23. Which machine number (partial sum) S_{n} will first have the value 0.1 to 30 decimal digits?
26. CAS EXPERIMENT. Integration from Calculus. Integrating by parts, show that $I_{n}=\int_{0}^{1} e^{x} x^{n} d x=$ $e-n I_{n-1}, I_{0}=e-1$. (a) Compute $I_{n}, n=0, \cdots$, using 4 S arithmetic, obtaining $I_{8}=-3.906$. Why is this nonsense? Why is the error so large?
(b) Experiment in (a) with the number of digits $k>4$. As you increase k, will the first negative value $n=N$ occur earlier or later? Find an empirical formula for $N=N(k)$.
27. Backward Recursion. In Prob. 26. Using $e^{x}<e$ $(0<x<1)$, conclude that $\left|I_{n}\right| \leqq e /(n+1) \rightarrow 0$ as $n \rightarrow \infty$. Solve the iteration formula for $I_{n-1}=$ $\left(e-I_{n}\right) / n$, start from $I_{15} \approx 0$ and compute $4 S$ values of $I_{14}, I_{13}, \cdots, I_{1}$.
28. Harmonic series. $1+\frac{1}{2}+\frac{1}{3}+\cdots$ diverges. Is the same true for the corresponding series of computer numbers?
29. Approximations of $\pi=\mathbf{3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9} \cdots$ are $22 / 7$ and $355 / 113$. Determine the corresponding errors and relative errors to 3 significant digits.
30. Compute π by Machin's approximation 16 arctan $\left(\frac{1}{5}\right)-4 \arctan \left(\frac{1}{239}\right)$ to 10 S (which are correct). [In 1986, D. H. Bailey (NASA Ames Research Center, Moffett Field, CA 94035) computed almost 30 million decimals of π on a CRAY-2 in less than 30 hrs . The race for more and more decimals is continuing. See the Internet under pi.]

19.2 Solution of Equations by Iteration

For each of the remaining sections of this chapter, we select basic kinds of problems and discuss numeric methods on how to solve them. The reader will learn about a variety of important problems and become familiar with ways of thinking in numerical analysis.

Perhaps the easiest conceptual problem is to find solutions of a single equation

$$
\begin{equation*}
f(x)=0 \tag{1}
\end{equation*}
$$

where f is a given function. A solution of (1) is a number $x=s$ such that $f(s)=0$. Here, s suggests "solution," but we shall also use other letters.

It is interesting to note that the task of solving (1) is a question made for numeric algorithms, as in general there are no direct formulas, except in a few simple cases.

Examples of single equations are $x^{3}+x=1, \sin x=0.5 x, \tan x=x, \cosh x=\sec x$, $\cosh x \cos x=-1$, which can all be written in the form of (1). The first of the five equations is an algebraic equation because the corresponding f is a polynomial. In this case the solutions are called roots of the equation and the solution process is called finding roots. The other equations are transcendental equations because they involve transcendental functions.

There are a very large number of applications in engineering, where we have to solve a single equation (1). You have seen such applications when solving characteristic equations in Chaps. 2, 4, and 8; partial fractions in Chap. 6; residue integration in Chap. 16, finding eigenvalues in Chap. 12, and finding zeros of Bessel functions, also in Chap. 12. Moreover, methods of finding roots are very important in areas outside of classical engineering. For example, in finance, the problem of determining how much a bond is worth amounts to solving an algebraic equation.

To solve (1) when there is no formula for the exact solution available, we can use an approximation method, such as an iteration method. This is a method in which we start from an initial guess x_{0} (which may be poor) and compute step by step (in general better and better) approximations x_{1}, x_{2}, \cdots of an unknown solution of (1). We discuss three such methods that are of particular practical importance and mention two others in the problem set.

It is very important that the reader understand these methods and their underlying ideas. The reader will then be able to select judiciously the appropriate software from among different software packages that employ variations of such methods and not just treat the software programs as "black boxes."

In general, iteration methods are easy to program because the computational operations are the same in each step-just the data change from step to step-and, more importantly, if in a concrete case a method converges, it is stable in general (see Sec. 19.1).

Fixed-Point Iteration for Solving Equations $f(x)=0$

Note: Our present use of the word "fixed point" has absolutely nothing to do with that in the last section.

By some algebraic steps we transform (1) into the form

$$
\begin{equation*}
x=g(x) \tag{2}
\end{equation*}
$$

Then we choose an x_{0} and compute $x_{1}=g\left(x_{0}\right), x_{2}=g\left(x_{1}\right)$, and in general

$$
x_{n+1}=g\left(x_{n}\right) \quad(n=0,1, \cdots)
$$

A solution of (2) is called a fixed point of g, motivating the name of the method. This is a solution of (1), since from $x=g(x)$ we can return to the original form $f(x)=0$. From (1) we may get several different forms of (2). The behavior of corresponding iterative sequences x_{0}, x_{1}, \cdots may differ, in particular, with respect to their speed of convergence. Indeed, some of them may not converge at all. Let us illustrate these facts with a simple example.

EXAMPLE 1 An Iteration Process (Fixed-Point Iteration)

Set up an iteration process for the equation $f(x)=x^{2}-3 x+1=0$. Since we know the solutions

$$
x=1.5 \pm \sqrt{1.25}, \quad \text { thus } \quad 2.618034 \quad \text { and } \quad 0.381966
$$

we can watch the behavior of the error as the iteration proceeds.
Solution. The equation may be written

$$
\begin{equation*}
x=g_{1}(x)=\frac{1}{3}\left(x^{2}+1\right), \quad \text { thus } \quad x_{n+1}=\frac{1}{3}\left(x_{n}^{2}+1\right) \tag{4a}
\end{equation*}
$$

If we choose $x_{0}=1$, we obtain the sequence (Fig. 426a; computed with 6 S and then rounded)

$$
x_{0}=1.000, \quad x_{1}=0.667, \quad x_{2}=0.481, \quad x_{3}=0.411, \quad x_{4}=0.390, \cdots
$$

which seems to approach the smaller solution. If we choose $x_{0}=2$, the situation is similar. If we choose $x_{0}=3$, we obtain the sequence (Fig. 426a, upper part)

$$
x_{0}=3.000, \quad x_{1}=3.333, \quad x_{2}=4.037, \quad x_{3}=5.766, \quad x_{4}=11.415, \cdots
$$

which diverges.
Our equation may also be written (divide by x)

$$
\begin{equation*}
x=g_{2}(x)=3-\frac{1}{x}, \quad \text { thus } \quad x_{n+1}=3-\frac{1}{x_{n}} \tag{4b}
\end{equation*}
$$

and if we choose $x_{0}=1$, we obtain the sequence (Fig. 426b)

$$
x_{0}=1.000, \quad x_{1}=2.000, \quad x_{2}=2.500, \quad x_{3}=2.600, \quad x_{4}=2.615, \cdots
$$

which seems to approach the larger solution. Similarly, if we choose $x_{0}=3$, we obtain the sequence (Fig. 426b)

$$
x_{0}=3.000, \quad x_{1}=2.667, \quad x_{2}=2.625, \quad x_{3}=2.619, \quad x_{4}=2.618, \cdots
$$

Fig. 426. Example 1, iterations (4a) and (4b)

Our figures show the following. In the lower part of Fig. 426a the slope of $g_{1}(x)$ is less than the slope of $y=x$, which is 1 , thus $\left|g_{1}^{\prime}(x)\right|<1$, and we seem to have convergence. In the upper part, $g_{1}(x)$ is steeper $\left(g_{1}^{\prime}(x)>1\right)$ and we have divergence. In Fig. 426b the slope of $g_{2}(x)$ is less near the intersection point $(x=2.618$, fixed point of g_{2}, solution of $f(x)=0$), and both sequences seem to converge. From all this we conclude that convergence seems to depend on the fact that, in a neighborhood of a solution, the curve of $g(x)$ is less steep than the straight line $y=x$, and we shall now see that this condition $\left|g^{\prime}(x)\right|<1$ (= slope of $y=x$) is sufficient for convergence.

An iteration process defined by (3) is called convergent for an x_{0} if the corresponding sequence x_{0}, x_{1}, \cdots is convergent.

A sufficient condition for convergence is given in the following theorem, which has various practical applications.

THEOREM 1

Convergence of Fixed-Point Iteration

Let $x=s$ be a solution of $x=g(x)$ and suppose that g has a continuous derivative in some interval J containing s. Then, if $\left|g^{\prime}(x)\right| \leqq K<1$ in J, the iteration process defined by (3) converges for any x_{0} in J. The limit of the sequence $\left\{x_{n}\right\}$ is s.

PROOF By the mean value theorem of differential calculus there is a t between x and s such that

$$
g(x)-g(s)=g^{\prime}(t)(x-s) \quad(x \text { in } J)
$$

Since $g(s)=s$ and $x_{1}=g\left(x_{0}\right), x_{2}=g\left(x_{1}\right), \cdots$, we obtain from this and the condition on $\left|g^{\prime}(x)\right|$ in the theorem

$$
\left|x_{n}-s\right|=\left|g\left(x_{n-1}\right)-g(s)\right|=\left|g^{\prime}(t)\right|\left|x_{n-1}-s\right| \leqq K\left|x_{n-1}-s\right|
$$

Applying this inequality n times, for $n, n-1, \cdots, 1$ gives

$$
\left|x_{n}-s\right| \leqq K\left|x_{n-1}-s\right| \leqq K^{2}\left|x_{n-2}-s\right| \leqq \cdots \leqq K^{n}\left|x_{0}-s\right|
$$

Since $K<1$, we have $K^{n} \rightarrow 0$; hence $\left|x_{n}-s\right| \rightarrow 0$ as $n \rightarrow \infty$.

We mention that a function g satisfying the condition in Theorem 1 is called a contraction because $|g(x)-g(v)| \leqq K|x-v|$, where $K<1$. Furthermore, K gives information on the speed of convergence. For instance, if $K=0.5$, then the accuracy increases by at least 2 digits in only 7 steps because $0.5^{7}<0.01$.

EXAMPLE 2 An Iteration Process. Illustration of Theorem 1

Find a solution of $f(x)=x^{3}+x-1=0$ by iteration.
Solution. A sketch shows that a solution lies near $x=1$. (a) We may write the equation as $\left(x^{2}+1\right) x=1$ or

$$
x=g_{1}(x)=\frac{1}{1+x^{2}}, \quad \text { so that } \quad x_{n+1}=\frac{1}{1+x_{n}^{2}} . \quad \text { Also } \quad\left|g_{1}^{\prime}(x)\right|=\frac{2|x|}{\left(1+x^{2}\right)^{2}}<1
$$

for any x because $4 x^{2} /\left(1+x^{2}\right)^{4}=4 x^{2} /\left(1+4 x^{2}+\cdots\right)<1$, so that by Theorem 1 we have convergence for any x_{0}. Choosing $x_{0}=1$, we obtain (Fig. 427)

$$
x_{1}=0.500, \quad x_{2}=0.800, \quad x_{3}=0.610, \quad x_{4}=0.729, \quad x_{5}=0.653, \quad x_{6}=0.701, \cdots .
$$

The solution exact to 6 D is $s=0.682328$.
(b) The given equation may also be written

$$
x=g_{2}(x)=1-x^{3} . \quad \text { Then } \quad\left|g_{2}^{\prime}(x)\right|=3 x^{2}
$$

and this is greater than 1 near the solution, so that we cannot apply Theorem 1 and assert convergence. Try $x_{0}=1, x_{0}=0.5, x_{0}=2$ and see what happens.

The example shows that the transformation of a given $f(x)=0$ into the form $x=g(x)$ with g satisfying $\mid g^{\prime}(x) \leqq K<1$ may need some experimentation.

Fig. 427. Iteration in Example 2

Fig. 428. Newton's method

Newton's Method for Solving Equations $f(x)=0$

Newton's method, also known as Newton-Raphson's method, ${ }^{1}$ is another iteration method for solving equations $f(x)=0$, where f is assumed to have a continuous derivative f^{\prime}. The method is commonly used because of its simplicity and great speed.

The underlying idea is that we approximate the graph of f by suitable tangents. Using an approximate value x_{0} obtained from the graph of f, we let x_{1} be the point of intersection of the x-axis and the tangent to the curve of f at x_{0} (see Fig. 428). Then

$$
\tan \beta=f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{0}\right)}{x_{0}-x_{1}}, \quad \text { hence } \quad x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} .
$$

In the second step we compute $x_{2}=x_{1}-f\left(x_{1}\right) / f^{\prime}\left(x_{1}\right)$, in the third step x_{3} from x_{2} again by the same formula, and so on. We thus have the algorithm shown in Table 19.1. Formula (5) in this algorithm can also be obtained if we algebraically solve Taylor's formula

$$
\begin{equation*}
f\left(x_{n+1}\right) \approx f\left(x_{n}\right)+\left(x_{n+1}-x_{n}\right) f^{\prime}\left(x_{n}\right)=0 . \tag{*}
\end{equation*}
$$

[^0]Table 19.1 Newton's Method for Solving Equations $\boldsymbol{f}(\mathbf{x})=\mathbf{0}$

ALGORITHM NEWTON $\left(f, f^{\prime}, x_{0}, \boldsymbol{\epsilon}, N\right)$

This algorithm computes a solution of $f(x)=0$ given an initial approximation x_{0} (starting value of the iteration). Here the function $f(x)$ is continuous and has a continuous derivative $f^{\prime}(x)$.

INPUT: f, f^{\prime}, initial approximation x_{0}, tolerance $\epsilon>0$, maximum number of iterations N.

OUTPUT: Approximate solution $x_{n}(n \leqq N)$ or message of failure.
For $n=0,1,2, \cdots, N-1$ do:

If $\left|x_{n+1}-x_{n}\right| \leqq \epsilon\left|x_{n+1}\right|$ then OUTPUT x_{n+1}. Stop.
[Procedure completed successfully]
End

5 OUTPUT "Failure". Stop.
[Procedure completed unsuccessfully after N iterations]

End NEWTON

If it happens that $f^{\prime}\left(x_{n}\right)=0$ for some n (see line 2 of the algorithm), then try another starting value x_{0}. Line 3 is the heart of Newton's method.

The inequality in line 4 is a termination criterion. If the sequence of the x_{n} converges and the criterion holds, we have reached the desired accuracy and stop. Note that this is just a form of the relative error test. It ensures that the result has the desired number of significant digits. If $\left|x_{n+1}\right|=0$, the condition is satisfied if and only if $x_{n+1}=x_{n}=0$, otherwise $\left|x_{n+1}-x_{n}\right|$ must be sufficiently small. The factor $\left|x_{n+1}\right|$ is needed in the case of zeros of very small (or very large) absolute value because of the high density (or of the scarcity) of machine numbers for those x.

WARNING! The criterion by itself does not imply convergence. Example. The harmonic series diverges, although its partial sums $x_{n}=\sum_{k=1}^{n} 1 / k$ satisfy the criterion because $\lim \left(x_{n+1}-x_{n}\right)=\lim (1 /(n+1))=0$.

Line 5 gives another termination criterion and is needed because Newton's method may diverge or, due to a poor choice of x_{0}, may not reach the desired accuracy by a reasonable number of iterations. Then we may try another x_{0}. If $f(x)=0$ has more than one solution, different choices of x_{0} may produce different solutions. Also, an iterative sequence may sometimes converge to a solution different from the expected one.

EXAMPLE 3 Square Root

Set up a Newton iteration for computing the square root x of a given positive number c and apply it to $c=2$.
Solution. We have $x=\sqrt{c}$, hence $f(x)=x^{2}-c=0, f^{\prime}(x)=2 x$, and (5) takes the form

$$
x_{n+1}=x_{n}-\frac{x_{n}^{2}-c}{2 x_{n}}=\frac{1}{2}\left(x_{n}+\frac{c}{x_{n}}\right)
$$

For $c=2$, choosing $x_{0}=1$, we obtain

$$
x_{1}=1.500000, \quad x_{2}=1.416667, \quad x_{3}=1.414216, \quad x_{4}=1.414214, \cdots
$$

x_{4} is exact to 6 D .

EXAMPLE 4 Iteration for a Transcendental Equation

Find the positive solution of $2 \sin x=x$.
Solution. Setting $f(x)=x-2 \sin x$, we have $f^{\prime}(x)=1-2 \cos x$, and (5) gives

$$
x_{n+1}=x_{n}-\frac{x_{n}-2 \sin x_{n}}{1-2 \cos x_{n}}=\frac{2\left(\sin x_{n}-x_{n} \cos x_{n}\right)}{1-2 \cos x_{n}}=\frac{N_{n}}{D_{n}}
$$

n	x_{n}	N_{n}	D_{n}	x_{n+1}
0	2.00000	3.48318	1.83229	1.90100
1	1.90100	3.12470	1.64847	1.89552
2	1.89552	3.10500	1.63809	1.89550
3	1.89550	3.10493	1.63806	1.89549

From the graph of f we conclude that the solution is near $x_{0}=2$. We compute: $x_{4}=1.89549$ is exact to 5 D since the solution to 6 D is 1.895494 .

EXAMPLE 5 Newton's Method Applied to an Algebraic Equation

Apply Newton's method to the equation $f(x)=x^{3}+x-1=0$.
Solution. From (5) we have

$$
x_{n+1}=x_{n}-\frac{x_{n}^{3}+x_{n}-1}{3 x_{n}^{2}+1}=\frac{2 x_{n}^{3}+1}{3 x_{n}^{2}+1} .
$$

Starting from $x_{0}=1$, we obtain

$$
x_{1}=0.750000, \quad x_{2}=0.686047, \quad x_{3}=0.682340, \quad x_{4}=0.682328, \cdots
$$

where x_{4} has the error $-1 \cdot 10^{-6}$. A comparison with Example 2 shows that the present convergence is much more rapid. This may motivate the concept of the order of an iteration process, to be discussed next.

Order of an Iteration Method. Speed of Convergence

The quality of an iteration method may be characterized by the speed of convergence, as follows.

Let $x_{n+1}=g\left(x_{n}\right)$ define an iteration method, and let x_{n} approximate a solution s of $x=g(x)$. Then $x_{n}=s-\epsilon_{n}$, where ϵ_{n} is the error of x_{n}. Suppose that g is differentiable a number of times, so that the Taylor formula gives

$$
\begin{align*}
x_{n+1}=g\left(x_{n}\right) & =g(s)+g^{\prime}(s)\left(x_{n}-s\right)+\frac{1}{2} g^{\prime \prime}(s)\left(x_{n}-s\right)^{2}+\cdots \\
& =g(s)-g^{\prime}(s) \epsilon_{n}+\frac{1}{2} g^{\prime \prime}(s) \epsilon_{n}^{2}+\cdots \tag{6}
\end{align*}
$$

The exponent of ϵ_{n} in the first nonvanishing term after $g(s)$ is called the order of the iteration process defined by g. The order measures the speed of convergence.

To see this, subtract $g(s)=s$ on both sides of (6). Then on the left you get $x_{n+1}-s=$ $-\epsilon_{n+1}$, where ϵ_{n+1} is the error of x_{n+1}. And on the right the remaining expression equals approximately its first nonzero term because $\left|\epsilon_{n}\right|$ is small in the case of convergence. Thus
(a) $\epsilon_{n+1} \approx+g^{\prime}(s) \epsilon_{n} \quad$ in the case of first order,
(b) $\epsilon_{n+1} \approx-\frac{1}{2} g^{\prime \prime}(s) \epsilon_{n}^{2} \quad$ in the case of second order, etc.

Thus if $\epsilon_{n}=10^{-k}$ in some step, then for second order, $\epsilon_{n+1}=c \cdot\left(10^{-k}\right)^{2}=c \cdot 10^{-2 k}$, so that the number of significant digits is about doubled in each step.

Convergence of Newton's Method

In Newton's method, $g(x)=x-f(x) / f^{\prime}(x)$. By differentiation,

$$
\begin{align*}
g^{\prime}(x) & =1-\frac{f^{\prime}(x)^{2}-f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}} \tag{8}\\
& =\frac{f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}} .
\end{align*}
$$

Since $f(s)=0$, this shows that also $g^{\prime}(s)=0$. Hence Newton's method is at least of second order. If we differentiate again and set $x=s$, we find that

$$
\begin{equation*}
g^{\prime \prime}(s)=\frac{f^{\prime \prime}(s)}{f^{\prime}(s)} \tag{*}
\end{equation*}
$$

which will not be zero in general. This proves

Second-Order Convergence of Newton's Method

If $f(x)$ is three times differentiable and f^{\prime} and $f^{\prime \prime}$ are not zero at a solution s of $f(x)=0$, then for x_{0} sufficiently close to s, Newton's method is of second order.

Comments. For Newton's method, (7b) becomes, by (8*),

$$
\begin{equation*}
\epsilon_{n+1} \approx-\frac{f^{\prime \prime}(s)}{2 f^{\prime}(s)} \epsilon_{n}^{2} \tag{9}
\end{equation*}
$$

For the rapid convergence of the method indicated in Theorem 2 it is important that s be a simple zero of $f(x)$ (thus $f^{\prime}(s) \neq 0$) and that x_{0} be close to s, because in Taylor's formula we took only the linear term [see $\left(5^{*}\right)$], assuming the quadratic term to be negligibly small. (With a bad x_{0} the method may even diverge!)

EXAMPLE 6 Prior Error Estimate of the Number of Newton Iteration Steps

Use $x_{0}=2$ and $x_{1}=1.901$ in Example 4 for estimating how many iteration steps we need to produce the solution to 5D-accuracy. This is an a priori estimate or prior estimate because we can compute it after only one iteration, prior to further iterations.

Solution. We have $f(x)=x-2 \sin x=0$. Differentiation gives

$$
\frac{f^{\prime \prime}(s)}{2 f^{\prime}(s)} \approx \frac{f^{\prime \prime}\left(x_{1}\right)}{2 f^{\prime}\left(x_{1}\right)}=\frac{2 \sin x_{1}}{2\left(1-2 \cos x_{1}\right)} \approx 0.57 .
$$

Hence (9) gives

$$
\left|\epsilon_{n+1}\right| \approx 0.57 \epsilon_{n}^{2} \approx 0.57\left(0.57 \epsilon_{n-1}^{2}\right)^{2}=0.57^{3} \epsilon_{n-1}^{4} \approx \cdots \approx 0.57^{M} \epsilon_{0}^{M+1} \leqq 5 \cdot 10^{-6}
$$

where $M=2^{n}+2^{n-1}+\cdots+2+1=2^{n+1}-1$. We show below that $\epsilon_{0} \approx-0.11$. Consequently, our condition becomes

$$
0.57^{M} 0.11^{M+1} \leqq 5 \cdot 10^{-6} .
$$

Hence $n=2$ is the smallest possible n, according to this crude estimate, in good agreement with Example 4 . $\epsilon_{0} \approx-0.11$ is obtained from $\epsilon_{1}-\epsilon_{0}=\left(\epsilon_{1}-s\right)-\left(\epsilon_{0}-s\right)=-x_{1}+x_{0} \approx 0.10$, hence $\epsilon_{1}=\epsilon_{0}+0.10 \approx$ $-0.57 \epsilon_{0}^{2}$ or $0.57 \epsilon_{0}^{2}+\epsilon_{0}+0.10 \approx 0$, which gives $\epsilon_{0} \approx-0.11$.

Difficulties in Newton's Method. Difficulties may arise if $\left|f^{\prime}(x)\right|$ is very small near a solution s of $f(x)=0$. For instance, let s be a zero of $f(x)$ of second or higher order. Then Newton's method converges only linearly, as is shown by an application of l'Hopital's rule to (8). Geometrically, small $\left|f^{\prime}(x)\right|$ means that the tangent of $f(x)$ near s almost coincides with the x-axis (so that double precision may be needed to get $f(x)$ and $f^{\prime}(x)$ accurately enough). Then for values $x=\widetilde{s}$ far away from s we can still have small function values

$$
R(\widetilde{s})=f(\widetilde{s})
$$

In this case we call the equation $f(x)=0$ ill-conditioned. $R(\widetilde{s})$ is called the residual of $f(x)=0$ at \widetilde{s}. Thus a small residual guarantees a small error of \widetilde{s} only if the equation is not ill-conditioned.

EXAMPLE 7 An Ill-Conditioned Equation

$f(x)=x^{5}+10^{-4} x=0$ is ill-conditioned, $x=0$ is a solution. $f^{\prime}(0)=10^{-4}$ is small. At $\widetilde{s}=0.1$ the residual $f(0.1)=2 \cdot 10^{-5}$ is small, but the error -0.1 is larger in absolute value by a factor 5000 . Invent a more drastic example of your own.

Secant Method for Solving $f(x)=0$

Newton's method is very powerful but has the disadvantage that the derivative f^{\prime} may sometimes be a far more difficult expression than f itself and its evaluation therefore
computationally expensive. This situation suggests the idea of replacing the derivative with the difference quotient

$$
f^{\prime}\left(x_{n}\right) \approx \frac{f\left(x_{n}\right)-f\left(x_{n-1}\right)}{x_{n}-x_{n-1}}
$$

Then instead of (5) we have the formula of the popular secant method

Fig. 429. Secant method
(10)

$$
x_{n+1}=x_{n}-f\left(x_{n}\right) \frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} .
$$

Geometrically, we intersect the x-axis at x_{n+1} with the secant of $f(x)$ passing through P_{n-1} and P_{n} in Fig. 429. We need two starting values x_{0} and x_{1}. Evaluation of derivatives is now avoided. It can be shown that convergence is superlinear (that is, more rapid than linear, $\left|\epsilon_{n+1}\right| \approx$ const $\cdot\left|\epsilon_{n}\right|^{1.62}$; see [E5] in App. 1), almost quadratic like Newton's method. The algorithm is similar to that of Newton's method, as the student may show.

CAUTION! It is not good to write (10) as

$$
x_{n+1}=\frac{x_{n-1} f\left(x_{n}\right)-x_{n} f\left(x_{n-1}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)},
$$

because this may lead to loss of significant digits if x_{n} and x_{n-1} are about equal. (Can you see this from the formula?)

EXAMPLE 8 Secant Method

Find the positive solution of $f(x)=x-2 \sin x=0$ by the secant method, starting from $x_{0}=2, x_{1}=1.9$.
Solution. Here, (10) is

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}-2 \sin x_{n}\right)\left(x_{n}-x_{n-1}\right)}{x_{n}-x_{n-1}+2\left(\sin x_{n-1}-\sin x_{n}\right)}=x_{n}-\frac{N_{n}}{D_{n}} .
$$

Numeric values are:

n	x_{n-1}	x_{n}	N_{n}	D_{n}	$x_{n+1}-x_{n}$
1	2.000000	1.900000	-0.000740	-0.174005	-0.004253
2	1.900000	1.895747	-0.000002	-0.006986	-0.000252
3	1.895747	1.895494	0		0

$x_{3}=1.895494$ is exact to 6 D. See Example 4.

Abstract

Summary of Methods. The methods for computing solutions s of $f(x)=0$ with given continuous (or differentiable) $f(x)$ start with an initial approximation x_{0} of s and generate a sequence x_{1}, x_{2}, \cdots by iteration. Fixed-point methods solve $f(x)=0$ written as $x=g(x)$, so that s is a fixed point of g, that is, $s=g(s)$. For $g(x)=x-f(x) / f^{\prime}(x)$ this is Newton's method, which, for good x_{0} and simple zeros, converges quadratically (and for multiple zeros linearly). From Newton's method the secant method follows by replacing $f^{\prime}(x)$ by a difference quotient. The bisection method and the method of false position in Problem Set 19.2 always converge, but often slowly.

PROBEEM SET 19.2

1-13 FIXED-POINT ITERATION

Solve by fixed-point iteration and answer related questions where indicated. Show details.

1. Monotone sequence. Why is the sequence in Example 1 monotone? Why not in Example 2?
2. Do the iterations (b) in Example 2. Sketch a figure similar to Fig. 427. Explain what happens.
3. $f=x-0.5 \cos x=0, \quad x_{0}=1$. Sketch a figure.
4. $f=x-\operatorname{cosec} x$ the zero near $x=1$.
5. Sketch $f(x)=x^{3}-5.00 x^{2}+1.01 x+1.88$, showing roots near ± 1 and 5. Write $x=g(x)=\left(5.00 x^{2}-\right.$ $1.01 x+1.88) / x^{2}$. Find a root by starting from $x_{0}=$ $5,4,1,-1$. Explain the (perhaps unexpected) results.
6. Find a form $x=g(x)$ of $f(x)=0$ in Prob. 5 that yields convergence to the root near $x=1$.
7. Find the smallest positive solution of $\sin x=e^{-x}$.
8. Solve $x^{4}-x-0.12=0$ by starting from $x_{0}=1$.
9. Find the negative solution of $x^{4}-x-0.12=0$.
10. Elasticity. Solve $x \cosh x=1$. (Similar equations appear in vibrations of beams; see Problem Set 12.3.)
11. Drumhead. Bessel functions. A partial sum of the Maclaurin series of $J_{0}(x)(\operatorname{Sec} .5 .5)$ is $f(x)=1-\frac{1}{4} x^{2}+$ $\frac{1}{64} x^{4}-\frac{1}{2304} x^{6}$. Conclude from a sketch that $f(x)=0$ near $x=2$. Write $f(x)=0$ as $x=g(x)$ (by dividing $f(x)$ by $\frac{1}{4} x$ and taking the resulting x-term to the other side). Find the zero. (See Sec. 12.10 for the importance of these zeros.)
12. CAS EXPERIMENT. Convergence. Let $f(x)=x^{3}+$ $2 x^{2}-3 x-4=0$. Write this as $x=g(x)$, for g choosing (1) $\left(x^{3}-f\right)^{1 / 3}$, (2) $\left(x^{2}-\frac{1}{2} f\right)^{1 / 2}$, (3) $x+\frac{1}{3} f$, (4) $\left(x^{3}-f\right) / x^{2}$, (5) $\left(2 x^{2}-f\right) /(2 x)$, and (6) $x-f / f^{\prime}$ and in each case $x_{0}=1.5$. Find out about convergence and divergence and the number of steps to reach 6 S values of a root.
13. Existence of fixed point. Prove that if g is continuous in a closed interval I and its range lies in I, then the equation $x=g(x)$ has at least one solution in I. Illustrate that it may have more than one solution in I.

14-23 NEWTON'S METHOD

Apply Newton's method (6S-accuracy). First sketch the function(s) to see what is going on.
14. Cube root. Design a Newton iteration. Compute $\sqrt[3]{7}, x_{0}=2$.
15. $f=2 x-\cos x, \quad x_{0}=1$. Compare with Prob. 3 .
16. What happens in Prob. 15 for any other x_{0} ?
17. Dependence on x_{0}. Solve Prob. 5 by Newton's method with $x_{0}=5,4,1,-3$. Explain the result.
18. Legendre polynomials. Find the largest root of the Legendre polynomial $P_{5}(x)$ given by $P_{5}(x)=$ $\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)($ Sec. 5.3) (to be needed in Gauss integration in Sec. 19.5) (a) by Newton's method, (b) from a quadratic equation.
19. Associated Legendre functions. Find the smallest positive zero of $P_{4}^{2}=\left(1-x^{2}\right) P_{4}^{\prime \prime}=\frac{15}{2}\left(-7 x^{4}+8 x^{2}-1\right)$ (Sec. 5.3) (a) by Newton's method, (b) exactly, by solving a quadratic equation.
20. $x+\ln x=2, \quad x_{0}=2$
21. $f=x^{3}-5 x+3=0, \quad x_{0}=2, \quad 0,-2$
22. Heating, cooling. At what time x (4S-accuracy only) will the processes governed by $f_{1}(x)=100\left(1-e^{-0.2 x}\right)$ and $f_{2}(x)=40 e^{-0.01 x}$ reach the same temperature? Also find the latter.
23. Vibrating beam. Find the solution of $\cos x \cosh x=1$ near $x=\frac{3}{2} \pi$. (This determines a frequency of a vibrating beam; see Problem Set 12.3.)
24. Method of False Position (Regula falsi). Figure 430 shows the idea. We assume that f is continuous. We compute the x-intercept c_{0} of the line through $\left(a_{0}, f\left(a_{0}\right)\right),\left(b_{0}, f\left(b_{0}\right)\right)$. If $f\left(c_{0}\right)=0$, we are done. If $f\left(a_{0}\right) f\left(c_{0}\right)<0\left(\right.$ as in Fig. 430), we set $a_{1}=a_{0}, b_{1}=c_{0}$ and repeat to get c_{1}, etc. If $f\left(a_{0}\right) f\left(c_{0}\right)>0$, then $f\left(c_{0}\right) f\left(b_{0}\right)<0$ and we set $a_{1}=c_{0}, b_{1}=b_{0}$, etc.
(a) Algorithm. Show that

$$
c_{0}=\frac{a_{0} f\left(b_{0}\right)-b_{0} f\left(a_{0}\right)}{f\left(b_{0}\right)-f\left(a_{0}\right)}
$$

and write an algorithm for the method.

Fig. 430. Method of false position
(b) Solve $x^{4}=2, \cos x=\sqrt{x}$, and $x+\ln x=2$, with $a=1, b=2$.
25. TEAM PROJECT. Bisection Method. This simple but slowly convergent method for finding a solution of $f(x)=0$ with continuous f is based on the intermediate value theorem, which states that if a continuous function f has opposite signs at some $x=a$ and $x=b(>a)$, that is, either $f(a)<0, f(b)>0$ or $f(a)>0, f(b)<0$, then f
must be 0 somewhere on $[a, b]$. The solution is found by repeated bisection of the interval and in each iteration picking that half which also satisfies that sign condition.
(a) Algorithm. Write an algorithm for the method.
(b) Comparison. Solve $x=\cos x$ by Newton's method and by bisection. Compare.
(c) Solve $e^{-x}=\ln x$ and $e^{x}+x^{4}+x=2$ by bisection.

26-29 SECANT METHOD

Solve, using x_{0} and x_{1} as indicated:
26. $e^{-x}-\tan x=0, \quad x_{0}=1, \quad x_{1}=0.7$
27. Prob. 21, $x_{0}=1.0, x_{1}=2.0$
28. $x=\cos x, \quad x_{0}=0.5, \quad x_{1}=1$
29. $\sin x=\cot x, \quad x_{0}=1, \quad x_{1}=0.5$
30. WRITING PROJECT. Solution of Equations. Compare the methods in this section and problem set, discussing advantages and disadvantages in terms of examples of your own. No proofs, just motivations and ideas.

19.3 Interpolation

We are given the values of a function $f(x)$ at different points $x_{0}, x_{1}, \cdots, x_{n}$. We want to find approximate values of the function $f(x)$ for "new" x 's that lie between these points for which the function values are given. This process is called interpolation. The student should pay close attention to this section as interpolation forms the underlying foundation for both Secs. 19.4 and 19.5. Indeed, interpolation allows us to develop formulas for numeric integration and differentiation as shown in Sec. 19.5.

Continuing our discussion, we write these given values of a function f in the form

$$
f_{0}=f\left(x_{0}\right), \quad f_{1}=f\left(x_{1}\right), \quad \cdots, \quad f_{n}=f\left(x_{n}\right)
$$

or as ordered pairs

$$
\left(x_{0}, f_{0}\right), \quad\left(x_{1}, f_{1}\right), \quad \cdots, \quad\left(x_{n}, f_{n}\right)
$$

Where do these given function values come from? They may come from a "mathematical" function, such as a logarithm or a Bessel function. More frequently, they may be measured or automatically recorded values of an "empirical" function, such as air resistance of a car or an airplane at different speeds. Other examples of functions that are "empirical" are the yield of a chemical process at different temperatures or the size of the U.S. population as it appears from censuses taken at 10-year intervals.

A standard idea in interpolation now is to find a polynomial $p_{n}(x)$ of degree n (or less) that assumes the given values; thus

$$
\begin{equation*}
p_{n}\left(x_{0}\right)=f_{0}, \quad p_{n}\left(x_{1}\right)=f_{1}, \quad \cdots, \quad p_{n}\left(x_{n}\right)=f_{n} \tag{1}
\end{equation*}
$$

We call this p_{n} an interpolation polynomial and x_{0}, \cdots, x_{n} the nodes. And if $f(x)$ is a mathematical function, we call p_{n} an approximation of f (or a polynomial approximation, because there are other kinds of approximations, as we shall see later). We use p_{n} to get (approximate) values of f for x 's between x_{0} and x_{n} ("interpolation") or sometimes outside this interval $x_{0} \leqq x \leqq x_{n}$ ("extrapolation").

Motivation. Polynomials are convenient to work with because we can readily differentiate and integrate them, again obtaining polynomials. Moreover, they approximate continuous functions with any desired accuracy. That is, for any continuous $f(x)$ on an interval $J: a \leqq x \leqq b$ and error bound $\beta>0$, there is a polynomial $p_{n}(x)$ (of sufficiently high degree n) such that

$$
\left|f(x)-p_{n}(x)\right|<\beta \quad \text { for all } x \text { on } J
$$

This is the famous Weierstrass approximation theorem (for a proof see Ref. [GenRef7], App. 1).

Existence and Uniqueness. Note that the interpolation polynomial p_{n} satisfying (1) for given data exists and we shall give formulas for it below. Furthermore, p_{n} is unique: Indeed, if another polynomial q_{n} also satisfies $q_{n}\left(x_{0}\right)=f_{0}, \cdots, q_{n}\left(x_{n}\right)=f_{n}$, then $p_{n}(x)-q_{n}(x)=0$ at x_{0}, \cdots, x_{n}, but a polynomial $p_{n}-q_{n}$ of degree n (or less) with $n+1$ roots must be identically zero, as we know from algebra; thus $p_{n}(x)=q_{n}(x)$ for all x, which means uniqueness.

How Do We Find $\boldsymbol{p}_{\boldsymbol{n}}$? We shall explain several standard methods that give us p_{n}. By the uniqueness proof above, we know that, for given data, the different methods must give us the same polynomial. However, the polynomials may be expressed in different forms suitable for different purposes.

Lagrange Interpolation

Given $\left(x_{0}, f_{0}\right),\left(x_{1}, f_{1}\right), \cdots,\left(x_{n}, f_{n}\right)$ with arbitrarily spaced x_{j}, Lagrange had the idea of multiplying each f_{j} by a polynomial that is 1 at x_{j} and 0 at the other n nodes and then taking the sum of these $n+1$ polynomials. Clearly, this gives the unique interpolation polynomial of degree n or less. Beginning with the simplest case, let us see how this works.

Linear interpolation is interpolation by the straight line through $\left(x_{0}, f_{0}\right),\left(x_{1}, f_{1}\right)$; see Fig. 431. Thus the linear Lagrange polynomial p_{1} is a sum $p_{1}=L_{0} f_{0}+L_{1} f_{1}$ with L_{0} the linear polynomial that is 1 at x_{0} and 0 at x_{1}; similarly, L_{1} is 0 at x_{0} and 1 at x_{1}. Obviously,

$$
L_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}}, \quad L_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}
$$

This gives the linear Lagrange polynomial

$$
\begin{equation*}
p_{1}(x)=L_{0}(x) f_{0}+L_{1}(x) f_{1}=\frac{x-x_{1}}{x_{0}-x_{1}} \cdot f_{0}+\frac{x-x_{0}}{x_{1}-x_{0}} \cdot f_{1} \tag{2}
\end{equation*}
$$

Fig. 431. Linear Interpolation

EXAMPLE 1 Linear Lagrange Interpolation

Compute a 4 D -value of $\ln 9.2$ from $\ln 9.0=2.1972, \ln 9.5=2.2513$ by linear Lagrange interpolation and determine the error, using $\ln 9.2=2.2192$ (4D).

Solution. $x_{0}=9.0, x_{1}=9.5, f_{0}=\ln 9.0, f_{1}=\ln 9.5$. Ln (2) we need

$$
\begin{aligned}
& L_{0}(x)=\frac{x-9.5}{-0.5}=-2.0(x-9.5), \quad L_{0}(9.2)=-2.0(-0.3)=0.6 \\
& L_{1}(x)=\frac{x-9.0}{0.5}=2.0(x-9.0), \quad L_{1}(9.2)=2 \cdot 0.2=0.4
\end{aligned}
$$

(see Fig. 432) and obtain the answer

$$
\ln 9.2 \approx p_{1}(9.2)=L_{0}(9.2) f_{0}+L_{1}(9.2) f_{1}=0.6 \cdot 2.1972+0.4 \cdot 2.2513=2.2188
$$

The error is $\epsilon=a-\widetilde{a}=2.2192-2.2188=0.0004$. Hence linear interpolation is not sufficient here to get 4 D accuracy; it would suffice for 3D accuracy.

Fig. 432. L_{0} and L_{1} in Example 1
Quadratic interpolation is interpolation of given $\left(x_{0}, f_{0}\right),\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right)$ by a seconddegree polynomial $p_{2}(x)$, which by Lagrange's idea is

$$
\begin{equation*}
p_{2}(x)=L_{0}(x) f_{0}+L_{1}(x) f_{1}+L_{2}(x) f_{2} \tag{3a}
\end{equation*}
$$

with $L_{0}\left(x_{0}\right)=1, L_{1}\left(x_{1}\right)=1, L_{2}\left(x_{2}\right)=1$, and $L_{0}\left(x_{1}\right)=L_{0}\left(x_{2}\right)=0$, etc. We claim that

$$
\begin{align*}
& L_{0}(x)=\frac{l_{0}(x)}{l_{0}\left(x_{0}\right)}=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} \\
& L_{1}(x)=\frac{l_{1}(x)}{l_{1}\left(x_{1}\right)}=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} \tag{3b}\\
& L_{2}(x)=\frac{l_{2}(x)}{l_{2}\left(x_{2}\right)}=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} .
\end{align*}
$$

How did we get this? Well, the numerator makes $L_{k}\left(x_{j}\right)=0$ if $j \neq k$. And the denominator makes $L_{k}\left(x_{k}\right)=1$ because it equals the numerator at $x=x_{k}$.

EXAMPLE 2 Quadratic Lagrange Interpolation

Compute $\ln 9.2$ by (3) from the data in Example 1 and the additional third value $\ln 11.0=2.3979$.
Solution. In (3),

$$
\begin{aligned}
& L_{0}(x)=\frac{(x-9.5)(x-11.0)}{(9.0-9.5)(9.0-11.0)}=x^{2}-20.5 x+104.5, \quad L_{0}(9.2)=0.5400 \\
& L_{1}(x)=\frac{(x-9.0)(x-11.0)}{(9.5-9.0)(9.5-11.0)}=-\frac{1}{0.75}\left(x^{2}-20 x+99\right), \quad L_{1}(9.2)=0.4800 \\
& L_{2}(x)=\frac{(x-9.0)(x-9.5)}{(11.0-9.0)(11.0-9.5)}=\frac{1}{3}\left(x^{2}-18.5 x+85.5\right), \quad L_{2}(9.2)=-0.0200
\end{aligned}
$$

(see Fig. 433), so that (3a) gives, exact to 4D,

$$
\ln 9.2 \approx p_{2}(9.2)=0.5400 \cdot 2.1972+0.4800 \cdot 2.2513-0.0200 \cdot 2.3979=2.2192
$$

Fig. 433. L_{0}, L_{1}, L_{2} in Example 2
General Lagrange Interpolation Polynomial. For general n we obtain

$$
\begin{equation*}
f(x) \approx p_{n}(x)=\sum_{k=0}^{n} L_{k}(x) f_{k}=\sum_{k=0}^{n} \frac{l_{k}(x)}{l_{k}\left(x_{k}\right)} f_{k} \tag{4a}
\end{equation*}
$$

where $L_{k}\left(x_{k}\right)=1$ and L_{k} is 0 at the other nodes, and the L_{k} are independent of the function f to be interpolated. We get (4a) if we take

$$
\begin{align*}
& l_{0}(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right) \\
& l_{k}(x)=\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{n}\right), \quad 0<k<n \tag{4b}\\
& l_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
\end{align*}
$$

We can easily see that $p_{n}\left(x_{k}\right)=f_{k}$. Indeed, inspection of (4b) shows that $l_{k}\left(x_{j}\right)=0$ if $j \neq k$, so that for $x=x_{k}$, the sum in (4a) reduces to the single term $\left(l_{k}\left(x_{k}\right) / l_{k}\left(x_{k}\right)\right) f_{k}=f_{k}$.

Error Estimate. If f is itself a polynomial of degree n (or less), it must coincide with p_{n} because the $n+1$ data $\left(x_{0}, f_{0}\right), \cdots,\left(x_{n}, f_{n}\right)$ determine a polynomial uniquely, so the error is zero. Now the special f has its $(n+1)$ st derivative identically zero. This makes it plausible that for a general f its $(n+1)$ st derivative $f^{(n+1)}$ should measure the error

$$
\epsilon_{n}(x)=f(x)-p_{n}(x)
$$

It can be shown that this is true if $f^{(n+1)}$ exists and is continuous. Then, with a suitable t between x_{0} and x_{n} (or between x_{0}, x_{n}, and x if we extrapolate),

$$
\begin{equation*}
\epsilon_{n}(x)=f(x)-p_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right) \frac{f^{(n+1)}(t)}{(n+1)!} \tag{5}
\end{equation*}
$$

Thus $\left|\epsilon_{n}(x)\right|$ is 0 at the nodes and small near them, because of continuity. The product $\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)$ is large for x away from the nodes. This makes extrapolation risky. And interpolation at an x will be best if we choose nodes on both sides of that x. Also, we get error bounds by taking the smallest and the largest value of $f^{(n+1)}(t)$ in (5) on the interval $x_{0} \leqq t \leqq x_{n}$ (or on the interval also containing x if we extrapolate).

Most importantly, since p_{n} is unique, as we have shown, we have

THEOREM1

Error of Interpolation

Formula (5) gives the error for any polynomial interpolation method if $f(x)$ has a continuous $(n+1)$ st derivative.

Practical error estimate. If the derivative in (5) is difficult or impossible to obtain, apply the Error Principle (Sec. 19.1), that is, take another node and the Lagrange polynomial $p_{n+1}(x)$ and regard $p_{n+1}(x)-p_{n}(x)$ as a (crude) error estimate for $p_{n}(x)$.

EXAMPLE 3

Error Estimate (5) of Linear Interpolation. Damage by Roundoff. Error Principle

Estimate the error in Example 1 first by (5) directly and then by the Error Principle (Sec. 19.1).
Solution. (A) Estimation by (5). We have $n=1, f(t)=\ln t, f^{\prime}(t)=1 / t, f^{\prime \prime}(t)=-1 / t^{2}$. Hence

$$
\epsilon_{1}(x)=(x-9.0)(x-9.5) \frac{(-1)}{2 t^{2}}, \quad \text { thus } \quad \epsilon_{1}(9.2)=\frac{0.03}{t^{2}}
$$

$t=0.9$ gives the maximum $0.03 / 9^{2}=0.00037$ and $t=9.5$ gives the minimum $0.03 / 9.5^{2}=0.00033$, so that we get $0.00033 \leqq \epsilon_{1}(9.2) \leqq 0.00037$, or better, 0.00038 because $0.3 / 81=0.003703 \cdots$.

But the error 0.0004 in Example 1 disagrees, and we can learn something! Repetition of the computation there with 5D instead of 4D gives

$$
\ln 9.2 \approx p_{1}(9.2)=0.6 \cdot 2.19722+0.4 \cdot 2.25129=2.21885
$$

with an actual error $\epsilon=2.21920-2.21885=0.00035$, which lies nicely near the middle between our two error bounds.

This shows that the discrepancy (0.0004 vs. 0.00035) was caused by rounding, which is not taken into account in (5).
(B) Estimation by the Error Principle. We calculate $p_{1}(9.2)=2.21885$ as before and then $p_{2}(9.2)$ as in Example 2 but with 5D, obtaining

$$
p_{2}(9.2)=0.54 \cdot 2.19722+0.48 \cdot 2.25129-0.02 \cdot 2.39790=2.21916
$$

The difference $p_{2}(9.2)-p_{1}(9.2)=0.00031$ is the approximate error of $p_{1}(9.2)$ that we wanted to obtain; this is an approximation of the actual error 0.00035 given above.

Newton's Divided Difference Interpolation

For given data $\left(x_{0}, f_{0}\right), \cdots,\left(x_{n}, f_{n}\right)$ the interpolation polynomial $p_{n}(x)$ satisfying (1) is unique, as we have shown. But for different purposes we may use $p_{n}(x)$ in different forms. Lagrange's form just discussed is useful for deriving formulas in numeric differentiation (approximation formulas for derivatives) and integration (Sec. 19.5).

Practically more important are Newton's forms of $p_{n}(x)$, which we shall also use for solving ODEs (in Sec. 21.2). They involve fewer arithmetic operations than Lagrange's form. Moreover, it often happens that we have to increase the degree n to reach a required accuracy. Then in Newton's forms we can use all the previous work and just add another term, a possibility without counterpart for Lagrange's form. This also simplifies the application of the Error Principle (used in Example 3 for Lagrange). The details of these ideas are as follows.

Let $p_{n-1}(x)$ be the $(n-1)$ st Newton polynomial (whose form we shall determine); thus $p_{n-1}\left(x_{0}\right)=f_{0}, p_{n-1}\left(x_{1}\right)=f_{1}, \cdots, p_{n-1}\left(x_{n-1}\right)=f_{n-1}$. Furthermore, let us write the nth Newton polynomial as

$$
\begin{equation*}
p_{n}(x)=p_{n-1}(x)+g_{n}(x) ; \tag{6}
\end{equation*}
$$

hence

$$
g_{n}(x)=p_{n}(x)-p_{n-1}(x)
$$

Here $g_{n}(x)$ is to be determined so that $p_{n}\left(x_{0}\right)=f_{0}, p_{n}\left(x_{1}\right)=f_{1}, \cdots, p_{n}\left(x_{n}\right)=f_{n}$.
Since p_{n} and p_{n-1} agree at x_{0}, \cdots, x_{n-1}, we see that g_{n} is zero there. Also, g_{n} will generally be a polynomial of nth degree because so is p_{n}, whereas p_{n-1} can be of degree $n-1$ at most. Hence g_{n} must be of the form

$$
g_{n}(x)=a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
$$

We determine the constant a_{n}. For this we set $x=x_{n}$ and solve ($6^{\prime \prime}$) algebraically for a_{n}. Replacing $g_{n}\left(x_{n}\right)$ according to $\left(6^{\prime}\right)$ and using $p_{n}\left(x_{n}\right)=f_{n}$, we see that this gives

$$
\begin{equation*}
a_{n}=\frac{f_{n}-p_{n-1}\left(x_{n}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \cdots\left(x_{n}-x_{n-1}\right)} . \tag{7}
\end{equation*}
$$

We write a_{k} instead of a_{n} and show that a_{k} equals the \boldsymbol{k} th divided difference, recursively denoted and defined as follows:

$$
\begin{gathered}
a_{1}=f\left[x_{0}, x_{1}\right]=\frac{f_{1}-f_{0}}{x_{1}-x_{0}} \\
a_{2}=f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}
\end{gathered}
$$

and in general

$$
\begin{equation*}
a_{k}=f\left[x_{0}, \cdots, x_{k}\right]=\frac{f\left[x_{1}, \cdots, x_{k}\right]-f\left[x_{0}, \cdots, x_{k-1}\right]}{x_{k}-x_{0}} \tag{8}
\end{equation*}
$$

If $n=1$, then $p_{n-1}\left(x_{n}\right)=p_{0}\left(x_{1}\right)=f_{0}$ because $p_{0}(x)$ is constant and equal to f_{0}, the value of $f(x)$ at x_{0}. Hence (7) gives

$$
a_{1}=\frac{f_{1}-p_{0}\left(x_{1}\right)}{x_{1}-x_{0}}=\frac{f_{1}-f_{0}}{x_{1}-x_{0}}=f\left[x_{0}, x_{1}\right]
$$

and (6) and ($6^{\prime \prime}$) give the Newton interpolation polynomial of the first degree

$$
p_{1}(x)=f_{0}+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]
$$

If $n=2$, then this p_{1} and (7) give

$$
a_{2}=\frac{f_{2}-p_{1}\left(x_{2}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{f_{2}-f_{0}-\left(x_{2}-x_{0}\right) f\left[x_{0}, x_{1}\right]}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=f\left[x_{0}, x_{1}, x_{2}\right]
$$

where the last equality follows by straightforward calculation and comparison with the definition of the right side. (Verify it; be patient.) From (6) and ($6^{\prime \prime}$) we thus obtain the second Newton polynomial

$$
p_{2}(x)=f_{0}+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}\right] .
$$

For $n=k$, formula (6) gives

$$
\begin{equation*}
p_{k}(x)=p_{k-1}(x)+\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right) f\left[x_{0}, \cdots, x_{k}\right] . \tag{9}
\end{equation*}
$$

With $p_{0}(x)=f_{0}$ by repeated application with $k=1, \cdots, n$ this finally gives Newton's divided difference interpolation formula

$$
\begin{align*}
f(x) & \approx f_{0}+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}\right] \\
& +\cdots+\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right) f\left[x_{0}, \cdots, x_{n}\right] . \tag{10}
\end{align*}
$$

An algorithm is shown in Table 19.2. The first do-loop computes the divided differences and the second the desired value $p_{n}(\hat{x})$.

Example 4 shows how to arrange differences near the values from which they are obtained; the latter always stand a half-line above and a half-line below in the preceding column. Such an arrangement is called a (divided) difference table.

Table 19.2 Newton's Divided Difference Interpolation

ALGORITHM INTERPOL $\left(x_{0}, \cdots, x_{n} ; f_{0}, \cdots, f_{n} ; \hat{x}\right)$
This algorithm computes an approximation $p_{n}(\hat{x})$ of $f(\hat{x})$ at \hat{x}.
INPUT: Data $\left(x_{0}, f_{0}\right),\left(x_{1}, f_{1}\right), \cdots,\left(x_{n}, f_{n}\right) ; \hat{x}$
OUTPUT: Approximation $p_{n}(\hat{x})$ of $f(\hat{x})$
Set $f\left[x_{j}\right]=f_{j} \quad(j=0, \cdots, n)$.
For $m=1, \cdots, n-1)$ do:

$$
\begin{aligned}
& \text { For } j=0, \cdots, n-m \text { do: } \\
& \qquad f\left[x_{j}, \cdots, x_{j+m}\right]=\frac{f\left[x_{j+1}, \cdots, x_{j+m}\right]-f\left[x_{j}, \cdots, x_{j+m-1}\right]}{x_{j+m}-x_{j}}
\end{aligned}
$$

End

End
Set $p_{0}(x)=f_{0}$.
For $k=1, \cdots, n$ do: $p_{k}(\hat{x})=p_{k-1}(\hat{x})+\left(\hat{x}-x_{0}\right) \cdots\left(\hat{x}-x_{k-1}\right) f\left[x_{0}, \cdots, x_{k}\right]$

End
OUTPUT $p_{n}(\hat{x})$
End INTERPOL

EXAMPLE 4 Newton's Divided Difference Interpolation Formula

Compute $f(9.2)$ from the values shown in the first two columns of the following table.

x_{j}	$f_{j}=f\left(x_{j}\right)$	$f\left[x_{j}, x_{j+1}\right]$	$f\left[x_{j}, x_{j+1}, x_{j+2}\right]$	$f\left[x_{j}, \cdots, x_{j+3}\right]$
8.0	2.079442			
9.0	2.197225	0.117783		
9.5	2.251292	0.108134	-0.006433	
11.0	2.397895	0.097735	-0.005200	

Solution. We compute the divided differences as shown. Sample computation:

$$
(0.097735-0.108134) /(11-9)=-0.005200 .
$$

The values we need in (10) are circled. We have

$$
\begin{aligned}
& f(x) \approx p_{3}(x)=2.079442+0.117783(x-8.0)-0.006433(x-8.0)(x-9.0) \\
&+0.000411(x-8.0)(x-9.0)(x-9.5) .
\end{aligned}
$$

At $x=9.2$,

$$
f(9.2) \approx 2.079442+0.141340-0.001544-0.000030=2.219208
$$

The value exact to 6 D is $f(9.2)=\ln 9.2=2.219203$. Note that we can nicely see how the accuracy increases from term to term:

$$
p_{1}(9.2)=2.220782, \quad p_{2}(9.2)=2.219238, \quad p_{3}(9.2)=2.219208
$$

Equal Spacing: Newton's Forward Difference Formula

Newton's formula (10) is valid for arbitrarily spaced nodes as they may occur in practice in experiments or observations. However, in many applications the x_{j} 's are regularly spacedfor instance, in measurements taken at regular intervals of time. Then, denoting the distance by h, we can write

$$
\begin{equation*}
x_{0}, \quad x_{1}=x_{0}+h, \quad x_{2}=x_{0}+2 h, \quad \cdots, \quad x_{n}=x_{0}+n h \tag{11}
\end{equation*}
$$

We show how (8) and (10) now simplify considerably!
To get started, let us define the first forward difference of f at x_{j} by

$$
\Delta f_{j}=f_{j+1}-f_{j}
$$

the second forward difference of f at x_{j} by

$$
\Delta^{2} f_{j}=\Delta f_{j+1}-\Delta f_{j}
$$

and, continuing in this way, the \boldsymbol{k} th forward difference of f at x_{j} by

$$
\begin{equation*}
\Delta^{k} f_{j}=\Delta^{k-1} f_{j+1}-\Delta^{k-1} f_{j} \quad(k=1,2, \cdots) \tag{12}
\end{equation*}
$$

Examples and an explanation of the name "forward" follow on the next page. What is the point of this? We show that if we have regular spacing (11), then

$$
\begin{equation*}
f\left[x_{0}, \cdots, x_{k}\right]=\frac{1}{k!h^{k}} \Delta^{k} f_{0} . \tag{13}
\end{equation*}
$$

PROOF We prove (13) by induction. It is true for $k=1$ because $x_{1}=x_{0}+h$, so that

$$
f\left[x_{0}, x_{1}\right]=\frac{f_{1}-f_{0}}{x_{1}-x_{0}}=\frac{1}{h}\left(f_{1}-f_{0}\right)=\frac{1}{1!h} \Delta f_{0}
$$

Assuming (13) to be true for all forward differences of order k, we show that (13) holds for $k+1$. We use (8) with $k+1$ instead of k; then we use $(k+1) h=x_{k+1}-x_{0}$, resulting from (11), and finally (12) with $j=0$, that is, $\Delta^{k+1} f_{0}=\Delta^{k} f_{1}-\Delta^{k} f_{0}$. This gives

$$
\begin{aligned}
f\left[x_{0}, \cdots, x_{k+1}\right] & =\frac{f\left[x_{1}, \cdots, x_{k+1}\right]-f\left[x_{0}, \cdots, x_{k}\right]}{(k+1) h} \\
& =\frac{1}{(k+1) h}\left[\frac{1}{k!h^{k}} \Delta^{k} f_{1}-\frac{1}{k!h^{k}} \Delta^{k} f_{0}\right] \\
& =\frac{1}{(k+1)!h^{k+1}} \Delta^{k+1} f_{0}
\end{aligned}
$$

which is (13) with $k+1$ instead of k. Formula (13) is proved.
In (10) we finally set $x=x_{0}+r h$. Then $x-x_{0}=r h, x-x_{1}=(r-1) h$ since $x_{1}-x_{0}=h$, and so on. With this and (13), formula (10) becomes Newton's (or Gregory ${ }^{2}$-Newton's) forward difference interpolation formula

$$
\begin{align*}
f(x) & \approx p_{n}(x)=\sum_{s=0}^{n}\binom{r}{s} \Delta^{s} f_{0} \quad\left(x=x_{0}+r h, \quad r=\left(x-x_{0}\right) / h\right) \\
& =f_{0}+r \Delta f_{0}+\frac{r(r-1)}{2!} \Delta^{2} f_{0}+\cdots+\frac{r(r-1) \cdots(r-n+1)}{n!} \Delta^{n} f_{0} \tag{14}
\end{align*}
$$

where the binomial coefficients in the first line are defined by

$$
\begin{equation*}
\binom{r}{0}=1, \quad\binom{r}{s}=\frac{r(r-1)(r-2) \cdots(r-s+1)}{s!} \quad(s>0, \text { integer }) \tag{15}
\end{equation*}
$$

and $s!=1 \cdot 2 \cdots s$.
Error. From (5) we get, with $x-x_{0}=r h, \quad x-x_{1}=(r-1) h$, etc.,

$$
\begin{equation*}
\epsilon_{n}(x)=f(x)-p_{n}(x)=\frac{h^{n+1}}{(n+1)!} r(r-1) \cdots(r-n) f^{(n+1)}(t) \tag{16}
\end{equation*}
$$

with t as characterized in (5).

[^1]Formula (16) is an exact formula for the error, but it involves the unknown t. In Example 5 (below) we show how to use (16) for obtaining an error estimate and an interval in which the true value of $f(x)$ must lie.

Comments on Accuracy. (A) The order of magnitude of the error $\epsilon_{n}(x)$ is about equal to that of the next difference not used in $p_{n}(x)$.
(B) One should choose x_{0}, \cdots, x_{n} such that the x at which one interpolates is as well centered between x_{0}, \cdots, x_{n} as possible.

The reason for (A) is that in (16),

$$
f^{n+1}(t) \approx \frac{\Delta^{n+1} f(t)}{h^{n+1}}, \quad \frac{|r(r-1) \cdots(r-n)|}{1 \cdot 2 \cdots(n+1)} \leqq 1 \quad \text { if } \quad|r| \leqq 1
$$

(and actually for any r as long as we do not extrapolate). The reason for (B) is that $|r(r-1) \cdots(r-n)|$ becomes smallest for that choice.

EXAMPLE 5 Newton's Forward Difference Formula. Error Estimation

Compute cosh 0.56 from (14) and the four values in the following table and estimate the error.

j	x_{j}	$f_{j}=\cosh x_{j}$	Δf_{j}	$\Delta^{2} f_{j}$	$\Delta^{3} f_{j}$
0	0.5	1.127626			
1	0.6	1.185465	0.057839		
2	0.7	1.255169	0.069704		
3	0.8	1.337435	0.082266		

Solution. We compute the forward differences as shown in the table. The values we need are circled. In (14) we have $r=(0.56-0.50) / 0.1=0.6$, so that (14) gives

$$
\begin{aligned}
\cosh 0.56 & \approx 1.127626+0.6 \cdot 0.057839+\frac{0.6(-0.4)}{2} \cdot 0.011865+\frac{0.6(-0.4)(-1.4)}{6} \cdot 0.000697 \\
& =1.127626+0.034703-0.001424+0.000039 \\
& =1.160944
\end{aligned}
$$

Error estimate. From (16), since the fourth derivative is $\cosh ^{(4)} t=\cosh t$,

$$
\begin{aligned}
\epsilon_{3}(0.56) & =\frac{0.1^{4}}{4!} \cdot 0.6(-0.4)(-1.4)(-2.4) \cosh t \\
& =A \cosh t
\end{aligned}
$$

where $A=-0.00000336$ and $0.5 \leqq t \leqq 0.8$. We do not know t, but we get an inequality by taking the largest and smallest $\cosh t$ in that interval:

$$
A \cosh 0.8 \leqq \epsilon_{3}(0.62) \leqq A \cosh 0.5
$$

Since

$$
f(x)=p_{3}(x)+\epsilon_{3}(x),
$$

this gives

$$
p_{3}(0.56)+A \cosh 0.8 \leqq \cosh 0.56 \leqq p_{3}(0.56)+A \cosh 0.5 .
$$

Numeric values are

$$
1.160939 \leqq \cosh 0.56 \leqq 1.160941
$$

The exact 6 D -value is $\cosh 0.56=1.160941$. It lies within these bounds. Such bounds are not always so tight. Also, we did not consider roundoff errors, which will depend on the number of operations.

This example also explains the name "forward difference formula": we see that the differences in the formula slope forward in the difference table.

Equal Spacing: Newton's Backward Difference Formula

Instead of forward-sloping differences we may also employ backward-sloping differences. The difference table remains the same as before (same numbers, in the same positions), except for a very harmless change of the running subscript j (which we explain in Example 6, below). Nevertheless, purely for reasons of convenience it is standard to introduce a second name and notation for differences as follows. We define the first backward difference of f at x_{j} by

$$
\nabla f_{j}=f_{j}-f_{j-1}
$$

the second backward difference of f at x_{j} by

$$
\nabla^{2} f_{j}=\nabla f_{j}-\nabla f_{j-1}
$$

and, continuing in this way, the \boldsymbol{k} th backward difference of f at x_{j} by

$$
\begin{equation*}
\nabla^{k} f_{j}=\nabla^{k-1} f_{j}-\nabla^{k-1} f_{j-1} \quad(k=1,2, \cdots) \tag{17}
\end{equation*}
$$

A formula similar to (14) but involving backward differences is Newton's (or Gregory-Newton's) backward difference interpolation formula

$$
\begin{align*}
f(x) & \approx p_{n}(x)=\sum_{s=0}^{n}\binom{r+s-1}{s} \nabla^{s} f_{0} \quad\left(x=x_{0}+r h, r=\left(x-x_{0}\right) / h\right) \tag{18}\\
& =f_{0}+r \nabla f_{0}+\frac{r(r+1)}{2!} \nabla^{2} f_{0}+\cdots+\frac{r(r+1) \cdots(r+n-1)}{n!} \nabla^{n} f_{0} .
\end{align*}
$$

EXAMPLE 6 Newton's Forward and Backward Interpolations

Compute a 7D-value of the Bessel function $J_{0}(x)$ for $x=1.72$ from the four values in the following table, using (a) Newton's forward formula (14), (b) Newton's backward formula (18).

$j_{\text {for }}$	$j_{\text {back }}$	x_{j}	$J_{0}\left(x_{j}\right)$	1st Diff.	2nd Diff.	3rd Diff.
0	-3	1.7	0.3979849			
1	-2	1.8	0.3399864			
2	-1	1.9	0.2818186	-0.0579985		0.0001693
3	0	2.0	0.2238908		0.0002400	

Solution. The computation of the differences is the same in both cases. Only their notation differs.
(a) Forward. In (14) we have $r=(1.72-1.70) / 0.1=0.2$, and j goes from 0 to 3 (see first column). In each column we need the first given number, and (14) thus gives

$$
\begin{aligned}
J_{0}(1.72) & \approx 0.3979849+0.2(-0.0579985)+\frac{0.2(-0.8)}{2}(-0.0001693)+\frac{0.2(-0.8)(-1.8)}{6} \cdot 0.0004093 \\
& =0.3979849-0.0115997+0.0000135+0.0000196=0.3864183,
\end{aligned}
$$

which is exact to 6D, the exact 7D-value being 0.3864185 .
(b) Backward. For (18) we use j shown in the second column, and in each column the last number. Since $r=(1.72-2.00) / 0.1=-2.8$, we thus get from (18)

$$
\begin{aligned}
J_{0}(1.72) \approx 0.2238908- & 2.8(-0.0579278)+\frac{-2.8(-1.8)}{2} \cdot 0.0002400+\frac{-2.8(-1.8)(-0.8)}{6} \cdot 0.0004093 \\
& =0.2238908+0.1621978+0.0006048-0.0002750 \\
& =0.3864184
\end{aligned}
$$

There is a third notation for differences, called the central difference notation. It is used in numerics for ODEs and certain interpolation formulas. See Ref. [E5] listed in App. 1.

1. Linear interpolation. Calculate $p_{1}(x)$ in Example 1 and from it $\ln 9.3$.
2. Error estimate. Estimate the error in Prob. 1 by (5).
3. Quadratic interpolation. Gamma function. Calculate the Lagrange polynomial $p_{2}(x)$ for the values $\Gamma(1.00)=1.0000, \Gamma(1.02)=0.9888, \Gamma(1.04)=0.9784$ of the gamma function [(24) in App. A3.1] and from it approximations of $\Gamma(1.01)$ and $\Gamma(1.03)$
4. Error estimate for quadratic interpolation. Estimate the error for $p_{2}(9.2)$ in Example 2 from (5).
5. Linear and quadratic interpolation. Find $e^{-0.25}$ and $e^{-0.75}$ by linear interpolation of e^{-x} with $x_{0}=0$, $x_{1}=0.5$ and $x_{0}=0.5, x_{1}=1$, respectively. Then find $p_{2}(x)$ by quadratic interpolation of e^{-x} with $x_{0}=0$, $x_{1}=0.5, x_{2}=1$ and from it $e^{-0.25}$ and $e^{-0.75}$. Compare the errors. Use 4 S -values of e^{-x}.
6. Interpolation and extrapolation. Calculate $p_{2}(x)$ in Example 2. Compute from it approximations of $\ln 9.4, \ln 10, \ln 10.5, \ln 11.5$, and $\ln 12$. Compute the errors by using exact 5 S -values and comment.
7. Interpolation and extrapolation. Find the quadratic polynomial that agrees with $\sin x$ at $x=0, \pi / 4, \pi / 2$ and use it for the interpolation and extrapolation of $\sin x$ at $x=-\pi / 8, \pi / 8,3 \pi / 8,5 \pi / 8$. Compute the errors.
8. Extrapolation. Does a sketch of the product of the $\left(x-x_{j}\right)$ in (5) for the data in Example 2 indicate that extrapolation is likely to involve larger errors than interpolation does?
9. Error function (35) in App. A3.1. Calculate the Lagrange polynomial $p_{2}(x)$ for the 5 S -values $f(0.25)=$ $0.27633, f(0.5)=0.52050, f(1.0)=0.84270$ and from $p_{2}(x)$ an approximation of $f(0.75)(=0.71116)$.
10. Error bound. Derive an error bound in Prob. 9 from (5).
11. Cubic Lagrange interpolation. Bessel function J_{0}. Calculate and graph $L_{0}, L_{1}, L_{2}, L_{3}$ with $x_{0}=0$, $x_{1}=1, x_{2}=2, x_{3}=3$ on common axes. Find $p_{3}(x)$ for the data $(0,1),(1,0.765198),(2,0.223891)$, ($3,-0.260052$) [values of the Bessel function $J_{0}(x)$]. Find p_{3} for $x=0.5,1.5,2.5$ and compare with the 6 S exact values $0.938470,0.511828,-0.048384$.
12. Newton's forward formula (14). Sine integral. Using (14), find $f(1.25)$ by linear, quadratic, and cubic interpolation of the data (values of (40) in App. A31); 6Svalue $\operatorname{Si}(1.25)=1.14645) f(1.0)=0.94608, f(1.5)=$ $1.32468, f(2.0)=1.60541, f(2.5)=1.77852$, and compute the errors. For the linear interpolation use $f(1.0)$ and $f(1.5)$, for the quadratic $f(1.0), f(1.5), f(2.0)$, etc.
13 Lower degree. Find the degree of the interpolation polynomial for the data $(-4,50),(-2,18),(0,2),(2,2)$, $(4,18)$, using a difference table. Find the polynomial.
13. Newton's forward formula (14). Gamma function. Set up (14) for the data in Prob. 3 and compute Γ (1.01), $\Gamma(1.03), \Gamma(1.05)$.
14. Divided differences. Obtain p_{2} in Example 2 from (10).
15. Divided differences. Error function. Compute $p_{2}(0.75)$ from the data in Prob. 9 and Newton's divided difference formula (10).
16. Backward difference formula (18). Use $p_{2}(x)$ in (18) and the values of erf $x, x=0.2,0.4,0.6$ in Table A4 of App. 5 , compute erf 0.3 and the error. (4 S -exact erf $0.3=$ 0.3286).
17. In Example 5 of the text, write down the difference table as needed for (18), then write (18) with general x and then with $x=0.56$ to verify the answer in Example 5.
18. CAS EXPERIMENT. Adding Terms in Newton Formulas. Write a program for the forward formula (14). Experiment on the increase of accuracy by successively adding terms. As data use values of some function of your choice for which your CAS gives the values needed in determining errors.
19. TEAM PROJECT. Interpolation and Extrapolation. (a) Lagrange practical error estimate (after Theorem 1). Apply this to $p_{1}(9.2)$ and $p_{2}(9.2)$ for the data $x_{0}=9.0, x_{1}=9.5, x_{2}=11.0, f_{0}=\ln x_{0}, f_{1}=\ln x_{1}$, $f_{2}=\ln x_{2}$ (6S-values).
(b) Extrapolation. Given $\left(x_{j}, f\left(x_{j}\right)\right)=(0.2,0.9980)$, $(0.4,0.9686),(0.6,0.8443),(0.8,0.5358),(1.0,0)$. Find $f(0.7)$ from the quadratic interpolation polynomials based on $(\alpha) 0.6,0.8,1.0,(\beta) 0.4,0.6,0.8,(\gamma) 0.2,0.4$, 0.6 . Compare the errors and comment. [Exact $f(x)=$ $\cos \left(\frac{1}{2} \pi x^{2}\right), f(0.7)=0.7181(4 \mathrm{~S})$.]
(c) Graph the product of factors $\left(x-x_{j}\right)$ in the error formula (5) for $n=2, \cdots, 10$ separately. What do these graphs show regarding accuracy of interpolation and extrapolation?
20. WRITING PROJECT. Comparison of interpolation methods. List 4-5 ideas that you feel are most important in this section. Arrange them in best logical order. Discuss them in a $2-3$ page report.

19.4 Spline Interpolation

Given data (function values, points in the $x y$-plane) $\left(x_{0}, f_{0}\right),\left(x_{1}, f_{1}\right), \cdots,\left(x_{n}, f_{n}\right)$ can be interpolated by a polynomial $P_{n}(x)$ of degree n or less so that the curve of $P_{n}(x)$ passes through these $n+1$ points $\left(x_{j}, f_{j}\right)$; here $f_{0}=f\left(x_{0}\right), \cdots, f_{n}=f\left(x_{n}\right)$, See Sec. 19.3.

Now if n is large, there may be trouble: $P_{n}(x)$ may tend to oscillate for x between the nodes x_{0}, \cdots, x_{n}. Hence we must be prepared for numeric instability (Sec. 19.1). Figure 434 shows a famous example by C. Runge ${ }^{3}$ for which the maximum error even approaches ∞ as $n \rightarrow \infty$ (with the nodes kept equidistant and their number increased). Figure 435 illustrates the increase of the oscillation with n for some other function that is piecewise linear.

Those undesirable oscillations are avoided by the method of splines initiated by I. J. Schoenberg in 1946 (Quarterly of Applied Mathematics 4, pp. 45-99, 112-141). This method is widely used in practice. It also laid the foundation for much of modern CAD (computer-aided design). Its name is borrowed from a draftman's spline, which is an elastic rod bent to pass through given points and held in place by weights. The mathematical idea of the method is as follows:

[^2]

Fig. 434. Runge's example $f(x)=1 /\left(1+x^{2}\right)$ and interpolating polynomial $P_{10}(x)$

Fig. 435. Piecewise linear function $f(x)$ and interpolation polynomials of increasing degrees

Instead of using a single high-degree polynomial P_{n} over the entire interval $a \leqq x \leqq b$ in which the nodes lie, that is,

$$
\begin{equation*}
a=x_{0}<x_{1}<\cdots<x_{n}=b \tag{1}
\end{equation*}
$$

we use n low-degree, e.g., cubic, polynomials

$$
q_{0}(x), \quad q_{1}(x), \quad \cdots, \quad q_{n-1}(x)
$$

one over each subinterval between adjacent nodes, hence q_{0} from x_{0} to x_{1}, then q_{1} from x_{1} to x_{2}, and so on. From this we compose an interpolation function $g(x)$, called a spline, by fitting these polynomials together into a single continuous curve passing through the data points, that is,

$$
\begin{equation*}
g\left(x_{0}\right)=f\left(x_{0}\right)=f_{0}, \quad g\left(x_{1}\right)=f\left(x_{1}\right)=f_{1}, \quad \cdots, \quad g\left(x_{n}\right)=f\left(x_{n}\right)=f_{n} \tag{2}
\end{equation*}
$$

Note that $g(x)=q_{0}(x)$ when $x_{0} \leqq x \leqq x_{1}$, then $g(x)=q_{1}(x)$ when $x_{1} \leqq x \leqq x_{2}$, and so on, according to our construction of g.

Thus spline interpolation is piecewise polynomial interpolation.
The simplest q_{j} 's would be linear polynomials. However, the curve of a piecewise linear continuous function has corners and would be of little interest in general-think of designing the body of a car or a ship.

We shall consider cubic splines because these are the most important ones in applications. By definition, a cubic spline $g(x)$ interpolating given data $\left(x_{0}, f_{0}\right), \cdots,\left(x_{n}, f_{n}\right)$ is a continuous function on the interval $a=x_{0} \leqq x \leqq x_{n}=b$ that has continuous first and second derivatives and satisfies the interpolation condition (2); furthermore, between adjacent nodes, $g(x)$ is given by a polynomial $q_{j}(x)$ of degree 3 or less.

We claim that there is such a cubic spline. And if in addition to (2) we also require that

$$
\begin{equation*}
g^{\prime}\left(x_{0}\right)=k_{0}, \quad g^{\prime}\left(x_{n}\right)=k_{n} \tag{3}
\end{equation*}
$$

(given tangent directions of $g(x)$ at the two endpoints of the interval $a \leqq x \leqq b$), then we have a uniquely determined cubic spline. This is the content of the following existence and uniqueness theorem, whose proof will also suggest the actual determination of splines. (Condition (3) will be discussed after the proof.)

THEOREM 1

Existence and Uniqueness of Cubic Splines

Let $\left(x_{0}, f_{0}\right),\left(x_{1}, f_{1}\right), \cdots,\left(x_{n}, f_{n}\right)$ with given (arbitrarily spaced) $x_{j}[$ see (1)] and given $f_{j}=f\left(x_{j}\right), j=0,1, \cdots, n$. Let k_{0} and k_{n} be any given numbers. Then there is one and only one cubic spline $g(x)$ corresponding to (1) and satisfying (2) and (3).

PROOF By definition, on every subinterval I_{j} given by $x_{j} \leqq x \leqq x_{j+1}$, the spline $g(x)$ must agree with a polynomial $q_{j}(x)$ of degree not exceeding 3 such that

$$
\begin{equation*}
q_{j}\left(x_{j}\right)=f\left(x_{j}\right), \quad q_{j}\left(x_{j+1}\right)=f\left(x_{j+1}\right) \quad(j=0,1, \cdots, n-1) . \tag{4}
\end{equation*}
$$

For the derivatives we write

$$
\begin{equation*}
q_{j}^{\prime}\left(x_{j}\right)=k_{j}, \quad \quad q_{j}^{\prime}\left(x_{j+1}\right)=k_{j+1} \tag{5}
\end{equation*}
$$

$$
(j=0,1, \cdots, n-1)
$$

with k_{0} and k_{n} given and k_{1}, \cdots, k_{n-1} to be determined later. Equations (4) and (5) are four conditions for each $q_{j}(x)$. By direct calculation, using the notation

$$
\begin{equation*}
c_{j}=\frac{1}{h_{j}}=\frac{1}{x_{j+1}-x_{j}} \quad(j=0,1, \cdots, n-1) \tag{6*}
\end{equation*}
$$

we can verify that the unique cubic polynomial $q_{j}(x)(j=0,1, \cdots, n-1)$ satisfying (4) and (5) is

$$
\begin{align*}
q_{j}(x)= & f\left(x_{j}\right) c_{j}^{2}\left(x-x_{j+1}\right)^{2}\left[1+2 c_{j}\left(x-x_{j}\right)\right] \\
& +f\left(x_{j+1}\right) c_{j}^{2}\left(x-x_{j}\right)^{2}\left[1-2 c_{j}\left(x-x_{j+1}\right)\right] \tag{6}\\
& +k_{j} c_{j}^{2}\left(x-x_{j}\right)\left(x-x_{j+1}\right)^{2} \\
& +k_{j+1} c_{j}^{2}\left(x-x_{j}\right)^{2}\left(x-x_{j+1}\right)
\end{align*}
$$

Differentiating twice, we obtain

$$
\begin{gather*}
q_{j}^{\prime \prime}\left(x_{j}\right)=-6 c_{j}^{2} f\left(x_{j}\right)+6 c_{j}^{2} f\left(x_{j+1}\right)-4 c_{j} k_{j}-2 c_{j} k_{j+1} \tag{7}\\
q_{j}^{\prime \prime}\left(x_{j+1}\right)=6 c_{j}^{2} f\left(x_{j}\right)-6 c_{j}^{2} f\left(x_{j+1}\right)+2 c_{j} k_{j}+4 c_{j} k_{j+1} \tag{8}
\end{gather*}
$$

By definition, $g(x)$ has continuous second derivatives. This gives the conditions

$$
q_{j-1}^{\prime \prime}\left(x_{j}\right)=q_{j}^{\prime \prime}\left(x_{j}\right)
$$

$$
(j=1, \cdots, n-1)
$$

If we use (8) with j replaced by $j-1$, and (7), these $n-1$ equations become

$$
\begin{equation*}
c_{j-1} k_{j-1}+2\left(c_{j-1}+c_{j}\right) k_{j}+c_{j} k_{j+1}=3\left[c_{j-1}^{2} \nabla f_{j}+c_{j}^{2} \nabla f_{j+1}\right] \tag{9}
\end{equation*}
$$

where $\nabla f_{j}=f\left(x_{j}\right)-f\left(x_{j-1}\right)$ and $\nabla f_{j+1}=f\left(x_{j+1}\right)-f\left(x_{j}\right)$ and $j=1, \cdots, n-1$, as before. This linear system of $n-1$ equations has a unique solution k_{1}, \cdots, k_{n-1} since the coefficient matrix is strictly diagonally dominant (that is, in each row the (positive) diagonal entry is greater than the sum of the other (positive) entries). Hence the determinant of the matrix cannot be zero (as follows from Theorem 3 in Sec. 20.7), so that we may determine unique values k_{1}, \cdots, k_{n-1} of the first derivative of $g(x)$ at the nodes. This proves the theorem.

Storage and Time Demands in solving (9) are modest, since the matrix of (9) is sparse (has few nonzero entries) and tridiagonal (may have nonzero entries only on the diagonal and on the two adjacent "parallels" above and below it). Pivoting (Sec. 7.3) is not necessary because of that dominance. This makes splines efficient in solving large problems with thousands of nodes or more. For some literature and some critical comments, see American Mathematical Monthly 105 (1998), 929-941.

Condition (3) includes the clamped conditions

$$
\begin{equation*}
g^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right), \quad g^{\prime}\left(x_{n}\right)=f^{\prime}\left(x_{n}\right) \tag{10}
\end{equation*}
$$

in which the tangent directions $f^{\prime}\left(x_{0}\right)$ and $f^{\prime}\left(x_{n}\right)$ at the ends are given. Other conditions of practical interest are the free or natural conditions

$$
\begin{equation*}
g^{\prime \prime}\left(x_{0}\right)=0, \quad g^{\prime \prime}\left(x_{n}\right)=0 \tag{11}
\end{equation*}
$$

(geometrically: zero curvature at the ends, as for the draftman's spline), giving a natural spline. These names are motivated by Fig. 293 in Problem Set 12.3.

Determination of Splines. Let k_{0} and k_{n} be given. Obtain k_{1}, \cdots, k_{n-1} by solving the linear system (9). Recall that the spline $g(x)$ to be found consists of n cubic polynomials q_{0}, \cdots, q_{n-1}. We write these polynomials in the form

$$
\begin{equation*}
q_{j}(x)=a_{j 0}+a_{j 1}\left(x-x_{j}\right)+a_{j 2}\left(x-x_{j}\right)^{2}+a_{j 3}\left(x-x_{j}\right)^{3} \tag{12}
\end{equation*}
$$

where $j=0, \cdots, n-1$. Using Taylor's formula, we obtain

$$
\begin{align*}
& a_{j 0}=q_{j}\left(x_{j}\right)=f_{j} \tag{2}\\
& a_{j 1}=q_{j}^{\prime}\left(x_{j}\right)=k_{j} \tag{5}\\
& a_{j 2}=\frac{1}{2} q_{j}^{\prime \prime}\left(x_{j}\right)=\frac{3}{h_{j}^{2}}\left(f_{j+1}-f_{j}\right)-\frac{1}{h_{j}}\left(k_{j+1}+2 k_{j}\right) \tag{13}\\
& a_{j 3}=\frac{1}{6} q_{j}^{\prime \prime \prime}\left(x_{j}\right)=\frac{2}{h_{j}^{3}}\left(f_{j}-f_{j+1}\right)+\frac{1}{h_{j}^{2}}\left(k_{j+1}+k_{j}\right)
\end{align*}
$$

with $a_{j 3}$ obtained by calculating $q_{j}^{\prime \prime}\left(x_{j+1}\right)$ from (12) and equating the result to (8), that is,

$$
q_{j}^{\prime \prime}\left(x_{j+1}\right)=2 a_{j 2}+6 a_{j 3} h_{j}=\frac{6}{h_{j}^{2}}\left(f_{j}-f_{j+1}\right)+\frac{2}{h_{j}}\left(k_{j}+2 k_{j+1}\right)
$$

and now subtracting from this $2 a_{j 2}$ as given in (13) and simplifying.
Note that for equidistant nodes of distance $h_{j}=h$ we can write $c_{j}=c=1 / h$ in (6^{*}) and have from (9) simply

$$
\begin{equation*}
k_{j-1}+4 k_{j}+k_{j+1}=\frac{3}{h}\left(f_{j+1}-f_{j-1}\right) \quad(j=1, \cdots, n-1) \tag{14}
\end{equation*}
$$

EXAMPLE 1 Spline Interpolation. Equidistant Nodes

Interpolate $f(x)=x^{4}$ on the interval $-1 \leqq x \leqq 1$ by the cubic spline $g(x)$ corresponding to the nodes $x_{0}=-1$, $x_{1}=0, x_{2}=1$ and satisfying the clamped conditions $g^{\prime}(-1)=f^{\prime}(-1), g^{\prime}(1)=f^{\prime}(1)$.
Solution. In our standard notation the given data are $f_{0}=f(-1)=1, f_{1}=f(0)=0, f_{2}=f(1)=1$. We have $h=1$ and $n=2$, so that our spline consists of $n=2$ polynomials

$$
\begin{array}{lr}
q_{0}(x)=a_{00}+a_{01}(x+1)+a_{02}(x+1)^{2}+a_{03}(x+1)^{3} & (-1 \leqq x \leqq 0), \\
q_{1}(x)=a_{10}+a_{11} x+a_{12} x^{2}+a_{13} x^{3} & (0 \leqq x \leqq 1) .
\end{array}
$$

We determine the k_{j} from (14) (equidistance!) and then the coefficients of the spline from (13). Since $n=2$, the system (14) is a single equation (with $j=1$ and $h=1$)

$$
k_{0}+4 k_{1}+k_{2}=3\left(f_{2}-f_{0}\right) .
$$

Here $f_{0}=f_{2}=1$ (the value of x^{4} at the ends) and $k_{0}=-4, k_{2}=4$, the values of the derivative $4 x^{3}$ at the ends -1 and 1 . Hence

$$
-4+4 k_{1}+4=3(1-1)=0, \quad k_{1}=0 .
$$

From (13) we can now obtain the coefficients of q_{0}, namely, $a_{00}=f_{0}=1, \quad a_{01}=k_{0}=-4$, and

$$
\begin{aligned}
& a_{02}=\frac{3}{1^{2}}\left(f_{1}-f_{0}\right)-\frac{1}{1}\left(k_{1}+2 k_{0}\right)=3(0-1)-(0-8)=5 \\
& a_{03}=\frac{2}{1^{3}}\left(f_{0}-f_{1}\right)+\frac{1}{1^{2}}\left(k_{1}+k_{0}\right)=2(1-0)+(0-4)=-2 .
\end{aligned}
$$

Similarly, for the coefficients of q_{1} we obtain from (13) the values $a_{10}=f_{1}=0, \quad a_{11}=k_{1}=0$, and

$$
\begin{aligned}
& a_{12}=3\left(f_{2}-f_{1}\right)-\left(k_{2}+2 k_{1}\right)=3(1-0)-(4+0)=-1 \\
& a_{13}=2\left(f_{1}-f_{2}\right)+\left(k_{2}+k_{1}\right)=2(0-1)+(4+0)=2 .
\end{aligned}
$$

This gives the polynomials of which the spline $g(x)$ consists, namely,

$$
g(x)=\left\{\begin{array}{lrr}
q_{0}(x)=1-4(x+1)+5(x+1)^{2}-2(x+1)^{3}=-x^{2}-2 x^{3} & \text { if } & -1 \leqq x \leqq 0 \\
q_{1}(x)=-x^{2}+2 x^{3} & \text { if } & 0 \leqq x \leqq 1 .
\end{array}\right.
$$

Figure 436 shows $f(x)$ and this spline. Do you see that we could have saved over half of our work by using symmetry?

Fig. 436. Function $f(x)=x^{4}$ and cubic spline $g(x)$ in Example 1

EXAMPLE 2 Natural Spline. Arbitrarily Spaced Nodes

Find a spline approximation and a polynomial approximation for the curve of the cross section of the circularshaped Shrine of the Book in Jerusalem shown in Fig. 437.

Fig. 437. Shrine of the Book in Jerusalem (Architects F. Kissler and A. M. Bartus)
Solution. Thirteen points, about equally distributed along the contour (not along the x-axis!), give these data:

x_{j}	-5.8	-5.0	-4.0	-2.5	-1.5	-0.8	0	0.8	1.5	2.5	4.0	5.0	5.8
f_{j}	0	1.5	1.8	2.2	2.7	3.5	3.9	3.5	2.7	2.2	1.8	1.5	0

The figure shows the corresponding interpolation polynomial of 12th degree, which is useless because of its oscillation. (Because of roundoff your software will also give you small error terms involving odd powers of x.) The polynomial is

$$
\begin{gathered}
P_{12}(x)=3.9000-0.65083 x^{2}+0.033858 x^{4}+0.011041 x^{6}-0.0014010 x^{8} \\
+0.000055595 x^{10}-0.00000071867 x^{12}
\end{gathered}
$$

The spline follows practically the contour of the roof, with a small error near the nodes -0.8 and 0.8 . The spline is symmetric. Its six polynomials corresponding to positive x have the following coefficients of their representations (12). (Note well that (12) is in terms of powers of $x-x_{j}$, not x !)

j	x-interval	$a_{j 0}$	$a_{j 1}$	$a_{j 2}$	$a_{j 3}$
0	$0.0 \ldots 0.8$	3.9	0.00	-0.61	-0.015
1	$0.8 \ldots 1.5$	3.5	-1.01	-0.65	0.66
2	$1.5 \ldots 2.5$	2.7	-0.95	0.73	-0.27
3	$2.5 \ldots 4.0$	2.2	-0.32	-0.091	0.084
4	$4.0 \ldots 5.0$	1.8	-0.027	0.29	-0.56
5	$5.0 \ldots 5.8$	1.5	-1.13	-1.39	0.58

1. WRITING PROJECT. Splines. In your own words, and using as few formulas as possible, write a short report on spline interpolation, its motivation, a comparison with polynomial interpolation, and its applications.

2-9 VERIFICATIONS. DERIVATIONS.

 COMPARISONS2. Individual polynomial \boldsymbol{q}_{j}. Show that $q_{j}(x)$ in (6) satisfies the interpolation condition (4) as well as the derivative condition (5).
3. Verify the differentiations that give (7) and (8) from (6).
4. System for derivatives. Derive the basic linear system (9) for k_{1}, \cdots, k_{n-1} as indicated in the text.
5. Equidistant nodes. Derive (14) from (9).
6. Coefficients. Give the details of the derivation of $a_{j 2}$ and $a_{j 3}$ in (13).
7. Verify the computations in Example 1.
8. Comparison. Compare the spline g in Example 1 with the quadratic interpolation polynomial over the whole interval. Find the maximum deviations of g and p_{2} from f. Comment.
9. Natural spline condition. Using the given coefficients, verify that the spline in Example 2 satisfies $g^{\prime \prime}(x)=0$ at the ends.

10-16 DETERMINATION OF SPLINES

Find the cubic spline $g(x)$ for the given data with k_{0} and k_{n} as given.
10. $f(-2)=f(-1)=f(1)=f(2)=0, \quad f(0)=1$, $k_{0}=k_{4}=0$
11. If we started from the piecewise linear function in Fig. 438, we would obtain $g(x)$ in Prob. 10 as the spline satisfying $\quad g^{\prime}(-2)=f^{\prime}(-2)=0, \quad g^{\prime}(2)=f^{\prime}(2)=0$. Find and sketch or graph the corresponding interpolation polynomial of 4th degree and compare it with the spline. Comment.

Fig. 438. Spline and interpolation polynomial in Probs. 10 and 11
12. $f_{0}=f(0)=1, \quad f_{1}=f(2)=9, \quad f_{2}=f(4)=41$, $f_{3}=f(6)=41, \quad k_{0}=0, \quad k_{3}=-12$
13. $f_{0}=f(0)=1, \quad f_{1}=f(1)=0, \quad f_{2}=f(2)=-1$, $f_{3}=f(3)=0, \quad k_{0}=0, \quad k_{3}=-6$
14. $f_{0}=f(0)=2, \quad f_{1}=f(1)=3, \quad f_{2}=f(2)=8$, $f_{3}=f(3)=12, \quad k_{0}=k_{3}=0$
15. $f_{0}=f(0)=4, \quad f_{1}=f(2)=0, \quad f_{2}=f(4)=4$, $f_{3}=f(6)=80, \quad k_{0}=k_{3}=0$
16. $f_{0}=f(0)=2, \quad f_{1}=f(2)=-2, \quad f_{2}=f(4)=2$, $f_{3}=f(6)=78, \quad k_{0}=k_{3}=0$. Can you obtain the answer from that of Prob. 15?
17. If a cubic spline is three times continuously differentiable (that is, it has continuous first, second, and third derivatives), show that it must be a single polynomial.
18. CAS EXPERIMENT. Spline versus Polynomial. If your CAS gives natural splines, find the natural splines when x is integer from $-m$ to m, and $y(0)=1$ and all other y equal to 0 . Graph each such spline along with the interpolation polynomial $p_{2 m}$. Do this for $m=2$ to 10 (or more). What happens with increasing m ?
19. Natural conditions. Explain the remark after (11).
20. TEAM PROJECT. Hermite Interpolation and Bezier Curves. In Hermite interpolation we are looking for a polynomial $p(x)$ (of degree $2 n+1$ or less) such that $p(x)$ and its derivative $p^{\prime}(x)$ have given values at $n+1$ nodes. (More generally, $p(x), p^{\prime}(x), p^{\prime \prime}(x), \cdots$ may be required to have given values at the nodes.)
(a) Curves with given endpoints and tangents. Let C be a curve in the $x y$-plane parametrically represented by $\mathrm{r}(t)=[x(t), y(t)], 0 \leqq t \leqq 1$ (see Sec. 9.5). Show that for given initial and terminal points of a curve and given initial and terminal tangents, say,

$$
\begin{aligned}
A: \quad \mathbf{r}_{0} & =[x(0), y(0)] \\
& =\left[x_{0}, y_{0}\right], \\
B: \quad \mathbf{r}_{1} & =[x(1), y(1)] \\
& =\left[x_{1}, y_{1}\right] \\
\mathbf{v}_{0} & =\left[x^{\prime}(0), y^{\prime}(0)\right] \\
& =\left[x_{0}^{\prime}, y_{0}^{\prime}\right], \\
\mathbf{v}_{1} & =\left[x^{\prime}(1), y^{\prime}(1)\right] \\
& =\left[x_{1}^{\prime}, y_{1}^{\prime}\right]
\end{aligned}
$$

we can find a curve C, namely,

$$
\begin{aligned}
\mathbf{r}(t)= & \mathbf{r}_{0}+\mathbf{v}_{0} t \\
& +\left(3\left(\mathbf{r}_{1}-\mathbf{r}_{0}\right)-\left(2 \mathbf{v}_{0}+\mathbf{v}_{1}\right)\right) t^{2} \\
& +\left(2\left(\mathbf{r}_{0}-\mathbf{r}_{1}\right)+\mathbf{v}_{0}+\mathbf{v}_{1}\right) t^{3} ;
\end{aligned}
$$

in components,

$$
\begin{aligned}
x(t)= & x_{0}+x_{0}^{\prime} t+\left(3\left(x_{1}-x_{0}\right)-\left(2 x_{0}^{\prime}+x_{1}^{\prime}\right)\right) t^{2} \\
& +\left(2\left(x_{0}-x_{1}\right)+x_{0}^{\prime}+x_{1}^{\prime}\right) t^{3} \\
y(t)= & y_{0}+y_{0}^{\prime} t+\left(3\left(y_{1}-y_{0}\right)-\left(2 y_{0}^{\prime}+y_{1}^{\prime}\right)\right) t^{2} \\
& +\left(2\left(y_{0}-y_{1}\right)+y_{0}^{\prime}+y_{1}^{\prime}\right) t^{3} .
\end{aligned}
$$

Note that this is a cubic Hermite interpolation polynomial, and $n=1$ because we have two nodes (the endpoints of C). (This has nothing to do with the Hermite polynomials in Sec. 5.8.) The two points

$$
\begin{aligned}
G_{A}: \mathbf{g}_{0} & =\mathbf{r}_{0}+\mathbf{v}_{0} \\
& =\left[x_{0}+x_{0}^{\prime}, y_{0}+y_{0}^{\prime}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
G_{B}: \mathbf{g}_{1} & =\mathbf{r}_{1}-\mathbf{v}_{1} \\
& =\left[x_{1}-x_{1}^{\prime}, y_{1}-y_{1}^{\prime}\right]
\end{aligned}
$$

are called guidepoints because the segments $A G_{A}$ and $B G_{B}$ specify the tangents graphically. A, B, G_{A}, G_{B} determine C, and C can be changed quickly by moving the points. A curve consisting of such Hermite interpolation polynomials is called a Bezier curve, after the French engineer P. Bezier of the Renault

Automobile Company, who introduced them in the early 1960s in designing car bodies. Bezier curves (and surfaces) are used in computer-aided design (CAD) and computer-aided manufacturing (CAM). (For more details, see Ref. [E21] in App. 1.)
(b) Find and graph the Bezier curve and its guidepoints if $A:[0,0], \quad B:[1,0], \quad \mathbf{v}_{0}=\left[\frac{1}{2}, \frac{1}{2}\right]$, $\mathbf{v}_{1}=\left[-\frac{1}{2},-\frac{1}{4} \sqrt{3}\right]$.
(c) Changing guidepoints changes C. Moving guidepoints farther away results in C "staying near the tangents for a longer time." Confirm this by changing \mathbf{v}_{0} and \mathbf{v}_{1} in (b) to $2 \mathbf{v}_{0}$ and $2 \mathbf{v}_{1}$ (see Fig. 439).
(d) Make experiments of your own. What happens if you change \mathbf{v}_{1} in (b) to $-\mathbf{v}_{1}$. If you rotate the tangents? If you multiply \mathbf{v}_{0} and \mathbf{v}_{1} by positive factors less than 1 ?

Fig. 439. Team Project 20(b) and (c): Bezier curves

19.5 Numeric Integration and Differentiation

In applications, the engineer often encounters integrals that are very difficult or even impossible to solve analytically. For example, the error function, the Fresnel integrals (see Probs. 16-25 on nonelementary integrals in this section), and others cannot be evaluated by the usual methods of calculus (see App. 3, (24)-(44) for such "difficult" integrals). We then need methods from numerical analysis to evaluate such integrals. We also need numerics when the integrand of the integral to be evaluated consists of an empirical function, where we are given some recorded values of that function. Methods that address these kinds of problems are called methods of numeric integration.

Numeric integration means the numeric evaluation of integrals

$$
J=\int_{a}^{b} f(x) d x
$$

where a and b are given and f is a function given analytically by a formula or empirically by a table of values. Geometrically, J is the area under the curve of f between a and b (Fig. 440), taken with a minus sign where f is negative.

We know that if f is such that we can find a differentiable function F whose derivative is f, then we can evaluate J directly, i.e., without resorting to numeric integration, by applying the familiar formula

$$
J=\int_{a}^{b} f(x) d x=F(b)-F(a) \quad\left[F^{\prime}(x)=f(x)\right]
$$

Your CAS (Mathematica, Maple, etc.) or tables of integrals may be helpful for this purpose.

Rectangular Rule. Trapezoidal Rule

Numeric integration methods are obtained by approximating the integrand f by functions that can easily be integrated.

The simplest formula, the rectangular rule, is obtained if we subdivide the interval of integration $a \leqq x \leqq b$ into n subintervals of equal length $h=(b-a) / n$ and in each subinterval approximate f by the constant $f\left(x_{j}^{*}\right)$, the value of f at the midpoint x_{j}^{*} of the j th subinterval (Fig. 441). Then f is approximated by a step function (piecewise constant function), the n rectangles in Fig. 441 have the areas $f\left(x_{1}^{*}\right) h, \cdots, f\left(x_{n}^{*}\right) h$, and the rectangular rule is

$$
\begin{equation*}
J=\int_{a}^{b} f(x) d x \approx h\left[f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+\cdots+f\left(x_{n}^{*}\right)\right] \quad\left(h=\frac{b-a}{n}\right) . \tag{1}
\end{equation*}
$$

The trapezoidal rule is generally more accurate. We obtain it if we take the same subdivision as before and approximate f by a broken line of segments (chords) with endpoints $[a, f(a)],\left[x_{1}, f\left(x_{1}\right)\right], \cdots,[b, f(b)]$ on the curve of f (Fig. 442). Then the area under the curve of f between a and b is approximated by n trapezoids of areas

$$
\frac{1}{2}\left[f(a)+f\left(x_{1}\right)\right] h, \quad \frac{1}{2}\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right] h, \quad \cdots, \quad \frac{1}{2}\left[f\left(x_{n-1}\right)+f(b)\right] h .
$$

Fig. 440. Geometric interpretation of a definite integral

Fig. 441. Rectangular rule

Fig. 442. Trapezoidal rule

By taking their sum we obtain the trapezoidal rule

$$
\begin{equation*}
J=\int_{a}^{b} f(x) d x \approx h\left[\frac{1}{2} f(a)+f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n-1}\right)+\frac{1}{2} f(b)\right] \tag{2}
\end{equation*}
$$

where $h=(b-a) / n$, as in (1). The x_{j} 's and a and b are called nodes.

EXAMPLE 1 Trapezoidal Rule

Evaluate $J=\int_{0}^{1} e^{-x^{2}} d x$ by means of (2) with $n=10$.
Note that this integral cannot be evaluated by elementary calculus, but leads to the error function (see Eq. (35), App. 3).
Solution. $\quad J \approx 0.1(0.5 \cdot 1.367879+6.778167)=0.746211$ from Table 19.3.

Table 19.3 Computations in Example 1

j	x_{j}	x_{j}^{2}		$e^{-x_{j}^{2}}$
0	0	0	1.000000	
1	0.1	0.01		0.990050
2	0.2	0.04		0.960789
3	0.3	0.09	0.913931	
4	0.4	0.16	0.852144	
5	0.5	0.25	0.778801	
6	0.6	0.36	0.697676	
7	0.7	0.49		0.5272926
8	0.8	0.64		0.444858
9	0.9	0.81		
10	1.0	1.00		6.367879

Error Bounds and Estimate for the Trapezoidal Rule

An error estimate for the trapezoidal rule can be derived from (5) in Sec. 19.3 with $n=1$ by integration as follows. For a single subinterval we have

$$
f(x)-p_{1}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \frac{f^{\prime \prime}(t)}{2}
$$

with a suitable t depending on x, between x_{0} and x_{1}. Integration over x from $a=x_{0}$ to $x_{1}=x_{0}+h$ gives

$$
\int_{x_{0}}^{x_{0}+h} f(x) d x-\frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]=\int_{x_{0}}^{x_{0}+h}\left(x-x_{0}\right)\left(x-x_{0}-h\right) \frac{f^{\prime \prime}(t(x))}{2} d x
$$

Setting $x-x_{0}=v$ and applying the mean value theorem of integral calculus, which we can use because $\left(x-x_{0}\right)\left(x-x_{0}-h\right)$ does not change sign, we find that the right side equals

$$
\begin{equation*}
\int_{0}^{h} v(v-h) d v \frac{f^{\prime \prime}(\tilde{t})}{2}=\left(\frac{h^{3}}{3}-\frac{h^{3}}{2}\right) \frac{f^{\prime \prime}(\tilde{t})}{2}=-\frac{h^{3}}{12} f^{\prime \prime}(\tilde{t}) \tag{*}
\end{equation*}
$$

where \tilde{t} is a (suitable, unknown) value between x_{0} and x_{1}. This is the error for the trapezoidal rule with $n=1$, often called the local error.

Hence the error ϵ of (2) with any n is the sum of such contributions from the n subintervals; since $h=(b-a) / n, n h^{3}=n(b-a)^{3} / n^{3}$, and $(b-a)^{2}=n^{2} h^{2}$, we obtain

$$
\begin{equation*}
\epsilon=-\frac{(b-a)^{3}}{12 n^{2}} f^{\prime \prime}(\hat{t})=-\frac{b-a}{12} h^{2} f^{\prime \prime}(\hat{t}) \tag{3}
\end{equation*}
$$

with (suitable, unknown) \hat{t} between a and b.
Because of (3) the trapezoidal rule (2) is also written

$$
\begin{equation*}
J=\int_{a}^{b} f(x) d x \approx h\left[\frac{1}{2} f(a)+f\left(x_{1}\right)+\cdots+f\left(x_{n-1}\right)+\frac{1}{2} f(b)\right]-\frac{b-a}{12} h^{2} f^{\prime \prime}(\hat{t}) \tag{2*}
\end{equation*}
$$

Error Bounds are now obtained by taking the largest value for $f^{\prime \prime}$, say, M_{2}, and the smallest value, M_{2}^{*}, in the interval of integration. Then (3) gives (note that K is negative)

$$
K M_{2} \leqq \epsilon \leqq K M_{2}^{*} \quad \text { where } \quad K=-\frac{(b-a)^{3}}{12 n^{2}}=-\frac{b-a}{12} h^{2}
$$

Error Estimation by Halving \boldsymbol{h} is advisable if $f^{\prime \prime}$ is very complicated or unknown, for instance, in the case of experimental data. Then we may apply the Error Principle of Sec. 19.1. That is, we calculate by (2), first with h, obtaining, say, $J=J_{h}+\epsilon_{h}$, and then with $\frac{1}{2} h$, obtaining $J=J_{h / 2}+\epsilon_{h / 2}$. Now if we replace h^{2} in (3) with $\left(\frac{1}{2} h\right)^{2}$, the error is multiplied by $\frac{1}{4}$. Hence $\epsilon_{h / 2} \approx \frac{1}{4} \epsilon_{h}$ (not exactly because \hat{t} may differ). Together, $J_{h / 2}+\epsilon_{h / 2}=J_{h}+\epsilon_{h} \approx J_{h}+4 \epsilon_{h / 2}$. Thus $J_{h / 2}-J_{h}=(4-1) \epsilon_{h / 2}$. Division by 3 gives the error formula for $J_{h / 2}$

$$
\begin{equation*}
\epsilon_{h / 2} \approx \frac{1}{3}\left(J_{h / 2}-J_{h}\right) \tag{5}
\end{equation*}
$$

EXAMPLE 2 Error Estimation for the Trapezoidal Rule by (4) and (5)

Estimate the error of the approximate value in Example 1 by (4) and (5).
Solution. (A) Error bounds by (4). By differentiation, $f^{\prime \prime}(x)=2\left(2 x^{2}-1\right) e^{-x^{2}}$. Also, $f^{\prime \prime \prime}(x)>0$ if $0<x<1$, so that the minimum and maximum occur at the ends of the interval. We compute $M_{2}=f^{\prime \prime}(1)=0.735759$ and $M_{2}^{*}=f^{\prime \prime}(0)=-2$. Furthermore, $K=-1 / 1200$, and (4) gives

$$
-0.000614 \leqq \epsilon \leqq 0.001667
$$

Hence the exact value of J must lie between

$$
0.746211-0.000614=0.745597 \quad \text { and } \quad 0.746211+0.001667=0.747878
$$

Actually, $J=0.746824$, exact to 6 D .
(B) Error estimate by (5). $J_{h}=0.746211$ in Example 1. Also,

$$
J_{h / 2}=0.05\left[\sum_{j=1}^{19} e^{-(j / 20)^{2}}+\frac{1}{2}(1+0.367879)\right]=0.746671
$$

Hence $\epsilon_{h / 2}=\frac{1}{3}\left(J_{h / 2}-J_{h}\right)=0.000153$ and $J_{h / 2}+\epsilon_{h / 2}=0.746824$, exact to 6 D .

Simpson's Rule of Integration

Piecewise constant approximation of f led to the rectangular rule (1), piecewise linear approximation to the trapezoidal rule (2), and piecewise quadratic approximation will lead to Simpson's rule, which is of great practical importance because it is sufficiently accurate for most problems, but still sufficiently simple.

To derive Simpson's rule, we divide the interval of integration $a \leqq x \leqq b$ into an even number of equal subintervals, say, into $n=2 m$ subintervals of length $h=(b-a) /(2 m)$, with endpoints $x_{0}(=a), x_{1}, \cdots, x_{2 m-1}, x_{2 m}(=b)$; see Fig. 443. We now take the first two subintervals and approximate $f(x)$ in the interval $x_{0} \leqq x \leqq x_{2}=x_{0}+2 h$ by the Lagrange polynomial $p_{2}(x)$ through $\left(x_{0}, f_{0}\right),\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right)$, where $f_{j}=f\left(x_{j}\right)$. From (3) in Sec. 19.3 we obtain

$$
\begin{equation*}
p_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f_{1}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f_{2} \tag{6}
\end{equation*}
$$

The denominators in (6) are $2 h^{2},-h^{2}$, and $2 h^{2}$, respectively. Setting $s=\left(x-x_{1}\right) / h$, we have

$$
\begin{gathered}
x-x_{1}=\operatorname{sh}, \quad x-x_{0}=x-\left(x_{1}-h\right)=(s+1) h \\
x-x_{2}=x-\left(x_{1}+h\right)=(s-1) h
\end{gathered}
$$

and we obtain

$$
p_{2}(x)=\frac{1}{2} s(s-1) f_{0}-(s+1)(s-1) f_{1}+\frac{1}{2}(s+1) s f_{2}
$$

We now integrate with respect to x from x_{0} to x_{2}. This corresponds to integrating with respect to s from -1 to 1 . Since $d x=h d s$, the result is

$$
\begin{equation*}
\int_{x_{0}}^{x_{2}} f(x) d x \approx \int_{x_{0}}^{x_{2}} p_{2}(x) d x=h\left(\frac{1}{3} f_{0}+\frac{4}{3} f_{1}+\frac{1}{3} f_{2}\right) . \tag{7*}
\end{equation*}
$$

Fig. 443. Simpson's rule

A similar formula holds for the next two subintervals from x_{2} to x_{4}, and so on. By summing all these m formulas we obtain Simpson's rule ${ }^{4}$

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \frac{h}{3}\left(f_{0}+4 f_{1}+2 f_{2}+4 f_{3}+\cdots+2 f_{2 m-2}+4 f_{2 m-1}+f_{2 m}\right) \tag{7}
\end{equation*}
$$

where $h=(b-a) /(2 m)$ and $f_{j}=f\left(x_{j}\right)$. Table 19.4 shows an algorithm for Simpson's rule.

Table 19.4 Simpson's Rule of Integration

ALGORITHM SIMPSON $\left(a, b, m, f_{0}, f_{1}, \cdots, f_{2 m}\right)$
This algorithm computes the integral $J=\int_{a}^{b} f(x) d x$ from given values $f_{j}=f\left(x_{j}\right)$ at equidistant $x_{0}=a, x_{1}=x_{0}+h, \cdots, x_{2 m}=x_{0}+2 m h=b$ by Simpson's rule (7), where $h=(b-a) /(2 m)$.

INPUT: $\quad a, b, m, f_{0}, \cdots, f_{2 m}$
OUTPUT: Approximate value \widetilde{J} of J
Compute $s_{0}=f_{0}+f_{2 m}$

$$
\begin{aligned}
s_{1} & =f_{1}+f_{3}+\cdots+f_{2 m-1} \\
s_{2} & =f_{2}+f_{4}+\cdots+f_{2 m-2} \\
h & =(b-a) / 2 m \\
\widetilde{J} & =\frac{h}{3}\left(s_{0}+4 s_{1}+2 s_{2}\right)
\end{aligned}
$$

OUTPUT \widetilde{J}. Stop.

End SIMPSON

Error of Simpson's Rule (7). If the fourth derivative $f^{(4)}$ exists and is continuous on $a \leqq x \leqq b$, the error of (7), call it ϵ_{S}, is

$$
\begin{equation*}
\epsilon_{S}=-\frac{(b-a)^{5}}{180(2 m)^{4}} f^{(4)}(\hat{t})=-\frac{b-a}{180} h^{4} f^{(4)}(\hat{t}) \tag{8}
\end{equation*}
$$

here \hat{t} is a suitable unknown value between a and b. This is obtained similarly to (3). With this we may also write Simpson's rule (7) as

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\frac{h}{3}\left(f_{0}+4 f_{1}+\cdots+f_{2 m}\right)-\frac{b-a}{180} h^{4} f^{(4)}(\hat{t}) . \tag{7**}
\end{equation*}
$$

[^3]Error Bounds. By taking for $f^{(4)}$ in (8) the maximum M_{4} and minimum M_{4}^{*} on the interval of integration we obtain from (8) the error bounds (note that C is negative)

$$
\begin{equation*}
C M_{4} \leqq \epsilon_{S} \leqq C M_{4}^{*} \quad \text { where } \quad C=-\frac{(b-a)^{5}}{180(2 m)^{4}}=-\frac{b-a}{180} h^{4} \tag{9}
\end{equation*}
$$

Degree of Precision (DP) of an integration formula. This is the maximum degree of arbitrary polynomials for which the formula gives exact values of integrals over any intervals.

Hence for the trapezoidal rule,

$$
\mathrm{DP}=1
$$

because we approximate the curve of f by portions of straight lines (linear polynomials).
For Simpson's rule we might expect DP $=2$ (why?). Actually,

$$
\mathrm{DP}=3
$$

by (9) because $f^{(4)}$ is identically zero for a cubic polynomial. This makes Simpson's rule sufficiently accurate for most practical problems and accounts for its popularity.

Numeric Stability with respect to rounding is another important property of Simpson's rule. Indeed, for the sum of the roundoff errors $\boldsymbol{\epsilon}_{j}$ of the $2 m+1$ values f_{j} in (7) we obtain, since $h=(b-a) / 2 m$,

$$
\frac{h}{3}\left|\epsilon_{0}+4 \epsilon_{1}+\cdots+\epsilon_{2 m}\right| \leqq \frac{b-a}{3.2 m} 6 m u=(b-a) u
$$

where u is the rounding unit ($u=\frac{1}{2} \cdot 10^{-6}$ if we round off to 6 D ; see Sec. 19.1). Also $6=1+4+1$ is the sum of the coefficients for a pair of intervals in (7); take $m=1$ in (7) to see this. The bound $(b-a) u$ is independent of m, so that it cannot increase with increasing m, that is, with decreasing h. This proves stability.

Newton-Cotes Formulas. We mention that the trapezoidal and Simpson rules are special closed Newton-Cotes formulas, that is, integration formulas in which $f(x)$ is interpolated at equally spaced nodes by a polynomial of degree $n(n=1$ for trapezoidal, $n=2$ for Simpson), and closed means that a and b are nodes $\left(a=x_{0}, b=x_{n}\right) . n=3$ and higher n are used occasionally. From $n=8$ on, some of the coefficients become negative, so that a positive f_{j} could make a negative contribution to an integral, which is absurd. For more on this topic see Ref. [E25] in App. 1.

EXAMPLE 3 Simpson's Rule. Error Estimate

Evaluate $J=\int_{0}^{1} e^{-x^{2}} d x$ by Simpson's rule with $2 m=10$ and estimate the error.
Solution. Since $h=0.1$, Table 19.5 gives

$$
J \approx \frac{0.1}{3}(1.367879+4 \cdot 3.740266+2 \cdot 3.037901)=0.746825
$$

Estimate of error. Differentiation gives $f^{(4)}(x)=4\left(4 x^{4}-12 x^{2}+3\right) e^{-x^{2}}$. By considering the derivative $f^{(5)}$ of $f^{(4)}$ we find that the largest value of $f^{(4)}$ in the interval of integration occurs at 0 and the smallest value at $x^{*}=(2.5-0.5 \sqrt{10})^{1 / 2}$. Computation gives the values $M_{4}=f^{(4)}(0)=12$ and $M_{4}^{*}=f^{(4)}\left(x^{*}\right)=-7.419$. Since $2 m=10$ and $b-a=1$, we obtain $C=-1 / 1800000=-0.00000056$. Therefore, from (9),

$$
-0.000007 \leqq \epsilon_{s} \leqq 0.000005
$$

Hence J must lie between $0.746825-0.000007=0.746818$ and $0.746825+0.000005=0.746830$, so that at least four digits of our approximate value are exact. Actually, the value 0.746825 is exact to 5 D because $J=0.746824$ (exact to 6D).

Thus our result is much better than that in Example 1 obtained by the trapezoidal rule, whereas the number of operations is nearly the same in both cases.

Table 19.5 Computations in Example 3

j	x_{j}	x_{j}^{2}		$e^{-x_{j}^{2}}$	
0	0	0	1.000000		
1	0.1	0.01		0.990050	
2	0.2	0.04		0.913931	0.960789
3	0.3	0.09		0.778801	0.852144
4	0.4	0.16		0.612626	
5	0.5	0.25		0.444858	0.527292
6	0.6	0.36			
7	0.7	0.49		3.740266	3.037901
8	0.8	0.64			
9	0.9	0.81			
10	1.0	1.00	0.367879	1.367879	
Sums					

Instead of picking an $n=2 m$ and then estimating the error by (9), as in Example 3, it is better to require an accuracy (e.g., 6D) and then determine $n=2 m$ from (9).

Determination of $\boldsymbol{n}=\mathbf{2 m}$ in Simpson's Rule from the Required Accuracy

What n should we choose in Example 3 to get 6D-accuracy?
Solution. Using $M_{4}=12$ (which is bigger in absolute value than M_{4}^{*}, we get from (9), with $b-a=1$ and the required accuracy,

$$
\left|C M_{4}\right|=\frac{12}{180(2 m)^{4}}=\frac{1}{2} \cdot 10^{-6}, \quad \text { thus } \quad m=\left[\frac{2 \cdot 10^{6} \cdot 12}{180 \cdot 2^{4}}\right]^{1 / 4}=9.55 .
$$

Hence we should choose $n=2 m=20$. Do the computation, which parallels that in Example 3.
Note that the error bounds in (4) or (9) may sometimes be loose, so that in such a case a smaller $n=2 m$ may already suffice.

Error Estimation for Simpson's Rule by Halving \boldsymbol{h}. The idea is the same as in (5) and gives

$$
\begin{equation*}
\epsilon_{h / 2} \approx \frac{1}{15}\left(J_{h / 2}-J_{h}\right) \tag{10}
\end{equation*}
$$

J_{h} is obtained by using h and $J_{h / 2}$ by using $\frac{1}{2} h$, and $\epsilon_{h / 2}$ is the error of $J_{h / 2}$.

Derivation. In (5) we had $\frac{1}{3}$ as the reciprocal of $3=4-1$ and $\frac{1}{4}=\left(\frac{1}{2}\right)^{2}$ resulted from h^{2} in (3) by replacing h with $\frac{1}{2} h$. In (10) we have $\frac{1}{15}$ as the reciprocal of $15=16-1$ and $\frac{1}{16}=\left(\frac{1}{2}\right)^{4}$ results from h^{4} in (8) by replacing h with $\frac{1}{2} h$.

EXAMPLE 5 Error Estimation for Simpson's Rule by Halving

Integrate $f(x)=\frac{1}{4} \pi x^{4} \cos \frac{1}{4} \pi x$ from 0 to 2 with $h=1$ and apply (10).
Solution. The exact 5D-value of the integral is $J=1.25953$. Simpson's rule gives

$$
\begin{aligned}
J_{h} & =\frac{1}{3}[f(0)+4 f(1)+f(2)]=\frac{1}{3}(0+4 \cdot 0.555360+0)=0.740480, \\
J_{h / 2} & =\frac{1}{6}\left[f(0)+4 f\left(\frac{1}{2}\right)+2 f(1)+4 f\left(\frac{3}{2}\right)+f(2)\right] \\
& =\frac{1}{6}[0+4 \cdot 0.045351+2 \cdot 0.555361+4 \cdot 1.521579+0]=1.22974 .
\end{aligned}
$$

Hence (10) gives $\epsilon_{h / 2}=\frac{1}{15}(1.22974-0.74048)=0.032617$ and thus $J \approx J_{h / 2}+\epsilon_{h / 2}=1.26236$, with an error -0.00283 which is less in absolute value than $\frac{1}{10}$ of the error 0.02979 of $J_{h / 2}$. Hence the use of (10) was well worthwhile.

Adaptive Integration

The idea is to adapt step h to the variability of $f(x)$. That is, where f varies but little, we can proceed in large steps without causing a substantial error in the integral, but where f varies rapidly, we have to take small steps in order to stay everywhere close enough to the curve of f.

Changing h is done systematically, usually by halving h, and automatically (not "by hand") depending on the size of the (estimated) error over a subinterval. The subinterval is halved if the corresponding error is still too large, that is, larger than a given tolerance TOL (maximum admissible absolute error), or is not halved if the error is less than or equal to TOL (or doubled if the error is very small).

Adapting is one of the techniques typical of modern software. In connection with integration it can be applied to various methods. We explain it here for Simpson's rule. In Table 19.6 an asterisk means that for that subinterval, TOL has been reached.

EXAMPLE 6 Adaptive Integration with Simpson's Rule

Integrate $f(x)=\frac{1}{4} \pi x^{4} \cos \frac{1}{4} \pi x$ from $x=0$ to 2 by adaptive integration and with Simpson's rule and $\operatorname{TOL}[0,2]=0.0002$.

Solution. Table 19.6 shows the calculations. Figure 444 shows the integrand $f(x)$ and the adapted intervals used. The first two intervals ([0, 0.5], [0.5, 1.0]) have length 0.5 , hence $h=0.25$ [because we use $2 m=2$ subintervals in Simpson's rule $\left.\left(7^{* *}\right)\right]$. The next two intervals ([1.00, 1.25], [1.25, 1.50]) have length 0.25 (hence $h=0.125$) and the last four intervals have length 0.125 . Sample computations. For 0.740480 see Example 5. Formula (10) gives $(0.123716-0.122794) / 15=0.000061$. Note that 0.123716 refers to [0, 0.5] and $[0.5,1]$, so that we must subtract the value corresponding to $[0,1]$ in the line before. Etc. $\operatorname{TOL}[0,2]=0.0002$ gives 0.0001 for subintervals of length $1,0.00005$ for length 0.5 , etc. The value of the integral obtained is the sum of the values marked by an asterisk (for which the error estimate has become less than TOL). This gives

$$
J \approx 0.123716+0.528895+0.388263+0.218483=1.25936
$$

The exact 5D-value is $J=1.25953$. Hence the error is 0.00017 . This is about $1 / 200$ of the absolute value of that in Example 5. Our more extensive computation has produced a much better result.

Table 19.6 Computations in Example 6

Interval	Integral	Error (10)	TOL	Comment
[0, 2]	0.740480		0.0002	
[0, 1]	0.122794			
[1, 2]	1.10695			
	Sum $=1.22974$	0.032617	0.0002	Divide further
[0.0, 0.5]	0.004782			
[0.5, 1.0]	$\underline{0.118934}$			
	Sum $=0.123716^{*}$	0.000061	0.0001	TOL reached
[1.0, 1.5]	0.528176			
[1.5, 2.0]	$\underline{0.605821}$			
	Sum $=1.13300$	0.001803	0.0001	Divide further
[1.00, 1.25]	0.200544			
[1.25, 1.50]	$\underline{0.328351}$			
	Sum $=0.528895^{*}$	0.000048	0.00005	TOL reached
[1.50, 1.75]	0.388235			
[1.75, 2.00]	$\underline{0.218457}$			
	Sum $=0.606692$	0.000058	0.00005	Divide further
[1.500, 1.625]	0.196244			
[1.625, 1.750]	0.192019			
	Sum $=0.388263^{*}$	0.000002	0.000025	TOL reached
[1.750, 1.875]	0.153405			
[1.875, 2.000]	$\underline{0.065078}$			
	Sum $=0.218483 *$	0.000002	0.000025	TOL reached

Fig. 444. Adaptive integration in Example 6

Gauss Integration Formulas
 Maximum Degree of Precision

Our integration formulas discussed so far use function values at predetermined (equidistant) x-values (nodes) and give exact results for polynomials not exceeding a
certain degree [called the degree of precision; see after (9)]. But we can get much more accurate integration formulas as follows. We set

$$
\begin{equation*}
\int_{-1}^{1} f(t) d t \approx \sum_{j=1}^{n} A_{j} f_{j} \quad\left[f_{j}=f\left(t_{j}\right)\right] \tag{11}
\end{equation*}
$$

with fixed n, and $t= \pm 1$ obtained from $x=a, b$ by setting $x=\frac{1}{2}[a(t-1)+b(t+1)]$. Then we determine the n coefficients A_{1}, \cdots, A_{n} and n nodes t_{1}, \cdots, t_{n} so that (11) gives exact results for polynomials of degree k as high as possible. Since $n+n=2 n$ is the number of coefficients of a polynomial of degree $2 n-1$, it follows that $k \leqq 2 n-1$.

Gauss has shown that exactness for polynomials of degree not exceeding $2 n-1$ (instead of $n-1$ for predetermined nodes) can be attained, and he has given the location of the t_{j} ($=$ the j th zero of the Legendre polynomial P_{n} in Sec. 5.3) and the coefficients A_{j} which depend on n but not on $f(t)$, and are obtained by using Lagrange's interpolation polynomial, as shown in Ref. [E5] listed in App. 1. With these t_{j} and A_{j}, formula (11) is called a Gauss integration formula or Gauss quadrature formula. Its degree of precision is $2 n-1$, as just explained. Table 19.7 gives the values needed for $n=2, \cdots, 5$. (For larger n, see pp. 916-919 of Ref. [GenRef1] in App. 1.)

Table 19.7 Gauss Integration: Nodes $\boldsymbol{t}_{\boldsymbol{j}}$ and Coefficients $\boldsymbol{A}_{\boldsymbol{j}}$

n	Nodes t_{j}	Coefficients A_{j}	Degree of Precision
2	-0.5773502692	1	
	0.5773502692	1	3
3	-0.7745966692	0.5555555556	
	0	0.8888888889	5
	0.7745966692	0.5555555556	
	-0.8611363116	0.3478548451	
	-0.3399810436	0.6521451549	
	0.3399810436	0.6521451549	
	0.8611363116	0.3478548451	
	-0.9061798459	0.2369268851	
	-0.5384693101	0.4786286705	
	0	0.5688888889	
	0.9384693101	0.4786286705	

EXAMPLE 7 Gauss Integration Formula with $\boldsymbol{n}=\mathbf{3}$

Evaluate the integral in Example 3 by the Gauss integration formula (11) with $n=3$.
Solution. We have to convert our integral from 0 to 1 into an integral from -1 to 1 . We set $x=\frac{1}{2}(t+1)$. Then $d x=\frac{1}{2} d t$, and (11) with $n=3$ and the above values of the nodes and the coefficients yields

$$
\begin{gathered}
\int_{0}^{1} \exp \left(-x^{2}\right) d x=\frac{1}{2} \int_{-1}^{1} \exp \left(-\frac{1}{4}(t+1)^{2}\right) d t \\
\approx \frac{1}{2}\left[\frac{5}{9} \exp \left(-\frac{1}{4}\left(1-\sqrt{\frac{3}{5}}\right)^{2}\right)+\frac{8}{9} \exp \left(-\frac{1}{4}\right)+\frac{5}{9} \exp \left(-\frac{1}{4}\left(1+\sqrt{\frac{3}{5}}\right)^{2}\right)\right]=0.746815
\end{gathered}
$$

(exact to 6D: 0.746825), which is almost as accurate as the Simpson result obtained in Example 3 with a much larger number of arithmetic operations. With 3 function values (as in this example) and Simpson's rule we would get $\frac{1}{6}\left(1+4 e^{-0.25}+e^{-1}\right)=0.747180$, with an error over 30 times that of the Gauss integration.

EXAMPLE 8 Gauss Integration Formula with $\boldsymbol{n}=4$ and 5

Integrate $f(x)=\frac{1}{4} \pi x^{4} \cos \frac{1}{4} \pi x$ from $x=0$ to 2 by Gauss. Compare with the adaptive integration in Example 6 and comment.
Solution. $\quad x=t+1$ gives $f(t)=\frac{1}{4} \pi(t+1)^{4} \cos \left(\frac{1}{4} \pi(t+1)\right)$, as needed in (11). For $n=4$ we calculate (6 S)

$$
\begin{aligned}
J & \approx A_{1} f_{1}+\cdots+A_{4} f_{4}=A_{1}\left(f_{1}+f_{4}\right)+A_{2}\left(f_{2}+f_{3}\right) \\
& =0.347855(0.000290309+1.02570)+0.652145(0.129464+1.25459)=1.25950 .
\end{aligned}
$$

The error is 0.00003 because $J=1.25953$ (6 S). Calculating with 10 S and $n=4$ gives the same result; so the error is due to the formula, not rounding. For $n=5$ and 10 S we get $J \approx 1.259526185$, too large by the amount 0.000000250 because $J=1.259525935$ (10S). The accuracy is impressive, particularly if we compare the amount of work with that in Example 6.

Gauss integration is of considerable practical importance. Whenever the integrand f is given by a formula (not just by a table of numbers) or when experimental measurements can be set at times t_{j} (or whatever t represents) shown in Table 19.7 or in Ref. [GenRef1], then the great accuracy of Gauss integration outweighs the disadvantage of the complicated t_{j} and A_{j} (which may have to be stored). Also, Gauss coefficients A_{j} are positive for all n, in contrast with some of the Newton-Cotes coefficients for larger n.

Of course, there are frequent applications with equally spaced nodes, so that Gauss integration does not apply (or has no great advantage if one first has to get the t_{j} in (11) by interpolation).

Since the endpoints -1 and 1 of the interval of integration in (11) are not zeros of P_{n}, they do not occur among t_{0}, \cdots, t_{n}, and the Gauss formula (11) is called, therefore, an open formula, in contrast with a closed formula, in which the endpoints of the interval of integration are t_{0} and t_{n}. [For example, (2) and (7) are closed formulas.]

Numeric Differentiation

Numeric differentiation is the computation of values of the derivative of a function f from given values of f. Numeric differentiation should be avoided whenever possible. Whereas integration is a smoothing process and is not very sensitive to small inaccuracies in function values, differentiation tends to make matters rough and generally gives values of f^{\prime} that are much less accurate than those of f. The difficulty with differentiation is tied in with the definition of the derivative, which is the limit of the difference quotient, and, in that quotient, you usually have the difference of a large quantity divided by a small quantity. This can cause numerical instability. While being aware of this caveat, we must still develop basic differentiation formulas for use in numeric solutions of differential equations.

We use the notations $f_{j}^{\prime}=f^{\prime}\left(x_{j}\right), f_{j}^{\prime \prime}=f^{\prime \prime}\left(x_{j}\right)$, etc., and may obtain rough approximation formulas for derivatives by remembering that

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

This suggests

$$
\begin{equation*}
f_{1 / 2}^{\prime} \approx \frac{\delta f_{1 / 2}}{h}=\frac{f_{1}-f_{0}}{h} . \tag{12}
\end{equation*}
$$

Similarly, for the second derivative we obtain

$$
\begin{equation*}
f_{1}^{\prime \prime} \approx \frac{\delta^{2} f_{1}}{h^{2}}=\frac{f_{2}-2 f_{1}+f_{0}}{h^{2}} \tag{13}
\end{equation*}
$$

More accurate approximations are obtained by differentiating suitable Lagrange polynomials. Differentiating (6) and remembering that the denominators in (6) are $2 h^{2}$, $-h^{2}, 2 h^{2}$, we have

$$
f^{\prime}(x) \approx p_{2}^{\prime}(x)=\frac{2 x-x_{1}-x_{2}}{2 h^{2}} f_{0}-\frac{2 x-x_{0}-x_{2}}{h^{2}} f_{1}+\frac{2 x-x_{0}-x_{1}}{2 h^{2}} f_{2}
$$

Evaluating this at x_{0}, x_{1}, x_{2}, we obtain the "three-point formulas"
(a) $f_{0}^{\prime} \approx \frac{1}{2 h}\left(-3 f_{0}+4 f_{1}-f_{2}\right)$,
(b) $f_{1}^{\prime} \approx \frac{1}{2 h}\left(-f_{0}+f_{2}\right)$,
(c) $f_{2}^{\prime} \approx \frac{1}{2 h}\left(f_{0}-4 f_{1}+3 f_{2}\right)$.

Applying the same idea to the Lagrange polynomial $p_{4}(x)$, we obtain similar formulas, in particular,

$$
\begin{equation*}
f_{2}^{\prime} \approx \frac{1}{12 h}\left(f_{0}-8 f_{1}+8 f_{3}-f_{4}\right) \tag{15}
\end{equation*}
$$

Some examples and further formulas are included in the problem set as well as in Ref. [E5] listed in App. 1.

PROBBEMESET19.5

1-6 RECTANGULAR AND TRAPEZOIDAL RULES

1. Rectangular rule. Evaluate the integral in Example 1 by the rectangular rule (1) with subintervals of length 0.1. Compare with Example 1. (6S-exact: 0.746824)
2. Bounds for (1). Derive a formula for lower and upper bounds for the rectangular rule. Apply it to Prob. 1.
3. Trapezoidal rule. To get a feel for increase in accuracy, integrate x^{2} from 0 to 1 by (2) with $h=1,0.5,0.25,0.1$.
4. Error estimation by halfing. Integrate $f(x)=x^{4}$ from 0 to 1 by (2) with $h=1, h=0.5, h=0.25$ and estimate the error for $h=0.5$ and $h=0.25$ by (5).
5. Error estimation. Do the tasks in Prob. 4 for $f(x)=\sin \frac{1}{2} \pi x$.
6. Stability. Prove that the trapezoidal rule is stable with respect to rounding.

7-15 SIMPSON'S RULE

Evaluate the integrals $A=\int_{1}^{2} \frac{d x}{x}, \quad B=\int_{0}^{0.4} x e^{-x^{2}} d x$, $J=\int_{0}^{1} \frac{d x}{1+x^{2}}$ by Simpson's rule with $2 m$ as indicated, and compare with the exact value known from calculus.
7. $A, 2 m=4$
8. $A, 2 m=10$
9. $B, 2 m=4$
10. $B, 2 m=10$
11. $J, 2 m=4$
12. $J, 2 m=10$
13. Error estimate. Compute the integral J by Simpson's rule with $2 m=8$ and use the value and that in Prob. 11 to estimate the error by (10).
14. Error bounds and estimate. Integrate e^{-x} from 0 to 2 by (7) with $h=1$ and with $h=0.5$. Give error bounds for the $h=0.5$ value and an error estimate by (10).
15. Given TOL. Find the smallest n in computing A (see Probs. 7 and 8) such that 5 S-accuracy is guaranteed (a) by (4) in the use of (2), (b) by (9) in the use of (7).

16-21 NONELEMENTARY INTEGRALS

The following integrals cannot be evaluated by the usual methods of calculus. Evaluate them as indicated. Compare your value with that possibly given by your $\operatorname{CAS} . \operatorname{Si}(x)$ is the sine integral. $\mathrm{S}(x)$ and $\mathrm{C}(x)$ are the Fresnel integrals. See App. A3.1. They occur in optics.

$$
\begin{gathered}
\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin x^{*}}{x^{*}} d x^{*} \\
\mathrm{~S}(x)=\int_{0}^{x} \sin \left(x^{*^{2}}\right) d x^{*}, \quad \mathrm{C}(x)=\int_{0}^{x} \cos \left(x^{*^{2}}\right) d x^{*}
\end{gathered}
$$

16. $\operatorname{Si}(1)$ by (2), $n=5, n=10$, and apply (5).
17. $\mathrm{Si}(1)$ by (7), $2 m=2,2 m=4$
18. Obtain a better value in Prob. 17. Hint. Use (10).
19. $\mathrm{Si}(1)$ by (7), $2 m=10$
20. $\mathrm{S}(1.25)$ by (7), $2 m=10$
21. $\mathrm{C}(1.25)$ by (7), $2 m=10$

22-25 GAUSS INTEGRATION

Integrate by (11) with $n=5$:
22. $\cos x$ from 0 to $\frac{1}{2} \pi$
23. $x e^{-x}$ from 0 to 1
24. $\sin \left(x^{2}\right)$ from 0 to 1.25
25. $\exp \left(-x^{2}\right)$ from 0 to 1
26. TEAM PROJECT. Romberg Integration (W. Romberg, Norske Videnskab. Trondheim, Fфrh. 28, Nr. 7, 1955). This method uses the trapezoidal rule and gains precision stepwise by halving h and adding an error estimate. Do this for the integral of $f(x)=e^{-x}$ from $x=0$ to $x=2$ with TOL $=10^{-3}$, as follows.

Step 1. Apply the trapezoidal rule (2) with $h=2$ (hence $n=1$) to get an approximation J_{11}. Halve h and use (2) to get J_{21} and an error estimate

$$
\epsilon_{21}=\frac{1}{2^{2}-1}\left(J_{21}-J_{11}\right) .
$$

If $\left|\epsilon_{21}\right| \leqq$ TOL, stop. The result is $J_{22}=J_{21}+\epsilon_{21}$.
Step 2. Show that $\epsilon_{21}=-0.066596$, hence $\left|\epsilon_{21}\right|>$ TOL and go on. Use (2) with $h / 4$ to get J_{31} and add to it the error estimate $\epsilon_{31}=\frac{1}{3}\left(J_{31}-J_{21}\right)$ to get the better $J_{32}=J_{31}+\epsilon_{31}$. Calculate

$$
\epsilon_{32}=\frac{1}{2^{4}-1}\left(J_{32}-J_{22}\right)=\frac{1}{15}\left(J_{32}-J_{22}\right) .
$$

If $\left|\epsilon_{32}\right| \leqq$ TOL, stop. The result is $J_{33}=J_{32}+\epsilon_{32}$. (Why does $2^{4}=16$ come in?) Show that we obtain $\epsilon_{32}=-0.000266$, so that we can stop. Arrange your J - and ϵ-values in a kind of "difference table."

If $\left|\epsilon_{32}\right|$ were greater than TOL, you would have to go on and calculate in the next step J_{41} from (2) with $h=\frac{1}{4}$; then

$$
\begin{array}{lll}
J_{42}=J_{41}+\epsilon_{41} & \text { with } & \epsilon_{41}=\frac{1}{3}\left(J_{41}-J_{31}\right) \\
J_{43}=J_{42}+\epsilon_{42} & \text { with } & \epsilon_{42}=\frac{1}{15}\left(J_{42}-J_{32}\right) \\
J_{44}=J_{43}+\epsilon_{43} & \text { with } & \epsilon_{43}=\frac{1}{63}\left(J_{43}-J_{33}\right)
\end{array}
$$

where $63=2^{6}-1$. (How does this come in?)
Apply the Romberg method to the integral of $f(x)=\frac{1}{4} \pi x^{4} \cos \frac{1}{4} \pi x$ from $x=0$ to 2 with $\mathrm{TOL}=10^{-4}$.

27-30 DIFFERENTIATION

27. Consider $f(x)=x^{4}$ for $x_{0}=0, x_{1}=0.2, x_{2}=0.4$, $x_{3}=0.6, x_{4}=0.8$. Calculate f_{2}^{\prime} from (14a), (14b), (14c), (15). Determine the errors. Compare and comment.
28. A "four-point formula" for the derivative is

$$
f_{2}^{\prime} \approx \frac{1}{6 h}\left(-2 f_{1}-3 f_{2}+6 f_{3}-f_{4}\right)
$$

Apply it to $f(x)=x^{4}$ with x_{1}, \cdots, x_{4} as in Prob. 27, determine the error, and compare it with that in the case of (15).
29. The derivative $f^{\prime}(x)$ can also be approximated in terms of first-order and higher order differences (see Sec. 19.3):

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) \approx \frac{1}{h}\left(\Delta f_{0}\right. & -\frac{1}{2} \Delta^{2} f_{0} \\
& \left.+\frac{1}{3} \Delta^{3} f_{0}-\frac{1}{4} \Delta^{4} f_{0}+-\cdots\right)
\end{aligned}
$$

Compute $f^{\prime}(0.4)$ in Prob. 27 from this formula, using differences up to and including first order, second order, third order, fourth order.
30. Derive the formula in Prob. 29 from (14) in Sec. 19.3.

CHAPMER 19 REVEN Q OESTIONS AND PROBLEMS

1. What is a numeric method? How has the computer influenced numerics?
2. What is an error? A relative error? An error bound?
3. Why are roundoff errors important? State the rounding rules.
4. What is an algorithm? Which of its properties are important in software implementation?
5. What do you know about stability?
6. Why is the selection of a good method at least as important on a large computer as it is on a small one?
7. Can the Newton (-Raphson) method diverge? Is it fast? Same questions for the bisection method.
8. What is fixed-point iteration?
9. What is the advantage of Newton's interpolation formulas over Lagrange's?
10. What is spline interpolation? Its advantage over polynomial interpolation?
11. List and compare the integration methods we have discussed.
12. How did we use an interpolation polynomial in deriving Simpson's rule?
13. What is adaptive integration? Why is it useful?
14. In what sense is Gauss integration optimal?
15. How did we obtain formulas for numeric differentiation?
16. Write $-46.9028104,0.000317399,54 / 7,-890 / 3$ in floating-point form with 5 S (5 significant digits, properly rounded).
17. Compute $(5.346-3.644) /(3.444-3.055)$ as given and then rounded stepwise to $3 \mathrm{~S}, 2 \mathrm{~S}, 1 \mathrm{~S}$. Comment. ("Stepwise" means rounding the rounded numbers, not the given ones.)
18. Compute $0.38755 /(5.6815-0.38419)$ as given and then rounded stepwise to $4 \mathrm{~S}, 3 \mathrm{~S}, 2 \mathrm{~S}, 1 \mathrm{~S}$. Comment.
19. Let 19.1 and 25.84 be correctly rounded. Find the shortest interval in which the sum s of the true (unrounded) numbers must lie.
20. Do the same task as in Prob. 19 for the difference $3.2-6.29$.
21. What is the relative error of $n \widetilde{a}$ in terms of that of \widetilde{a} ?
22. Show that the relative error of \widetilde{a}^{2} is about twice that of \widetilde{a}.
23. Solve $x^{2}-40 x+2=0$ in two ways (cf. Sec. 19.1). Use 4 S -arithmetic.
24. Solve $x^{2}-100 x+1=0$. Use 5 S-arithmetic.
25. Compute the solution of $x^{4}=x+0.1$ near $x=0$ by transforming the equation algebraically to the form $x=g(x)$ and starting from $x_{0}=0$.
26. Solve $\cos x=x^{2}$ by Newton's method, starting from $x=0.5$.
27. Solve Prob. 25 by bisection (3S-accuracy).
28. Compute $\sinh 0.4$ from $\sinh 0, \sinh 0.5=0.521$, $\sinh 1.0=1.175$ by quadratic interpolation.
29. Find the cubic spline for the data $f(0)=0, f(1)=0$, $f(2)=4, k_{0}=-1, k_{2}=5$.
30. Find the cubic spline q and the interpolation polynomial p for the data $(0,0),(1,1),(2,6),(3,10)$, with $q^{\prime}(0)=0, q^{\prime}(3)=0$ and graph p and q on common axes.
31. Compute the integral of x^{3} from 0 to 1 by the trapezoidal rule with $n=5$. What error bounds are obtained from (4) in Sec. 19.5? What is the actual error of the result?
32. Compute the integral of $\cos \left(x^{2}\right)$ from 0 to 1 by Simpson's rule with $2 m=4$.
33. Solve Prob. 32 by Gauss integration with $n=3$ and $n=5$.
34. Compute $f^{\prime}(0.2)$ for $f(x)=x^{3}$ using (14b) in Sec. 19.5 with (a) $h=0.2$, (b) $h=0.1$. Compare the accuracy.
35. Compute $f^{\prime \prime}(0.2)$ for $f(x)=x^{3}$ using (13) in Sec. 19.5 with (a) $h=0.2$, (b) $h=0.1$.

SUMMARY OF CHAPTER 19

Numerics in General

In this chapter we discussed concepts that are relevant throughout numeric work as a whole and methods of a general nature, as opposed to methods for linear algebra (Chap. 20) or differential equations (Chap. 21).

In scientific computations we use the floating-point representation of numbers (Sec. 19.1); fixed-point representation is less suitable in most cases.

Numeric methods give approximate values \widetilde{a} of quantities. The error ϵ of \widetilde{a} is

$$
\begin{equation*}
\epsilon=a-\tilde{a} \tag{1}
\end{equation*}
$$

where a is the exact value. The relative error of \widetilde{a} is ϵ / a. Errors arise from rounding, inaccuracy of measured values, truncation (that is, replacement of integrals by sums, series by partial sums), and so on.

An algorithm is called numerically stable if small changes in the initial data give only correspondingly small changes in the final results. Unstable algorithms are generally useless because errors may become so large that results will be very inaccurate. The numeric instability of algorithms must not be confused with the mathematical instability of problems ("ill-conditioned problems," Sec. 19.2).

Fixed-point iteration is a method for solving equations $f(x)=0$ in which the equation is first transformed algebraically to $x=g(x)$, an initial guess x_{0} for the solution is made, and then approximations x_{1}, x_{2}, \cdots, are successively computed by iteration from (see Sec. 19.2)

$$
\begin{equation*}
x_{n+1}=g\left(x_{n}\right) \quad(n=0,1, \cdots) \tag{2}
\end{equation*}
$$

Newton's method for solving equations $f(x)=0$ is an iteration

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{3}
\end{equation*}
$$

Here x_{n+1} is the x-intercept of the tangent of the curve $y=f(x)$ at the point x_{n}. This method is of second order (Theorem 2, Sec. 19.2). If we replace f^{\prime} in (3) by a difference quotient (geometrically: we replace the tangent by a secant), we obtain the secant method; see (10) in Sec. 19.2. For the bisection method (which converges slowly) and the method of false position, see Problem Set 19.2.

Polynomial interpolation means the determination of a polynomial $p_{n}(x)$ such that $p_{n}\left(x_{j}\right)=f_{j}$, where $j=0, \cdots, n$ and $\left(x_{0}, f_{0}\right), \cdots,\left(x_{n}, f_{n}\right)$ are measured or observed values, values of a function, etc. $p_{n}(x)$ is called an interpolation polynomial. For given data, $p_{n}(x)$ of degree n (or less) is unique. However, it can be written in different forms, notably in Lagrange's form (4), Sec. 19.3, or in Newton's divided difference form (10), Sec. 19.3, which requires fewer operations. For regularly spaced $x_{0}, x_{1}=x_{0}+h, \cdots, x_{n}=x_{0}+n h$ the latter becomes Newton's forward difference formula (formula (14) in Sec. 19.3):

$$
\begin{equation*}
f(x) \approx p_{n}(x)=f_{0}+r \Delta f_{0}+\cdots+\frac{r(r-1) \cdots(r-n+1)}{n!} \Delta^{n} f_{0} \tag{4}
\end{equation*}
$$

where $r=\left(x-x_{0}\right) / h$ and the forward differences are $\Delta f_{j}=f_{j+1}-f_{j}$ and

$$
\Delta^{k} f_{j}=\Delta^{k-1} f_{j+1}-\Delta^{k-1} f_{j} \quad(k=2,3, \cdots)
$$

A similar formula is Newton's backward difference interpolation formula (formula (18) in Sec. 19.3).

Interpolation polynomials may become numerically unstable as n increases, and instead of interpolating and approximating by a single high-degree polynomial it is preferable to use a cubic spline $g(x)$, that is, a twice continuously differentiable interpolation function [thus, $g\left(x_{j}\right)=f_{j}$], which in each subinterval $x_{j} \leqq x \leqq x_{j+1}$ consists of a cubic polynomial $q_{j}(x)$; see Sec. 19.4.

Simpson's rule of numeric integration is [see (7), Sec. 19.5]
(5) $\int_{a}^{b} f(x) d x \approx \frac{h}{3}\left(f_{0}+4 f_{1}+2 f_{2}+4 f_{3}+\cdots+2 f_{2 m-2}+4 f_{2 m-1}+f_{2 m}\right)$
with equally spaced nodes $x_{j}=x_{0}+j h, j=1, \cdots, 2 m, h=(b-a) /(2 m)$, and $f_{j}=f\left(x_{j}\right)$. It is simple but accurate enough for many applications. Its degree of precision is DP $=3$ because the error (8), Sec. 19.5, involves h^{4}. A more practical error estimate is (10), Sec. 19.5,

$$
\epsilon_{h / 2}=\frac{1}{15}\left(J_{h / 2}-J_{h}\right),
$$

obtained by first computing with step h, then with step $h / 2$, and then taking $\frac{1}{15}$ of the difference of the results.

Simpson's rule is the most important of the Newton-Cotes formulas, which are obtained by integrating Lagrange interpolation polynomials, linear ones for the trapezoidal rule (2), Sec. 19.5, quadratic for Simpson's rule, cubic for the threeeights rule (see the Chap. 19 Review Problems), etc.

Adaptive integration (Sec. 19.5, Example 6) is integration that adjusts ("adapts") the step (automatically) to the variability of $f(x)$.

Romberg integration (Team Project 26, Problem Set 19.5) starts from the trapezoidal rule (2), Sec. 19.5, with $h, h / 2, h / 4$, etc. and improves results by systematically adding error estimates.

Gauss integration (11), Sec. 19.5, is important because of its great accuracy ($\mathrm{DP}=2 n-1$, compared to Newton-Cotes's $\mathrm{DP}=n-1$ or n). This is achieved by an optimal choice of the nodes, which are not equally spaced; see Table 19.7, Sec. 19.5.

Numeric differentiation is discussed at the end of Sec. 19.5. (Its main application (to differential equations) follows in Chap. 21.)

chapter 20

Numeric Linear Algebra

This chapter deals with two main topics. The first topic is how to solve linear systems of equations numerically. We start with Gauss elimination, which may be familiar to some readers, but this time in an algorithmic setting with partial pivoting. Variants of this method (Doolittle, Crout, Cholesky, Gauss-Jordan) are discussed in Sec. 20.2. All these methods are direct methods, that is, methods of numerics where we know in advance how many steps they will take until they arrive at a solution. However, small pivots and roundoff error magnification may produce nonsensical results, such as in the Gauss method. A shift occurs in Sec. 20.3, where we discuss numeric iteration methods or indirect methods to address our first topic. Here we cannot be totally sure how many steps will be needed to arrive at a good answer. Several factors-such as how far is the starting value from our initial solution, how is the problem structure influencing speed of convergence, how accurate would we like our result to be-determine the outcome of these methods. Moreover, our computation cycle may not converge. Gauss-Seidel iteration and Jacobi iteration are discussed in Sec. 20.3. Section 20.4 is at the heart of addressing the pitfalls of numeric linear algebra. It is concerned with problems that are ill-conditioned. We learn to estimate how "bad" such a problem is by calculating the condition number of its matrix.

The second topic (Secs. 20.6-20.9) is how to solve eigenvalue problems numerically. Eigenvalue problems appear throughout engineering, physics, mathematics, economics, and many areas. For large or very large matrices, determining the eigenvalues is difficult as it involves finding the roots of the characteristic equations, which are high-degree polynomials. As such, there are different approaches to tackling this problem. Some methods, such as Gerschgorin's method and Collatz's method only provide a range in which eigenvalues lie and thus are known as inclusion methods. Others such as tridiagonalization and QR-factorization actually find all the eigenvalues. The area is quite ingeneous and should be fascinating to the reader.

COMMENT. This chapter is independent of Chap. 19 and can be studied immediately after Chap. 7 or 8.

Prerequisite: Secs. 7.1, 7.2, 8.1.
Sections that may be omitted in a shorter course: 20.4, 20.5, 20.9.
References and Answers to Problems: App. 1 Part E, App. 2.

20.1 Linear Systems: Gauss Elimination

The basic method for solving systems of linear equations by Gauss elimination and back substitution was explained in Sec. 7.3. If you covered Sec. 7.3, you may wonder why we cover Gauss elimination again. The reason is that here we cover Gauss elimination in the
setting of numerics and introduce new material such as pivoting, row scaling, and operation count. Furthermore, we give an algorithmic representation of Gauss elimination in Table 20.1 that can be readily converted into software. We also show when Gauss elimination runs into difficulties with small pivots and what to do about it. The reader should pay close attention to the material as variants of Gauss elimination are covered in Sec. 20.2 and, furthermore, the general problem of solving linear systems is the focus of the first half of this chapter.

A linear system of n equations in n unknowns x_{1}, \cdots, x_{n} is a set of equations $\mathrm{E}_{1}, \cdots, \mathrm{E}_{n}$ of the form

$$
\begin{array}{ll}
\mathrm{E}_{1}: & a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1} \\
\mathrm{E}_{2}: & a_{21} x_{1}+\cdots+a_{2 n} x_{n}=b_{2} \tag{1}\\
& \cdot \cdots \cdot \cdots \cdot \cdots \cdot a_{n n} x_{n}=b_{n}
\end{array}
$$

where the coefficients $a_{j k}$ and the b_{j} are given numbers. The system is called homogeneous if all the b_{j} are zero; otherwise it is called nonhomogeneous. Using matrix multiplication (Sec. 7.2), we can write (1) as a single vector equation

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{2}
\end{equation*}
$$

where the coefficient matrix $\mathbf{A}=\left[a_{j k}\right]$ is the $n \times n$ matrix

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdot & \cdot & \cdots & \cdot \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], \quad \text { and } \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]
$$

are column vectors. The following matrix $\widetilde{\mathbf{A}}$ is called the augmented matrix of the system (1):

$$
\widetilde{\mathbf{A}}=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{b}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & \cdots & a_{1 n} & b_{1} \\
a_{21} & \cdots & a_{2 n} & b_{2} \\
\cdot & \cdots & \cdot & \cdot \\
a_{n 1} & \cdots & a_{n n} & b_{n}
\end{array}\right]
$$

A solution of (1) is a set of numbers x_{1}, \cdots, x_{n} that satisfy all the n equations, and a solution vector of (1) is a vector \mathbf{x} whose components constitute a solution of (1).

The method of solving such a system by determinants (Cramer's rule in Sec. 7.7) is not practical, even with efficient methods for evaluating the determinants.

A practical method for the solution of a linear system is the so-called Gauss elimination, which we shall now discuss (proceeding independently of Sec. 7.3).

Gauss Elimination

This standard method for solving linear systems (1) is a systematic process of elimination that reduces (1) to triangular form because the system can then be easily solved by back substitution. For instance, a triangular system is

$$
\begin{aligned}
3 x_{1}+5 x_{2}+2 x_{3}= & 8 \\
8 x_{2}+2 x_{3}= & -7 \\
6 x_{3}= & 3
\end{aligned}
$$

and back substitution gives $x_{3}=\frac{3}{6}=\frac{1}{2}$ from the third equation, then

$$
x_{2}=\frac{1}{8}\left(-7-2 x_{3}\right)=-1
$$

from the second equation, and finally from the first equation

$$
x_{1}=\frac{1}{3}\left(8-5 x_{2}-2 x_{3}\right)=4
$$

How do we reduce a given system (1) to triangular form? In the first step we eliminate x_{1} from equations E_{2} to E_{n} in (1). We do this by adding (or subtracting) suitable multiples of E_{1} to (from) equations $\mathrm{E}_{2}, \cdots, \mathrm{E}_{n}$ and taking the resulting equations, call them $\mathrm{E}_{2}^{*}, \cdots, \mathrm{E}_{n}^{*}$ as the new equations. The first equation, E_{1}, is called the pivot equation in this step, and a_{11} is called the pivot. This equation is left unaltered. In the second step we take the new second equation E_{2}^{*} (which no longer contains x_{1}) as the pivot equation and use it to eliminate $\boldsymbol{x}_{\mathbf{2}}$ from E_{3}^{*} to E_{n}^{*}. And so on. After $n-1$ steps this gives a triangular system that can be solved by back substitution as just shown. In this way we obtain precisely all solutions of the given system (as proved in Sec. 7.3).

The pivot $a_{k k}$ (in step k) must be different from zero and should be large in absolute value to avoid roundoff magnification by the multiplication in the elimination. For this we choose as our pivot equation one that has the absolutely largest $a_{j k}$ in column k on or below the main diagonal (actually, the uppermost if there are several such equations). This popular method is called partial pivoting. It is used in CASs (e.g., in Maple).

Partial pivoting distinguishes it from total pivoting, which involves both row and column interchanges but is hardly used in practice.

Let us illustrate this method with a simple example.

EXAMPLE 1 Gauss Elimination. Partial Pivoting

Solve the system

$$
\begin{array}{rr}
\mathrm{E}_{1}: & 8 x_{2}+2 x_{3}=-7 \\
\mathrm{E}_{2}: & 3 x_{1}+5 x_{2}+2 x_{3}=8 \\
\mathrm{E}_{3}: & 6 x_{1}+2 x_{2}+8 x_{3}=26 .
\end{array}
$$

Solution. We must pivot since E_{1} has no x_{1}-term. In Column 1, equation E_{3} has the largest coefficient. Hence we interchange E_{1} and E_{3},

$$
\begin{aligned}
6 x_{1}+2 x_{2}+8 x_{3}= & 26 \\
3 x_{1}+5 x_{2}+2 x_{3}= & 8 \\
8 x_{2}+2 x_{3}= & -7 .
\end{aligned}
$$

Step 1. Elimination of x_{1}

It would suffice to show the augmented matrix and operate on it. We show both the equations and the augmented matrix. In the first step, the first equation is the pivot equation. Thus

$$
\begin{aligned}
\text { Pivot } 6 \longrightarrow 6 x_{1}+2 x_{2}+8 x_{3} & =26 \\
\text { Eliminate } \longrightarrow 3 x_{1}+5 x_{2}+2 x_{3} & =8 \\
8 x_{2}+2 x_{3} & =-7
\end{aligned} \quad\left[\begin{array}{lll:r}
6 & 2 & 8 & 26 \\
3 & 5 & 2 & 8 \\
0 & 8 & 2 & -7
\end{array}\right] .
$$

To eliminate x_{1} from the other equations (here, from the second equation), do:
Subtract $\frac{3}{6}=\frac{1}{2}$ times the pivot equation from the second equation.
The result is

$$
\begin{array}{r}
6 x_{1}+2 x_{2}+8 x_{3}=26 \\
4 x_{2}-2 x_{3}=-5 \\
8 x_{2}+2 x_{3}=-7
\end{array} \quad\left[\begin{array}{rrr:r}
6 & 2 & 8 & 26 \\
0 & 4 & -2 & -5 \\
0 & 8 & 2 & -7
\end{array}\right] .
$$

Step 2. Elimination of x_{2}
The largest coefficient in Column 2 is 8 . Hence we take the new third equation as the pivot equation, interchanging equations 2 and 3 ,

To eliminate x_{2} from the third equation, do:
Subtract $\frac{1}{2}$ times the pivot equation from the third equation.
The resulting triangular system is shown below. This is the end of the forward elimination. Now comes the back substitution

Back substitution. Determination of x_{3}, x_{2}, x_{1}
The triangular system obtained in Step 2 is

$$
\begin{aligned}
6 x_{1}+2 x_{2}+8 x_{3} & =26 \\
8 x_{2}+2 x_{3} & =-7 \\
-3 x_{3} & =-\frac{3}{2}
\end{aligned} \quad\left[\begin{array}{rrr:r}
6 & 2 & 8 & 26 \\
0 & 8 & 2 & -7 \\
0 & 0 & -3 & -\frac{3}{2}
\end{array}\right] .
$$

From this system, taking the last equation, then the second equation, and finally the first equation, we compute the solution

$$
\begin{aligned}
& x_{3}=\frac{1}{2} \\
& x_{2}=\frac{1}{8}\left(-7-2 x_{3}\right)=-1 \\
& x_{1}=\frac{1}{6}\left(26-2 x_{2}-8 x_{3}\right)=4 .
\end{aligned}
$$

This agrees with the values given above, before the beginning of the example.

The general algorithm for the Gauss elimination is shown in Table 20.1. To help explain the algorithm, we have numbered some of its lines. b_{j} is denoted by $a_{j, n+1}$, for uniformity. In lines 1 and 2 we look for a possible pivot. [For $k=1$ we can always find one; otherwise x_{1} would not occur in (1).] In line 2 we do pivoting if necessary, picking an $a_{j k}$ of greatest absolute value (the one with the smallest j if there are several) and interchange the
corresponding rows. If $\left|a_{k k}\right|$ is greatest, we do no pivoting. $m_{j k}$ in line 4 suggests multiplier, since these are the factors by which we have to multiply the pivot equation E_{k}^{*} in Step k before subtracting it from an equation E_{j}^{*} below E_{k}^{*} from which we want to eliminate x_{k}. Here we have written E_{k}^{*} and E_{j}^{*} to indicate that after Step 1 these are no longer the equations given in (1), but these underwent a change in each step, as indicated in line 5. Accordingly, $a_{j k}$ etc. in all lines refer to the most recent equations, and $j \geqq k$ in line 1 indicates that we leave untouched all the equations that have served as pivot equations in previous steps. For $p=k$ in line 5 we get 0 on the right, as it should be in the elimination,

$$
a_{j k}-m_{j k} a_{k k}=a_{j k}-\frac{a_{j k}}{a_{k k}} a_{k k}=0
$$

In line 3 , if the last equation in the triangular system is $0=b_{n}^{*} \neq 0$, we have no solution. If it is $0=b_{n}^{*}=0$, we have no unique solution because we then have fewer equations than unknowns.

EXAMPLE 2 Gauss Elimination in Table 20.1, Sample Computation

In Example 1 we had $a_{11}=0$, so that pivoting was necessary. The greatest coefficient in Column 1 was a_{31}. Thus $\tilde{j}=3$ in line 2, and we interchanged E_{1} and E_{3}. Then in lines 4 and 5 we computed $m_{21}=\frac{3}{6}=\frac{1}{2}$ and

$$
a_{22}=5-\frac{1}{2} \cdot 2=4, \quad a_{23}=2-\frac{1}{2} \cdot 8=-2, \quad a_{24}=8-\frac{1}{2} \cdot 26=-5,
$$

and then $m_{31}=\frac{0}{6}=0$, so that the third equation $8 x_{2}+2 x_{3}=-7$ did not change in Step 1. In Step $2(k=2)$ we had 8 as the greatest coefficient in Column 2, hence $\tilde{j}=3$. We interchanged equations 2 and 3 , computed $m_{32}=-\frac{4}{8}=-\frac{1}{2}$ in line 5 , and the $a_{33}=-2-\frac{1}{2} \cdot 2=-3, a_{34}=-5-\frac{1}{2}(-7)=-\frac{3}{2}$. This produced the triangular form used in the back substitution.

If $a_{k k}=0$ in Step k, we must pivot. If $\left|a_{k k}\right|$ is small, we should pivot because of roundoff error magnification that may seriously affect accuracy or even produce nonsensical results.

EXAMPLE 3 Difficulty with Small Pivots

The solution of the system

$$
\begin{aligned}
& 0.0004 x_{1}+1.402 x_{2}=1.406 \\
& 0.4003 x_{1}-1.502 x_{2}=2.501
\end{aligned}
$$

is $x_{1}=10, x_{2}=1$. We solve this system by the Gauss elimination, using four-digit floating-point arithmetic. (4D is for simplicity. Make an 8D-arithmetic example that shows the same.)
(a) Picking the first of the given equations as the pivot equation, we have to multiply this equation by $m=0.4003 / 0.0004=1001$ and subtract the result from the second equation, obtaining

$$
-1405 x_{2}=-1404
$$

Hence $x_{2}=-1404 /(-1405)=0.9993$, and from the first equation, instead of $x_{1}=10$, we get

$$
x_{1}=\frac{1}{0.0004}(1.406-1.402 \cdot 0.9993)=\frac{0.005}{0.0004}=12.5
$$

This failure occurs because $\left|a_{11}\right|$ is small compared with $\left|a_{12}\right|$, so that a small roundoff error in x_{2} leads to a large error in x_{1}.
(b) Picking the second of the given equations as the pivot equation, we have to multiply this equation by $0.0004 / 0.4003=0.0009993$ and subtract the result from the first equation, obtaining

$$
1.404 x_{2}=1.404
$$

Hence $x_{2}=1$, and from the pivot equation $x_{1}=10$. This success occurs because $\left|a_{21}\right|$ is not very small compared to $\left|a_{22}\right|$, so that a small roundoff error in x_{2} would not lead to a large error in x_{1}. Indeed, for instance, if we had the value $x_{2}=1.002$, we would still have from the pivot equation the good value $x_{1}=(2.501+1.505) / 0.4003=10.01$.

Table 20.1 Gauss Elimination

ALGORITHM GAUSS ($\left.\widetilde{\mathbf{A}}=\left[\begin{array}{ll}a_{j k}\end{array}\right]=\left[\begin{array}{ll}\mathbf{A} & \mathbf{b}\end{array}\right]\right)$

This algorithm computes a unique solution $\mathbf{x}=\left[x_{j}\right]$ of the system (1) or indicates that (1) has no unique solution.

INPUT: Augmented $n \times(n+1)$ matrix $\widetilde{\mathbf{A}}=\left[a_{j k}\right]$, where $a_{j, n+1}=b_{j}$
OUTPUT: Solution $\mathbf{x}=\left[x_{j}\right]$ of (1) or message that the system (1) has no unique solution
For $k=1, \cdots, n-1$, do:
1

$$
m=k
$$

For $j=k+1, \cdots, n$, do:

$$
\left.\right|_{\text {End }} \text { If }\left(\left|a_{m k}\right|<\left|a_{j k}\right|\right) \text { then } m=j
$$

If $a_{m k}=0$ then OUTPUT "No unique solution exists" Stop
[Procedure completed unsuccessfully]
2
3
Else exchange row k and row m
If $a_{n n}=0$ then OUTPUT "No unique solution exists." Stop
Else
4 For $j=k+1, \cdots, n$, do:

$$
m_{j k}:=\frac{a_{j k}}{a_{k k}}
$$

5

$$
\begin{aligned}
& \text { For } p=k+1, \cdots, n+1, \text { do: } \\
& \left.\right|_{\text {End }}
\end{aligned}
$$

End
End
6

$$
x_{n}=\frac{a_{n, n+1}}{a_{n n}} \quad[\text { Start back substitution }]
$$

For $i=n-1, \cdots, 1$, do:
7

$$
x_{i}=\frac{1}{a_{i i}}\left(a_{i, n+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}\right)
$$

End
OUTPUT $\mathbf{x}=\left[x_{j}\right]$. Stop

Error estimates for the Gauss elimination are discussed in Ref. [E5] listed in App. 1.

Row scaling means the multiplication of each Row j by a suitable scaling factor s_{j}. It is done in connection with partial pivoting to get more accurate solutions. Despite much research (see Refs. [E9], [E24] in App. 1) and the proposition of several principles, scaling is still not well understood. As a possibility, one can scale for pivot choice only (not in the calculation, to avoid additional roundoff) and take as first pivot the entry $a_{j 1}$ for which $\left|a_{j 1}\right| /\left|A_{j}\right|$ is largest; here A_{j} is an entry of largest absolute value in Row j. Similarly in the further steps of the Gauss elimination.

For instance, for the system

$$
\begin{aligned}
4.0000 x_{1}+14020 x_{2} & =14060 \\
0.4003 x_{1}-1.502 x_{2} & =2.501
\end{aligned}
$$

we might pick 4 as pivot, but dividing the first equation by 10^{4} gives the system in Example 3, for which the second equation is a better pivot equation.

Operation Count

Quite generally, important factors in judging the quality of a numeric method are
Amount of storage
Amount of time (\equiv number of operations)
Effect of roundoff error
For the Gauss elimination, the operation count for a full matrix (a matrix with relatively many nonzero entries) is as follows. In Step k we eliminate x_{k} from $n-k$ equations. This needs $n-k$ divisions in computing the $m_{j k}$ (line 3) and $(n-k)(n-k+1)$ multiplications and as many subtractions (both in line 4). Since we do $n-1$ steps, k goes from 1 to $n-1$ and thus the total number of operations in this forward elimination is

$$
\begin{aligned}
f(n) & =\sum_{k=1}^{n-1}(n-k)+2 \sum_{k=1}^{n-1}(n-k)(n-k+1) \quad \quad \quad \quad(\text { write } n-k=s) \\
& =\sum_{s=1}^{n-1} s+2 \sum_{s=1}^{n-1} s(s+1)=\frac{1}{2}(n-1) n+\frac{2}{3}\left(n^{2}-1\right) n \approx \frac{2}{3} n^{3}
\end{aligned}
$$

where $2 n^{3} / 3$ is obtained by dropping lower powers of n. We see that $f(n)$ grows about proportional to n^{3}. We say that $f(n)$ is of order n^{3} and write

$$
f(n)=O\left(n^{3}\right)
$$

where O suggests order. The general definition of O is as follows. We write

$$
f(n)=O(h(n))
$$

if the quotients $|f(n) / h(n)|$ and $|h(n) / f(n)|$ remain bounded (do not trail off to infinity) as $n \rightarrow \infty$. In our present case, $h(n)=n^{3}$ and, indeed, $f(n) / n^{3} \rightarrow \frac{2}{3}$ because the omitted terms divided by n^{3} go to zero as $n \rightarrow \infty$.

In the back substitution of x_{i} we make $n-i$ multiplications and as many subtractions, as well as 1 division. Hence the number of operations in the back substitution is

$$
b(n)=2 \sum_{i=1}^{n}(n-i)+n=2 \sum_{s=1}^{n} s+n=n(n+1)+n=n^{2}+2 n=O\left(n^{2}\right)
$$

We see that it grows more slowly than the number of operations in the forward elimination of the Gauss algorithm, so that it is negligible for large systems because it is smaller by a factor n, approximately. For instance, if an operation takes 10^{-9} sec, then the times needed are:

Algorithm	$n=1000$	$n=10000$
Elimination	0.7 sec	11 min
Back substitution	0.001 sec	0.1 sec

APPLICATIONS of linear systems see Secs. 7.1 and 8.2.

1-3 GEOMETRIC INTERPRETATION

Solve graphically and explain geometrically.

1. $x_{1}-4 x_{2}=20.1$

$$
3 x_{1}+5 x_{2}=5.9
$$

2. $-5.00 x_{1}+8.40 x_{2}=0$

$$
10.25 x_{1}-17.22 x_{2}=0
$$

3. $7.2 x_{1}-3.5 x_{2}=16.0$
$-14.4 x_{1}+7.0 x_{2}=31.0$

4-16 GAUSS ELIMINATION

Solve the following linear systems by Gauss elimination, with partial pivoting if necessary (but without scaling). Show the intermediate steps. Check the result by substitution. If no solution or more than one solution exists, give a reason.
4. $6 x_{1}+x_{2}=-3$
$4 x_{1}-2 x_{2}=6$
5. $2 x_{1}-8 x_{2}=-4$
$3 x_{1}+x_{2}=7$
6. $25.38 x_{1}-15.48 x_{2}=30.60$
$-14.10 x_{1}+8.60 x_{2}=-17.00$
7. $-3 x_{1}+6 x_{2}-9 x_{3}=-46.725$

$$
x_{1}-4 x_{2}+3 x_{3}=19.571
$$

$$
2 x_{1}+5 x_{2}-7 x_{3}=-20.073
$$

8. $5 x_{1}+3 x_{2}+x_{3}=2$

$$
-4 x_{2}+8 x_{3}=-3
$$

$$
10 x_{1}-6 x_{2}+26 x_{3}=0
$$

9. $6 x_{2}+13 x_{3}=137.86$

$$
6 x_{1} \quad-8 x_{3}=-85.88
$$

$$
13 x_{1}-8 x_{2} \quad=178.54
$$

10. $4 x_{1}+4 x_{2}+2 x_{3}=0$
$3 x_{1}-x_{2}+2 x_{3}=0$
$3 x_{1}+7 x_{2}+x_{3}=0$
11. $3.4 x_{1}-6.12 x_{2}-2.72 x_{3}=0$
$-x_{1}+1.80 x_{2}+0.80 x_{3}=0$
$2.7 x_{1}-4.86 x_{2}+2.16 x_{3}=0$
12. $5 x_{1}+3 x_{2}+x_{3}=2$
$-4 x_{2}+8 x_{3}=-3$
$10 x_{1}-6 x_{2}+26 x_{3}=0$
13. $3 x_{2}+5 x_{3}=1.20736$
$3 x_{1}-4 x_{2}=-2.34066$
$5 x_{1}+6 x_{3}=-0.329193$
14. $-47 x_{1}+4 x_{2}-7 x_{3}=-118$
$19 x_{1}-3 x_{2}+2 x_{3}=43$
$-15 x_{1}+5 x_{2}=-25$
15. $2.2 x_{2}+1.5 x_{3}-3.3 x_{4}=-9.30$
$0.2 x_{1}+1.8 x_{2}+4.2 x_{4}=9.24$
$-x_{1}-3.1 x_{2}+2.5 x_{3} \quad=-8.70$
$0.5 x_{1}-3.8 x_{3}+1.5 x_{4}=11.94$
16. $3.2 x_{1}+1.6 x_{2}=-0.8$ $1.6 x_{1}-0.8 x_{2}+2.4 x_{3}=16.0$
$2.4 x_{2}-4.8 x_{3}+3.6 x_{4}=-39.0$
$3.6 x_{3}+2.4 x_{4}=10.2$
17. CAS EXPERIMENT. Gauss Elimination. Write a program for the Gauss elimination with pivoting. Apply it to Probs. 13-16. Experiment with systems whose coefficient determinant is small in absolute value. Also investigate the performance of your program for larger systems of your choice, including sparse systems.
18. TEAM PROJECT. Linear Systems and Gauss Elimination. (a) Existence and uniqueness. Find a and b such that $a x_{1}+x_{2}=b, x_{1}+x_{2}=3$ has (i) a unique solution, (ii) infinitely many solutions, (iii) no solutions.
(b) Gauss elimination and nonexistence. Apply the Gauss elimination to the following two systems and
compare the calculations step by step. Explain why the elimination fails if no solution exists.

$$
\begin{array}{rr}
x_{1}+x_{2}+x_{3}= & 3 \\
4 x_{1}+2 x_{2}-x_{3}= & 5 \\
9 x_{1}+5 x_{2}-x_{3}= & 13 \\
x_{1}+x_{2}+x_{3}= & 3 \\
4 x_{1}+2 x_{2}-x_{3}= & 5 \\
9 x_{1}+5 x_{2}-x_{3}= & 12 .
\end{array}
$$

(c) Zero determinant. Why may a computer program give you the result that a homogeneous linear system has only the trivial solution although you know its coefficient determinant to be zero?
(d) Pivoting. Solve System (A) (below) by the Gauss elimination first without pivoting. Show that for any fixed machine word length and sufficiently small $\epsilon>0$ the computer gives $x_{2}=1$ and then $x_{1}=0$. What is the exact solution? Its limit as $\epsilon \rightarrow 0$? Then solve the system by the Gauss elimination with pivoting. Compare and comment.
(e) Pivoting. Solve System (B) by the Gauss elimination and three-digit rounding arithmetic, choosing (i) the first equation, (ii) the second equation as pivot equation. (Remember to round to 3 S after each operation before doing the next, just as would be done on a computer!) Then use four-digit rounding arithmetic in those two calculations. Compare and comment.

$$
\begin{align*}
\epsilon x_{1}+x_{2} & =1 \tag{A}\\
x_{1}+x_{2} & =2
\end{align*}
$$

(B) $4.03 x_{1}+2.16 x_{2}=-4.61$
$6.21 x_{1}+3.35 x_{2}=-7.19$

20.2 Linear Systems: LU-Factorization, Matrix Inversion

We continue our discussion of numeric methods for solving linear systems of n equations in n unknowns x_{1}, \cdots, x_{n},

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
$$

where $\mathbf{A}=\left[a_{j k}\right]$ is the $n \times n$ given coefficient matrix and $\mathbf{x}^{\top}=\left[x_{1}, \cdots, x_{n}\right]$ and $\mathbf{b}^{\top}=\left[b_{1}, \cdots, b_{n}\right]$. We present three related methods that are modifications of the Gauss
elimination, which require fewer arithmetic operations. They are named after Doolittle, Crout, and Cholesky and use the idea of the LU-factorization of \mathbf{A}, which we explain first.

An LU-factorization of a given square matrix \mathbf{A} is of the form

$$
\begin{equation*}
\mathbf{A}=\mathbf{L} \mathbf{U} \tag{2}
\end{equation*}
$$

where \mathbf{L} is lower triangular and \mathbf{U} is upper triangular. For example,

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 3 \\
8 & 5
\end{array}\right]=\mathbf{L} \mathbf{U}=\left[\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{rr}
2 & 3 \\
0 & -7
\end{array}\right]
$$

It can be proved that for any nonsingular matrix (see Sec. 7.8) the rows can be reordered so that the resulting matrix \mathbf{A} has an LU-factorization (2) in which \mathbf{L} turns out to be the matrix of the multipliers $m_{j k}$ of the Gauss elimination, with main diagonal $1, \cdots, 1$, and \mathbf{U} is the matrix of the triangular system at the end of the Gauss elimination. (See Ref. [E5], pp. 155-156, listed in App. 1.)

The crucial idea now is that \mathbf{L} and \mathbf{U} in (2) can be computed directly, without solving simultaneous equations (thus, without using the Gauss elimination). As a count shows, this needs about $n^{3} / 3$ operations, about half as many as the Gauss elimination, which needs about $2 n^{3} / 3$ (see Sec. 20.1). And once we have (2), we can use it for solving $\mathbf{A x}=\mathbf{b}$ in two steps, involving only about n^{2} operations, simply by noting that $\mathbf{A x}=\mathbf{L} \mathbf{U x}=\mathbf{b}$ may be written
(a) $\mathbf{L y}=\mathbf{b}$
where
(b) $\mathbf{U x}=\mathbf{y}$
and solving first (3a) for \mathbf{y} and then (3b) for \mathbf{x}. Here we can require that \mathbf{L} have main diagonal $1, \cdots, 1$ as stated before; then this is called Doolittle's method. ${ }^{1}$ Both systems (3a) and (3b) are triangular, so we can solve them as in the back substitution for the Gauss elimination.

A similar method, Crout's method, ${ }^{2}$ is obtained from (2) if \mathbf{U} (instead of \mathbf{L}) is required to have main diagonal $1, \cdots, 1$. In either case the factorization (2) is unique.

EXAMPLE 1 Doolittle's Method

Solve the system in Example 1 of Sec. 20.1 by Doolittle's method.
Solution. The decomposition (2) is obtained from

$$
\mathbf{A}=\left[a_{j k}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{lll}
3 & 5 & 2 \\
0 & 8 & 2 \\
6 & 2 & 8
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
m_{21} & 1 & 0 \\
m_{31} & m_{32} & 1
\end{array}\right]\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

[^4]by determining the $m_{j k}$ and $u_{j k}$, using matrix multiplication. By going through \mathbf{A} row by row we get successively

$a_{11}=3=1 \cdot u_{11}=u_{11}$	$a_{12}=5=1 \cdot u_{12}=u_{12}$	$a_{13}=2=1 \cdot u_{13}=u_{13}$
$a_{21}=0=m_{21} u_{11}$	$a_{22}=8=m_{21} u_{12}+u_{22}$	$a_{23}=2=m_{21} u_{13}+u_{23}$
$m_{21}=0$	$u_{22}=8$	$u_{23}=2$
$a_{31}=6=m_{31} u_{11}$	$a_{32}=2=m_{31} u_{12}+m_{32} u_{22}$	$a_{33}=8=m_{31} u_{13}+m_{32} u_{23}+u_{33}$
$=m_{31} \cdot 3$	$=2 \cdot 5+m_{32} \cdot 8$	$=2 \cdot 2-1 \cdot 2+u_{33}$
$m_{31}=2$	$m_{32}=-1$	$u_{33}=6$

Thus the factorization (2) is

$$
\left[\begin{array}{lll}
3 & 5 & 2 \\
0 & 8 & 2 \\
6 & 2 & 8
\end{array}\right]=\mathbf{L} \mathbf{U}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 5 & 2 \\
0 & 8 & 2 \\
0 & 0 & 6
\end{array}\right] .
$$

We first solve $\mathbf{L y}=\mathbf{b}$, determining $y_{1}=8$, then $y_{2}=-7$, then y_{3} from $2 y_{1}-y_{2}+y_{3}=16+7+y_{3}=26$; thus (note the interchange in \mathbf{b} because of the interchange in \mathbf{A} !)

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{r}
8 \\
-7 \\
26
\end{array}\right] . \quad \text { Solution } \quad \mathbf{y}=\left[\begin{array}{r}
8 \\
-7 \\
3
\end{array}\right] .
$$

Then we solve $\mathbf{U x}=\mathbf{y}$, determining $x_{3}=\frac{3}{6}$ then x_{2}, then x_{1}, that is,

$$
\left[\begin{array}{lll}
3 & 5 & 2 \\
0 & 8 & 2 \\
0 & 0 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
8 \\
-7 \\
3
\end{array}\right] . \quad \text { Solution } \quad \mathbf{x}=\left[\begin{array}{r}
4 \\
-1 \\
\frac{1}{2}
\end{array}\right] .
$$

This agrees with the solution in Example 1 of Sec. 20.1.

Our formulas in Example 1 suggest that for general n the entries of the matrices $\mathbf{L}=\left[m_{j k}\right]$ (with main diagonal $1, \cdots, 1$ and $m_{j k}$ suggesting "multiplier") and $\mathbf{U}=\left[u_{j k}\right]$ in the Doolittle method are computed from

$$
\begin{array}{ll}
u_{1 k}=a_{1 k} & k=1, \cdots, n \\
m_{j 1}=\frac{a_{j 1}}{u_{11}} & j=2, \cdots, n \\
u_{j k}=a_{j k}-\sum_{s=1}^{j-1} m_{j s} u_{s k} & k=j, \cdots, n ; \quad j \geqq 2 \\
m_{j k}=\frac{1}{u_{k k}}\left(a_{j k}-\sum_{s=1}^{k-1} m_{j s} u_{s k}\right) & j=k+1, \cdots, n ; \quad k \geqq 2 .
\end{array}
$$

Row Interchanges. Matrices, such as

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

have no LU-factorization (try!). This indicates that for obtaining an LU-factorization, row interchanges of \mathbf{A} (and corresponding interchanges in \mathbf{b}) may be necessary.

Cholesky's Method

For a symmetric, positive definite matrix \mathbf{A} (thus $\mathbf{A}=\mathbf{A}^{\top}, \mathbf{x}^{\top} \mathbf{A x}>0$ for all $\mathbf{x} \neq \mathbf{0}$) we can in (2) even choose $\mathbf{U}=\mathbf{L}^{\top}$, thus $u_{j k}=m_{k j}$ (but cannot impose conditions on the main diagonal entries). For example,

$$
\mathbf{A}=\left[\begin{array}{rrr}
4 & 2 & 14 \tag{5}\\
2 & 17 & -5 \\
14 & -5 & 83
\end{array}\right]=\mathbf{L} \mathbf{L}^{\top}=\left[\begin{array}{rrr}
2 & 0 & 0 \\
1 & 4 & 0 \\
7 & -3 & 5
\end{array}\right]\left[\begin{array}{rrr}
2 & 1 & 7 \\
0 & 4 & -3 \\
0 & 0 & 5
\end{array}\right] .
$$

The popular method of solving $\mathbf{A x}=\mathbf{b}$ based on this factorization $\mathbf{A}=\mathbf{L} \mathbf{L}^{\top}$ is called Cholesky's method. ${ }^{3}$ In terms of the entries of $\mathbf{L}=\left[l_{j k}\right]$ the formulas for the factorization are

$$
\begin{array}{ll}
l_{11}=\sqrt{a_{11}} & \\
l_{j 1}=\frac{a_{j 1}}{l_{11}} & j=2, \cdots, n \\
l_{j j}=\sqrt{a_{j j}-\sum_{s=1}^{j-1} l_{j s}^{2}} & j=2, \cdots, n \tag{6}\\
l_{p j}=\frac{1}{l_{j j}}\left(a_{p j}-\sum_{s=1}^{j-1} l_{j s} l_{p s}\right) & p=j+1, \cdots, n ; j \geqq 2 .
\end{array}
$$

If \mathbf{A} is symmetric but not positive definite, this method could still be applied, but then leads to a complex matrix \mathbf{L}, so that the method becomes impractical.

EXAMPLE 2 Cholesky's Method

Solve by Cholesky's method:

$$
\begin{aligned}
4 x_{1}+2 x_{2}+14 x_{3}= & 14 \\
2 x_{1}+17 x_{2}-5 x_{3}= & -101 \\
14 x_{1}-5 x_{2}+83 x_{3}= & 155 .
\end{aligned}
$$

[^5]Solution. From (6) or from the form of the factorization

$$
\left[\begin{array}{rrr}
4 & 2 & 14 \\
2 & 17 & -5 \\
14 & -5 & 83
\end{array}\right]=\left[\begin{array}{lll}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{lll}
l_{11} & l_{21} & l_{31} \\
0 & l_{22} & l_{32} \\
0 & 0 & l_{33}
\end{array}\right]
$$

we compute, in the given order,

$$
\begin{gathered}
l_{11}=\sqrt{a_{11}}=2 \quad l_{21}=\frac{a_{21}}{l_{11}}=\frac{2}{2}=1 \quad l_{31}=\frac{a_{31}}{l_{11}}=\frac{14}{2}=7 \\
l_{22}=\sqrt{a_{22}-l_{21}^{2}}=\sqrt{17-1}=4 \\
l_{32}=\frac{1}{l_{23}}\left(a_{32}-l_{31} l_{21}\right)=\frac{1}{4}(-5-7 \cdot 1)=-3 \\
l_{33}=\sqrt{a_{33}-l_{31}^{2}-l_{32}^{2}}=\sqrt{83-7^{2}-(-3)^{2}}=5 .
\end{gathered}
$$

This agrees with (5). We now have to solve $\mathbf{L y}=\mathbf{b}$, that is,

$$
\left[\begin{array}{rrr}
2 & 0 & 0 \\
1 & 4 & 0 \\
7 & -3 & 5
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{r}
14 \\
-101 \\
155
\end{array}\right] . \quad \text { Solution } \quad \mathbf{y}=\left[\begin{array}{r}
7 \\
-27 \\
5
\end{array}\right] .
$$

As the second step, we have to solve $\mathbf{U x}=\mathbf{L}^{\top} \mathbf{x}=\mathbf{y}$, that is,

$$
\left[\begin{array}{rrr}
2 & 1 & 7 \\
0 & 4 & -3 \\
0 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
7 \\
-27 \\
5
\end{array}\right] . \quad \text { Solution } \quad \mathbf{x}=\left[\begin{array}{r}
3 \\
-6 \\
1
\end{array}\right] .
$$

THEOREM 1

Stability of the Cholesky Factorization

The Cholesky LL'-factorization is numerically stable (as defined in Sec. 19.1).

PROOF We have $a_{j j}=l_{j 1}^{2}+l_{j 2}^{2}+\cdots+l_{j j}^{2}$ by squaring the third formula in (6) and solving it for $a_{j j}$. Hence for all $l_{j k}$ (note that $l_{j k}=0$ for $k>j$) we obtain (the inequality being trivial)

$$
l_{j k}^{2} \leqq l_{j 1}^{2}+l_{j 2}^{2}+\cdots+l_{j j}^{2}=a_{j j}
$$

That is, $l_{j k}^{2}$ is bounded by an entry of \mathbf{A}, which means stability against rounding.

Gauss-Jordan Elimination. Matrix Inversion

Another variant of the Gauss elimination is the Gauss-Jordan elimination, introduced by W. Jordan in 1920, in which back substitution is avoided by additional computations that reduce the matrix to diagonal form, instead of the triangular form in the Gauss elimination. But this reduction from the Gauss triangular to the diagonal form requires more operations than back substitution does, so that the method is disadvantageous for solving systems $\mathbf{A x}=\mathbf{b}$. But it may be used for matrix inversion, where the situation is as follows.

The inverse of a nonsingular square matrix A may be determined in principle by solving the n systems

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b}_{j} \quad(j=1, \cdots, n) \tag{7}
\end{equation*}
$$

where \mathbf{b}_{j} is the j th column of the $n \times n$ unit matrix.
However, it is preferable to produce \mathbf{A}^{-1} by operating on the unit matrix \mathbf{I} in the same way as the Gauss-Jordan algorithm, reducing \mathbf{A} to \mathbf{I}. A typical illustrative example of this method is given in Sec. 7.8.

PROBHEM SET 20.2

1-5 DOOLITTLE'S METHOD

Show the factorization and solve by Doolittle's method.

1. $4 x_{1}+5 x_{2}=14$
$12 x_{1}+14 x_{2}=36$
2. $2 x_{1}+9 x_{2}=82$
$3 x_{1}-5 x_{2}=-62$
3. $5 x_{1}+4 x_{2}+x_{3}=6.8$
$10 x_{1}+9 x_{2}+4 x_{3}=17.6$
$10 x_{1}+13 x_{2}+15 x_{3}=38.4$
4. $2 x_{1}+x_{2}+2 x_{3}=0$
$-2 x_{1}+2 x_{2}+x_{3}=0$
$x_{1}+2 x_{2}-2 x_{3}=18$
5. $3 x_{1}+9 x_{2}+6 x_{3}=4.6$
$18 x_{1}+48 x_{2}+39 x_{3}=27.2$
$9 x_{1}-27 x_{2}+42 x_{3}=9.0$
6. TEAM PROJECT. Crout's method factorizes $\mathbf{A}=\mathbf{L} \mathbf{U}$, where \mathbf{L} is lower triangular and \mathbf{U} is upper triangular with diagonal entries $u_{j j}=1, j=1, \cdots, n$.
(a) Formulas. Obtain formulas for Crout's method similar to (4).
(b) Examples. Solve Prob. 5 by Crout's method.
(c) Factor the following matrix by the Doolittle, Crout, and Cholesky methods.

$$
\left[\begin{array}{rrr}
1 & -4 & 2 \\
-4 & 25 & 4 \\
2 & 4 & 24
\end{array}\right]
$$

(d) Give the formulas for factoring a tridiagonal matrix by Crout's method.
(e) When can you obtain Crout's factorization from Doolittle's by transposition?

7-12 CHOLESKY'S METHOD

Show the factorization and solve.
7. $9 x_{1}+6 x_{2}+12 x_{3}=17.4$
$6 x_{1}+13 x_{2}+11 x_{3}=23.6$
$12 x_{1}+11 x_{2}+26 x_{3}=30.8$
8. $4 x_{1}+6 x_{2}+8 x_{3}=0$
$6 x_{1}+34 x_{2}+52 x_{3}=-160$
$8 x_{1}+52 x_{2}+129 x_{3}=-452$
9. $0.01 x_{1}+0.03 x_{3}=0.14$
$0.16 x_{2}+0.08 x_{3}=0.16$
$0.03 x_{1}+0.08 x_{2}+0.14 x_{3}=0.54$
10. $4 x_{1} \quad+2 x_{3}=1.5$
$4 x_{2}+x_{3}=4.0$
$2 x_{1}+x_{2}+2 x_{3}=2.5$
11. $x_{1}-x_{2}+3 x_{3}+2 x_{4}=15$
$-x_{1}+5 x_{2}-5 x_{3}-2 x_{4}=-35$
$3 x_{1}-5 x_{2}+19 x_{3}+3 x_{4}=94$
$2 x_{1}-2 x_{2}+3 x_{3}+21 x_{4}=1$
12. $4 x_{1}+2 x_{2}+4 x_{3}=20$
$2 x_{1}+2 x_{2}+3 x_{3}+2 x_{4}=36$
$4 x_{1}+3 x_{2}+6 x_{3}+3 x_{4}=60$
$2 x_{2}+3 x_{3}+9 x_{4}=122$
13. Definiteness. Let \mathbf{A}, \mathbf{B} be $n \times n$ and positive definite.

Are $-\mathbf{A}, \mathbf{A}^{\top}, \mathbf{A}+\mathbf{B}, \mathbf{A}-\mathbf{B}$ positive definite?
14. CAS PROJECT. Cholesky's Method. (a) Write a program for solving linear systems by Cholesky's method and apply it to Example 2 in the text, to Probs. $7-9$, and to systems of your choice.
(b) Splines. Apply the factorization part of the program to the following matrices (as they occur in (9), Sec. 19.4 (with $c_{j}=1$), in connection with splines).

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 4 & 1 \\
0 & 1 & 2
\end{array}\right], \quad\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
1 & 4 & 1 & 0 \\
0 & 1 & 4 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] .
$$

15-19 INVERSE

Find the inverse by the Gauss-Jordan method, showing the details.
15. In Prob. 1
16. In Prob. 4
17. In Team Project 6(c)
18. In Prob. 9
19. In Prob. 12
20. Rounding. For the following matrix \mathbf{A} find $\operatorname{det} \mathbf{A}$. What happens if you roundoff the given entries to (a) 5 S , (b) 4 S , (c) 3 S , (d) 2 S , (e) 1 S ? What is the practical implication of your work?

$$
\mathbf{A}=\left[\begin{array}{rrr}
\frac{1}{3} & \frac{1}{4} & 2 \\
-\frac{1}{9} & 1 & \frac{1}{7} \\
\frac{4}{63} & -\frac{3}{28} & \frac{13}{49}
\end{array}\right]
$$

20.3 Linear Systems: Solution by Iteration

The Gauss elimination and its variants in the last two sections belong to the direct methods for solving linear systems of equations; these are methods that give solutions after an amount of computation that can be specified in advance. In contrast, in an indirect or iterative method we start from an approximation to the true solution and, if successful, obtain better and better approximations from a computational cycle repeated as often as may be necessary for achieving a required accuracy, so that the amount of arithmetic depends upon the accuracy required and varies from case to case.

We apply iterative methods if the convergence is rapid (if matrices have large main diagonal entries, as we shall see), so that we save operations compared to a direct method. We also use iterative methods if a large system is sparse, that is, has very many zero coefficients, so that one would waste space in storing zeros, for instance, 9995 zeros per equation in a potential problem of 10^{4} equations in 10^{4} unknowns with typically only 5 nonzero terms per equation (more on this in Sec. 21.4).

Gauss-Seidel Iteration Method ${ }^{4}$

This is an iterative method of great practical importance, which we can simply explain in terms of an example.

Gauss-Seidel Iteration

We consider the linear system
(1)

$$
\begin{aligned}
x_{1}-0.25 x_{2}-0.25 x_{3} & =50 \\
-0.25 x_{1}+x_{2}-0.25 x_{4} & =50 \\
-0.25 x_{1}+x_{3}-0.25 x_{4} & =25 \\
-0.25 x_{2}-0.25 x_{3}+\quad x_{4} & =25
\end{aligned}
$$

${ }^{4}$ PHILIPP LUDWIG VON SEIDEL (1821-1896), German mathematician. For Gauss see footnote 5 in Sec. 5.4.
(Equations of this form arise in the numeric solution of PDEs and in spline interpolation.) We write the system in the form

$$
\begin{array}{ll}
x_{1}= & 0.25 x_{2}+0.25 x_{3} \\
x_{2} & =0.25 x_{1} \tag{2}\\
x_{3} & =0.25 x_{1} \\
x_{4} & =0.25 x_{4}+50 \\
+0.25 x_{4}+25 \\
x_{4} & 0.25 x_{2}+0.25 x_{3}
\end{array}
$$

These equations are now used for iteration; that is, we start from a (possibly poor) approximation to the solution, say $x_{1}^{(0)}=100, x_{2}^{(0)}=100, x_{3}^{(0)}=100, x_{4}^{(0)}=100$, and compute from (2) a perhaps better approximation

These equations (3) are obtained from (2) by substituting on the right the most recent approximation for each unknown. In fact, corresponding values replace previous ones as soon as they have been computed, so that in the second and third equations we use $x_{1}^{(1)}\left(\right.$ not $\left.x_{1}^{(0)}\right)$, and in the last equation of (3) we use $x_{2}^{(1)}$ and $x_{3}^{(1)}$ (not $x_{2}^{(0)}$ and $x_{3}^{(0)}$. Using the same principle, we obtain in the next step

$$
\begin{aligned}
& x_{1}^{(2)}=\quad 0.25 x_{2}^{(1)}+0.25 x_{3}^{(1)} \quad+50.00=93.750 \\
& x_{2}^{(2)}=0.25 x_{1}^{(2)}+0.25 x_{4}^{(1)}+50.00=90.625 \\
& x_{3}^{(2)}=0.25 x_{1}^{(2)}+0.25 x_{4}^{(1)}+25.00=65.625 \\
& x_{4}^{(2)}=\quad 0.25 x_{2}^{(2)}+0.25 x_{3}^{(2)} \quad+25.00=64.062
\end{aligned}
$$

Further steps give the values

x_{1}	x_{2}	x_{3}	x_{4}
89.062	88.281	63.281	62.891
87.891	87.695	62.695	62.598
87.598	87.549	62.549	62.524
87.524	87.512	62.512	62.506
87.506	87.503	62.503	62.502

Hence convergence to the exact solution $x_{1}=x_{2}=87.5, x_{3}=x_{4}=62.5$ (verify!) seems rather fast.
An algorithm for the Gauss-Seidel iteration is shown in Table 20.2. To obtain the algorithm, let us derive the general formulas for this iteration.

We assume that $a_{j j}=1$ for $j=1, \cdots, n$. (Note that this can be achieved if we can rearrange the equations so that no diagonal coefficient is zero; then we may divide each equation by the corresponding diagonal coefficient.) We now write

$$
\mathbf{A}=\mathbf{I}+\mathbf{L}+\mathbf{U} \quad\left(a_{j j}=1\right)
$$

where \mathbf{I} is the $n \times n$ unit matrix and \mathbf{L} and \mathbf{U} are, respectively, lower and upper triangular matrices with zero main diagonals. If we substitute (4) into $\mathbf{A x}=\mathbf{b}$, we have

$$
\mathbf{A x}=(\mathbf{I}+\mathbf{L}+\mathbf{U}) \mathbf{x}=\mathbf{b}
$$

Taking Lx and Ux to the right, we obtain, since $\mathbf{I x}=\mathbf{x}$,

$$
\begin{equation*}
\mathbf{x}=\mathbf{b}-\mathbf{L} \mathbf{x}-\mathbf{U} \mathbf{x} \tag{5}
\end{equation*}
$$

Remembering from (3) in Example 1 that below the main diagonal we took "new" approximations and above the main diagonal "old" ones, we obtain from (5) the desired iteration formulas

$$
\begin{equation*}
\left(a_{j j}=1\right) \tag{6}
\end{equation*}
$$

where $\mathbf{x}^{(m)}=\left[x_{j}^{(m)}\right]$ is the m th approximation and $\mathbf{x}^{(m+1)}=\left[x_{j}^{(m+1)}\right]$ is the $(m+1)$ st approximation. In components this gives the formula in line 1 in Table 20.2. The matrix A must satisfy $a_{j j} \neq 0$ for all j. In Table 20.2 our assumption $a_{j j}=1$ is no longer required, but is automatically taken care of by the factor $1 / a_{j j}$ in line 1 .

Table 20.2 Gauss-Seidel Iteration

ALGORITHM GAUSS-SEIDEL (A, $\mathbf{b}, \mathbf{x}^{(\mathbf{0})}, \boldsymbol{\epsilon}, N$)
This algorithm computes a solution \mathbf{x} of the system $\mathbf{A x}=\mathbf{b}$ given an initial approximation $\mathbf{x}^{(\mathbf{0})}$, where $\mathbf{A}=\left[a_{j k}\right]$ is an $n \times n$ matrix with $a_{j j} \neq 0, j=1, \cdots, n$.

INPUT: A, \mathbf{b}, initial approximation $\mathbf{x}^{(0)}$, tolerance $\epsilon>0$, maximum number of iterations N

OUTPUT: Approximate solution $\mathbf{x}^{(m)}=\left[x_{j}^{(m)}\right]$ or failure message that $\mathbf{x}^{(N)}$ does not satisfy the tolerance condition

For $m=0, \cdots, N-1$, do:
For $j=1, \cdots, n$, do:

1
$x_{j}^{(m+1)}=\frac{1}{a_{j j}}\left(b_{j}-\sum_{k=1}^{j-1} a_{j k} x_{k}^{(m+1)}-\sum_{k=j+1}^{n} a_{j k} x_{k}^{(m)}\right)$
End
If $\max _{j}\left|x_{j}^{(m+1)}-x_{j}^{(m)}\right|<\epsilon\left|x_{j}^{(m+1)}\right|$ then OUTPUT $\mathbf{x}^{(m+1)}$. Stop
[Procedure completed successfully]
End
OUTPUT: "No solution satisfying the tolerance condition obtained after N iteration steps." Stop [Procedure completed unsuccessfully]
End GAUSS-SEIDEL

Convergence and Matrix Norms

An iteration method for solving $\mathbf{A x}=\mathbf{b}$ is said to converge for an initial $\mathbf{x}^{(0)}$ if the corresponding iterative sequence $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \cdots$ converges to a solution of the given system. Convergence depends on the relation between $\mathbf{x}^{(m)}$ and $\mathbf{x}^{(m+1)}$. To get this relation for the Gauss-Seidel method, we use (6). We first have

$$
(\mathbf{I}+\mathbf{L}) \mathbf{x}^{(m+1)}=\mathbf{b}-\mathbf{U} \mathbf{x}^{(m)}
$$

and by multiplying by $(\mathbf{I}+\mathbf{L})^{-1}$ from the left,

$$
\begin{equation*}
\mathbf{x}^{(m+1)}=\mathbf{C} \mathbf{x}^{(m)}+(\mathbf{I}+\mathbf{L})^{-1} \mathbf{b} \quad \text { where } \quad \mathbf{C}=-(\mathbf{I}+\mathbf{L})^{-1} \mathbf{U} \tag{7}
\end{equation*}
$$

The Gauss-Seidel iteration converges for every $\mathbf{x}^{(\mathbf{0})}$ if and only if all the eigenvalues (Sec. 8.1) of the "iteration matrix" $\mathbf{C}=\left[c_{j k}\right]$ have absolute value less than 1. (Proof in Ref. [E5], p. 191, listed in App. 1.)

CAUTION! If you want to get \mathbf{C}, first divide the rows of \mathbf{A} by $a_{j j}$ to have main diagonal $1, \cdots, 1$. If the spectral radius of \mathbf{C} (= maximum of those absolute values) is small, then the convergence is rapid.

Sufficient Convergence Condition. A sufficient condition for convergence is

$$
\begin{equation*}
\|\mathbf{C}\|<1 \tag{8}
\end{equation*}
$$

Here $\|\mathbf{C}\|$ is some matrix norm, such as

$$
\begin{equation*}
\|\mathbf{C}\|=\sqrt{\sum_{j=1}^{n} \sum_{k=1}^{n} c_{j k}^{2}} \tag{9}
\end{equation*}
$$

(Frobenius norm)
or the greatest of the sums of the $\left|c_{j k}\right|$ in a column of \mathbf{C}

$$
\begin{equation*}
\|\mathbf{C}\|=\max _{k} \sum_{j=1}^{n}\left|c_{j k}\right| \quad \text { (Column 'sum" norm) } \tag{10}
\end{equation*}
$$

or the greatest of the sums of the $\left|c_{j k}\right|$ in a row of \mathbf{C}

$$
\begin{equation*}
\|\mathbf{C}\|=\max _{j} \sum_{k=1}^{n}\left|c_{j k}\right| \quad \quad \text { (Row "sum" norm). } \tag{11}
\end{equation*}
$$

These are the most frequently used matrix norms in numerics.
In most cases the choice of one of these norms is a matter of computational convenience. However, the following example shows that sometimes one of these norms is preferable to the others.

EXAMPLE 2 Test of Convergence of the Gauss-Seidel Iteration

Test whether the Gauss-Seidel iteration converges for the system

$$
\left.\begin{array}{rlrl}
2 x+y+z & =4 \\
x+2 y+z & =4 \\
x+y+2 z & =4 & \text { written } & x
\end{array}\right) \begin{aligned}
& y=2-\frac{1}{2} y-\frac{1}{2} z \\
& x+\frac{1}{2} z \\
& z=2-\frac{1}{2} x-\frac{1}{2} y .
\end{aligned}
$$

Solution. The decomposition (multiply the matrix by $\frac{1}{2}-$ why?) is

$$
\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 1
\end{array}\right]=\mathbf{I}+\mathbf{L}+\mathbf{U}=\mathbf{I}+\left[\begin{array}{ccc}
0 & 0 & 0 \\
\frac{1}{2} & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & \frac{1}{2} \\
0 & 0 & 0
\end{array}\right] .
$$

It shows that

$$
\mathbf{C}=-(\mathbf{I}+\mathbf{L})^{-1} \mathbf{U}=-\left[\begin{array}{rrr}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
-\frac{1}{4} & -\frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & \frac{1}{2} \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{rrr}
0 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{1}{4} & -\frac{1}{4} \\
0 & \frac{1}{8} & \frac{3}{8}
\end{array}\right] .
$$

We compute the Frobenius norm of \mathbf{C}

$$
\|\mathbf{C}\|=\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{16}+\frac{1}{16}+\frac{1}{64}+\frac{9}{64}\right)^{1 / 2}=\left(\frac{50}{64}\right)^{1 / 2}=0.884<1
$$

and conclude from (8) that this Gauss-Seidel iteration converges. It is interesting that the other two norms would permit no conclusion, as you should verify. Of course, this points to the fact that (8) is sufficient for convergence rather than necessary.

Residual. Given a system $\mathbf{A x}=\mathbf{b}$, the residual \mathbf{r} of \mathbf{x} with respect to this system is defined by

$$
\begin{equation*}
\mathbf{r}=\mathbf{b}-\mathbf{A x} . \tag{12}
\end{equation*}
$$

Clearly, $\mathbf{r}=\mathbf{0}$ if and only if \mathbf{x} is a solution. Hence $\mathbf{r} \neq \mathbf{0}$ for an approximate solution. In the Gauss-Seidel iteration, at each stage we modify or relax a component of an approximate solution in order to reduce a component of \mathbf{r} to zero. Hence the Gauss-Seidel iteration belongs to a class of methods often called relaxation methods. More about the residual follows in the next section.

Jacobi Iteration

The Gauss-Seidel iteration is a method of successive corrections because for each component we successively replace an approximation of a component by a corresponding new approximation as soon as the latter has been computed. An iteration method is called a method of simultaneous corrections if no component of an approximation $\mathbf{x}^{(m)}$ is used until all the components of $\mathbf{x}^{(m)}$ have been computed. A method of this type is the Jacobi iteration, which is similar to the Gauss-Seidel iteration but involves not using improved values until a step has been completed and then replacing $\mathbf{x}^{(m)}$ by $\mathbf{x}^{(m+1)}$ at once, directly before the beginning of the next step. Hence if we write $\mathbf{A x}=\mathbf{b}$ (with $a_{j j}=1$ as before!) in the form $\mathbf{x}=\mathbf{b}+(\mathbf{I}-\mathbf{A}) \mathbf{x}$, the Jacobi iteration in matrix notation is

$$
\mathbf{x}^{(m+1)}=\mathbf{b}+(\mathbf{I}-\mathbf{A}) \mathbf{x}^{(m)} \quad\left(a_{j j}=1\right)
$$

This method converges for every choice of $\mathbf{x}^{(0)}$ if and only if the spectral radius of $\mathbf{I}-\mathbf{A}$ is less than 1 . It has recently gained greater practical interest since on parallel processors all n equations can be solved simultaneously at each iteration step.

For Jacobi, see Sec. 10.3. For exercises, see the problem set.

1. Verify the solution in Example 1 of the text.
2. Show that for the system in Example 2 the Jacobi iteration diverges. Hint. Use eigenvalues.
3. Verify the claim at the end of Example 2.

4-10 GAUSS-SEIDEL ITERATION

Do 5 steps, starting from $\mathbf{x}_{0}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$ and using 6 S in the computation. Hint. Make sure that you solve each equation for the variable that has the largest coefficient (why?). Show the details.
4. $4 x_{1}-x_{2}=21$

$$
-x_{1}+4 x_{2}-x_{3}=-45
$$

$$
-x_{2}+4 x_{3}=33
$$

5. $10 x_{1}+x_{2}+x_{3}=6$
$x_{1}+10 x_{2}+x_{3}=6$
$x_{1}+x_{2}+10 x_{3}=6$
6. $x_{2}+7 x_{3}=25.5$
$5 x_{1}+x_{2}=0$
$x_{1}+6 x_{2}+x_{3}=-10.5$
7. $5 x_{1}-2 x_{2}=18$
$-2 x_{1}+10 x_{2}-2 x_{3}=-60$
$-2 x_{2}+15 x_{3}=128$
8. $3 x_{1}+2 x_{2}+x_{3}=7$
$x_{1}+3 x_{2}+2 x_{3}=4$
$2 x_{1}+x_{2}+3 x_{3}=7$
9. $5 x_{1}+x_{2}+2 x_{3}=19$
$x_{1}+4 x_{2}-2 x_{3}=-2$
$2 x_{1}+3 x_{2}+8 x_{3}=39$
10. $4 x_{1} \quad+5 x_{3}=12.5$
$x_{1}+6 x_{2}+2 x_{3}=18.5$
$8 x_{1}+2 x_{2}+x_{3}=-11.5$
11. Apply the Gauss-Seidel iteration (3 steps) to the system in Prob. 5, starting from (a) $0,0,0$ (b) $10,10,10$. Compare and comment.
12. In Prob. 5, compute \mathbf{C} (a) if you solve the first equation for x_{1}, the second for x_{2}, the third for x_{3}, proving convergence; (b) if you nonsensically solve the third equation for x_{1}, the first for x_{2}, the second for x_{3}, proving divergence.
13. CAS Experiment. Gauss-Seidel Iteration. (a) Write a program for Gauss-Seidel iteration.
(b) Apply the program $\mathbf{A}(t) \mathbf{x}=\mathbf{b}$, to starting from $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\top}$, where

$$
\mathbf{A}(t)=\left[\begin{array}{ccc}
1 & t & t \\
t & 1 & t \\
t & t & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right] .
$$

For $t=0.2,0.5,0.8,0.9$ determine the number of steps to obtain the exact solution to 6 S and the corresponding spectral radius of \mathbf{C}. Graph the number of steps and the spectral radius as functions of t and comment.
(c) Successive overrelaxation (SOR). Show that by adding and subtracting $\mathbf{x}^{(m)}$ on the right, formula (6) can be written

$$
\begin{array}{r}
\mathbf{x}^{(m+1)}=\mathbf{x}^{(m)}+\mathbf{b}-\mathbf{L} \mathbf{x}^{(m+1)}-(\mathbf{U}+\mathbf{I}) \mathbf{x}^{(m)} \\
\left(a_{j j}=1\right) .
\end{array}
$$

Anticipation of further corrections motivates the introduction of an overrelaxation factor $\omega>1$ to get the SOR formula for Gauss-Seidel

$$
\begin{align*}
\mathbf{x}^{(m+1)}= & \mathbf{x}^{(m)}+\omega\left(\mathbf{b}-\mathbf{L} \mathbf{x}^{(m+1)}\right. \\
& \left.-(\mathbf{U}+\mathbf{I}) \mathbf{x}^{(m)}\right) \quad\left(a_{j j}=1\right) \tag{14}
\end{align*}
$$

intended to give more rapid convergence. A recommended value is $\omega=2 /(1+\sqrt{1-\rho})$, where ρ is the spectral radius of \mathbf{C} in (7). Apply SOR to the matrix in (b) for $t=0.5$ and 0.8 and notice the improvement of convergence. (Spectacular gains are made with larger systems.)

14-17 JACOBI ITERATION

Do 5 steps, starting from $\mathbf{x}_{0}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$. Compare with the Gauss-Seidel iteration. Which of the two seems to converge faster? Show the details of your work.
14. The system in Prob. 4
15. The system in Prob. 9
16. The system in Prob. 10
17. Show convergence in Prob. 16 by verifying that $\mathbf{I}-\mathbf{A}$, where \mathbf{A} is the matrix in Prob. 16 with the rows divided by the corresponding main diagonal entries, has the eigenvalues -0.519589 and $0.259795 \pm 0.246603 i$.

18-20 NORMS

Compute the norms (9), (10), (11) for the following (square) matrices. Comment on the reasons for greater or smaller differences among the three numbers.
18. The matrix in Prob. 10
19. The matrix in Prob. 5
20. $\left[\begin{array}{rrr}2 k & -k & -k \\ k & -2 k & k \\ -k & -k & 2 k\end{array}\right]$

20.4 Linear Systems: Ill-Conditioning, Norms

One does not need much experience to observe that some systems $\mathbf{A x}=\mathbf{b}$ are good, giving accurate solutions even under roundoff or coefficient inaccuracies, whereas others are bad, so that these inaccuracies affect the solution strongly. We want to see what is going on and whether or not we can "trust" a linear system. Let us first formulate the two relevant concepts (ill- and well-conditioned) for general numeric work and then turn to linear systems and matrices.

A computational problem is called ill-conditioned (or ill-posed) if "small" changes in the data (the input) cause "large" changes in the solution (the output). On the other hand, a problem is called well-conditioned (or well-posed) if "small" changes in the data cause only "small" changes in the solution.

These concepts are qualitative. We would certainly regard a magnification of inaccuracies by a factor 100 as "large," but could debate where to draw the line between "large" and "small," depending on the kind of problem and on our viewpoint. Double precision may sometimes help, but if data are measured inaccurately, one should attempt changing the mathematical setting of the problem to a well-conditioned one.

Let us now turn to linear systems. Figure 445 explains that ill-conditioning occurs if and only if the two equations give two nearly parallel lines, so that their intersection point (the solution of the system) moves substantially if we raise or lower a line just a little. For larger systems the situation is similar in principle, although geometry no longer helps. We shall see that we may regard ill-conditioning as an approach to singularity of the matrix.

Fig. 445. (a) Well-conditioned and (b) ill-conditioned linear system of two equations in two unknowns

EXAMPLE 1 An Ill-Conditioned System

You may verify that the system

$$
\begin{aligned}
0.9999 x-1.0001 y & =1 \\
x-\quad y & =1
\end{aligned}
$$

has the solution $x=0.5, y=-0.5$, whereas the system

$$
\begin{aligned}
0.9999 x-1.0001 y & =1 \\
x-\quad y & =1+\epsilon
\end{aligned}
$$

has the solution $x=0.5+5000.5 \epsilon, y=-0.5+4999.5 \epsilon$. This shows that the system is ill-conditioned because a change on the right of magnitude ϵ produces a change in the solution of magnitude 5000ϵ, approximately. We see that the lines given by the equations have nearly the same slope.

Well-conditioning can be asserted if the main diagonal entries of \mathbf{A} have large absolute values compared to those of the other entries. Similarly if \mathbf{A}^{-1} and \mathbf{A} have maximum entries of about the same absolute value.

Ill-conditioning is indicated if \mathbf{A}^{-1} has entries of large absolute value compared to those of the solution (about 5000 in Example 1) and if poor approximate solutions may still produce small residuals.

Residual. The residual \mathbf{r} of an approximate solution $\widetilde{\mathbf{x}}$ of $\mathbf{A x}=\mathbf{b}$ is defined as

$$
\begin{equation*}
\mathbf{r}=\mathbf{b}-\mathbf{A} \widetilde{\mathbf{x}} \tag{1}
\end{equation*}
$$

Now $\mathbf{b}=\mathbf{A x}$, so that

$$
\begin{equation*}
\mathbf{r}=\mathbf{A}(\mathbf{x}-\mathbf{A} \widetilde{\mathbf{x}}) \tag{2}
\end{equation*}
$$

Hence \mathbf{r} is small if $\widetilde{\mathbf{x}}$ has high accuracy, but the converse may be false:

EXAMPLE 2 Inaccurate Approximate Solution with a Small Residual

The system

$$
\begin{aligned}
1.0001 x_{1}+\quad x_{2} & =2.0001 \\
x_{1}+1.0001 x_{2} & =2.0001
\end{aligned}
$$

has the exact solution $x_{1}=1, x_{2}=1$. Can you see this by inspection? The very inaccurate approximation $\widetilde{x}_{1}=2.0000, \widetilde{x}_{2}=0.0001$ has the very small residual (to 4D)

$$
\mathbf{r}=\left[\begin{array}{l}
2.0001 \\
2.0001
\end{array}\right]-\left[\begin{array}{ll}
1.0001 & 1.0000 \\
1.0000 & 1.0001
\end{array}\right]\left[\begin{array}{l}
2.0000 \\
0.0001
\end{array}\right]=\left[\begin{array}{l}
2.0001 \\
2.0001
\end{array}\right]-\left[\begin{array}{l}
2.0003 \\
2.0001
\end{array}\right]=\left[\begin{array}{c}
-0.0002 \\
0.0000
\end{array}\right] .
$$

From this, a naive person might draw the false conclusion that the approximation should be accurate to 3 or 4 decimals.

Our result is probably unexpected, but we shall see that it has to do with the fact that the system is ill-conditioned.

Our goal is to show that ill-conditioning of a linear system and of its coefficient matrix \mathbf{A} can be measured by a number, the condition number $\kappa(\mathbf{A})$. Other measures for ill-conditioning
have also been proposed, but $\kappa(\mathbf{A})$ is probably the most widely used one. $\kappa(\mathbf{A})$ is defined in terms of norm, a concept of great general interest throughout numerics (and in modern mathematics in general!). We shall reach our goal in three steps, discussing

1. Vector norms

2. Matrix norms
3. Condition number κ of a square matrix

Vector Norms

A vector norm for column vectors $\mathbf{x}=\left[x_{j}\right]$ with n components (n fixed) is a generalized length or distance. It is denoted by $\|\mathbf{x}\|$ and is defined by four properties of the usual length of vectors in three-dimensional space, namely,
(a) $\|\mathbf{x}\|$ is a nonnegative real number.
(b) $\|\mathbf{x}\|=0$ if and only if $\mathbf{x}=\mathbf{0}$.
(c) $\|k \mathbf{x}\|=|k|\|\mathbf{x}\| \quad$ for all k.
(d) $\|\mathbf{x}+\mathbf{y}\| \leqq\|\mathbf{x}\|+\|\mathbf{y}\| \quad$ (Triangle inequality).

If we use several norms, we label them by a subscript. Most important in connection with computations is the \boldsymbol{p}-norm defined by

$$
\begin{equation*}
\|\mathbf{x}\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p} \tag{4}
\end{equation*}
$$

where p is a fixed number and $p \geqq 1$. In practice, one usually takes $p=1$ or 2 and, as a third norm, $\|\mathbf{x}\|_{\infty}$ (the latter as defined below), that is,

$$
\begin{equation*}
\text { ("l } l_{1} \text {-norm") } \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& \|\mathbf{x}\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right| \tag{6}\\
& \|\mathbf{x}\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}} \tag{7}\\
& \|\mathbf{x}\|_{\infty}=\max _{j}\left|x_{j}\right|
\end{align*}
$$

$$
\|\mathbf{x}\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}} \quad \text { ("Euclidean" or "l } l_{2} \text {-norm") }
$$

$$
\text { ("l } l_{\infty} \text {-norm"). }
$$

For $n=3$ the l_{2}-norm is the usual length of a vector in three-dimensional space. The l_{1}-norm and l_{∞}-norm are generally more convenient in computation. But all three norms are in common use.

EXAMPLE 3 Vector Norms

If $\mathbf{x}^{\top}=\left[\begin{array}{lllll}2 & -3 & 0 & 1 & -4\end{array}\right]$, then $\|\mathbf{x}\|_{1}=10, \quad\|\mathbf{x}\|_{2}=\sqrt{30}, \quad\|\mathbf{x}\|_{\infty}=4$.
In three-dimensional space, two points with position vectors \mathbf{x} and $\widetilde{\mathbf{x}}$ have distance $|\mathbf{x}-\widetilde{\mathbf{x}}|$ from each other. For a linear system $\mathbf{A x}=\mathbf{b}$, this suggests that we take $\|\mathbf{x}-\widetilde{\mathbf{x}}\|$ as a measure of inaccuracy and call it the distance between an exact and an approximate solution, or the error of $\widetilde{\mathbf{x}}$.

Matrix Norm

If \mathbf{A} is an $n \times n$ matrix and \mathbf{x} any vector with n components, then $\mathbf{A x}$ is a vector with n components. We now take a vector norm and consider $\|\mathbf{x}\|$ and $\|\mathbf{A x}\|$. One can prove (see

Ref. [E17]. pp. 77, 92-93, listed in App. 1) that there is a number c (depending on \mathbf{A}) such that

$$
\begin{equation*}
\|\mathbf{A} \mathbf{x}\| \leqq c\|\mathbf{x}\| \quad \text { for all } \mathbf{x} \tag{8}
\end{equation*}
$$

Let $\mathbf{x} \neq 0$. Then $\|\mathbf{x}\|>0$ by (3b) and division gives $\|\mathbf{A} \mathbf{x}\| /\|\mathbf{x}\| \leqq c$. We obtain the smallest possible c valid for all $\mathbf{x}(\neq \mathbf{0})$ by taking the maximum on the left. This smallest c is called the matrix norm of \mathbf{A} corresponding to the vector norm we picked and is denoted by $\|\mathbf{A}\|$. Thus

$$
\begin{equation*}
\|\mathbf{A}\|=\max \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|} \quad(\mathbf{x} \neq \mathbf{0}) \tag{9}
\end{equation*}
$$

the maximum being taken over all $\mathbf{x} \neq \mathbf{0}$. Alternatively [see (c) in Team Project 24],

$$
\begin{equation*}
\|\mathbf{A}\|=\max _{\|\mathbf{x}\|=1}\|\mathbf{A} \mathbf{x}\| \tag{10}
\end{equation*}
$$

The maximum in (10) and thus also in (9) exists. And the name "matrix norm" is justified because $\|\mathbf{A}\|$ satisfies (3) with \mathbf{x} and \mathbf{y} replaced by \mathbf{A} and \mathbf{B}. (Proofs in Ref. [E17] pp. 77, 92-93.)

Note carefully that $\|\mathbf{A}\|$ depends on the vector norm that we selected. In particular, one can show that
for the l_{1}-norm (5) one gets the column "sum" norm (10), Sec. 20.3, for the l_{∞}-norm (7) one gets the row "sum" norm (11), Sec. 20.3.

By taking our best possible (our smallest) $c=\|\mathbf{A}\|$ we have from (8)

$$
\begin{equation*}
\|\mathbf{A} \mathbf{x}\| \leqq\|\mathbf{A}\|\|\mathbf{x}\| \tag{11}
\end{equation*}
$$

This is the formula we shall need. Formula (9) also implies for two $n \times n$ matrices (see Ref. [E17], p. 98)

$$
\begin{equation*}
\|\mathbf{A B}\| \leqq\|\mathbf{A}\|\|\mathbf{B}\|, \quad \text { thus } \quad\left\|\mathbf{A}^{n}\right\| \leqq\|\mathbf{A}\|^{n} \tag{12}
\end{equation*}
$$

See Refs. [E9] and [E17] for other useful formulas on norms.
Before we go on, let us do a simple illustrative computation.

EXAMPLE 4 Matrix Norms

Compute the matrix norms of the coefficient matrix \mathbf{A} in Example 1 and of its inverse \mathbf{A}^{-1}, assuming that we use (a) the l_{1}-vector norm, (b) the l_{∞}-vector norm.

Solution. We use (4*), Sec. 7.8, for the inverse and then (10) and (11) in Sec. 20.3. Thus

$$
\mathbf{A}=\left[\begin{array}{ll}
0.9999 & -1.0001 \\
1.0000 & -1.0000
\end{array}\right], \quad \mathbf{A}^{-1}=\left[\begin{array}{cc}
-5000.0 & 5000.5 \\
-5000.0 & 4999.5
\end{array}\right]
$$

(a) The l_{1}-vector norm gives the column "sum" norm (10), Sec. 20.3; from Column 2 we thus obtain $\|\mathbf{A}\|=|-1.0001|+|-1.0000|=2.0001$. Similarly, $\left\|\mathbf{A}^{-1}\right\|=10,000$.
(b) The l_{∞}-vector norm gives the row "sum" norm (11), Sec. 20.3; thus $\|\mathbf{A}\|=2,\left\|\mathbf{A}^{-1}\right\|=10000.5$ from Row 1. We notice that $\left\|\mathbf{A}^{-1}\right\|$ is surprisingly large, which makes the product $\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\|$ large $(20,001)$. We shall see below that this is typical of an ill-conditioned system.

Condition Number of a Matrix

We are now ready to introduce the key concept in our discussion of ill-conditioning, the condition number $\kappa(\mathbf{A})$ of a (nonsingular) square matrix \mathbf{A}, defined by

$$
\begin{equation*}
\kappa(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\| . \tag{13}
\end{equation*}
$$

The role of the condition number is seen from the following theorem.

THEOREM 1

Condition Number

A linear system of equations $\mathbf{A x}=\mathbf{b}$ and its matrix \mathbf{A} whose condition number (13) is small are well-conditioned. A large condition number indicates ill-conditioning.

PROO F $\quad \mathbf{b}=\mathbf{A x}$ and (11) give $\|\mathbf{b}\| \leqq\|\mathbf{A}\|\|\mathbf{x}\|$. Let $\mathbf{b} \neq \mathbf{0}$ and $\mathbf{x} \neq \mathbf{0}$. Then division by $\|\mathbf{b}\|\|\mathbf{x}\|$ gives

$$
\begin{equation*}
\frac{1}{\|\mathbf{x}\|} \leqq \frac{\|\mathbf{A}\|}{\|\mathbf{b}\|} \tag{14}
\end{equation*}
$$

Multiplying (2) $\mathbf{r}=\mathbf{A}(\mathbf{x}-\widetilde{\mathbf{x}})$ by \mathbf{A}^{-1} from the left and interchanging sides, we have $\mathbf{x}-\widetilde{\mathbf{x}}=\mathbf{A}^{-1} \mathbf{r}$. Now (11) with \mathbf{A}^{-1} and \mathbf{r} instead of \mathbf{A} and \mathbf{x} yields

$$
\|\mathbf{x}-\widetilde{\mathbf{x}}\|=\left\|\mathbf{A}^{-1} \mathbf{r}\right\| \leqq\left\|\mathbf{A}^{-1}\right\|\|\mathbf{r}\| .
$$

Division by $\|\mathbf{x}\|$ [note that $\|\mathbf{x}\| \neq 0$ by (3b)] and use of (14) finally gives

$$
\begin{equation*}
\frac{\|\mathbf{x}-\widetilde{\mathbf{x}}\|}{\|\mathbf{x}\|} \leqq \frac{1}{\|\mathbf{x}\|}\left\|\mathbf{A}^{-1}\right\|\|\mathbf{r}\| \leqq \frac{\|\mathbf{A}\|}{\|\mathbf{b}\|}\left\|\mathbf{A}^{-1}\right\|\|\mathbf{r}\|=\kappa(\mathbf{A}) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|} \tag{15}
\end{equation*}
$$

Hence if $\kappa(\mathbf{A})$ is small, a small $\|\mathbf{r}\| /\|\mathbf{b}\|$ implies a small relative error $\|\mathbf{x}-\widetilde{\mathbf{x}}\| /\|\mathbf{x}\|$, so that the system is well-conditioned. However, this does not hold if $\kappa(\mathbf{A})$ is large; then a small $\|\mathbf{r}\| /\|\mathbf{b}\|$ does not necessarily imply a small relative error $\|\mathbf{x}-\widetilde{\mathbf{x}}\| /\|\mathbf{x}\|$.

EXAMPLE 5 Condition Numbers. Gauss-Seidel Iteration

$$
\mathbf{A}=\left[\begin{array}{lll}
5 & 1 & 1 \\
1 & 4 & 2 \\
1 & 2 & 4
\end{array}\right] \quad \text { has the inverse } \quad \mathbf{A}^{-1}=\frac{1}{56}\left[\begin{array}{rrr}
12 & -2 & -2 \\
-2 & 19 & -9 \\
-2 & -9 & 19
\end{array}\right] .
$$

Since \mathbf{A} is symmetric, (10) and (11) in Sec. 20.3 give the same condition number

$$
\kappa(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\|=7 \cdot \frac{1}{56} \cdot 30=3.75 .
$$

We see that a linear system $\mathbf{A x}=\mathbf{b}$ with this \mathbf{A} is well-conditioned.

For instance, if $\mathbf{b}=\left[\begin{array}{lll}14 & 0 & 28\end{array}\right]^{\top}$, the Gauss algorithm gives the solution $\mathbf{x}=\left[\begin{array}{lll}2 & -5 & 9\end{array}\right]^{\top}$, (confirm this). Since the main diagonal entries of \mathbf{A} are relatively large, we can expect reasonably good convergence of the Gauss-Seidel iteration. Indeed, starting from, say, $\mathbf{x}_{0}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$, we obtain the first 8 steps (3D values)

x_{1}	x_{2}	x_{3}
1.000	1.000	1.000
2.400	-1.100	6.950
1.630	-3.882	8.534
1.870	-4.734	8.900
1.967	-4.942	8.979
1.993	-4.988	8.996
1.998	-4.997	8.999
2.000	-5.000	9.000
2.000	-5.000	9.000

EXAMPLE 6 Ill-Conditioned Linear System

Example 4 gives by (10) or (11), Sec. 20.3, for the matrix in Example 1 the very large condition number $\boldsymbol{\kappa}(\mathbf{A})=2.0001 \cdot 10000=2 \cdot 10000.5=200001$. This confirms that the system is very ill-conditioned.

Similarly in Example 2, where by (4*), Sec. 7.8 and 6D-computation,

$$
\mathbf{A}^{-1}=\frac{1}{0.0002}\left[\begin{array}{rr}
1.0001 & -1.0000 \\
-1.0000 & 1.0001
\end{array}\right]=\left[\begin{array}{rr}
5000.5 & -5.000 .0 \\
-5000.0 & 5000.5
\end{array}\right]
$$

so that (10), Sec. 20.3, gives a very large $\kappa(\mathbf{A})$, explaining the surprising result in Example 2,

$$
\kappa(\mathbf{A})=(1.0001+1.0000)(5000.5+5000.0) \approx 20,002 .
$$

In practice, \mathbf{A}^{-1} will not be known, so that in computing the condition number $\kappa(\mathbf{A})$, one must estimate $\left\|\mathbf{A}^{-1}\right\|$. A method for this (proposed in 1979) is explained in Ref. [E9] listed in App. 1.

Inaccurate Matrix Entries. $\boldsymbol{\kappa}(\mathbf{A})$ can be used for estimating the effect $\delta \mathbf{x}$ of an inaccuracy $\delta \mathbf{A}$ of \mathbf{A} (errors of measurements of the $a_{j k}$, for instance). Instead of $\mathbf{A x}=\mathbf{b}$ we then have

$$
(\mathbf{A}+\delta \mathbf{A})(\mathbf{x}+\delta \mathbf{x})=\mathbf{b}
$$

Multiplying out and subtracting $\mathbf{A x}=\mathbf{b}$ on both sides, we obtain

$$
\mathbf{A} \delta \mathbf{x}+\delta \mathbf{A}(\mathbf{x}+\delta \mathbf{x})=\mathbf{0}
$$

Multiplication by \mathbf{A}^{-1} from the left and taking the second term to the right gives

$$
\delta \mathbf{x}=-\mathbf{A}^{-1} \delta \mathbf{A}(\mathbf{x}+\delta \mathbf{x})
$$

Applying (11) with \mathbf{A}^{-1} and vector $\delta \mathbf{A}(\mathbf{x}+\delta \mathbf{x})$ instead of \mathbf{A} and \mathbf{x}, we get

$$
\|\delta \mathbf{x}\|=\left\|\mathbf{A}^{-1} \delta \mathbf{A}(\mathbf{x}+\delta \mathbf{x})\right\| \leqq\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{A}(\mathbf{x}+\delta \mathbf{x})\|
$$

Applying (11) on the right, with $\delta \mathbf{A}$ and $\mathbf{x}-\delta \mathbf{x}$ instead of \mathbf{A} and \mathbf{x}, we obtain

$$
\|\delta \mathbf{x}\| \leqq\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{A}\|\|\mathbf{x}+\delta \mathbf{x}\|
$$

Now $\left\|\mathbf{A}^{-1}\right\|=\kappa(\mathbf{A}) /\|\mathbf{A}\|$ by the definition of $\kappa(\mathbf{A})$, so that division by $\|\mathbf{x}+\delta \mathbf{x}\|$ shows that the relative inaccuracy of \mathbf{x} is related to that of \mathbf{A} via the condition number by the inequality

$$
\begin{equation*}
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \approx \frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}+\delta \mathbf{x}\|} \leqq\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{A}\|=\kappa(\mathbf{A}) \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|} \tag{16}
\end{equation*}
$$

Conclusion. If the system is well-conditioned, small inaccuracies $\|\delta \mathbf{A}\| /\|\mathbf{A}\|$ can have only a small effect on the solution. However, in the case of ill-conditioning, if $\|\delta \mathbf{A}\| /\|\mathbf{A}\|$ is small, $\|\delta \mathbf{x}\| /\|\mathbf{x}\|$ may be large.

Inaccurate Right Side. You may show that, similarly, when \mathbf{A} is accurate, an inaccuracy $\delta \mathbf{b}$ of \mathbf{b} causes an inaccuracy $\delta \mathbf{x}$ satisfying

$$
\begin{equation*}
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leqq \kappa(\mathbf{A}) \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|} \tag{17}
\end{equation*}
$$

Hence $\|\delta \mathbf{x}\| /\|\mathbf{x}\|$ must remain relatively small whenever $\boldsymbol{\kappa}(\mathbf{A})$ is small.

EXAMPLE 7 Inaccuracies. Bounds (16) and (17)

If each of the nine entries of \mathbf{A} in Example 5 is measured with an inaccuracy of 0.1 , then $\|\delta \mathbf{A}\|=9 \cdot 0.1$ and (16) gives

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leqq 7.5 \cdot \frac{3 \cdot 0.1}{7}=0.321 \quad \text { thus } \quad\|\delta \mathbf{x}\| \leqq 0.321\|\mathbf{x}\|=0.321 \cdot 16=5.14
$$

By experimentation you will find that the actual inaccuracy $\|\delta \mathbf{x}\|$ is only about 30% of the bound 5.14 . This is typical.

Similarly, if $\delta \mathbf{b}=\left[\begin{array}{lll}0.1 & 0.1 & 0.1\end{array}\right]^{\top}$, then $\|\delta \mathbf{b}\|=0.3$ and $\|\mathbf{b}\|=42$ in Example 5, so that (17) gives

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leqq 7.5 \cdot \frac{0.3}{42}=0.0536, \quad \text { hence } \quad\|\delta \mathbf{x}\| \leqq 0.0536 \cdot 16=0.857
$$

but this bound is again much greater than the actual inaccuracy, which is about 0.15 .

Further Comments on Condition Numbers. The following additional explanations may be helpful.

1. There is no sharp dividing line between "well-conditioned" and "ill-conditioned," but generally the situation will get worse as we go from systems with small $\boldsymbol{\kappa}(\mathbf{A})$ to systems with larger $\kappa(\mathbf{A})$. Now always $\kappa(\mathbf{A}) \geqq 1$, so that values of 10 or 20 or so give no reason for concern, whereas $\kappa(\mathbf{A})=100$, say, calls for caution, and systems such as those in Examples 1 and 2 are extremely ill-conditioned.
2. If $\boldsymbol{\kappa}(\mathbf{A})$ is large (or small) in one norm, it will be large (or small, respectively) in any other norm. See Example 5.
3. The literature on ill-conditioning is extensive. For an introduction to it, see [E9].

This is the end of our discussion of numerics for solving linear systems. In the next section we consider curve fitting, an important area in which solutions are obtained from linear systems.

PROBBEM SET 20.4

1-6 VECTOR NORMS

Compute the norms (5), (6), (7). Compute a corresponding unit vector (vector of norm 1) with respect to the l_{∞}-norm.

1. $\left[\begin{array}{llllll}1 & -3 & 8 & 0 & -6 & 0\end{array}\right]$
2. $\left[\begin{array}{lll}4 & -1 & 8\end{array}\right]$
3. $\left[\begin{array}{llll}0.2 & 0.6 & -2.1 & 3.0\end{array}\right]$
4. $\left[k^{2}, \quad 4 k, k^{3}\right], \quad k>4$
5. $\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]$
6. $\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0\end{array}\right]$
7. For what $\mathbf{x}=\left[\begin{array}{lll}a & b & c\end{array}\right]$ will $\|\mathbf{x}\|_{1}=\|\mathbf{x}\|_{2}$?
8. Show that $\|\mathbf{x}\|_{\infty} \leqq\|\mathbf{x}\|_{2} \leqq\|\mathbf{x}\|_{1}$.

9-16 MATRIX NORMS,

 CONDITION NUMBERSCompute the matrix norm and the condition number corresponding to the l_{1}-vector norm.
9. $\left[\begin{array}{ll}2 & 1 \\ 0 & 4\end{array}\right]$
10. $\left[\begin{array}{ll}2.1 & 4.5 \\ 0.5 & 1.8\end{array}\right]$
11. $\left[\begin{array}{rr}\sqrt{5} & 5 \\ 0 & -\sqrt{5}\end{array}\right]$
12. $\left[\begin{array}{ll}7 & 6 \\ 6 & 5\end{array}\right]$
13. $\left[\begin{array}{rrr}-2 & 4 & -1 \\ -2 & 3 & 0 \\ 7 & -12 & 2\end{array}\right]$
14. $\left[\begin{array}{ccc}1 & 0.01 & 0 \\ 0.01 & 1 & 0.01 \\ 0 & 0.01 & 1\end{array}\right]$
15. $\left[\begin{array}{ccc}-20 & 0 & 0 \\ 0 & 0.05 & 0 \\ 0 & 0 & 20\end{array}\right]$
16. $\left[\begin{array}{cccc}21 & 10.5 & 7 & 5.25 \\ 10.5 & 7 & 5.25 & 4.2 \\ 7 & 5.25 & 4.2 & 3.5 \\ 5.25 & 4.2 & 3.5 & 3\end{array}\right]$
17. Verify (11) for $\mathbf{x}=\left[\begin{array}{lll}3 & 15 & -4\end{array}\right]^{\top}$ taken with the l_{∞}-norm and the matrix in Prob. 13.
18. Verify (12) for the matrices in Probs. 9 and 10.

19-20 ILL-CONDITIONED SYSTEMS

Solve $\mathbf{A x}=\mathbf{b}_{1}, \mathbf{A x}=\mathbf{b}_{2}$. Compare the solutions and comment. Compute the condition number of \mathbf{A}.
19. $\mathbf{A}=\left[\begin{array}{ll}4.50 & 3.55 \\ 3.55 & 2.80\end{array}\right], \quad \mathbf{b}_{1}=\left[\begin{array}{l}5.2 \\ 4.1\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{l}5.2 \\ 4.0\end{array}\right]$
20. $\mathbf{A}=\left[\begin{array}{ll}3.0 & 1.7 \\ 1.7 & 1.0\end{array}\right], \quad \mathbf{b}_{1}=\left[\begin{array}{l}4.7 \\ 2.7\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{l}4.7 \\ 2.71\end{array}\right]$
21. Residual. For $\mathbf{A x}=\mathbf{b}_{1}$ in Prob. 19 guess what the residual of $\widetilde{\mathbf{x}}=\left[\begin{array}{ll}-10.0 & 14.1\end{array}\right]^{\top}$, very poorly approximating $\left[\begin{array}{ll}-2 & 4\end{array}\right]^{\top}$, might be. Then calculate and comment.
22. Show that $\kappa(\mathbf{A}) \geqq 1$ for the matrix norms (10), (11), Sec. 20.3, and $\kappa(\mathbf{A}) \geqq \sqrt{n}$ for the Frobenius norm (9), Sec. 20.3.
23. CAS EXPERIMENT. Hilbert Matrices. The 3×3

Hilbert matrix is

$$
\mathbf{H}_{3}=\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{array}\right] .
$$

The $n \times n$ Hilbert matrix is $\mathbf{H}_{n}=\left[h_{j k}\right]$, where $h_{j k}=1 /(j+k-1)$. (Similar matrices occur in curve fitting by least squares.) Compute the condition number $\kappa\left(\mathbf{H}_{n}\right)$ for the matrix norm corresponding to the $l_{\infty^{-}}$(or $l_{1^{-}}$) vector norm, for $n=2,3, \cdots, 6$ (or further if you wish). Try to find a formula that gives reasonable approximate values of these rapidly growing numbers.
Solve a few linear systems of your choice, involving an \mathbf{H}_{n}.
24. TEAM PROJECT. Norms. (a) Vector norms in our text are equivalent, that is, they are related by double inequalities; for instance,
(a) $\|\mathbf{x}\|_{\infty} \leqq\|\mathbf{x}\|_{1} \leqq n\|\mathbf{x}\|_{\infty}$
(b) $\frac{1}{n}\|\mathbf{x}\|_{1} \leqq\|\mathbf{x}\|_{\infty} \leqq\|\mathbf{x}\|_{1}$.

Hence if for some \mathbf{x}, one norm is large (or small), the other norm must also be large (or small). Thus in many investigations the particular choice of a norm is not essential. Prove (18).
(b) The Cauchy-Schwarz inequality is

$$
\left|\mathbf{x}^{\top} \mathbf{y}\right| \leqq\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2} .
$$

It is very important. (Proof in Ref. [GenRef7] listed in App. 1.) Use it to prove

$$
\begin{align*}
& \|\mathbf{x}\|_{2} \leqq\|\mathbf{x}\|_{1} \leqq \sqrt{n}\|\mathbf{x}\|_{2} \tag{19a}\\
& \frac{1}{\sqrt{n}}\|\mathbf{x}\|_{1} \leqq\|\mathbf{x}\|_{2} \leqq\|\mathbf{x}\|_{1} . \tag{19b}
\end{align*}
$$

(c) Formula (10) is often more practical than (9). Derive (10) from (9).
(d) Matrix norms. Illustrate (11) with examples. Give examples of (12) with equality as well as with strict
inequality. Prove that the matrix norms (10), (11) in Sec. 20.3 satisfy the axioms of a norm

$$
\begin{gathered}
\|\mathbf{A}\| \geqq \mathbf{0} . \\
\|\mathbf{A}\|=\mathbf{0} \text { if and only if } \mathbf{A}=\mathbf{0}, \\
\|k \mathbf{A}\|=|k|\|\mathbf{A}\|, \\
\|\mathbf{A}+\mathbf{B}\| \leqq\|\mathbf{A}\|+\|\mathbf{B}\|
\end{gathered}
$$

25. WRITING PROJECT. Norms and Their Use in This Section. Make a list of the most important of the many ideas covered in this section and write a twopage report on them.

20.5 Least Squares Method

Having discussed numerics for linear systems, we now turn to an important application, curve fitting, in which the solutions are obtained from linear systems.

In curve fitting we are given n points (pairs of numbers) $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$ and we want to determine a function $f(x)$ such that

$$
f\left(x_{1}\right) \approx y_{1}, \cdots, f\left(x_{n}\right) \approx y_{n},
$$

approximately. The type of function (for example, polynomials, exponential functions, sine and cosine functions) may be suggested by the nature of the problem (the underlying physical law, for instance), and in many cases a polynomial of a certain degree will be appropriate.

Let us begin with a motivation.
If we require strict equality $f\left(x_{1}\right)=y_{1}, \cdots, f\left(x_{n}\right)=y_{n}$ and use polynomials of sufficiently high degree, we may apply one of the methods discussed in Sec. 19.3 in connection with interpolation. However, in certain situations this would not be the appropriate solution of the actual problem. For instance, to the four points

$$
\begin{equation*}
(-1.3,0.103), \quad(-0.1,1.099), \quad(0.2,0.808) \tag{1}
\end{equation*}
$$

there corresponds the interpolation polynomial $f(x)=x^{3}-x+1$ (Fig. 446), but if we graph the points, we see that they lie nearly on a straight line. Hence if these values are obtained in an experiment and thus involve an experimental error, and if the nature of the experiment suggests a linear relation, we better fit a straight line through the points (Fig. 446). Such a line may be useful for predicting values to be expected for other values of x. A widely used principle for fitting straight lines is the method

Fig. 446. Approximate fitting of a straight line
of least squares by Gauss and Legendre. In the present situation it may be formulated as follows.

Method of Least Squares. The straight line

$$
\begin{equation*}
y=a+b x \tag{2}
\end{equation*}
$$

should be fitted through the given points $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$ so that the sum of the squares of the distances of those points from the straight line is minimum, where the distance is measured in the vertical direction (the y-direction).

The point on the line with abscissa x_{j} has the ordinate $a+b x_{j}$. Hence its distance from $\left(x_{j}, y_{j}\right)$ is $\left|y_{j}-a-b x_{j}\right|$ (Fig. 447) and that sum of squares is

$$
q=\sum_{j=1}^{n}\left(y_{j}-a-b x_{j}\right)^{2}
$$

q depends on a and b. A necessary condition for q to be minimum is

$$
\begin{align*}
& \frac{\partial q}{\partial a}=-2 \sum\left(y_{j}-a-b x_{j}\right)=0 \\
& \frac{\partial q}{\partial b}=-2 \sum x_{j}\left(y_{j}-a-b x_{j}\right)=0 \tag{3}
\end{align*}
$$

(where we sum over j from 1 to n). Dividing by 2 , writing each sum as three sums, and taking one of them to the right, we obtain the result

$$
\begin{align*}
a n & +b \sum x_{j}
\end{align*}=\sum y_{j}, ~ l i x_{j}=\sum x_{j} .
$$

These equations are called the normal equations of our problem.

Fig. 447. Vetrical distance of a point $\left(x_{j}, y_{j}\right)$ from a straight line $y=a+b x$

EXAMPLE 1 Straight Line

Using the method of least squares, fit a straight line to the four points given in formula (1).
Solution. We obtain

$$
n=4, \quad \sum x_{j}=0.1, \quad \sum x_{j}^{2}=3.43, \quad \sum y_{j}=3.907, \quad \sum x_{j} y_{j}=2.3839
$$

Hence the normal equations are

$$
\begin{aligned}
4 a+0.10 b & =3.9070 \\
0.1 a+3.43 b & =2.3839 .
\end{aligned}
$$

The solution (rounded to 4D) is $a=0.9601, b=0.6670$, and we obtain the straight line (Fig. 446)

$$
y=0.9601+0.6670 x
$$

Curve Fitting by Polynomials of Degree m

Our method of curve fitting can be generalized from a polynomial $y=a+b x$ to a polynomial of degree m

$$
\begin{equation*}
p(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \tag{5}
\end{equation*}
$$

where $m \leqq n-1$. Then q takes the form

$$
q=\sum_{j=1}^{n}\left(y_{j}-p\left(x_{j}\right)\right)^{2}
$$

and depends on $m+1$ parameters b_{0}, \cdots, b_{m}. Instead of (3) we then have $m+1$ conditions

$$
\begin{equation*}
\frac{\partial q}{\partial b_{0}}=0, \quad \cdots, \quad \frac{\partial q}{\partial b_{m}}=0 \tag{6}
\end{equation*}
$$

which give a system of $m+1$ normal equations.
In the case of a quadratic polynomial

$$
\begin{equation*}
p(x)=b_{0}+b_{1} x+b_{2} x^{2} \tag{7}
\end{equation*}
$$

the normal equations are (summation from 1 to n)

$$
\begin{align*}
& b_{0} n \quad+b_{1} \sum x_{j}+b_{2} \sum x_{j}^{2}=\sum y_{j} \\
& b_{0} \sum x_{j}+b_{1} \sum x_{j}^{2}+b_{2} \sum x_{j}^{3}=\sum x_{j} y_{j} \tag{8}\\
& b_{0} \sum x_{j}^{2}+b_{1} \sum x_{j}^{3}+b_{2} \sum x_{j}^{4}=\sum x_{j}^{2} y_{j} .
\end{align*}
$$

The derivation of (8) is left to the reader.

EXAMPLE 2 Quadratic Parabola by Least Squares

Fit a parabola through the data $(0,5),(2,4),(4,1),(6,6),(8,7)$.
Solution. For the normal equations we need $n=5, \sum x_{j}=20, \sum x_{j}^{2}=120, \sum x_{j}^{3}=800, \sum x_{j}^{4}=5664$, $\Sigma y_{j}=23, \Sigma x_{j} y_{j}=104, \sum x_{j}^{2} y_{j}=696$. Hence these equations are

$$
\begin{aligned}
5 b_{0}+20 b_{1}+120 b_{2} & =23 \\
20 b_{0}+120 b_{1}+800 b_{2} & =104 \\
120 b_{0}+800 b_{1}+5664 b_{2} & =696 .
\end{aligned}
$$

Solving them we obtain the quadratic least squares parabola (Fig. 448)

$$
y=5.11429-1.41429 x+0.21429 x^{2} .
$$

Fig. 448. Least squares parabola in Example 2

For a general polynomial (5) the normal equations form a linear system of equations in the unknowns b_{0}, \cdots, b_{m}. When its matrix \mathbf{M} is nonsingular, we can solve the system by Cholesky's method (Sec. 20.2) because then \mathbf{M} is positive definite (and symmetric). When the equations are nearly linearly dependent, the normal equations may become ill-conditioned and should be replaced by other methods; see [E5], Sec. 5.7, listed in App. 1.

The least squares method also plays a role in statistics (see Sec. 25.9).

PROBLEMESETO.5

1-6 FITTING A STRAIGHT LINE

Fit a straight line to the given points (x, y) by least squares. Show the details. Check your result by sketching the points and the line. Judge the goodness of fit.

1. $(0,2),(2,0),(3,-2),(5,-3)$
2. How does the line in Prob. 1 change if you add a point far above it, say, $(1,3)$? Guess first.
3. $(0,1.8),(1,1.6),(2,1.1),(3,1.5),(4,2.3)$
4. Hooke's law $\boldsymbol{F}=\boldsymbol{k s}$. Estimate the spring modulus k from the force $F[\mathrm{lb}]$ and the elongation $s[\mathrm{~cm}]$, where $(F, s)=(1,0.3),(2,0.7),(4,1.3),(6,1.9),(10,3.2)$, (20, 6.3).
5. Average speed. Estimate the average speed v_{av} of a car traveling according to $s=v \cdot t[\mathrm{~km}](s=$ distance traveled, $t[\mathrm{hr}]=$ time $)$ from $(t, s)=(9,140),(10,220)$, $(11,310),(12,410)$.
6. Ohm's law $\boldsymbol{U}=\boldsymbol{R} \boldsymbol{i}$. Estimate R from $(i, U)=(2,104)$, $(4,206),(6,314),(10,530)$.
7. Derive the normal equations (8).

8-11 FITTING A QUADRATIC PARABOLA

Fit a parabola (7) to the points (x, y). Check by sketching.
8. $(-1,5),(1,3),(2,4),(3,8)$
9. $(2,-3),(3,0),(5,1),(6,0)(7,-2)$
10. $t[\mathrm{hr}]=$ Worker's time on duty, $y[\mathrm{sec}]=$ His $/$ her reaction time, $(t, y)=(1,2.0),(2,1.78),(3,1.90)$, $(4,2.35),(5,2.70)$
11. The data in Prob. 3. Plot the points, the line, and the parabola jointly. Compare and comment.
12. Cubic parabola. Derive the formula for the normal equations of a cubic least squares parabola.
13. Fit curves (2) and (7) and a cubic parabola by least squares to $(x, y)=(-2,-30),(-1,-4),(0,4),(1,4),(2,22)$, $(3,68)$. Graph these curves and the points on common axes. Comment on the goodness of fit.
14. TEAM PROJECT. The least squares approximation of a function $f(x)$ on an interval $a \leqq x \leqq b$ by a function

$$
F_{m}(x)=a_{0} y_{0}(x)+a_{1} y_{1}(x)+\cdots+a_{m} y_{m}(x)
$$

where $y_{0}(x), \cdots, y_{m}(x)$ are given functions, requires the determination of the coefficients a_{0}, \cdots, a_{m} such that

$$
\begin{equation*}
\int_{a}^{b}\left[f(x)-F_{m}(x)\right]^{2} d x \tag{9}
\end{equation*}
$$

becomes minimum. This integral is denoted by $\left\|f-F_{m}\right\|^{2}$, and $\left\|f-F_{m}\right\|$ is called the \boldsymbol{L}_{2}-norm of $f-F_{m}\left(L\right.$ suggesting Lebesgue $\left.{ }^{5}\right)$. A necessary condition for that minimum is given by $\partial\left\|f-F_{m}\right\|^{2} / \partial a_{j}=0$, $j=0, \cdots, m$ [the analog of (6)]. (a) Show that this leads to $m+1$ normal equations $(j=0, \cdots, m)$

$$
\begin{gathered}
\sum_{k=0}^{m} h_{j k} a_{k}=b_{j} \quad \text { where } \\
h_{j k}=\int_{a}^{b} y_{j}(x) y_{k}(x) d x \\
b_{j}=\int_{a}^{b} f(x) y_{j}(x) d x .
\end{gathered}
$$

(b) Polynomial. What form does (10) take if $F_{m}(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$? What is the coefficient matrix of (10) in this case when the interval is $0 \leqq x \leqq 1$?
(c) Orthogonal functions. What are the solutions of (10) if $y_{0}(x), \cdots, y_{m}(x)$ are orthogonal on the interval $a \leqq x \leqq b$? (For the definition, see Sec. 11.5. See also Sec. 11.6.)
15. CAS EXPERIMENT. Least Squares versus Interpolation. For the given data and for data of your choice find the interpolation polynomial and the least squares approximations (linear, quadratic, etc.). Compare and comment.
(a) $(-2,0),(-1,0),(0,1),(1,0),(2,0)$
(b) $(-4,0),(-3,0),(-2,0),(-1,0),(0,1)$, $(1,0), \quad(2,0), \quad(3,0), \quad(4,0)$
(c) Choose five points on a straight line, e.g., (0,0), $(1,1), \cdots,(4,4)$. Move one point 1 unit upward and find the quadratic least squares polynomial. Do this for each point. Graph the five polynomials on common axes. Which of the five motions has the greatest effect?

20.6 Matrix Eigenvalue Problems: Introduction

We now come to the second part of our chapter on numeric linear algebra. In the first part of this chapter we discussed methods of solving systems of linear equations, which included Gauss elimination with backward substitution. This method is known as a direct method since it gives solutions after a prescribed amount of computation. The Gauss method was modified by Doolittle's method, Crout's method, and Cholesky's method, each requiring fewer arithmetic operations than Gauss. Finally we presented indirect methods of solving systems of linear equations, that is, the Gauss-Seidel method and the Jacobi iteration. The indirect methods require an undetermined number of iterations. That number depends on how far we start from the true solution and what degree of accuracy we require. Moreover, depending on the problem, convergence may be fast or slow or our computation cycle might not even converge. This led to the concepts of ill-conditioned problems and condition numbers that help us gain some control over difficulties inherent in numerics.

The second part of this chapter deals with some of the most important ideas and numeric methods for matrix eigenvalue problems. This very extensive part of numeric linear algebra is of great practical importance, with much research going on, and hundreds, if not thousands, of papers published in various mathematical journals (see the references in [E8], [E9], [E11], [E29]). We begin with the concepts and general results we shall need in explaining and applying numeric methods for eigenvalue problems. (For typical models of eigenvalue problems see Chap. 8.)

[^6]An eigenvalue or characteristic value (or latent root) of a given $n \times n$ matrix $\mathbf{A}=\left[a_{j k}\right]$ is a real or complex number λ such that the vector equation

$$
\begin{equation*}
\mathbf{A x}=\lambda \mathbf{x} \tag{1}
\end{equation*}
$$

has a nontrivial solution, that is, a solution $\mathbf{x} \neq \mathbf{0}$, which is then called an eigenvector or characteristic vector of \mathbf{A} corresponding to that eigenvalue λ. The set of all eigenvalues of \mathbf{A} is called the spectrum of \mathbf{A}. Equation (1) can be written

$$
\begin{equation*}
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0} \tag{2}
\end{equation*}
$$

where \mathbf{I} is the $n \times n$ unit matrix. This homogeneous system has a nontrivial solution if and only if the characteristic determinant $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$ is 0 (see Theorem 2 in Sec. 7.5). This gives (see Sec. 8.1)

Eigenvalues

The eigenvalues of \mathbf{A} are the solutions λ of the characteristic equation

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \tag{3}\\
a_{21} & a_{22}-\lambda & \cdots & a_{2 n} \\
\cdot & \cdot & \cdots & \cdot \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}-\lambda
\end{array}\right|=0
$$

Developing the characteristic determinant, we obtain the characteristic polynomial of A, which is of degree n in λ. Hence \mathbf{A} has at least one and at most n numerically different eigenvalues. If \mathbf{A} is real, so are the coefficients of the characteristic polynomial. By familiar algebra it follows that then the roots (the eigenvalues of \mathbf{A}) are real or complex conjugates in pairs.

To give you some orientation of the underlying approaches of numerics for eigenvalue problems, note the following. For large or very large matrices it may be very difficult to determine the eigenvalues, since, in general, it is difficult to find the roots of characteristic polynomials of higher degrees. We will discuss different numeric methods for finding eigenvalues that achieve different results. Some methods, such as in Sec. 20.7, will give us only regions in which complex eigenvalues lie (Geschgorin's method) or the intervals in which the largest and smallest real eigenvalue lie (Collatz method). Other methods compute all eigenvalues, such as the Householder tridiagonalization method and the QR-method in Sec. 20.9.

To continue our discussion, we shall usually denote the eigenvalues of \mathbf{A} by

$$
\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}
$$

with the understanding that some (or all) of them may be equal.
The sum of these n eigenvalues equals the sum of the entries on the main diagonal of \mathbf{A}, called the trace of \mathbf{A}; thus

$$
\begin{equation*}
\operatorname{trace} \mathbf{A}=\sum_{j=1}^{n} a_{j j}=\sum_{k=1}^{n} \lambda_{k} . \tag{4}
\end{equation*}
$$

Also, the product of the eigenvalues equals the determinant of \mathbf{A},

$$
\begin{equation*}
\operatorname{det} \mathbf{A}=\lambda_{1} \lambda_{2} \cdots \lambda_{n} \tag{5}
\end{equation*}
$$

Both formulas follow from the product representation of the characteristic polynomial, which we denote by $f(\lambda)$,

$$
f(\lambda)=(-1)^{n}\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right)
$$

If we take equal factors together and denote the numerically distinct eigenvalues of \mathbf{A} by $\lambda_{1}, \cdots, \lambda_{r}(r \leqq n)$, then the product becomes

$$
\begin{equation*}
f(\lambda)=(-1)^{n}\left(\lambda-\lambda_{1}\right)^{m_{1}}\left(\lambda-\lambda_{2}\right)^{m_{2}} \cdots\left(\lambda-\lambda_{r}\right)^{m_{r}} . \tag{6}
\end{equation*}
$$

The exponent m_{j} is called the algebraic multiplicity of λ_{j}. The maximum number of linearly independent eigenvectors corresponding to λ_{j} is called the geometric multiplicity of λ_{j}. It is equal to or smaller than m_{j}.

A subspace S of R^{n} or C^{n} (if \mathbf{A} is complex) is called an invariant subspace of \mathbf{A} if for every \mathbf{v} in S the vector $\mathbf{A v}$ is also in S. Eigenspaces of \mathbf{A} (spaces of eigenvectors; Sec. 8.1) are important invariant subspaces of \mathbf{A}.

An $n \times n$ matrix \mathbf{B} is called similar to \mathbf{A} if there is a nonsingular $n \times n$ matrix \mathbf{T} such that

$$
\begin{equation*}
\mathbf{B}=\mathbf{T}^{-1} \mathbf{A} \mathbf{T} \tag{7}
\end{equation*}
$$

Similarity is important for the following reason.

Similar Matrices

Similar matrices have the same eigenvalues. If \mathbf{x} is an eigenvector of \mathbf{A}, then $\mathbf{y}=\mathbf{T}^{-1} \mathbf{x}$ is an eigenvector of \mathbf{B} in (7) corresponding to the same eigenvalue. (Proof in Sec. 8.4.)

Another theorem that has various applications in numerics is as follows.

Spectral Shift

If \mathbf{A} has the eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$, then $\mathbf{A}-k \mathbf{I}$ with arbitrary k has the eigenvalues $\lambda_{1}-k, \cdots, \lambda_{n}-k$.

This theorem is a special case of the following spectral mapping theorem.

Polynomial Matrices

If λ is an eigenvalue of \mathbf{A}, then

$$
q(\lambda)=\alpha_{s} \lambda^{s}+\alpha_{s-1} \lambda^{s-1}+\cdots+\alpha_{1} \lambda+\alpha_{0}
$$

is an eigenvalue of the polynomial matrix

$$
q(\mathbf{A})=\alpha_{s} \mathbf{A}^{s}+\alpha_{s-\mathbf{1}} \mathbf{A}^{s-1}+\cdots+\alpha_{1} \mathbf{A}+a_{0} \mathbf{I}
$$

PROOF $\quad \mathbf{A} \mathbf{x}=\lambda \mathbf{x}$ implies $\mathbf{A}^{2} \mathbf{x}=\mathbf{A} \lambda \mathbf{x}=\lambda \mathbf{A} \mathbf{x}=\lambda^{2} \mathbf{x}, \mathbf{A}^{3} \mathbf{x}=\lambda^{3} \mathbf{x}$, etc. Thus

$$
\begin{aligned}
q(\mathbf{A}) \mathbf{x} & =\left(\alpha_{s} \mathbf{A}^{s}+\alpha_{s-1} \mathbf{A}^{s-1}+\cdots\right) \mathbf{x} \\
& =\alpha_{s} \mathbf{A}^{s} \mathbf{x}+\alpha_{s-1} A^{s-1} \mathbf{x}+\cdots \\
& =\alpha_{s} \lambda^{s} \mathbf{x}+\alpha_{s-1} \lambda^{s-1} \mathbf{x}+\cdots=q(\lambda) \mathbf{x}
\end{aligned}
$$

The eigenvalues of important special matrices can be characterized as follows.

THEOREM 5

Special Matrices

The eigenvalues of Hermitian matrices (i.e., $\overline{\mathbf{A}}^{\top}=\mathbf{A}$), hence of real symmetric matrices (i.e., $\mathbf{A}^{\top}=\mathbf{A}$), are real. The eigenvalues of skew-Hermitian matrices (i.e., $\overline{\mathbf{A}}^{\top}=-\mathbf{A}$), hence of real skew-symmetric matrices (i.e., $\mathbf{A}^{\top}=-\mathbf{A}$), are pure imaginary or 0 . The eigenvalues of unitary matrices (i.e., $\overline{\mathbf{A}}^{\top}=\mathbf{A}^{-1}$), hence of orthogonal matrices (i.e., $\mathbf{A}^{\top}=\mathbf{A}^{-1}$), have absolute value 1. (Proofs in Secs. 8.3 and 8.5.)

The choice of a numeric method for matrix eigenvalue problems depends essentially on two circumstances, on the kind of matrix (real symmetric, real general, complex, sparse, or full) and on the kind of information to be obtained, that is, whether one wants to know all eigenvalues or merely specific ones, for instance, the largest eigenvalue, whether eigenvalues and eigenvectors are wanted, and so on. It is clear that we cannot enter into a systematic discussion of all these and further possibilities that arise in practice, but we shall concentrate on some basic aspects and methods that will give us a general understanding of this fascinating field.

20.7 Inclusion of Matrix Eigenvalues

The whole of numerics for matrix eigenvalues is motivated by the fact that, except for a few trivial cases, we cannot determine eigenvalues exactly by a finite process because these values are the roots of a polynomial of nth degree. Hence we must mainly use iteration.

In this section we state a few general theorems that give approximations and error bounds for eigenvalues. Our matrices will continue to be real (except in formula (5) below), but since (nonsymmetric) matrices may have complex eigenvalues, complex numbers will play a (very modest) role in this section.

The important theorem by Gerschgorin gives a region consisting of closed circular disks in the complex plane and including all the eigenvalues of a given matrix. Indeed, for each $j=1, \cdots, n$ the inequality (1) in the theorem determines a closed circular disk in the complex λ-plane with center $a_{j j}$ and radius given by the right side of (1); and Theorem 1 states that each of the eigenvalues of \mathbf{A} lies in one of these n disks.

THEOREM 1

Gerschgorin's Theorem ${ }^{6}$

Let λ be an eigenvalue of an arbitrary $n \times n$ matrix $\mathbf{A}=\left[a_{j k}\right]$. Then for some integer $j(1 \leqq j \leqq n)$ we have

$$
\begin{equation*}
\left|a_{j j}-\lambda\right| \leqq\left|a_{j 1}\right|+\left|a_{j 2}\right|+\cdots+\left|a_{j, j-1}\right|+\left|a_{j, j+1}\right|+\cdots+\left|a_{j n}\right| . \tag{1}
\end{equation*}
$$

[^7]PROOF Let \mathbf{x} be an eigenvector corresponding to an eigenvalue λ of \mathbf{A}. Then

$$
\begin{equation*}
\mathbf{A} \mathbf{x}=\lambda \mathbf{x} \quad \text { or } \quad(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0} \tag{2}
\end{equation*}
$$

Let x_{j} be a component of \mathbf{x} that is largest in absolute value. Then we have $\left|x_{m} / x_{j}\right| \leqq 1$ for $m=1, \cdots, n$. The vector equation (2) is equivalent to a system of n equations for the n components of the vectors on both sides. The j th of these n equations with j as just indicated is

$$
a_{j 1} x_{1}+\cdots+a_{j, j-1} x_{j-1}+\left(a_{j j}-\lambda\right) x_{j}+a_{j, j+1} x_{j+1}+\cdots+a_{j n} x_{n}=0
$$

Division by x_{j} (which cannot be zero; why?) and reshuffling terms gives

$$
a_{j j}-\lambda=-a_{j 1} \frac{x_{1}}{x_{j}}-\cdots-a_{j, j-1} \frac{x_{j-1}}{x_{j}}-a_{j, j+1} \frac{x_{j+1}}{x_{j}}-\cdots-a_{j n} \frac{x_{n}}{x_{j}} .
$$

By taking absolute values on both sides of this equation, applying the triangle inequality $|a+b| \leqq|a|+|b|$ (where a and b are any complex numbers), and observing that because of the choice of j (which is crucial!), $\left|x_{1} / x_{j}\right| \leqq 1, \cdots,\left|x_{n} / x_{j}\right| \leqq 1$, we obtain (1), and the theorem is proved.

EXAMPLE 1 Gerschgorin's Theorem

For the eigenvalues of the matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 5 & 1 \\
\frac{1}{2} & 1 & 1
\end{array}\right]
$$

we get the Gerschgorin disks (Fig. 449)
D_{1} : Center 0, radius $1, \quad D_{2}$: Center 5, radius $1.5, \quad D_{3}:$ Center 1, radius 1.5.
The centers are the main diagonal entries of \mathbf{A}. These would be the eigenvalues of \mathbf{A} if \mathbf{A} were diagonal. We can take these values as crude approximations of the unknown eigenvalues (3D-values) $\lambda_{1}=-0.209$, $\lambda_{2}=5.305, \lambda_{3}=0.904$ (verify this); then the radii of the disks are corresponding error bounds.

Since \mathbf{A} is symmetric, it follows from Theorem 5, Sec. 20.6, that the spectrum of A must actually lie in the intervals $[-1,2.5]$ and $[3.5,6.5]$.

It is interesting that here the Gerschgorin disks form two disjoint sets, namely, $D_{1} \cup D_{3}$, which contains two eigenvalues, and D_{2}, which contains one eigenvalue. This is typical, as the following theorem shows.

Fig. 449. Gerschgorin disks in Example 1

THEOREM 2

Extension of Gerschgorin's Theorem

If p Gerschgorin disks form a set S that is disjoint from the $n-p$ other disks of a given matrix \mathbf{A}, then S contains precisely p eigenvalues of \mathbf{A} (each counted with its algebraic multiplicity, as defined in Sec. 20.6).

Idea of Proof. Set $\mathbf{A}=\mathbf{B}+\mathbf{C}$, where \mathbf{B} is the diagonal matrix with entries $a_{j j}$, and apply Theorem 1 to $\mathbf{A}_{t}=\mathbf{B}+t \mathbf{C}$ with real t growing from 0 to 1 .

EXAMPLE 2 Another Application of Gerschgorin's Theorem. Similarity

Suppose that we have diagonalized a matrix by some numeric method that left us with some off-diagonal entries of size 10^{-5}, say,

$$
\mathbf{A}=\left[\begin{array}{ccc}
2 & 10^{-5} & 10^{-5} \\
10^{-5} & 2 & 10^{-5} \\
10^{-5} & 10^{-5} & 4
\end{array}\right]
$$

What can we conclude about deviations of the eigenvalues from the main diagonal entries?
Solution. By Theorem 2, one eigenvalue must lie in the disk of radius $2 \cdot 10^{-5}$ centered at 4 and two eigenvalues (or an eigenvalue of algebraic multiplicity 2) in the disk of radius $2 \cdot 10^{-5}$ centered at 2 . Actually, since the matrix is symmetric, these eigenvalues must lie in the intersections of these disks and the real axis, by Theorem 5 in Sec. 20.6.

We show how an isolated disk can always be reduced in size by a similarity transformation. The matrix

$$
\begin{aligned}
\mathbf{B}=\mathbf{T}^{-1} \mathbf{A T} & =\left[\begin{array}{llc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 10^{-5}
\end{array}\right]\left[\begin{array}{ccc}
2 & 10^{-5} & 10^{-5} \\
10^{-5} & 2 & 10^{-5} \\
10^{-5} & 10^{-5} & 4
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 10^{5}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2 & 10^{-5} & 1 \\
10^{-5} & 2 & 1 \\
10^{-10} & 10^{-10} & 4
\end{array}\right]
\end{aligned}
$$

is similar to \mathbf{A}. Hence by Theorem 2, Sec. 20.6, it has the same eigenvalues as A. From Row 3 we get the smaller disk of radius $2 \cdot 10^{-10}$. Note that the other disks got bigger, approximately by a factor of 10^{5}. And in choosing \mathbf{T} we have to watch that the new disks do not overlap with the disk whose size we want to decrease.

For further interesting facts, see the book [E28].

By definition, a diagonally dominant matrix $\mathbf{A}=\left[a_{j k}\right]$ is an $n \times n$ matrix such that

$$
\begin{equation*}
\left|a_{j j}\right| \geqq \sum_{k \neq j}\left|a_{j k}\right| \quad j=1, \cdots, n \tag{3}
\end{equation*}
$$

where we sum over all off-diagonal entries in Row j. The matrix is said to be strictly diagonally dominant if $>$ in (3) for all j. Use Theorem 1 to prove the following basic property.

Strict Diagonal Dominance

Strictly diagonally dominant matrices are nonsingular.

Further Inclusion Theorems

An inclusion theorem is a theorem that specifies a set which contains at least one eigenvalue of a given matrix. Thus, Theorems 1 and 2 are inclusion theorems; they even include the whole spectrum. We now discuss some famous theorems that yield further inclusions of eigenvalues. We state the first two of them without proofs (which would exceed the level of this book).

THEOREM 4

Schur's Theorem ${ }^{7}$

Let $\mathbf{A}=\left[a_{j k}\right]$ be a $n \times n$ matrix. Then for each of its eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$,

$$
\begin{equation*}
\left|\lambda_{m}\right|^{2} \leqq \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leqq \sum_{j=1}^{n} \sum_{k=1}^{n}\left|a_{j k}\right|^{2} \quad \text { (Schur's inequality) } \tag{4}
\end{equation*}
$$

In (4) the second equality sign holds if and only if \mathbf{A} is such that

$$
\begin{equation*}
\overline{\mathbf{A}}^{\top} \mathbf{A}=\mathbf{A} \overline{\mathbf{A}}^{\top} \tag{5}
\end{equation*}
$$

Matrices that satisfy (5) are called normal matrices. It is not difficult to see that Hermitian, skew-Hermitian, and unitary matrices are normal, and so are real symmetric, skew-symmetric, and orthogonal matrices.

EXAMPLE 3 Bounds for Eigenvalues Obtained from Schur's Inequality

For the matrix

$$
\mathbf{A}=\left[\begin{array}{rrr}
26 & -2 & 2 \\
2 & 21 & 4 \\
4 & 2 & 28
\end{array}\right]
$$

we obtain from Schur's inequality $|\lambda| \leqq \sqrt{1949}=44.1475$. You may verify that the eigenvalues are 30,25 , and 20 . Thus $30^{2}+25^{2}+20^{2}=1925<1949$; in fact, \mathbf{A} is not normal.

The preceding theorems are valid for every real or complex square matrix. Other theorems hold for special classes of matrices only. Famous is the following one, which has various applications, for instance, in economics.

Perron's Theorem ${ }^{8}$

Let \mathbf{A} be a real $n \times n$ matrix whose entries are all positive. Then \mathbf{A} has a positive real eigenvalue $\lambda=\rho$ of multiplicity 1 . The corresponding eigenvector can be chosen with all components positive. (The other eigenvalues are less than ρ in absolute value.)

[^8]For a proof see Ref. [B3], vol. II, pp. 53-62. The theorem also holds for matrices with nonnegative real entries ("Perron-Frobenius Theorem"8) provided \mathbf{A} is irreducible, that is, it cannot be brought to the following form by interchanging rows and columns; here \mathbf{B} and \mathbf{F} are square and $\mathbf{0}$ is a zero matrix.

$$
\left[\begin{array}{ll}
\mathbf{B} & \mathbf{C} \\
\mathbf{0} & \mathbf{F}
\end{array}\right]
$$

Perron's theorem has various applications, for instance, in economics. It is interesting that one can obtain from it a theorem that gives a numeric algorithm:

Collatz Inclusion Theorem ${ }^{9}$

Let $\mathbf{A}=\left[a_{j k}\right]$ be a real $n \times n$ matrix whose elements are all positive. Let \mathbf{x} be any real vector whose components x_{1}, \cdots, x_{n} are positive, and let y_{1}, \cdots, y_{n} be the components of the vector $\mathbf{y}=\mathbf{A x}$. Then the closed interval on the real axis bounded by the smallest and the largest of the n quotients $q_{j}=y_{j} / x_{j}$ contains at least one eigenvalue of \mathbf{A}.

PROOF We have $\mathbf{A x}=\mathbf{y}$ or

$$
\begin{equation*}
\mathbf{y}-\mathbf{A x}=\mathbf{0} \tag{6}
\end{equation*}
$$

The transpose \mathbf{A}^{\top} satisfies the conditions of Theorem 5. Hence \mathbf{A}^{\top} has a positive eigenvalue λ and, corresponding to this eigenvalue, an eigenvector \mathbf{u} whose components u_{j} are all positive. Thus $\mathbf{A}^{\top} \mathbf{u}=\lambda \mathbf{u}$ and by taking the transpose we obtain $\mathbf{u}^{\top} \mathbf{A}=\lambda \mathbf{u}^{\top}$. From this and (6) we have

$$
\mathbf{u}^{\top}(\mathbf{y}-\mathbf{A} \mathbf{x})=\mathbf{u}^{\top} \mathbf{y}-\mathbf{u}^{\top} \mathbf{A} \mathbf{x}=\mathbf{u}^{\top} \mathbf{y}-\lambda \mathbf{u}^{\top} \mathbf{x}=\mathbf{u}^{\top}(\mathbf{y}-\lambda \mathbf{x})=0
$$

or written out

$$
\sum_{j=1}^{n} u_{j}\left(y_{j}-\lambda x_{j}\right)=0
$$

Since all the components u_{j} are positive, it follows that

$$
\begin{array}{llll}
y_{j}-\lambda x_{j} \geqq 0, & \text { that is, } & q_{j} \geqq \lambda & \text { for at least one } j, \\
y_{j}-\lambda x_{j} \leqq 0, & \text { that is, } & q_{j} \leqq \lambda & \text { for at least one } j .
\end{array} \quad \text { and }
$$

Since \mathbf{A} and \mathbf{A}^{\top} have the same eigenvalues, λ is an eigenvalue of \mathbf{A}, and from (7) the statement of the theorem follows.

[^9]
EXAMPLE 4 Bounds for Eigenvalues from Collatz's Theorem. Iteration

For a given matrix \mathbf{A} with positive entries we choose an $\mathbf{x}=\mathbf{x}_{0}$ and iterate, that is, we compute $\mathbf{x}_{1}=\mathbf{A} \mathbf{x}_{0}$, $\mathbf{x}_{2}=\mathbf{A} \mathbf{x}_{1}, \cdots, \mathbf{x}_{20}=\mathbf{A} \mathbf{x}_{19}$. In each step, taking $\mathbf{x}=\mathbf{x}_{j}$ and $\mathbf{y}=\mathbf{A} \mathbf{x}_{j}=\mathbf{x}_{j+1}$ we compute an inclusion interval by Collatz's theorem. This gives (6S)

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{lll}
0.49 & 0.02 & 0.22 \\
0.02 & 0.28 & 0.20 \\
0.22 & 0.20 & 0.40
\end{array}\right], \mathbf{x}_{0}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{x}_{1}=\left[\begin{array}{l}
0.73 \\
0.50 \\
0.82
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}
0.5481 \\
0.3186 \\
0.5886
\end{array}\right], \\
\cdots, \mathbf{x}_{19}=\left[\begin{array}{l}
0.00216309 \\
0.00108155 \\
0.00216309
\end{array}\right], \mathbf{x}_{20}=\left[\begin{array}{l}
0.00155743 \\
0.000778713 \\
0.00155743
\end{array}\right]
\end{gathered}
$$

and the intervals $0.5 \leqq \lambda \leqq 0.82,0.3186 / 0.50=0.6372 \leqq \lambda \leqq 0.5481 / 0.73=0.750822$, etc. These intervals have length

j	1	2	3	10	15	20
Length	0.32	0.113622	0.0539835	0.0004217	0.0000132	0.0000004

Using the characteristic polynomial, you may verify that the eigenvalues of \mathbf{A} are $0.72,0.36,0.09$, so that those intervals include the largest eigenvalue, 0.72 . Their lengths decreased with j, so that the iteration was worthwhile. The reason will appear in the next section, where we discuss an iteration method for eigenvalues.

1-6 GERSCHGORIN DISKS

Find and sketch disks or intervals that contain the eigenvalues. If you have a CAS, find the spectrum and compare.

1. $\left[\begin{array}{rrr}5 & 2 & 4 \\ -2 & 0 & 2 \\ 2 & 4 & 7\end{array}\right]$
2. $\left[\begin{array}{ccc}5 & 10^{-2} & 10^{-2} \\ 10^{-2} & 8 & 10^{-2} \\ 10^{-2} & 10^{-2} & 9\end{array}\right]$
3. $\left[\begin{array}{ccc}0 & 0.4 & -0.1 \\ -0.4 & 0 & 0.3 \\ 0.1 & -0.3 & 0\end{array}\right]$
4. $\left[\begin{array}{rrr}1 & 0 & 1 \\ 0 & 4 & 3 \\ 1 & 3 & 12\end{array}\right]$
5. $\left[\begin{array}{ccc}2 & i & 1+i \\ -i & 3 & 0 \\ 1-i & 0 & 8\end{array}\right]$
6. $\left[\begin{array}{ccc}10 & 0.1 & -0.2 \\ 0.1 & 6 & 0 \\ -0.2 & 0 & 3\end{array}\right]$
7. Similarity. In Prob. 2, find $\mathbf{T}^{-\top} \mathbf{A T}$ such that the radius of the Gerschgorin circle with center 5 is reduced by a factor $1 / 100$.
8. By what integer factor can you at most reduce the Gerschgorin circle with center 3 in Prob. 6?
9. If a symmetric $n \times n$ matrix $\mathbf{A}=\left[a_{j k}\right]$ has been diagonalized except for small off-diagonal entries of size 10^{-5}, what can you say about the eigenvalues?
10. Optimality of Gerschgorin disks. Illustrate with a 2×2 matrix that an eigenvalue may very well lie on a Gerschgorin circle, so that Gerschgorin disks can generally not be replaced with smaller disks without losing the inclusion property.
11. Spectral radius $\boldsymbol{\rho}(\mathbf{A})$. Using Theorem 1 , show that $\rho(\mathbf{A})$ cannot be greater than the row sum norm of \mathbf{A}.

12-16 SPECTRAL RADIUS

Use (4) to obtain an upper bound for the spectral radius:
12. In Prob. 4
13. In Prob. 1
14. In Prob. 6
15. In Prob. 3
16. In Prob. 5
17. Verify that the matrix in Prob. 5 is normal.
18. Normal matrices. Show that Hermitian, skewHermitian, and unitary matrices (hence real symmetric, skew-symmetric, and orthogonal matrices) are normal. Why is this of practical interest?
19. Prove Theorem 3 by using Theorem 1.
20. Extended Gerschgorin theorem. Prove Theorem 2. Hint. Let $\mathbf{A}=\mathbf{B}+\mathbf{C}, \mathbf{B}=\operatorname{diag}\left(a_{j j}\right), \mathbf{A}_{t}=\mathbf{B}+t \mathbf{C}$, and let t increase continuously from 0 to 1 .

20.8 Power Method for Eigenvalues

A simple standard procedure for computing approximate values of the eigenvalues of an $n \times n$ matrix $\mathbf{A}=\left[a_{j k}\right]$ is the power method. In this method we start from any vector $\mathbf{x}_{0}(\neq \mathbf{0})$ with n components and compute successively

$$
\mathbf{x}_{1}=\mathbf{A} \mathbf{x}_{0}, \quad \mathbf{x}_{2}=\mathbf{A} \mathbf{x}_{1}, \quad \cdots, \quad \mathbf{x}_{s}=\mathbf{A} \mathbf{x}_{s-1} .
$$

For simplifying notation, we denote $\mathbf{x}_{\boldsymbol{s}-\mathbf{1}}$ by \mathbf{x} and \mathbf{x}_{s} by \mathbf{y}, so that $\mathbf{y}=\mathbf{A x}$.
The method applies to any $n \times n$ matrix \mathbf{A} that has a dominant eigenvalue (a λ such that $|\lambda|$ is greater than the absolute values of the other eigenvalues). If \mathbf{A} is symmetric, it also gives the error bound (2), in addition to the approximation (1).

Power Method, Error Bounds

Let \mathbf{A} be an $n \times n$ real symmetric matrix. Let $\mathbf{x}(\neq \mathbf{0})$ be any real vector with n components. Furthermore, let

$$
\mathbf{y}=\mathbf{A} \mathbf{x}, \quad m_{0}=\mathbf{x}^{\top} \mathbf{x}, \quad m_{1}=\mathbf{x}^{\top} \mathbf{y}, \quad m_{2}=\mathbf{y}^{\top} \mathbf{y} .
$$

Then the quotient

$$
\begin{equation*}
q=\frac{m_{1}}{m_{0}} \quad\left(\text { Rayleigh }^{\mathbf{1 0}}\right. \text { quotient) } \tag{1}
\end{equation*}
$$

is an approximation for an eigenvalue λ of \mathbf{A} (usually that which is greatest in absolute value, but no general statements are possible).

Furthermore, if we set $q=\lambda-\epsilon$, so that ϵ is the error of q, then

$$
\begin{equation*}
|\epsilon| \leqq \delta=\sqrt{\frac{m_{2}}{m_{0}}-q^{2}} . \tag{2}
\end{equation*}
$$

$\mathrm{PROOF} \quad \delta^{2}$ denotes the radicand in (2). Since $m_{1}=q m_{0}$ by (1), we have

$$
\begin{equation*}
(\mathbf{y}-q \mathbf{x})^{\top}(\mathbf{y}-q \mathbf{x})=m_{2}-2 q m_{1}+q^{2} m_{0}=m_{2}-q^{2} m_{0}=\delta^{2} m_{0} . \tag{3}
\end{equation*}
$$

Since \mathbf{A} is real symmetric, it has an orthogonal set of n real unit eigenvectors $\mathbf{z}_{1}, \cdots, \mathbf{z}_{n}$ corresponding to the eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$, respectively (some of which may be equal). (Proof in Ref. [B3], vol. 1, pp. 270-272, listed in App. 1.) Then \mathbf{x} has a representation of the form

$$
\mathbf{x}=a_{1} \mathbf{z}_{1}+\cdots+a_{n} \mathbf{z}_{n}
$$

[^10]Now $\mathbf{A} \mathbf{z}_{1}=\lambda_{1} \mathbf{z}_{1}$, etc., and we obtain

$$
\mathbf{y}=\mathbf{A} \mathbf{x}=a_{1} \lambda_{1} \mathbf{z}_{1}+\cdots+a_{n} \lambda_{n} \mathbf{z}_{n}
$$

and, since the \mathbf{z}_{j} are orthogonal unit vectors,

$$
\begin{equation*}
m_{0}=\mathbf{x}^{\top} \mathbf{x}=a_{1}^{2}+\cdots+a_{n}^{2} \tag{4}
\end{equation*}
$$

It follows that in (3),

$$
\mathbf{y}-q \mathbf{x}=a_{1}\left(\lambda_{1}-q\right) \mathbf{z}_{1}+\cdots+a_{n}\left(\lambda_{n}-q\right) \mathbf{z}_{n}
$$

Since the \mathbf{z}_{j} are orthogonal unit vectors, we thus obtain from (3)

$$
\begin{equation*}
\delta^{2} m_{0}=(y-q \mathbf{x})^{\top}(\mathbf{y}-q \mathbf{x})=a_{1}^{2}\left(\lambda_{1}-q\right)^{2}+\cdots+a_{n}^{2}\left(\lambda_{n}-q\right)^{2} \tag{5}
\end{equation*}
$$

Now let λ_{c} be an eigenvalue of \mathbf{A} to which q is closest, where c suggests "closest." Then $\left(\lambda_{c}-q\right)^{2} \leqq\left(\lambda_{j}-q\right)^{2}$ for $j=1, \cdots, n$. From this and (5) we obtain the inequality

$$
\delta^{2} m_{0} \geqq\left(\lambda_{c}-q\right)^{2}\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)=\left(\lambda_{c}-q\right)^{2} m_{0}
$$

Dividing by m_{0}, taking square roots, and recalling the meaning of δ^{2} gives

$$
\delta=\sqrt{\frac{m_{2}}{m_{0}}-q^{2}} \geqq\left|\lambda_{c}-q\right|
$$

This shows that δ is a bound for the error ϵ of the approximation q of an eigenvalue of A and completes the proof.

The main advantage of the method is its simplicity. And it can handle sparse matrices too large to store as a full square array. Its disadvantage is its possibly slow convergence. From the proof of Theorem 1 we see that the speed of convergence depends on the ratio of the dominant eigenvalue to the next in absolute value ($2: 1$ in Example 1, below).

If we want a convergent sequence of eigenvectors, then at the beginning of each step we scale the vector, say, by dividing its components by an absolutely largest one, as in Example 1, as follows.

EXAMPLE 1 Application of Theorem 1. Scaling

For the symmetric matrix \mathbf{A} in Example 4, Sec. 20.7, and $\mathbf{x}_{0}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$ we obtain from (1) and (2) and the indicated scaling

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{lll}
0.49 & 0.02 & 0.22 \\
0.02 & 0.28 & 0.20 \\
0.22 & 0.20 & 0.40
\end{array}\right], \quad \mathbf{x}_{0}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{x}_{1}=\left[\begin{array}{l}
0.890244 \\
0.609756 \\
1
\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{l}
0.931193 \\
0.541284 \\
1
\end{array}\right] \\
\mathbf{x}_{5}=\left[\begin{array}{l}
0.990663 \\
0.504682 \\
1
\end{array}\right], \quad \mathbf{x}_{10}=\left[\begin{array}{l}
0.999707 \\
0.500146 \\
1
\end{array}\right], \quad \mathbf{x}_{15}=\left[\begin{array}{l}
0.999991 \\
0.500005 \\
1
\end{array}\right] .
\end{gathered}
$$

Here $\mathbf{A} \mathbf{x}_{0}=\left[\begin{array}{lll}0.73 & 0.5 & 0.82\end{array}\right]^{\top}$, scaled to $\mathbf{x}_{1}=\left[\begin{array}{lll}0.73 / 0.82 & 0.5 / 0.82 & 1\end{array}\right]^{\top}$, etc. The dominant eigenvalue is 0.72 , an eigenvector $\left[\begin{array}{lll}1 & 0.5 & 1\end{array}\right]^{\top}$. The corresponding q and δ are computed each time before the next scaling. Thus in the first step,

$$
\begin{gathered}
q=\frac{m_{1}}{m_{0}}=\frac{\mathbf{x}_{0}^{\top} \mathbf{A} \mathbf{x}_{0}}{\mathbf{x}_{0}^{\top} \mathbf{x}_{0}}=\frac{2.05}{3}=0.683333 \\
\delta=\left(\frac{m_{2}}{m_{0}}-q^{2}\right)^{1 / 2}=\left(\frac{\left(\mathbf{A} \mathbf{x}_{0}\right)^{\top} \mathbf{A} \mathbf{x}_{0}}{\mathbf{x}_{0}^{\top} \mathbf{x}_{0}}-q^{2}\right)^{1 / 2}=\left(\frac{1.4553}{3}-q^{2}\right)^{1 / 2}=0.134743 .
\end{gathered}
$$

This gives the following values of q, δ, and the error $\epsilon=0.72-q$ (calculations with 10 D , rounded to 6 D):

j	1	2	5	10
q	0.683333	0.716048	0.719944	0.720000
δ	0.134743	0.038887	0.004499	0.000141
ϵ	0.036667	0.003952	0.000056	$5 \cdot 10^{-8}$

The error bounds are much larger than the actual errors. This is typical, although the bounds cannot be improved; that is, for special symmetric matrices they agree with the errors.

Our present results are somewhat better than those of Collatz's method in Example 4 of Sec. 20.7, at the expense of more operations.

Spectral shift, the transition from \mathbf{A} to $\mathbf{A}-k \mathbf{I}$, shifts every eigenvalue by $-k$. Although finding a good k can hardly be made automatic, it may be helped by some other method or small preliminary computational experiments. In Example 1, Gerschgorin's theorem gives $-0.02 \leqq \lambda \leqq 0.82$ for the whole spectrum (verify!). Shifting by -0.4 might be too much (then $-0.42 \leqq \lambda \leqq 0.42$), so let us try -0.2 .

EXAMPLE 2 Power Method with Spectral Shift

For $\mathbf{A}-0.2 \mathbf{I}$ with \mathbf{A} as in Example 1 we obtain the following substantial improvements (where the index 1 refers to Example 1 and the index 2 to the present example).

j	1	2	5	10
δ_{1}	0.134743	0.038887	0.004499	0.000141
δ_{2}	0.134743	0.034474	0.000693	$1.8 \cdot 10^{-6}$
ϵ_{1}	0.036667	0.003952	0.000056	$5 \cdot 10^{-8}$
ϵ_{2}	0.036667	0.002477	$1.3 \cdot 10^{-6}$	$9 \cdot 10^{-12}$

PROBBHEM SET 20.8

1-4 POWER METHOD WITHOUT SCALING

Apply the power method without scaling (3 steps), using $\mathbf{x}_{0}=\left[\begin{array}{ll}1, & 1\end{array}\right]^{\top}$ or $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$. Give Rayleigh quotients and error bounds. Show the details of your work.

1. $\left[\begin{array}{ll}9 & 4 \\ 4 & 3\end{array}\right]$
2. $\left[\begin{array}{rr}7 & -3 \\ -3 & -1\end{array}\right]$
3. $\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 3 & 2 \\ 1 & 2 & 3\end{array}\right]$
4. $\left[\begin{array}{rrr}3.6 & -1.8 & 1.8 \\ -1.8 & 2.8 & -2.6 \\ 1.8 & -2.6 & 2.8\end{array}\right]$

5-8 POWER METHOD WITH SCALING

Apply the power method (3 steps) with scaling, using $\mathbf{x}_{0}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$ or $\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{\top}$, as applicable. Give

Rayleigh quotients and error bounds. Show the details of your work.
5. The matrix in Prob. 3
6. $\left[\begin{array}{lll}4 & 2 & 3 \\ 2 & 7 & 6 \\ 3 & 6 & 4\end{array}\right]$
7. $\left[\begin{array}{llll}5 & 1 & 0 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 1 & 5\end{array}\right]$
8. $\left[\begin{array}{llll}2 & 4 & 0 & 1 \\ 4 & 1 & 2 & 8 \\ 0 & 2 & 5 & 2 \\ 1 & 8 & 2 & 0\end{array}\right]$
9. Prove that if \mathbf{x} is an eigenvector, then $\delta=0$ in (2). Give two examples.
10. Rayleigh quotient. Why does q generally approximate the eigenvalue of greatest absolute value? When will q be a good approximation?
11. Spectral shift, smallest eigenvalue. In Prob. 3 set $\mathbf{B}=\mathbf{A}-3 \mathbf{I}$ (as perhaps suggested by the diagonal entries) and see whether you may get a sequence of q 's converging to an eigenvalue of \mathbf{A} that is smallest (not largest) in absolute value. Use $\mathbf{x}_{0}=\left[\begin{array}{ccc}1 & 1 & 1\end{array}\right]^{\top}$. Do 8 steps. Verify that \mathbf{A} has the spectrum $\{0,3,5\}$.
12. CAS EXPERIMENT. Power Method with Scaling. Shifting. (a) Write a program for $n \times n$ matrices that prints every step. Apply it to the (nonsymmetric!) matrix (20 steps), starting from $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$.

$$
\mathbf{A}=\left[\begin{array}{rrr}
15 & 12 & 3 \\
18 & 44 & 18 \\
-19 & -36 & -7
\end{array}\right]
$$

(b) Experiment in (a) with shifting. Which shift do you find optimal?
(c) Write a program as in (a) but for symmetric matrices that prints vectors, scaled vectors, q, and δ. Apply it to the matrix in Prob. 8.
(d). Optimality of $\boldsymbol{\delta}$. Consider $\mathbf{A}=\left[\begin{array}{cc}0.6 & 0.8 \\ 0.8 & -0.6\end{array}\right]$ and take $\mathbf{x}_{0}=\left[\begin{array}{r}3 \\ -1\end{array}\right]$. Show that $q=0, \delta=1$ for all steps and the eigenvalues are ± 1, so that the interval $[q-\delta, q+\delta]$ cannot be shortened (by omitting ± 1) without losing the inclusion property. Experiment with other \mathbf{x}_{0} 's.
(e) Find a (nonsymmetric) matrix for which δ in (2) is no longer an error bound.
(f) Experiment systematically with speed of convergence by choosing matrices with the second greatest eigenvalue (i) almost equal to the greatest, (ii) somewhat different, (iii) much different.

20.9 Tridiagonalization and QR-Factorization

We consider the problem of computing all the eigenvalues of a real symmetric matrix $\mathbf{A}=\left[a_{j k}\right]$, discussing a method widely used in practice. In the first stage we reduce the given matrix stepwise to a tridiagonal matrix, that is, a matrix having all its nonzero entries on the main diagonal and in the positions immediately adjacent to the main diagonal (such as \mathbf{A}_{3} in Fig. 450, Third Step). This reduction was invented by A. S. Householder ${ }^{11}$ (J. Assn. Comput. Machinery 5 (1958), 335-342). See also Ref. [E29] in App. 1.

This Householder tridiagonalization will simplify the matrix without changing its eigenvalues. The latter will then be determined (approximately) by factoring the tridiagonalized matrix, as discussed later in this section.

[^11]
Householder's Tridiagonalization Method"

An $n \times n$ real symmetric matrix $\mathbf{A}=\left[a_{j k}\right]$ being given, we reduce it by $n-2$ successive similarity transformations (see Sec. 20.6) involving matrices $\mathbf{P}_{1}, \cdots, \mathbf{P}_{n-2}$ to tridiagonal form. These matrices are orthogonal and symmetric. Thus $\mathbf{P}_{1}^{-1}=\mathbf{P}_{1}^{\top}=\mathbf{P}_{\mathbf{1}}$ and similarly for the others. These transformations produce, from the given $\mathbf{A}_{0}=\mathbf{A}=\left[a_{j k}\right]$, the matrices $\mathbf{A}_{1}=\left[a_{j k}^{(1)}\right], \mathbf{A}_{2}=\left[a_{j k}^{(2)}\right], \cdots, \mathbf{A}_{n-2}=\left[a_{j k}^{(n-2)}\right]$ in the form

$$
\begin{gather*}
\mathbf{A}_{1}=\mathbf{P}_{1} \mathbf{A}_{0} \mathbf{P}_{1} \\
\mathbf{A}_{2}=\mathbf{P}_{2} \mathbf{A}_{1} \mathbf{P}_{2} \tag{1}\\
\cdots \cdots \cdots \\
\mathbf{B}=\mathbf{A}_{n-2}=\mathbf{P}_{n-2} \mathbf{A}_{n-3} \mathbf{P}_{n-2} .
\end{gather*}
$$

The transformations (1) create the necessary zeros, in the first step in Row 1 and Column 1, in the second step in Row 2 and Column 2, etc., as Fig. 450 illustrates for a 5×5 matrix. \mathbf{B} is tridiagonal.

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
* & * & & & \\
* & * & * & * & * \\
& * & * & * & * \\
* & * & * & * \\
& * & * & * & *
\end{array}\right]\left[\begin{array}{lllll}
* & * & & & \\
* & * & * & & \\
& * & * & * & * \\
& & * & * & * \\
& & * & * & *
\end{array}\right]\left[\begin{array}{lllll}
* & * & & \\
& * & * & * & \\
& * & * & * & \\
& & & & *
\end{array}\right]} \\
& \text { First Step } \\
& \text { Second Step } \\
& \text { Third Step } \\
& \mathbf{A}_{1}=\mathbf{P}_{1} \mathbf{A} \mathbf{P}_{1} \\
& \mathbf{A}_{2}=\mathbf{P}_{2} \mathbf{A}_{1} \mathbf{P}_{2} \\
& \mathbf{A}_{3}=\mathbf{P}_{3} \mathbf{A}_{2} \mathbf{P}_{3}
\end{aligned}
$$

Fig. 450. Householder's method for a 5×5 matrix. Positions left blank are zeros created by the method.

How do we determine $\mathbf{P}_{1}, \mathbf{P}_{2}, \cdots, \mathbf{P}_{n-2}$? Now, all these \mathbf{P}_{r} are of the form

$$
\begin{equation*}
\mathbf{P}_{r}=\mathbf{I}-2 \mathbf{v}_{r} \mathbf{v}_{r}^{\top} \quad(r=1, \cdots, n-2) \tag{2}
\end{equation*}
$$

where \mathbf{I} is the $n \times n$ unit matrix and $\mathbf{v}_{r}=\left[v_{j r}\right]$ is a unit vector with its first r components 0 ; thus

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
0 \tag{3}\\
* \\
* \\
\vdots \\
*
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
0 \\
0 \\
* \\
\vdots \\
*
\end{array}\right], \quad \cdots, \quad \mathbf{v}_{n-2}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
* \\
*
\end{array}\right]
$$

where the asterisks denote the other components (which will be nonzero in general).

Step 1. \mathbf{v}_{1} has the components

$$
\begin{align*}
v_{11} & =0 \\
\text { (a) } \quad v_{21} & =\sqrt{\frac{1}{2}\left(1+\frac{\left|a_{21}\right|}{S_{1}}\right)} \\
\text { (b) } \quad v_{j 1} & =\frac{a_{j 1} \operatorname{sgn} a_{21}}{2 v_{21} S_{1}} \tag{4}
\end{align*}
$$

(a)

$$
j=3,4, \cdots, n
$$

where
(c) $\quad S_{1}=\sqrt{a_{21}^{2}+a_{31}^{2}+\cdots+a_{n 1}^{2}}$
where $S_{1}>0$, and $\operatorname{sgn} a_{21}=+1$ if $a_{21} \geqq 0$ and $\operatorname{sgn} a_{21}=-1$ if $a_{21}<0$. With this we compute \mathbf{P}_{1} by (2) and then \mathbf{A}_{1} by (1). This was the first step.

Step 2. We compute \mathbf{v}_{2} by (4) with all subscripts increased by 1 and the $a_{j k}$ replaced by $a_{j k}^{(1)}$, the entries of \mathbf{A}_{1} just computed. Thus [see also (3)]

$$
\begin{align*}
v_{12} & =v_{22}=0 \\
v_{32} & =\sqrt{\frac{1}{2}\left(1+\frac{\left|a_{32}^{(1)}\right|}{S_{2}}\right)} \tag{4*}\\
v_{j 2} & =\frac{a_{j 2}^{(1)} \operatorname{sgn} a_{32}^{(1)}}{2 v_{32} S_{2}}
\end{align*} \quad j=4,5, \cdots, n
$$

where

$$
S_{2}=\sqrt{a_{32}^{(1)^{2}}+a_{42}^{(1)^{2}}+\cdots+a_{n 2}^{(1)^{2}}}
$$

With this we compute \mathbf{P}_{2} by (2) and then \mathbf{A}_{2} by (1).
Step 3. We compute \mathbf{v}_{3} by $\left(4^{*}\right)$ with all subscripts increased by 1 and the $a_{j k}^{(1)}$ replaced by the entries $a_{j k}^{(2)}$ of \mathbf{A}_{2}, and so on.

EXAMPLE 1 Householder Tridiagonalization

Tridiagonalize the real symmetric matrix

$$
\mathbf{A}=\mathbf{A}_{0}=\left[\begin{array}{llll}
6 & 4 & 1 & 1 \\
4 & 6 & 1 & 1 \\
1 & 1 & 5 & 2 \\
1 & 1 & 2 & 5
\end{array}\right]
$$

Solution. Step 1. We compute $S_{1}^{2}=4^{2}+1^{2}+1^{2}=18$ from (4c). Since $a_{21}=4>0$, we have sgn $a_{21}=+1$ in (4b) and get from (4) by straightforward computation

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
0 \\
v_{21} \\
v_{31} \\
v_{41}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0.98559856 \\
0.11957316 \\
0.11957316
\end{array}\right] .
$$

From this and (2),

$$
\mathbf{P}_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -0.94280904 & -0.23570227 & -0.23570227 \\
0 & -0.23570227 & 0.97140452 & -0.02859548 \\
0 & -0.23570227 & -0.02859548 & 0.97140452
\end{array}\right] .
$$

From the first line in (1) we now get

$$
\mathbf{A}_{1}=\mathbf{P}_{1} \mathbf{A}_{0} \mathbf{P}_{1}=\left[\begin{array}{cccc}
6 & -\sqrt{18} & 0 & 0 \\
-\sqrt{18} & 7 & -1 & -1 \\
0 & -1 & \frac{9}{2} & \frac{3}{2} \\
0 & -1 & \frac{3}{2} & \frac{9}{2}
\end{array}\right] .
$$

Step 2. From (4*) we compute $S_{2}^{2}=2$ and

$$
\mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
0 \\
v_{32} \\
v_{42}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0.92387953 \\
0.38268343
\end{array}\right] .
$$

From this and (2),

$$
\mathbf{P}_{2}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / \sqrt{2} & -1 / \sqrt{2} \\
0 & 0 & -1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
$$

The second line in (1) now gives

$$
\mathbf{B}_{2}=\mathbf{A}_{2}=\mathbf{P}_{2} \mathbf{A}_{1} \mathbf{P}_{2}=\left[\begin{array}{rrrr}
6 & -\sqrt{18} & 0 & 0 \\
-\sqrt{18} & 7 & \sqrt{2} & 0 \\
0 & \sqrt{2} & 6 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] .
$$

This matrix \mathbf{B} is tridiagonal. Since our given matrix has order $n=4$, we needed $n-2=2$ steps to accomplish this reduction, as claimed. (Do you see that we got more zeros than we can expect in general?)
\mathbf{B} is similar to \mathbf{A}, as we now show in general. This is essential because \mathbf{B} thus has the same spectrum as \mathbf{A}, by Theorem 2 in Sec. 20.6.

B Similar to A. We assert that \mathbf{B} in (1) is similar to $\mathbf{A}=\mathbf{A}_{0}$. The matrix \mathbf{P}_{r} is symmetric; indeed,

$$
\mathbf{P}_{r}^{\top}=\left(\mathbf{I}-2 \mathbf{v}_{r} \mathbf{v}_{r}^{\top}\right)^{\top}=\mathbf{I}^{\top}-2\left(\mathbf{v}_{r} \mathbf{v}_{r}^{\top}\right)^{\top}=\mathbf{I}-2 \mathbf{v}_{r} \mathbf{v}_{r}^{\top}=\mathbf{P}_{r}
$$

Also, \mathbf{P}_{r} is orthogonal because \mathbf{v}_{r} is a unit vector, so that $\mathbf{v}_{r}{ }^{\top} \mathbf{v}_{r}=1$ and thus

$$
\begin{aligned}
\mathbf{P}_{r} \mathbf{P}_{r}^{\top}=\mathbf{P}_{r}^{2}=\left(\mathbf{I}-2 \mathbf{v}_{r} \mathbf{v}_{r}^{\top}\right)^{2}=\mathbf{I}-4 \mathbf{v}_{r} \mathbf{v}_{r}^{\top}+4 \mathbf{v}_{r} \mathbf{v}_{r}^{\top} \mathbf{v}_{r} \mathbf{v}_{r}^{\top} \\
=\mathbf{I}-4 \mathbf{v}_{r} \mathbf{v}_{r}^{\top}+4 \mathbf{v}_{r}\left(\mathbf{v}_{r}^{\top} \mathbf{v}_{r}\right) \mathbf{v}_{r}^{\top}=\mathbf{I} .
\end{aligned}
$$

Hence $\mathbf{P}_{r}^{-1}=\mathbf{P}_{r}{ }^{\top}=\mathbf{P}_{r}$ and from (1) we now obtain

$$
\begin{aligned}
\mathbf{B} & =\mathbf{P}_{n-2} \mathbf{A}_{n-3} \mathbf{P}_{n-2}=\cdots \\
\cdots & =\mathbf{P}_{n-2} \mathbf{P}_{n-3} \cdots \mathbf{P}_{1} \mathbf{A} \mathbf{P}_{1} \cdots \mathbf{P}_{n-3} \mathbf{P}_{n-2} \\
& =\mathbf{P}_{n-2}^{-1} \mathbf{P}_{n-3}^{-1} \cdots \mathbf{P}_{1}^{-1} \mathbf{A} \mathbf{P}_{1} \cdots \mathbf{P}_{n-3} \mathbf{P}_{n-2} \\
& =\mathbf{P}^{-1} \mathbf{A P}
\end{aligned}
$$

where $\mathbf{P}=\mathbf{P}_{1} \mathbf{P}_{2} \cdots \mathbf{P}_{n-2}$. This proves our assertion.

QR-Factorization Method

In 1958 H. Rutishauser ${ }^{12}$ of Switzerland proposed the idea of using the LU-factorization (Sec. 20.2; he called it LR-factorization) in solving eigenvalue problems. An improved version of Rutishauser's method (avoiding breakdown if certain submatrices become singular, etc.; see Ref. [E29]) is the QR-method, independently proposed by the American J. G. F. Francis (Computer J. 4 (1961-62), 265-271, 332-345) and the Russian V. N. Kublanovskaya (Zhurnal Vych. Mat. i Mat. Fiz. 1 (1961), 555-570). The QR-method uses the factorization $\mathbf{Q R}$ with orthogonal \mathbf{Q} and upper triangular \mathbf{R}. We discuss the $\mathbf{Q R}$-method for a real symmetric matrix. (For extensions to general matrices see Ref. [E29] in App. 1.)

In this method we first transform a given real symmetric $n \times n$ matrix \mathbf{A} into a tridiagonal matrix $\mathbf{B}_{0}=\mathbf{B}$ by Householder's method. This creates many zeros and thus reduces the amount of further work. Then we compute $\mathbf{B}_{1}, \mathbf{B}_{2}, \cdots$ stepwise according to the following iteration method.
Step 1. Factor $\mathbf{B}_{0}=\mathbf{Q}_{0} \mathbf{R}_{0}$ with orthogonal \mathbf{Q}_{0} and upper triangular \mathbf{R}_{0}. Then compute $\mathbf{B}_{1}=\mathbf{R}_{0} \mathbf{Q}_{0}$.
Step 2. Factor $\mathbf{B}_{1}=\mathbf{Q}_{1} \mathbf{R}_{1}$. Then compute $\mathbf{B}_{2}=\mathbf{R}_{1} \mathbf{Q}_{1}$.
General Step $s+1$.

$$
\begin{align*}
\text { (a) } \quad \text { Factor } \mathbf{B}_{s} & =\mathbf{Q}_{s} \mathbf{R}_{s} . \\
\text { (b) } \quad \text { Compute } \mathbf{B}_{s+1} & =\mathbf{R}_{s} \mathbf{Q}_{s} . \tag{5}
\end{align*}
$$

Here \mathbf{Q}_{s} is orthogonal and \mathbf{R}_{s} upper triangular. The factorization (5a) will be explained below.
$\mathbf{B}_{\mathbf{s}+\mathbf{1}}$ Similar to B. Convergence to a Diagonal Matrix. From (5a) we have $\mathbf{R}_{s}=\mathbf{Q}_{s}^{-1} \mathbf{B}_{s}$. Substitution into (5b) gives

$$
\begin{equation*}
\mathbf{B}_{s+1}=\mathbf{R}_{s} \mathbf{Q}_{s}=\mathbf{Q}_{s}^{-1} \mathbf{B}_{s} \mathbf{Q}_{s} \tag{6}
\end{equation*}
$$

[^12]Thus \mathbf{B}_{s+1} is similar to \mathbf{B}_{s}. Hence \mathbf{B}_{s+1} is similar to $\mathbf{B}_{0}=\mathbf{B}$ for all s. By Theorem 2, Sec. 20.6, this implies that \mathbf{B}_{s+1} has the same eigenvalues as \mathbf{B}.

Also, \mathbf{B}_{s+1} is symmetric. This follows by induction. Indeed, $\mathbf{B}_{0}=\mathbf{B}$ is symmetric. Assuming \mathbf{B}_{s} to be symmetric, that is, $\mathbf{B}_{s}{ }^{\top}=\mathbf{B}_{s}$, and using $\mathbf{Q}_{s}^{-1}=\mathbf{Q}_{s}{ }^{\top}$ (since \mathbf{Q}_{s} is orthogonal), we get from (6) the symmetry,

$$
\mathbf{B}_{s+1}{ }^{\top}=\left(\mathbf{Q}_{s}{ }^{\top} \mathbf{B}_{s} \mathbf{Q}_{s}\right)^{\top}=Q_{s}{ }^{\top} \mathbf{B}_{s}{ }^{\top} \mathbf{Q}_{s}=\mathbf{Q}_{s}{ }^{\top} \mathbf{B}_{s} \mathbf{Q}_{s}=\mathbf{B}_{s+1} .
$$

If the eigenvalues of \mathbf{B} are different in absolute value, say, $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right|$, then

$$
\lim _{s \rightarrow \infty} \mathbf{B}_{s}=\mathbf{D}
$$

where \mathbf{D} is diagonal, with main diagonal entries $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. (Proof in Ref. [E29] listed in App. 1.)

How to Get the QR-Factorization, say, $\mathbf{B}=\mathbf{B}_{0}=\left[b_{j k}\right]=\mathbf{Q}_{0} \mathbf{R}_{0}$. The tridiagonal matrix \mathbf{B} has $n-1$ generally nonzero entries below the main diagonal. These are $b_{21}, b_{32}, \cdots, b_{n, n-1}$. We multiply \mathbf{B} from the left by a matrix \mathbf{C}_{2} such that $\mathbf{C}_{2} \mathbf{B}=\left[b_{j k}^{(2)}\right]$ has $b_{21}^{(2)}=0$. We multiply this by a matrix \mathbf{C}_{3} such that $\mathbf{C}_{3} \mathbf{C}_{2} \mathbf{B}=\left[b_{j k}^{(3)}\right]$ has $b_{32}^{(3)}=0$, etc. After $n-1$ such multiplications we are left with an upper triangular matrix \mathbf{R}_{0}, namely,

$$
\begin{equation*}
\mathbf{C}_{n} \mathbf{C}_{n-1} \cdots \mathbf{C}_{3} \mathbf{C}_{2} B_{0}=\mathbf{R}_{0} . \tag{7}
\end{equation*}
$$

These $n \times n$ matrices \mathbf{C}_{j} are very simple. \mathbf{C}_{j} has the 2×2 submatrix

$$
\left[\begin{array}{rr}
\cos \theta_{j} & \sin \theta_{j} \\
-\sin \theta_{j} & \cos \theta_{j}
\end{array}\right] \quad\left(\theta_{j} \text { suitable }\right)
$$

in Rows $j-1$ and j and Columns $j-1$ and j; everywhere else on the main diagonal the matrix \mathbf{C}_{j} has entries 1 ; and all its other entries are 0 . (This submatrix is the matrix of a plane rotation through the angle θ_{j}; see Team Project 30, Sec. 7.2.) For instance, if $n=4$, writing $c_{j}=\cos \theta_{j}, s_{j}=\sin \theta_{j}$, we have

$$
\mathbf{C}_{2}=\left[\begin{array}{rrrr}
c_{2} & s_{2} & 0 & 0 \\
-s_{2} & c_{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \mathbf{C}_{3}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & c_{3} & s_{3} & 0 \\
0 & -s_{3} & c_{3} & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \mathbf{C}_{4}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & c_{4} & s_{4} \\
0 & 0 & -s_{4} & c_{4}
\end{array}\right] .
$$

These \mathbf{C}_{j} are orthogonal. Hence their product in (7) is orthogonal, and so is the inverse of this product. We call this inverse \mathbf{Q}_{0}. Then from (7),

$$
\begin{equation*}
\mathbf{B}_{0}=\mathbf{Q}_{0} \mathbf{R}_{0} \tag{8}
\end{equation*}
$$

where, with $\mathbf{C}_{j}^{-1}=\mathbf{C}_{j}{ }^{\top}$,

$$
\begin{equation*}
\mathbf{Q}_{0}=\left(\mathbf{C}_{n} \mathbf{C}_{n-1} \cdots \mathbf{C}_{3} \mathbf{C}_{2}\right)^{-1}=\mathbf{C}_{2}^{\top} \mathbf{C}_{3}^{\top} \cdots \mathbf{C}_{n-1}{ }^{\top} \mathbf{C}_{n}^{\top} . \tag{9}
\end{equation*}
$$

This is our QR-factorization of \mathbf{B}_{0}. From it we have by (5b) with $s=0$

$$
\begin{equation*}
\mathbf{B}_{1}=\mathbf{R}_{0} \mathbf{Q}_{0}=\mathbf{R}_{0} \mathbf{C}_{2}^{\top} \mathbf{C}_{3}^{\top} \cdots \mathbf{C}_{n-1}^{\top} \mathbf{C}_{n}^{\top} \tag{10}
\end{equation*}
$$

We do not need \mathbf{Q}_{0} explicitly, but to get \mathbf{B}_{1} from (10), we first compute $\mathbf{R}_{0} \mathbf{C}_{2}{ }^{\top}$, then $\left(\mathbf{R}_{0} \mathbf{C}_{2}^{\top}\right) \mathbf{C}_{3}^{\top}$, etc. Similarly in the further steps that produce $\mathbf{B}_{2}, \mathbf{B}_{3}, \cdots$.

Determination of $\cos \boldsymbol{\theta}_{j}$ and $\sin \boldsymbol{\theta}_{j}$. We finally show how to find the angles of rotation. $\cos \theta_{2}$ and $\sin \theta_{2}$ in \mathbf{C}_{2} must be such that $b_{21}^{(2)}=0$ in the product

$$
\mathbf{C}_{2} \mathbf{B}=\left[\begin{array}{cccc}
c_{2} & s_{2} & 0 & \ldots \\
-s_{2} & c_{2} & 0 & \ldots \\
\cdot & \cdot & \cdot & \ldots \\
\cdot & \cdot & \cdot & \ldots
\end{array}\right]\left[\begin{array}{cccc}
b_{11} & b_{12} & b_{13} & \cdots \\
b_{21} & b_{22} & b_{23} & \cdots \\
\cdot & \cdot & \cdot & \cdots \\
. & \cdot & \cdot & \cdots
\end{array}\right]
$$

Now $b_{21}^{(2)}$ is obtained by multiplying the second row of \mathbf{C}_{2} by the first column of \mathbf{B},

$$
b_{21}^{(2)}=-s_{2} b_{11}+c_{2} b_{21}=-\left(\sin \theta_{2}\right) b_{11}+\left(\cos \theta_{2}\right) b_{21}=0
$$

Hence $\tan \theta_{2}=s_{2} / c_{2}=b_{21} / b_{11}$, and

$$
\begin{align*}
& \cos \theta_{2}=\frac{1}{\sqrt{1+\tan ^{2} \theta_{2}}}=\frac{1}{\sqrt{1+\left(b_{21} / b_{11}\right)^{2}}} \\
& \sin \theta_{2}=\frac{\tan \theta_{2}}{\sqrt{1+\tan ^{2} \theta_{2}}}=\frac{b_{21} / b_{11}}{\sqrt{1+\left(b_{21} / b_{11}\right)^{2}}} \tag{11}
\end{align*}
$$

Similarly for $\theta_{3}, \theta_{4}, \cdots$. The next example illustrates all this.

EXAMPLE 2 QR-Factorization Method

Compute all the eigenvalues of the matrix

$$
\mathbf{A}=\left[\begin{array}{llll}
6 & 4 & 1 & 1 \\
4 & 6 & 1 & 1 \\
1 & 1 & 5 & 2 \\
1 & 1 & 2 & 5
\end{array}\right]
$$

Solution. We first reduce A to tridiagonal form. Applying Householder's method, we obtain (see Example 1)

$$
\mathbf{A}_{2}=\left[\begin{array}{cccc}
6 & -\sqrt{18} & 0 & 0 \\
-\sqrt{18} & 7 & \sqrt{2} & 0 \\
0 & \sqrt{2} & 6 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] .
$$

From the characteristic determinant we see that \mathbf{A}_{2}, hence \mathbf{A}, has the eigenvalue 3. (Can you see this directly from \mathbf{A}_{2} ?) Hence it suffices to apply the QR -method to the tridiagonal 3×3 matrix

$$
\mathbf{B}_{0}=\mathbf{B}=\left[\begin{array}{ccc}
6 & -\sqrt{18} & 0 \\
-\sqrt{18} & 7 & \sqrt{2} \\
0 & \sqrt{2} & 6
\end{array}\right] .
$$

Step 1. We multiply B from the left by

$$
\mathbf{C}_{2}=\left[\begin{array}{ccc}
\cos \theta_{2} & \sin \theta_{2} & 0 \\
-\sin \theta_{2} & \cos \theta_{2} & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { and then } \mathbf{C}_{2} \mathbf{B} \text { by } \quad \mathbf{C}_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{3} & \sin \theta_{3} \\
0 & -\sin \theta_{3} & \cos \theta_{3}
\end{array}\right]
$$

Here $\left(-\sin \theta_{2}\right) \cdot 6+\left(\cos \theta_{2}\right)(-\sqrt{18})=0$ gives (11) $\cos \theta_{2}=0.81649658$ and $\sin \theta_{2}=-0.57735027$. With these values we compute

$$
\mathbf{C}_{2} \mathbf{B}=\left[\begin{array}{lrr}
7.34846923 & -7.50555350 & -0.81649658 \\
0 & 3.26598632 & 1.15470054 \\
0 & 1.41421356 & 6.00000000
\end{array}\right]
$$

In \mathbf{C}_{3} we get from $\left(-\sin \theta_{3}\right) \cdot 3.26598632+\left(\cos \theta_{3}\right) \cdot 1.41421356=0$ the values $\cos \theta_{3}=0.91766294$ and $\sin \theta_{3}=0.39735971$. This gives

$$
\mathbf{R}_{0}=\mathbf{C}_{3} \mathbf{C}_{2} \mathbf{B}=\left[\begin{array}{lrr}
7.34846923 & -7.50555350 & -0.81649658 \\
0 & 3.55902608 & 3.44378413 \\
0 & 0 & 5.04714615
\end{array}\right]
$$

From this we compute

$$
\mathbf{B}_{1}=\mathbf{R}_{0} \mathbf{C}_{2}^{\top} \mathbf{C}_{3}^{\top}=\left[\begin{array}{rrl}
10.33333333 & -2.05480467 & 0 \\
-2.05480467 & 4.03508772 & 2.00553251 \\
0 & 2.00553251 & 4.63157895
\end{array}\right]
$$

which is symmetric and tridiagonal. The off-diagonal entries in \mathbf{B}_{1} are still large in absolute value. Hence we have to go on.

Step 2. We do the same computations as in the first step, with $\mathbf{B}_{0}=\mathbf{B}$ replaced by \mathbf{B}_{1} and \mathbf{C}_{2} and \mathbf{C}_{3} changed accordingly, the new angles being $\theta_{2}=-0.196291533$ and $\theta_{3}=0.513415589$. We obtain

$$
\mathbf{R}_{1}=\left[\begin{array}{llr}
10.53565375 & -2.80232241 & -0.39114588 \\
0 & 4.08329584 & 3.98824028 \\
0 & 0 & 3.06832668
\end{array}\right]
$$

and from this

$$
\mathbf{B}_{2}=\left[\begin{array}{lrl}
10.87987988 & -0.79637918 & 0 \\
-0.79637918 & 5.44738664 & 1.50702500 \\
0 & 1.50702500 & 2.67273348
\end{array}\right]
$$

We see that the off-diagonal entries are somewhat smaller in absolute value than those of \mathbf{B}_{1}, but still much too large for the diagonal entries to be good approximations of the eigenvalues of \mathbf{B}.

Further Steps. We list the main diagonal entries and the absolutely largest off-diagonal entry, which is $\left|b_{12}^{(j)}\right|=\left|b_{21}^{(j)}\right|$ in all steps. You may show that the given matrix \mathbf{A} has the spectrum $11,6,3,2$.

Step j	$b_{11}^{(j)}$	$b_{22}^{(j)}$	$b_{33}^{(j)}$	$\max _{j \neq k}\left\|b_{j k}^{(J)}\right\|$
3	10.9668929	5.94589856	2.08720851	0.58523582
5	10.9970872	6.00181541	2.00109738	0.12065334
7	10.9997421	6.00024439	2.00001355	0.03591107
9	10.9999772	6.00002267	2.00000017	0.01068477

Looking back at our discussion, we recognize that the purpose of applying Householder's tridiagonalization before the QR-factorization method is a substantial reduction of cost in each QR-factorization, in particular if \mathbf{A} is large.

Convergence acceleration and thus further reduction of cost can be achieved by a spectral shift, that is, by taking $\mathbf{B}_{s}-k_{s} \mathbf{I}$ instead of \mathbf{B}_{s} with a suitable k_{s}. Possible choices of k_{s} are discussed in Ref. [E29], p. 510.

PROBHEMESE2:0.9

1-5 HOUSEHOLDER TRIDIAGONALIZATION

Tridiagonalize. Show the details.

1. $\left[\begin{array}{lll}0.98 & 0.04 & 0.44 \\ 0.04 & 0.56 & 0.40 \\ 0.44 & 0.40 & 0.80\end{array}\right]$
2. $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
3. $\left[\begin{array}{rrr}7 & 2 & 3 \\ 2 & 10 & 6 \\ 3 & 6 & 7\end{array}\right]$
4. $\left[\begin{array}{llll}5 & 4 & 1 & 1 \\ 4 & 5 & 1 & 1 \\ 1 & 1 & 4 & 2 \\ 1 & 1 & 2 & 4\end{array}\right]$
5. $\left[\begin{array}{rrrr}3 & 52 & 10 & 42 \\ 52 & 59 & 44 & 80 \\ 10 & 44 & 39 & 42 \\ 42 & 80 & 42 & 35\end{array}\right]$

6-9 QR-FACTORIZATION

Do three QR-steps to find approximations of the eigenvalues of:
6. The matrix in the answer to Prob. 1
7. The matrix in the answer to Prob. 3
8. $\left[\begin{array}{ccc}14.2 & -0.1 & 0 \\ -0.1 & -6.3 & 0.2 \\ 0 & 0.2 & 2.1\end{array}\right]$ 9. $\left[\begin{array}{rrr}140 & 10 & 0 \\ 10 & 70 & 2 \\ 0 & 2 & -30\end{array}\right]$
10. CAS EXPERIMENT. QR-Method. Try to find out experimentally on what properties of a matrix the speed of decrease of off-diagonal entries in the QR-method depends. For this purpose write a program that first tridiagonalizes and then does QR-steps. Try the program out on the matrices in Probs. 1, 3, and 4. Summarize your findings in a short report.

GHAPLER20 REvEW OUESTIONS AND PROBLEMS

1. What are the main problem areas in numeric linear algebra?
2. When would you apply Gauss elimination and when Gauss-Seidel iteration?
3. What is pivoting? Why and how is it done?
4. What happens if you apply Gauss elimination to a system that has no solutions?
5. What is Cholesky's method? When would you apply it?
6. What do you know about the convergence of the Gauss-Seidel iteration?
7. What is ill-conditioning? What is the condition number and its significance?
8. Explain the idea of least squares approximation.
9. What are eigenvalues of a matrix? Why are they important? Give typical examples.
10. How did we use similarity transformations of matrices in designing numeric methods?
11. What is the power method for eigenvalues? What are its advantages and disadvantages?
12. State Gerschgorin's theorem from memory. Give typical applications.
13. What is tridiagonalization and QR ? When would you apply it?

14-17 GAUSS ELIMINATION

Solve
14. $3 x_{2}-6 x_{3}=0$
$4 x_{1}-x_{2}+2 x_{3}=16$
$-5 x_{1}+2 x_{2}-4 x_{3}=-20$
15. $8 x_{2}-6 x_{3}=23.6$
$10 x_{1}+6 x_{2}+2 x_{3}=68.4$
$12 x_{1}-14 x_{2}+4 x_{3}=-6.2$
16. $5 x_{1}+x_{2}-3 x_{3}=17$
$-5 x_{2}+15 x_{3}=-10$
$2 x_{1}-3 x_{2}+9 x_{3}=0$
17. $42 x_{1}+74 x_{2}+36 x_{3}=96$
$-46 x_{1}-12 x_{2}-2 x_{3}=82$
$3 x_{1}+25 x_{2}+5 x_{3}=19$

18-20 INVERSE MATRIX

Compute the inverse of:
18. $\left[\begin{array}{rrr}2.0 & 0.1 & 3.3 \\ 1.6 & 4.4 & 0.5 \\ 0.3 & -4.3 & 2.8\end{array}\right]$
19. $\left[\begin{array}{lll}15 & 20 & 10 \\ 20 & 35 & 15 \\ 10 & 15 & 90\end{array}\right]$
20. $\left[\begin{array}{lll}5 & 1 & 1 \\ 1 & 6 & 0 \\ 1 & 0 & 8\end{array}\right]$

21-23 GAUSS-SEIDEL ITERATION

Do 3 steps without scaling, starting from $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$.

$$
\text { 21. } \begin{aligned}
4 x_{1}-x_{2} & =22.0 \\
4 x_{2}-x_{3} & =13.4 \\
-x_{1}+4 x_{3} & =-2.4
\end{aligned}
$$

22. $0.2 x_{1}+4.0 x_{2}-0.4 x_{3}=32.0$ $0.5 x_{1}-0.2 x_{2}+2.5 x_{3}=-5.1$ $7.5 x_{1}+0.1 x_{2}-1.5 x_{3}=-12.7$
23. $10 x_{1}+x_{2}-x_{3}=17$
$2 x_{1}+20 x_{2}+x_{3}=28$
$3 x_{1}-x_{2}+25 x_{3}=105$

24-26 VECTOR NORMS

Compute the $\ell_{1^{-}}, \ell_{2^{-}}$, and ℓ_{∞}-norms of the vectors.
24. $\left[\begin{array}{lllllll}0.2 & -8.1 & 0.4 & 0 & 0 & -1.3 & 2\end{array}\right]^{\top}$
25. $\left[\begin{array}{llll}8 & -21 & 13 & 0\end{array}\right]^{\top}$
26. $\left[\begin{array}{lllll}0 & 0 & 0 & -1 & 0\end{array}\right]^{\top}$

27-30 MATRIX NORM

Compute the matrix norm corresponding to the ℓ_{∞}-vector norm for the coefficient matrix:
27. In Prob. 15
28. In Prob. 17
29. In Prob. 21
30. In Prob. 22

31-33 CONDITION NUMBER

Compute the condition number (corresponding to the ℓ_{∞}-vector norm) of the coefficient matrix:
31. In Prob. 19
32. In Prob. 18
33. In Prob. 21

34-35 FITTING BY LEAST SQUARES

Fit and graph:
34. A straight line to $(-1,0),(0,2),(1,2),(2,3)$, $(3,3)$
35. A quadratic parabola to the data in Prob. 34 .

36-39 EIGENVALUES

Find and graph three circular disks that must contain all the eigenvalues of the matrix:
36. In Prob. 18
37. In Prob. 19
38. In Prob. 20
39. Of the coefficients in Prob. 14
40. Power method. Do 4 steps with scaling for the matrix in Prob. 19, starting for $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ and computing the Rayliegh quotients and error bounds.

SUMMARY OF CHAPTER 20

Numeric Linear Algebra

Main tasks are the numeric solution of linear systems (Secs. 20.1-20.4), curve fitting (Sec. 20.5), and eigenvalue problems (Secs. 20.6-20.9).

Linear systems $\mathbf{A x}=\mathbf{b}$ with $\mathbf{A}=\left[a_{j k}\right]$, written out
(1)

$$
\begin{array}{ll}
\mathrm{E}_{1}: & a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1} \\
\mathrm{E}_{2}: & a_{21} x_{1}+\cdots+a_{2 n} x_{n}=b_{2}
\end{array}
$$

$$
\mathrm{E}_{n}: \quad a_{n 1} x_{1}+\cdots+a_{n n} x_{n}=b_{n}
$$

can be solved by a direct method (one in which the number of numeric operations can be specified in advance, e.g., Gauss's elimination) or by an indirect or iterative method (in which an initial approximation is improved stepwise).

The Gauss elimination (Sec. 20.1) is direct, namely, a systematic elimination process that reduces (1) stepwise to triangular form. In Step 1 we eliminate x_{1} from equations E_{2} to E_{n} by subtracting $\left(a_{21} / a_{11}\right) \mathrm{E}_{1}$ from E_{2}, then $\left(a_{31} / a_{11}\right) \mathrm{E}_{1}$ from E_{3}, etc. Equation E_{1} is called the pivot equation in this step and a_{11} the pivot. In Step 2 we take the new second equation as pivot equation and eliminate x_{2}, etc. If the triangular form is reached, we get x_{n} from the last equation, then x_{n-1} from the second last, etc. Partial pivoting (= interchange of equations) is necessary if candidates for pivots are zero, and advisable if they are small in absolute value.

Doolittle's, Crout's, and Cholesky's methods in Sec. 20.2 are variants of the Gauss elimination. They factor $\mathbf{A}=\mathbf{L U}$ (\mathbf{L} lower triangular, \mathbf{U} upper triangular) and solve $\mathbf{A x}=\mathbf{L U x}=\mathbf{b}$ by solving $\mathbf{L y}=\mathbf{b}$ for \mathbf{y} and then $\mathbf{U x}=\mathbf{y}$ for \mathbf{x}.

In the Gauss-Seidel iteration (Sec. 20.3) we make $a_{11}=a_{22}=\cdots=a_{n n}=1$ (by division) and write $\mathbf{A x}=(\mathbf{I}+\mathbf{L}+\mathbf{U}) \mathbf{x}=\mathbf{b}$; thus $\mathbf{x}=\mathbf{b}-(\mathbf{L}+\mathbf{U}) \mathbf{x}$, which suggests the iteration formula

$$
\begin{equation*}
\mathbf{x}^{(m+1)}=\mathbf{b}-\mathbf{L} \mathbf{x}^{(m+1)}-\mathbf{U} \mathbf{x}^{(m)} \tag{2}
\end{equation*}
$$

in which we always take the most recent approximate x_{j} 's on the right. If $\|\mathbf{C}\|<1$, where $\mathbf{C}=-(\mathbf{I}+\mathbf{L})^{-1} \mathbf{U}$, then this process converges. Here, $\|\mathbf{C}\|$ denotes any matrix norm (Sec. 20.3).

If the condition number $k(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\|$ of \mathbf{A} is large, then the system $\mathbf{A x}=\mathbf{b}$ is ill-conditioned (Sec. 20.4), and a small residual $\mathbf{r}=\mathbf{b}-\mathbf{A} \tilde{\mathbf{x}}$ does not imply that $\widetilde{\mathbf{x}}$ is close to the exact solution.

The fitting of a polynomial $p(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ through given data (points in the $x y$-plane) $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$ by the method of least squares is discussed in Sec. 20.5 (and in statistics in Sec. 25.9). If $m=n$, the least squares polynomial will be the same as an interpolating polynomial (uniqueness).

Eigenvalues λ (values λ for which $\mathbf{A x}=\lambda \mathbf{x}$ has a solution $\mathbf{x} \neq \mathbf{0}$, called an eigenvector) can be characterized by inequalities (Sec. 20.7), e.g. in Gerschgorin's theorem, which gives n circular disks which contain the whole spectrum (all eigenvalues) of \mathbf{A}, of centers $a_{j j}$ and radii $\Sigma\left|a_{j k}\right|$ (sum over k from 1 to $n, k \neq j$).

Approximations of eigenvalues can be obtained by iteration, starting from an $\mathbf{x}_{0} \neq \mathbf{0}$ and computing $\mathbf{x}_{1}=\mathbf{A} \mathbf{x}_{0}, \quad \mathbf{x}_{2}=\mathbf{A} \mathbf{x}_{1}, \cdots, \mathbf{x}_{n}=\mathbf{A} \mathbf{x}_{n-1}$. In this power method (Sec. 20.8) the Rayleigh quotient

$$
\begin{equation*}
q=\frac{\left.(\mathbf{A} \mathbf{x})^{\top}\right) \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}} \quad\left(\mathbf{x}=\mathbf{x}_{n}\right) \tag{3}
\end{equation*}
$$

gives an approximation of an eigenvalue (usually that of the greatest absolute value) and, if \mathbf{A} is symmetric, an error bound is

$$
\begin{equation*}
|\epsilon| \leqq \sqrt{\frac{(\mathbf{A} \mathbf{x})^{\top} \mathbf{A x}}{\mathbf{x}^{\top} \mathbf{x}}}-q^{2} \tag{4}
\end{equation*}
$$

Convergence may be slow but can be improved by a spectral shift.
For determining all the eigenvalues of a symmetric matrix \mathbf{A} it is best to first tridiagonalize A and then to apply the QR-method (Sec. 20.9), which is based on a factorization $\mathbf{A}=\mathbf{Q R}$ with orthogonal \mathbf{Q} and upper triangular \mathbf{R} and uses similarity transformations.

chapter 21 Numerics for ODEs and PDEs

Ordinary differential equations (ODEs) and partial differential equations (PDEs) play a central role in modeling problems of engineering, mathematics, physics, aeronautics, astronomy, dynamics, elasticity, biology, medicine, chemistry, environmental science, economics, and many other areas. Chapters 1-6 and 12 explained the major approaches to solving ODEs and PDEs analytically. However, in your career as an engineer, applied mathematicians, or physicist you will encounter ODEs and PDEs that cannot be solved by those analytic methods or whose solutions are so difficult that other approaches are needed. It is precisely in these real-world projects that numeric methods for ODEs and PDEs are used, often as part of a software package. Indeed, numeric software has become an indispensable tool for the engineer.

This chapter is evenly divided between numerics for ODEs and numerics for PDEs. We start with ODEs and discuss, in Sec. 21.1, methods for first-order ODEs. The main initial idea is that we can obtain approximations to the solution of such an ODE at points that are a distance h apart by using the first two terms of Taylor's formula from calculus. We use these approximations to construct the iteration formula for a method known as Euler's method. While this method is rather unstable and of little practical use, it serves as a pedagogical tool and a starting point toward understanding more sophisticated methods such as the Runge-Kutta method and its variant the Runga-Kutta-Fehlberg (RKF) method, which are popular and useful in practice. As is usual in mathematics, one tends to generalize mathematical ideas. The methods of Sec. 21.1 are one-step methods, that is, the current approximation uses only the approximation from the previous step. Multistep methods, such as the Adams-Bashforth methods and Adams-Moulton methods, use values computed from several previous steps. We conclude numerics for ODEs with applying Runge-Kutta-Nyström methods and other methods to higher order ODEs and systems of ODEs.

Numerics for PDEs are perhaps even more exciting and ingenious than those for ODEs. We first consider PDEs of the elliptic type (Laplace, Poisson). Again, Taylor's formula serves as a starting point and lets us replace partial derivatives by difference quotients. The end result leads to a mesh and an evaluation scheme that uses the Gauss-Seidel method (here also know as Liebmann's method). We continue with methods that use grids to solve Neuman and mixed problems (Sec. 21.5) and conclude with the important Crank-Nicholson method for parabolic PDEs in Sec. 21.6.

Sections 21.1 and 21.2 may be studied immediately after Chap. 1 and Sec. 21.3 immediately after Chaps. 2-4, because these sections are independent of Chaps. 19 and 20.

Sections 21.4-21.7 on PDEs may be studied immediately after Chap. 12 if students have some knowledge of linear systems of algebraic equations.

Prerequisite: Secs. 1.1-1.5 for ODEs, Secs. 12.1-12.3, 12.5, 12.10 for PDEs.
References and Answers to Problems: App. 1 Part E (see also Parts A and C), App. 2.

21.1 Methods for First-Order ODEs

Take a look at Sec. 1.2, where we briefly introduced Euler's method with an example. We shall develop Euler's method more rigorously. Pay close attention to the derivation that uses Taylor's formula from calculus to approximate the solution to a first-order ODE at points that are a distance h apart. If you understand this approach, which is typical for numerics for ODEs, then you will understand other methods more easily.

From Chap. 1 we know that an ODE of the first order is of the form $F\left(x, y, y^{\prime}\right)=0$ and can often be written in the explicit form $y^{\prime}=f(x, y)$. An initial value problem for this equation is of the form

$$
\begin{equation*}
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

where x_{0} and y_{0} are given and we assume that the problem has a unique solution on some open interval $a<x<b$ containing x_{0}.

In this section we shall discuss methods of computing approximate numeric values of the solution $y(x)$ of (1) at the equidistant points on the x-axis

$$
x_{1}=x_{0}+h, \quad x_{2}=x_{0}+2 h, \quad x_{3}=x_{0}+3 h,
$$

where the step size h is a fixed number, for instance, 0.2 or 0.1 or 0.01 , whose choice we discuss later in this section. Those methods are step-by-step methods, using the same formula in each step. Such formulas are suggested by the Taylor series

$$
\begin{equation*}
y(x+h)=y(x)+h y^{\prime}(x)+\frac{h^{2}}{2} y^{\prime \prime}(x)+\cdots . \tag{2}
\end{equation*}
$$

Formula (2) is the key idea that lets us develop Euler's method and its variant calledyou guessed it-improved Euler method, also known as Heun's method. Let us start by deriving Euler's method.

For small h the higher powers h^{2}, h^{3}, \cdots in (2) are very small. Dropping all of them gives the crude approximation

$$
\begin{aligned}
y(x+h) & \approx y(x)+h y^{\prime}(x) \\
& =y(x)+h f(x, y)
\end{aligned}
$$

and the corresponding Euler method (or Euler-Cauchy method)

$$
\begin{equation*}
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right) \quad(n=0,1, \cdots) \tag{3}
\end{equation*}
$$

discussed in Sec. 1.2. Geometrically, this is an approximation of the curve of $y(x)$ by a polygon whose first side is tangent to this curve at x_{0} (see Fig. 8 in Sec. 1.2).

Error of the Euler Method. Recall from calculus that Taylor's formula with remainder has the form

$$
y(x+h)=y(x)+h y^{\prime}(x)+\frac{1}{2} h^{2} y^{\prime \prime}(\xi)
$$

(where $x \leqq \xi \leqq x+h$). It shows that, in the Euler method, the truncation error in each step or local truncation error is proportional to h^{2}, written $O\left(h^{2}\right)$, where O suggests order (see also Sec. 20.1). Now, over a fixed x-interval in which we want to solve an ODE, the number of steps is proportional to $1 / h$. Hence the total error or global error is proportional to $h^{2}(1 / h)=h^{1}$. For this reason, the Euler method is called a first-order method. In addition, there are roundoff errors in this and other methods, which may affect the accuracy of the values y_{1}, y_{2}, \cdots more and more as n increases.

Automatic Variable Step Size Selection in Modern Software. The idea of adaptive integration, as motivated and explained in Sec. 19.5, applies equally well to the numeric solution of ODEs. It now concerns automatically changing the step size h depending on the variability of $y^{\prime}=f$ determined by

$$
\begin{equation*}
y^{\prime \prime}=f^{\prime}=f_{x}+f_{y} y^{\prime}=f_{x}+f_{y} f \tag{4*}
\end{equation*}
$$

Accordingly, modern software automatically selects variable step sizes h_{n} so that the error of the solution will not exceed a given maximum size TOL (suggesting tolerance). Now for the Euler method, when the step size is $h=h_{n}$, the local error at x_{n} is about $\frac{1}{2} h_{n}^{2}\left|y^{\prime \prime}\left(\xi_{n}\right)\right|$. We require that this be equal to a given tolerance TOL,

$$
\text { (a) } \frac{1}{2} h_{n}^{2}\left|y^{\prime \prime}\left(\xi_{n}\right)\right|=\text { TOL, } \quad \text { thus } \quad \text { (b) } \quad h_{n}=\sqrt{\frac{2 \mathrm{TOL}}{\left|y^{\prime \prime}\left(\xi_{n}\right)\right|}} \text {. }
$$

$y^{\prime \prime}(x)$ must not be zero on the interval $J: x_{0} \leqq x=x_{N}$ on which the solution is wanted. Let K be the minimum of $\left|y^{\prime \prime}(x)\right|$ on J and assume that $K>0$. Minimum $\left|y^{\prime \prime}(x)\right|$ corresponds to maximum $h=H=\sqrt{2 \mathrm{TOL} / K}$ by (4). Thus, $\sqrt{2 \mathrm{TOL}}=H \sqrt{K}$. We can insert this into (4b), obtaining by straightforward algebra

$$
\begin{equation*}
h_{n}=\varphi\left(x_{n}\right) H \quad \text { where } \quad \varphi\left(x_{n}\right)=\sqrt{\frac{K}{\left|y^{\prime \prime}\left(\xi_{n}\right)\right|}} \tag{5}
\end{equation*}
$$

For other methods, automatic step size selection is based on the same principle.

Improved Euler Method. Predictor, Corrector. Euler's method is generally much too inaccurate. For a large $h(0.2)$ this is illustrated in Sec. 1.2 by the computation for

$$
\begin{equation*}
y^{\prime}=y+x, \quad y(0)=0 \tag{6}
\end{equation*}
$$

And for small h the computation becomes prohibitive; also, roundoff in so many steps may result in meaningless results. Clearly, methods of higher order and precision are obtained by taking more terms in (2) into account. But this involves an important practical problem. Namely, if we substitute $y^{\prime}=f(x, y(x))$ into (2), we have

$$
\begin{equation*}
y(x+h)=y(x)+h f+\frac{1}{2} h^{2} f^{\prime}+\frac{1}{6} h^{3} f^{\prime \prime}+\cdots . \tag{*}
\end{equation*}
$$

Now y in f depends on x, so that we have f^{\prime} as shown in (4*) and $f^{\prime \prime}, f^{\prime \prime \prime}$ even much more cumbersome. The general strategy now is to avoid the computation of these derivatives and to replace it by computing f for one or several suitably chosen auxiliary values of (x, y). "Suitably" means that these values are chosen to make the order of the method as
high as possible (to have high accuracy). Let us discuss two such methods that are of practical importance, namely, the improved Euler method and the (classical) Runge-Kutta method.

In each step of the improved Euler method we compute two values, first the predictor

$$
\begin{equation*}
y_{n+1}^{*}=y_{n}+h f\left(x_{n}, y_{n}\right) \tag{7a}
\end{equation*}
$$

which is an auxiliary value, and then the new y-value, the corrector

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{1}{2} h\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}^{*}\right)\right] . \tag{7b}
\end{equation*}
$$

Hence the improved Euler method is a predictor-corrector method: In each step we predict a value (7a) and then we correct it by (7b).

In algorithmic form, using the notations $k_{1}=h f\left(x_{n}, y_{n}\right)$ in (7a) and $k_{2}=h f\left(x_{n+1}\right.$, y_{n+1}^{*}) in (7b), we can write this method as shown in Table 21.1.

Table 21.1 Improved Euler Method (Heun's Method)

ALGORITHM EULER $\left(f, x_{0}, y_{0}, h, N\right)$

This algorithm computes the solution of the initial value problem $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ at equidistant points $x_{1}=x_{0}+h, x_{2}=x_{0}+2 h, \cdots, x_{N}=x_{0}+N h$; here f is such that this problem has a unique solution on the interval $\left[x_{0}, x_{N}\right]$ (see Sec. 1.6).

INPUT: Initial values x_{0}, y_{0}, step size h, number of steps N
OUTPUT: Approximation y_{n+1} to the solution $y\left(x_{n+1}\right)$ at $x_{n+1}=x_{0}+(n+1) h$, where $n=0, \cdots, N-1$

For $n=0,1, \cdots, N-1$ do:
$x_{n+1}=x_{n}+h$
$k_{1}=h f\left(x_{n}, y_{n}\right)$
$k_{2}=h f\left(x_{n+1}, y_{n}+k_{1}\right)$
$y_{n+1}=y_{n}+\frac{1}{2}\left(k_{1}+k_{2}\right)$
OUTPUT x_{n+1}, y_{n+1}
End
Stop
End EULER

EXAMPLE 1 Improved Euler Method. Comparison with Euler Method.

Apply the improved Euler method to the initial value problem (6), choosing $h=0.2$ as in Sec. 1.2.
Solution. For the present problem we have in Table 21.1

$$
\begin{gathered}
k_{1}=0.2\left(x_{n}+y_{n}\right) \\
k_{2}=0.2\left(x_{n}+0.2+y_{n}+0.2\left(x_{n}+y_{n}\right)\right) \\
y_{n+1}=y_{n}+\frac{0.2}{2}\left(2.2 x_{n}+2.2 y_{n}+0.2\right)=y_{n}+0.22\left(x_{n}+y_{n}\right)+0.02
\end{gathered}
$$

Table 21.2 shows that our present results are much more accurate than those for Euler's method in Table 21.1 but at the cost of more computations.

Table 21.2 Improved Euler Method for (6). Errors

n	x_{n}	y_{n}	Exact Values $(4 \mathrm{D})$	Error of Improved Euler	Error of Euler
0	0.0	0.0000	0.0000	0.0000	0.000
1	0.2	0.0200	0.0214	0.0014	0.021
2	0.4	0.0884	0.0918	0.0034	0.052
3	0.6	0.2158	0.2221	0.0063	0.094
4	0.8	0.4153	0.4255	0.0102	0.152
5	1.0	0.7027	0.7183	0.0156	0.230

Error of the Improved Euler Method. The local error is of order h^{3} and the global error of order h^{2}, so that the method is a second-order method.

PROOF Setting $\widetilde{f}_{n}=f\left(x_{n}, y\left(x_{n}\right)\right)$ and using (2*) (after (6)), we have

$$
\begin{equation*}
y\left(x_{n}+h\right)-y\left(x_{n}\right)=h \tilde{f}_{n}+\frac{1}{2} h^{2} \tilde{f}_{n}^{\prime}+\frac{1}{6} h^{3} \tilde{f}_{n}^{\prime \prime}+\cdots \tag{8a}
\end{equation*}
$$

Approximating the expression in the brackets in (7b) by $\widetilde{f}_{n}+\widetilde{f}_{n+1}$ and again using the Taylor expansion, we obtain from (7b)

$$
\begin{align*}
y_{n+1}-y_{n} & \approx \frac{1}{2} h\left[\tilde{f}_{n}+\widetilde{f}_{n+1}\right] \\
& =\frac{1}{2} h\left[\widetilde{f}_{n}+\left(\widetilde{f}_{n}+h \widetilde{f}_{n}^{\prime}+\frac{1}{2} h^{2} \widetilde{f}_{n}^{\prime \prime}+\cdots\right)\right] \tag{8b}\\
& =h \widetilde{f}_{n}+\frac{1}{2} h^{2} \widetilde{f}_{n}^{\prime}+\frac{1}{4} h^{3} \widetilde{f}_{n}^{\prime \prime}+\cdots
\end{align*}
$$

(where ${ }^{\prime}=d / d x_{n}$, etc.). Subtraction of (8b) from (8a) gives the local error

$$
\frac{h^{3}}{6} \widetilde{f}_{n}^{\prime \prime}-\frac{h^{3}}{4} \widetilde{f}_{n}^{\prime \prime}+\cdots=-\frac{h^{3}}{12} \widetilde{f}_{n}^{\prime \prime}+\cdots
$$

Since the number of steps over a fixed x-interval is proportional to $1 / h$, the global error is of order $h^{3} / h=h^{2}$, so that the method is of second order.

Since the Euler method was an attractive pedagogical tool to teach the beginning of solving first-order ODEs numerically but had its drawbacks in terms of accuracy and could even produce wrong answers, we studied the improved Euler method and thereby introduced the idea of a predictor-corrector method. Although improved Euler is better than Euler, there are better methods that are used in industrial settings. Thus the practicing engineer has to know about the Runga-Kutta methods and its variants.

Runge-Kutta Methods (RK Methods)

A method of great practical importance and much greater accuracy than that of the improved Euler method is the classical Runge-Kutta method of fourth order, which we
call briefly the Runge-Kutta method. ${ }^{1}$ It is shown in Table 21.3. We see that in each step we first compute four auxiliary quantities $k_{1}, k_{2}, k_{3}, k_{4}$ and then the new value y_{n+1}. The method is well suited to the computer because it needs no special starting procedure, makes light demand on storage, and repeatedly uses the same straightforward computational procedure. It is numerically stable.

Note that, if f depends only on x, this method reduces to Simpson's rule of integration (Sec. 19.5). Note further that k_{1}, \cdots, k_{4} depend on n and generally change from step to step.

Table 21.3 Classical Runge-Kutta Method of Fourth Order

ALGORITHM RUNGE-KUTTA $\left(f, x_{0}, y_{0}, h, N\right)$.

This algorithm computes the solution of the initial value problem $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ at equidistant points

$$
\begin{equation*}
x_{1}=x_{0}+h, x_{2}=x_{0}+2 h, \cdots, x_{N}=x_{0}+N h \tag{9}
\end{equation*}
$$

here f is such that this problem has a unique solution on the interval $\left[x_{0}, x_{N}\right]$ (see Sec. 1.7).
INPUT: Function f, initial values x_{0}, y_{0}, step size h, number of steps N
OUTPUT: Approximation y_{n+1} to the solution $y\left(x_{n+1}\right)$ at $x_{n+1}=x_{0}+(n+1) h$, where $n=0,1, \cdots, N-1$

For $n=0,1, \cdots, N-1$ do:
$k_{1}=h f\left(x_{n}, y_{n}\right)$
$k_{2}=h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{1}\right)$
$k_{3}=h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{2}\right)$
$k_{4}=h f\left(x_{n}+h, y_{n}+k_{3}\right)$
$x_{n+1}=x_{n}+h$
$y_{n+1}=y_{n}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)$
OUTPUT x_{n+1}, y_{n+1}
End
Stop
End RUNGE-KUTTA

[^13]
EXAMPLE 2 Classical Runge-Kutta Method

Apply the Runge-Kutta method to the initial value problem in Example 1, choosing $h=0.2$, as before, and computing five steps.

Solution. For the present problem we have $f(x, y)=x+y$. Hence

$$
\begin{array}{ll}
k_{1}=0.2\left(x_{n}+y_{n}\right), & k_{2}=0.2\left(x_{n}+0.1+y_{n}+0.5 k_{1}\right), \\
k_{3}=0.2\left(x_{n}+0.1+y_{n}+0.5 k_{2}\right), & k_{4}=0.2\left(x_{n}+0.2+y_{n}+k_{3}\right) .
\end{array}
$$

Table 21.4 shows the results and their errors, which are smaller by factors 10^{3} and 10^{4} than those for the two Euler methods. See also Table 21.5. We mention in passing that since the present k_{1}, \cdots, k_{4} are simple, operations were saved by substituting k_{1} into k_{2}, then k_{2} into k_{3}, etc.; the resulting formula is shown in Column 4 of Table 21.4. Keep in mind that we have four function evaluations at each step.

Table 21.4 Runge-Kutta Method Applied to (4)

n	x_{n}	y_{n}	$0.2214\left(x_{n}+y_{n}\right)$ +0.0214	Exact Values (6D) $y=e^{x}-x-1$	$10^{6} \times$ Error of y_{n}
0	0.0	0	0.021400	0.000000	0
1	0.2	0.021400	0.070418	0.021403	3
2	0.4	0.091818	0.130289	0.091825	7
3	0.6	0.222107	0.203414	0.222119	12
4	0.8	0.425521	0.292730	0.425541	20
5	1.0	0.718251		0.718282	31

Table 21.5 Comparison of the Accuracy of the Three Methods under Consideration in the Case of the Initial Value Problem (4), with $\boldsymbol{h}=0.2$

		Error		
x	$y=e^{x}-x-1$	Euler (Table 21.1)	Improved Euler (Table 21.3)	Runge-Kutta (Table 21.5)
0.2	0.021403	0.021	0.0014	0.000003
0.4	0.091825	0.052	0.0034	0.000007
0.6	0.222119	0.094	0.0063	0.000011
0.8	0.425541	0.152	0.0102	0.000020
1.0	0.718282	0.230	0.0156	0.000031

Error and Step Size Control.
 RKF (Runge-Kutta-Fehlberg)

The idea of adaptive integration (Sec. 19.5) has analogs for Runge-Kutta (and other) methods. In Table 21.3 for RK (Runge-Kutta), if we compute in each step approximations \tilde{y} and \widetilde{y} with step sizes h and $2 h$, respectively, the latter has error per step equal to $2^{5}=32$ times that of the former; however, since we have only half as many steps for $2 h$, the actual factor is $2^{5} / 2=16$, so that, say,

$$
\epsilon^{(2 h)} \approx 16 \epsilon^{(h)} \quad \text { and thus } \quad y^{(h)}-y^{(2 h)}=\epsilon^{(2 h)}-\epsilon^{(h)} \approx(16-1) \epsilon^{(h)}
$$

Hence the error $\boldsymbol{\epsilon}=\epsilon^{(h)}$ for step size h is about

$$
\begin{equation*}
\epsilon=\frac{1}{15}(\tilde{y}-\tilde{y}) \tag{10}
\end{equation*}
$$

where $\tilde{y}-\widetilde{\tilde{y}}=y^{(h)}-y^{(2 h)}$, as said before. Table 21.6 illustrates (10) for the initial value problem

$$
\begin{equation*}
y^{\prime}=(y-x-1)^{2}+2, \quad y(0)=1 \tag{11}
\end{equation*}
$$

the step size $h=0.1$ and $0 \leqq x \leqq 0.4$. We see that the estimate is close to the actual error. This method of error estimation is simple but may be unstable.

Table 21.6 Runge-Kutta Method Applied to the Initial Value Problem (11) and Error Estimate (10). Exact Solution $y=\tan x+x+1$

x	\tilde{y} $($ Step size $h)$	\tilde{y} $($ Step size $2 h)$	Error Estimate (10)	Actual Error	Exact Solution (9D)
0.0	1.000000000	1.000000000	0.000000000	0.000000000	1.000000000
0.1	1.200334589			0.000000083	1.200334672
0.2	1.402709878	1.402707408	0.000000165	0.000000157	1.402710036
0.3	1.609336039			0.000000210	1.609336250
0.4	1.822792993	1.822788993	0.000000267	0.000000226	1.822793219

RKF. E. Fehlberg [Computing 6 (1970), 61-71] proposed and developed error control by using two RK methods of different orders to go from $\left(x_{n}, y_{n}\right)$ to $\left(x_{n+1}, y_{n+1}\right)$. The difference of the computed y-values at x_{n+1} gives an error estimate to be used for step size control. Fehlberg discovered two RK formulas that together need only six function evaluations per step. We present these formulas here because RKF has become quite popular. For instance, Maple uses it (also for systems of ODEs).

Fehlberg's fifth-order RK method is

$$
\begin{equation*}
y_{n+1}=y_{n}+\gamma_{1} k_{1}+\cdots+\gamma_{6} k_{6} \tag{12a}
\end{equation*}
$$

with coefficient vector $\gamma=\left[\gamma_{1} \cdots \gamma_{6}\right]$,

$$
\gamma=\left[\begin{array}{cccccc}
\frac{16}{135} & 0 & \frac{6656}{12,825} & \frac{28,561}{56,430} & -\frac{9}{50} & \frac{2}{55} \tag{12b}
\end{array}\right] .
$$

His fourth-order RK method is

$$
\begin{equation*}
y_{n+1}^{*}=y_{n}+\gamma_{1}^{*} k_{1}+\cdots+\gamma_{5}^{*} k_{5} \tag{13a}
\end{equation*}
$$

with coefficient vector

$$
\gamma^{*}=\left[\begin{array}{lllll}
\frac{25}{216} & 0 & \frac{1408}{2565} & \frac{2197}{4104} & -\frac{1}{5} \tag{13b}
\end{array}\right] .
$$

In both formulas we use only six different function evaluations altogether, namely,

$$
\begin{array}{ll}
k_{1}=h f\left(x_{n}, y_{n}\right) \\
k_{2}=h f\left(x_{n}+\frac{1}{4} h,\right. & \left.y_{n}+\frac{1}{4} k_{1}\right) \\
k_{3}=h f\left(x_{n}+\frac{3}{8} h,\right. & \left.y_{n}+\frac{3}{32} k_{1}+\frac{9}{32} k_{2}\right) \\
k_{4}=h f\left(x_{n}+\frac{12}{13} h,\right. & \left.y_{n}+\frac{1932}{2197} k_{1}-\frac{7200}{2197} k_{2}+\frac{7296}{2197} k_{3}\right) \tag{14}\\
k_{5}=h f\left(x_{n}+h,\right. & \left.y_{n}+\frac{439}{216} k_{1}-8 k_{2}+\frac{3680}{513} k_{3}-\frac{845}{4104} k_{4}\right) \\
k_{6}=h f\left(x_{n}+\frac{1}{2} h,\right. & \left.y_{n}-\frac{8}{27} k_{1}+2 k_{2}-\frac{3544}{2565} k_{3}+\frac{1859}{4104} k_{4}-\frac{11}{40} k_{5}\right) .
\end{array}
$$

The difference of (12) and (13) gives the error estimate

$$
\begin{equation*}
\epsilon_{n+1} \approx y_{n+1}-y_{n+1}^{*}=\frac{1}{360} k_{1}-\frac{128}{4275} k_{3}-\frac{2197}{75,240} k_{4}+\frac{1}{50} k_{5}+\frac{2}{55} k_{6} \tag{15}
\end{equation*}
$$

EXAMPLE 3 Runge-Kutta-Fehlberg

For the initial value problem (11) we obtain from (12)-(14) with $h=0.1$ in the first step the 12 S -values

$$
\begin{array}{ll}
k_{1}=0.200000000000 & k_{2}=0.200062500000 \\
k_{3}=0.200140756867 & k_{4}=0.200856926154 \\
k_{5}=0.201006676700 & k_{6}=0.200250418651
\end{array}
$$

$$
\begin{aligned}
& y_{1}^{*}=1.20033466949 \\
& y_{1}=1.20033467253
\end{aligned}
$$

and the error estimate

$$
\epsilon_{1} \approx y_{1}-y_{i}^{*}=0.00000000304
$$

The exact 12S-value is $y(0.1)=1.20033467209$. Hence the actual error of y_{1} is $-4.4 \cdot 10^{-10}$, smaller than that in Table 21.6 by a factor of 200 .

Table 21.7 summarizes essential features of the methods in this section. It can be shown that these methods are numerically stable (definition in Sec. 19.1). They are one-step methods because in each step we use the data of just one preceding step, in contrast to multistep methods where in each step we use data from several preceding steps, as we shall see in the next section.

Table 21.7 Methods Considered and Their Order (= Their Global Error)

Method	Function Evaluation per Step	Global Error	Local Error
Euler	1	$O(h)$	$O\left(h^{2}\right)$
Improved Euler	2	$O\left(h^{2}\right)$	$O\left(h^{3}\right)$
RK (fourth order)	4	$O\left(h^{4}\right)$	$O\left(h^{5}\right)$
RKF	6	$O\left(h^{5}\right)$	$O\left(h^{6}\right)$

Backward Euler Method. Stiff ODEs

The backward Euler formula for numerically solving (1) is

$$
\begin{equation*}
y_{n+1}=y_{n}+h f\left(x_{n+1}, y_{n+1}\right) \quad(n=0,1, \cdots) \tag{16}
\end{equation*}
$$

This formula is obtained by evaluating the right side at the new location $\left(x_{n+1}, y_{n+1}\right)$; this is called the backward Euler scheme. For known y_{n} it gives y_{n+1} implicitly, so it defines an implicit method, in contrast to the Euler method (3), which gives y_{n+1} explicitly. Hence (16) must be solved for y_{n+1}. How difficult this is depends on f in (1). For a linear ODE this provides no problem, as Example 4 (below) illustrates. The method is particularly useful for "stiff" ODEs, as they occur quite frequently in the study of vibrations, electric circuits, chemical reactions, etc. The situation of stiffness is roughly as follows; for details, see, for example, [E5], [E25], [E26] in App. 1.

Error terms of the methods considered so far involve a higher derivative. And we ask what happens if we let h increase. Now if the error (the derivative) grows fast but the desired solution also grows fast, nothing will happen. However, if that solution does not grow fast, then with growing h the error term can take over to an extent that the numeric result becomes completely nonsensical, as in Fig. 451. Such an ODE for which h must thus be restricted to small values, and the physical system the ODE models, are called stiff. This term is suggested by a mass-spring system with a stiff spring (spring with a large k; see Sec. 2.4). Example 4 illustrates that implicit methods remove the difficulty of increasing h in the case of stiffness: It can be shown that in the application of an implicit method the solution remains stable under any increase of h, although the accuracy decreases with increasing h.

EXAMPLE 4 Backward Euler Method. Stiff ODE

The initial value problem

$$
y^{\prime}=f(x, y)=-20 h y+20 x^{2}+2 x, \quad y(0)=1
$$

has the solution (verify!)

$$
y=e^{-20 x}+x^{2} .
$$

The backward Euler formula (16) is

$$
y_{n+1}=y_{n}+h f\left(x_{n+1}, y_{n+1}\right)=y_{n}+h\left(-20 y_{n+1}+20 x_{n+1}^{2}+2 x_{n+1}\right) .
$$

Noting that $x_{n+1}=x_{n}+h$, taking the term $-20 y_{n+1}$ to the left, and dividing, we obtain

$$
\begin{equation*}
y_{n+1}=\frac{y_{n}+h\left[20\left(x_{n}+h\right)^{2}+2\left(x_{n}+h\right)\right]}{1+20 h} . \tag{*}
\end{equation*}
$$

The numeric results in Table 21.8 show the following.
Stability of the backward Euler method for $h=0.05$ and also for $h=0.2$ with an error increase by about a factor 4 for $h=0.2$,

Stability of the Euler method for $h=0.05$ but instability for $h=0.1$ (Fig. 451),
Stability of RK for $h=0.1$ but instability for $h=0.2$.
This illustrates that the ODE is stiff. Note that even in the case of stability the approximation of the solution near $x=0$ is poor.

Stiffness will be considered further in Sec. 21.3 in connection with systems of ODEs.

Fig. 451. Euler method with $h=0.1$ for the stiff ODE in Example 4 and exact solution

Table 21.8 Backward Euler Method (BEM) for Example 6. Comparison with Euler and RK

x	$\begin{gathered} \text { BEM } \\ h=0.05 \end{gathered}$	$\begin{gathered} \text { BEM } \\ h=0.2 \end{gathered}$	$\begin{gathered} \text { Euler } \\ h=0.05 \end{gathered}$	$\begin{gathered} \text { Euler } \\ h=0.1 \end{gathered}$	$\begin{gathered} \mathrm{RK} \\ h=0.1 \end{gathered}$	$\begin{gathered} \mathrm{RK} \\ h=0.2 \end{gathered}$	Exact
0.0	1.00000	1.00000	1.00000	1.00000	1.00000	1.000	1.00000
0.1	0.26188		0.00750	-1.00000	0.34500		0.14534
0.2	0.10484	0.24800	0.03750	1.04000	0.15333	5.093	0.05832
0.3	0.10809		0.08750	-0.92000	0.12944		0.09248
0.4	0.16640	0.20960	0.15750	1.16000	0.17482	25.48	0.16034
0.5	0.25347		0.24750	-0.76000	0.25660		0.25004
0.6	0.36274	0.37792	0.35750	1.36000	0.36387	127.0	0.36001
0.7	0.49256		0.48750	-0.52000	0.49296		0.49001
0.8	0.64252	0.65158	0.63750	1.64000	0.64265	634.0	0.64000
0.9	0.81250		0.80750	-0.20000	0.81255		0.81000
1.0	1.00250	1.01032	0.99750	2.00000	1.00252	3168	1.00000

PROBBEMESET 21.1

1-4 EULER METHOD

Do 10 steps. Solve exactly. Compute the error. Show details.

1. $y^{\prime}+0.2 y=0, \quad y(0)=5, \quad h=0.2$
2. $y^{\prime}=\frac{1}{2} \pi \sqrt{1-y^{2}}, \quad y(0)=0, \quad h=0.1$
3. $y^{\prime}=(y-x)^{2}, \quad y(0)=0, \quad h=0.1$
4. $y^{\prime}=(y+x)^{2}, \quad y(0)=0, \quad h=0.1$

5-10 IMPROVED EULER METHOD

Do 10 steps. Solve exactly. Compute the error. Show details.
5. $y^{\prime}=y, \quad y(0)=1, \quad h=0.1$
6. $y^{\prime}=2\left(1+y^{2}\right), \quad y(0)=0, \quad h=0.05$
7. $y^{\prime}-x y^{2}=0, \quad y(0)=1, \quad h=0.1$
8. Logistic population model. $y^{\prime}=y-y^{2}, \quad y(0)=0.2$, $h=0.1$
9. Do Prob. 7 using Euler's method with $h=0.1$ and compare the accuracy.
10. Do Prob. 7 using the improved Euler method, 20 steps with $h=0.05$. Compare.

11-17 CLASSICAL RUNGE-KUTTA METHOD OF FOURTH ORDER

Do 10 steps. Compare as indicated. Show details.
11. $y^{\prime}-x y^{2}=0, \quad y(0)=1, \quad h=0.1$. Compare with Prob. 7. Apply the error estimate (10) to y_{10}.
12. $y^{\prime}=y-y^{2}, \quad y(0)=0.2, \quad h=0.1$. Compare with Prob. 8.
13. $y^{\prime}=1+y^{2}, \quad y(0)=0, \quad h=0.1$
14. $y^{\prime}=\left(1-x^{-1}\right) y, \quad y(1)=1, \quad h=0.1$
15. $y^{\prime}+y \tan x=\sin 2 x, \quad y(0)=1, \quad h=0.1$
16. Do Prob. 15 with $h=0.2,5$ steps, and compare the errors with those in Prob. 15.
17. $y^{\prime}=4 x^{3} y^{2}, \quad y(0)=0.5, \quad h=0.1$
18. Kutta's third-order method is defined by $y_{n+1}=$ $y_{n}+\frac{1}{6}\left(k_{1}+4 k_{2}+k_{3}^{*}\right)$ with k_{1} and k_{2} as in RK (Table 21.3) and $k_{3}^{*}=h f\left(x_{n+1}, y_{n}-k_{1}+2 k_{2}\right)$. Apply this method to (4) in (6). Choose $h=0.2$ and do 5 steps. Compare with Table 21.5.
19. CAS EXPERIMENT. Euler-Cauchy vs. RK. Consider the initial value problem
(17) $y^{\prime}=\left(y-0.01 x^{2}\right)^{2} \sin \left(x^{2}\right)+0.02 x$,

$$
y(0)=0.4
$$

(solution: $y=1 /[2.5-\mathrm{S}(x)]+0.01 x^{2}$ where $\mathrm{S}(x)$ is the Fresnel integral (38) in App. 3.1).
(a) Solve (17) by Euler, improved Euler, and RK methods for $0 \leqq x \leqq 5$ with step $h=0.2$. Compare the errors for $x=1,3,5$ and comment.
(b) Graph solution curves of the ODE in (17) for various positive and negative initial values.
(c) Do a similar experiment as in (a) for an initial value problem that has a monotone increasing or monotone decreasing solution. Compare the behavior of the error with that in (a). Comment.
20. CAS EXPERIMENT. RKF. (a) Write a program for RKF that gives x_{n}, y_{n}, the estimate (10), and, if the solution is known, the actual error ϵ_{n}.
(b) Apply the program to Example 3 in the text (10 steps, $h=0.1$).
(c) ϵ_{n} in (b) gives a relatively good idea of the size of the actual error. Is this typical or accidental? Find out, by experimentation with other problems, on what properties of the ODE or solution this might depend.

21.2 Multistep Methods

In a one-step method we compute y_{n+1} using only a single step, namely, the previous value y_{n}. One-step methods are "self-starting," they need no help to get going because they obtain y_{1} from the initial value y_{0}, etc. All methods in Sec. 21.1 are one-step.

In contrast, a multistep method uses, in each step, values from two or more previous steps. These methods are motivated by the expectation that the additional information will increase accuracy and stability. But to get started, one needs values, say, $y_{0}, y_{1}, y_{2}, y_{3}$ in a 4-step method, obtained by Runge-Kutta or another accurate method. Thus, multistep methods are not self-starting. Such methods are obtained as follows.

Adams-Bashforth Methods

We consider an initial value problem

$$
\begin{equation*}
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

as before, with f such that the problem has a unique solution on some open interval containing x_{0}. We integrate $y^{\prime}=f(x, y)$ from x_{n} to $x_{n+1}=x_{n}+h$. This gives

$$
\int_{x_{n}}^{x_{n+1}} y^{\prime}(x) d x=y\left(x_{n+1}\right)-y\left(x_{n}\right)=\int_{x_{n}}^{x_{n+1}} f(x, y(x)) d x
$$

Now comes the main idea. We replace $f(x, y(x))$ by an interpolation polynomial $p(x)$ (see Sec. 19.3), so that we can later integrate. This gives approximations y_{n+1} of $y\left(x_{n+1}\right)$ and y_{n} of $y\left(x_{n}\right)$,

$$
\begin{equation*}
y_{n+1}=y_{n}+\int_{x_{n}}^{x_{n+1}} p(x) d x \tag{2}
\end{equation*}
$$

Different choices of $p(x)$ will now produce different methods. We explain the principle by taking a cubic polynomial, namely, the polynomial $p_{3}(x)$ that at (equidistant)

$$
x_{n}, \quad x_{n-1}, \quad x_{n-2}, \quad x_{n-3}
$$

has the respective values

$$
\begin{align*}
f_{n} & =f\left(x_{n}, y_{n}\right) \\
f_{n-1} & =f\left(x_{n-1}, y_{n-1}\right) \tag{3}\\
f_{n-2} & =f\left(x_{n-2}, y_{n-2}\right) \\
f_{n-3} & =f\left(x_{n-3}, y_{n-3}\right)
\end{align*}
$$

This will lead to a practically useful formula. We can obtain $p_{3}(x)$ from Newton's backward difference formula (18), Sec. 19.3:

$$
p_{3}(x)=f_{n}+r \nabla f_{n}+\frac{1}{2} r(r+1) \nabla^{2} f_{n}+\frac{1}{6} r(r+1)(r+2) \nabla^{3} f_{n}
$$

where

$$
r=\frac{x-x_{n}}{h}
$$

We integrate $p_{3}(x)$ over x from x_{n} to $x_{n+1}=x_{n}+h$, thus over r from 0 to 1 . Since

$$
x=x_{n}+h r, \quad \text { we have } \quad d x=h d r
$$

The integral of $\frac{1}{2} r(r+1)$ is $\frac{5}{12}$ and that of $\frac{1}{6} r(r+1)(r+2)$ is $\frac{3}{8}$. We thus obtain

$$
\begin{equation*}
\int_{x_{n}}^{x_{n+1}} p_{3} d x=h \int_{0}^{1} p_{3} d r=h\left(f_{n}+\frac{1}{2} \nabla f_{n}+\frac{5}{12} \nabla^{2} f_{n}+\frac{3}{8} \nabla^{3} f_{n}\right) \tag{4}
\end{equation*}
$$

It is practical to replace these differences by their expressions in terms of f :

$$
\begin{aligned}
\nabla f_{n} & =f_{n}-f_{n-1} \\
\nabla^{2} f_{n} & =f_{n}-2 f_{n-1}+f_{n-2} \\
\nabla^{3} f_{n} & =f_{n}-3 f_{n-1}+3 f_{n-2}-f_{n-3}
\end{aligned}
$$

We substitute this into (4) and collect terms. This gives the multistep formula of the Adams-Bashforth method ${ }^{2}$ of fourth order

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{h}{24}\left(55 f_{n}-59 f_{n-1}+37 f_{n-2}-9 f_{n-3}\right) \tag{5}
\end{equation*}
$$

[^14]It expresses the new value y_{n+1} [approximation of the solution y of (1) at x_{n+1}] in terms of 4 values of f computed from the y-values obtained in the preceding 4 steps. The local truncation error is of order h^{5}, as can be shown, so that the global error is of order h^{4}; hence (5) does define a fourth-order method.

Adams-Moulton Methods

Adams-Moulton methods are obtained if for $p(x)$ in (2) we choose a polynomial that interpolates $f(x, y(x))$ at $x_{n+1}, x_{n}, x_{n-1}, \cdots$ (as opposed to x_{n}, x_{n-1}, \cdots used before; this is the main point). We explain the principle for the cubic polynomial $\widetilde{p}_{3}(x)$ that interpolates at $x_{n+1}, x_{n}, x_{n-1}, x_{n-2}$. (Before we had $x_{n}, x_{n-1}, x_{n-2}, x_{n-3}$.) Again using (18) in Sec. 19.3 but now setting $r=\left(x-x_{n+1}\right) / h$, we have

$$
\tilde{p}_{3}(x)=f_{n+1}+r \nabla f_{n+1}+\frac{1}{2} r(r+1) \nabla^{2} f_{n+1}+\frac{1}{6} r(r+1)(r+2) \nabla^{3} f_{n+1} .
$$

We now integrate over x from x_{n} to x_{n+1} as before. This corresponds to integrating over r from -1 to 0 . We obtain

$$
\int_{x_{n}}^{x_{n+1}} \widetilde{p}_{3}(x) d x=h\left(f_{n+1}-\frac{1}{2} \nabla f_{n+1}-\frac{1}{12} \nabla^{2} f_{n+1}-\frac{1}{24} \nabla^{3} f_{n+1}\right)
$$

Replacing the differences as before gives

$$
\begin{equation*}
y_{n+1}=y_{n}+\int_{x_{n}}^{x_{n+1}} \widetilde{p}_{3}(x) d x=y_{n}+\frac{h}{24}\left(9 f_{n+1}+19 f_{n}-5 f_{n-1}+f_{n-2}\right) \tag{6}
\end{equation*}
$$

This is usually called an Adams-Moulton formula. ${ }^{3}$ It is an implicit formula because $f_{n+1}=f\left(x_{n+1}, y_{n+1}\right)$ appears on the right, so that it defines y_{n+1} only implicitly, in contrast to (5), which is an explicit formula, not involving y_{n+1} on the right. To use (6) we must predict a value y_{n+1}^{*}, for instance, by using (5), that is,

$$
\begin{equation*}
y_{n+1}^{*}=y_{n}+\frac{h}{24}\left(55 f_{n}-59 f_{n-1}+37 f_{n-2}-9 f_{n-3}\right) \tag{7a}
\end{equation*}
$$

The corrected new value y_{n+1} is then obtained from (6) with f_{n+1} replaced by $f_{n+1}^{*}=f\left(x_{n+1}, y_{n+1}^{*}\right)$ and the other f^{\prime} 's as in (6); thus,

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{h}{24}\left(9 f_{n+1}^{*}+19 f_{n}-5 f_{n-1}+f_{n-2}\right) \tag{7b}
\end{equation*}
$$

This predictor-corrector method (7a), (7b) is usually called the Adams-Moulton method of fourth order. It has the advantage over RK that (7) gives the error estimate

$$
\epsilon_{n+1} \approx \frac{1}{15}\left(y_{n+1}-y_{n+1}^{*}\right)
$$

as can be shown. This is the analog of (10) in Sec. 21.1.

Sometimes the name Adams-Moulton method is reserved for the method with several corrections per step by (7b) until a specific accuracy is reached. Popular codes exist for both versions of the method.

Getting Started. In (5) we need $f_{0}, f_{1}, f_{2}, f_{3}$. Hence from (3) we see that we must first compute y_{1}, y_{2}, y_{3} by some other method of comparable accuracy, for instance, by RK or by RKF. For other choices see Ref. [E26] listed in App. 1.

EXAMPLE 1 Adams-Bashforth Prediction (7a), Adams-Moulton Correction (7b)

Solve the initial value problem

$$
\begin{equation*}
y^{\prime}=x+y, \quad y(0)=0 \tag{8}
\end{equation*}
$$

by (7a), (7b) on the interval $0 \leqq x \leqq 2$, choosing $h=0.2$.
Solution. The problem is the same as in Examples 1 and 2, Sec. 21.1, so that we can compare the results. We compute starting values y_{1}, y_{2}, y_{3} by the classical Runge-Kutta method. Then in each step we predict by (7 a) and make one correction by (7 b) before we execute the next step. The results are shown and compared with the exact values in Table 21.9. We see that the corrections improve the accuracy considerably. This is typical.

Table 21.9 Adams-Moulton Method Applied to the Initial Value Problem (8); Predicted Values Computed by (7a) and Corrected Values by (7b)

n	x_{n}	Starting y_{n}	Predicted y_{n}^{*}	Corrected y_{n}	Exact Values	$10^{6} \cdot$ Error of y_{n}
0	0.0	0.000000			0.000000	0
1	0.2	0.021400			0.021403	3
2	0.4	0.091818			0.091825	7
3	0.6	0.222107			0.222119	12
4	0.8		0.425361	0.425529	0.425541	12
5	1.0		0.718066	0.718270	0.718282	12
6	1.2		1.119855	1.120106	1.120117	11
7	1.4		1.654885	1.655191	1.655200	9
8	1.6		2.352653	2.353026	2.353032	6
9	1.8		3.249190	3.249646	3.249647	1
10	2.0		4.388505	4.389062	4.389056	-6

Comments on Comparison of Methods. An Adams-Moulton formula is generally much more accurate than an Adams-Bashforth formula of the same order. This justifies the greater complication and expense in using the former. The method (7a), (7b) is numerically stable, whereas the exclusive use of (7a) might cause instability. Step size control is relatively simple. If \mid Corrector - Predictor $\mid>$ TOL, use interpolation to generate "old" results at half the current step size and then try $h / 2$ as the new step.

Whereas the Adams-Moulton formula (7a), (7b) needs only 2 evaluations per step, Runge-Kutta needs 4 ; however, with Runge-Kutta one may be able to take a step size more than twice as large, so that a comparison of this kind (widespread in the literature) is meaningless.

For more details, see Refs. [E25], [E26] listed in App. 1.

1-10 ADAMS-MOULTON METHOD

Solve the initial value problem by Adams-Moulton (7a), (7b), 10 steps with 1 correction per step. Solve exactly and compute the error. Use RK where no starting values are given.

1. $y^{\prime}=y, \quad y(0)=1, \quad h=0.1, \quad(1.105171,1.221403$, 1.349858)
2. $y^{\prime}=2 x y, \quad y(0)=1, \quad h=0.1$
3. $y^{\prime}=1+y^{2}, \quad y(0)=0, \quad h=0.1, \quad(0.100335$, $0.202710,0.309336$)
4. Do Prob. 2 by RK, 5 steps, $h=0.2$. Compare the errors.
5. Do Prob. 3 by RK, 5 steps, $h=0.2$. Compare the errors.
6. $y^{\prime}=(y-x-1)^{2}+2, \quad y(0)=1, \quad h=0.1$, 10 steps
7. $y^{\prime}=3 y-12 y^{2}, \quad y(0)=0.2, \quad h=0.1$
8. $y^{\prime}=1-4 y^{2}, \quad y(0)=0, \quad h=0.1$
9. $y^{\prime}=3 x^{2}(1+y), \quad y(0)=0, \quad h=0.05$
10. $y^{\prime}=x / y, \quad y(1)=3, \quad h=0.2$
11. Do and show the calculations leading to (4)-(7) in the text.
12. Quadratic polynomial. Apply the method in the text to a polynomial of second degree. Show that this leads to the predictor and corrector formulas

$$
\begin{aligned}
& y_{n+1}^{*}=y_{n}+\frac{h}{12}\left(23 f_{n}-16 f_{n-1}+5 f_{n-2}\right), \\
& y_{n+1}=y_{n}+\frac{h}{12}\left(5 f_{n+1}+8 f_{n}-f_{n-1}\right) .
\end{aligned}
$$

13. Using Prob. 12 , solve $y^{\prime}=2 x y, \quad y(0)=1$ (10 steps, $h=0.1$, RK starting values). Compare with the exact solution and comment.
14. How much can you reduce the error in Prob. 13 by halfing h (20 steps, $h=0.05$)? First guess, then compute.
15. CAS PROJECT. Adams-Moulton. (a) Accurate starting is important in (7a), (7b). Illustrate this in Example 1 of the text by using starting values from the improved Euler-Cauchy method and compare the results with those in Table 21.8.
(b) How much does the error in Prob. 11 decrease if you use exact starting values (instead of RK values)?
(c) Experiment to find out for what ODEs poor starting is very damaging and for what ODEs it is not.
(d) The classical RK method often gives the same accuracy with step $2 h$ as Adams-Moulton with step h, so that the total number of function evaluations is the same in both cases. Illustrate this with Prob. 8. (Hence corresponding comparisons in the literature in favor of Adams-Moulton are not valid. See also Probs. 6 and 7.)

21.3 Methods for Systems and Higher Order ODEs

Initial value problems for first-order systems of ODEs are of the form

$$
\begin{equation*}
\mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y}), \quad \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0} \tag{1}
\end{equation*}
$$

in components

$$
\begin{array}{ll}
y_{1}^{\prime}=f_{1}\left(x, y_{1}, \cdots, y_{m}\right), & y_{1}\left(x_{0}\right)=y_{10} \\
y_{2}^{\prime}=f_{2}\left(x, y_{1}, \cdots, y_{m}\right), & y_{2}\left(x_{0}\right)=y_{20} \\
\cdots \cdots \cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \\
y_{m}^{\prime}=f_{m}\left(x, y_{1}, \cdots, y_{m}\right) . & y_{m}\left(x_{0}\right)=y_{m 0}
\end{array}
$$

Here, \mathbf{f} is assumed to be such that the problem has a unique solution $\mathbf{y}(x)$ on some open x-interval containing x_{0}. Our discussion will be independent of Chap. 4 on systems.

Before explaining solution methods it is important to note that (1) includes initial value problems for single m th-order ODEs,

$$
\begin{equation*}
y^{(m)}=f\left(x, y, y^{\prime}, y^{\prime \prime}, \cdots, y^{(m-1)}\right) \tag{2}
\end{equation*}
$$

and initial conditions $y\left(x_{0}\right)=K_{1}, y^{\prime}\left(x_{0}\right)=K_{2}, \cdots, y^{(m-1)}\left(x_{0}\right)=K_{m}$ as special cases.
Indeed, the connection is achieved by setting

$$
\begin{equation*}
y_{1}=y, \quad y_{2}=y^{\prime}, \quad y_{3}=y^{\prime \prime}, \quad \cdots, \quad y_{m}=y^{(m-1)} . \tag{3}
\end{equation*}
$$

Then we obtain the system

$$
\begin{gather*}
y_{1}^{\prime}=y_{2} \\
y_{2}^{\prime}=y_{3} \\
\vdots \tag{4}\\
y_{m-1}^{\prime}=y_{m} \\
y_{m}^{\prime}=f\left(x, y_{1}, \cdots, y_{m}\right)
\end{gather*}
$$

and the initial conditions $y_{1}\left(x_{0}\right)=K_{1}, \quad y_{2}\left(x_{0}\right)=K_{2}, \quad \cdots, \quad y_{m}\left(x_{0}\right)=K_{m}$.

Euler Method for Systems

Methods for single first-order ODEs can be extended to systems (1) simply by writing vector functions \mathbf{y} and \mathbf{f} instead of scalar functions y and f, whereas x remains a scalar variable.

We begin with the Euler method. Just as for a single ODE, this method will not be accurate enough for practical purposes, but it nicely illustrates the extension principle.

EXAMPLE 1 Euler Method for a Second-Order ODE. Mass-Spring System

Solve the initial value problem for a damped mass-spring system

$$
y^{\prime \prime}+2 y^{\prime}+0.75 y=0, \quad y(0)=3, \quad y^{\prime}(0)=-2.5
$$

by the Euler method for systems with step $h=0.2$ for x from 0 to 1 (where x is time).
Solution. The Euler method (3), Sec. 21.1, generalizes to systems in the form

$$
\begin{equation*}
\mathbf{y}_{n+1}=\mathbf{y}_{n}+h \mathbf{f}\left(x_{n}, \mathbf{y}_{n}\right) \tag{5}
\end{equation*}
$$

in components

$$
\begin{aligned}
& y_{1, n+1}=y_{1, n}+h f_{1}\left(x_{n}, y_{1, n}, y_{2, n}\right) \\
& y_{2, n+1}=y_{2, n}+h f_{2}\left(x_{n}, y_{1, n}, y_{2, n}\right)
\end{aligned}
$$

and similarly for systems of more than two equations. By (4) the given ODE converts to the system

$$
\begin{aligned}
& y_{1}^{\prime}=f_{1}\left(x, y_{1}, y_{2}\right)=y_{2} \\
& y_{2}^{\prime}=f_{2}\left(x, y_{1}, y_{2}\right)=-2 y_{2}-0.75 y_{1} .
\end{aligned}
$$

Hence (5) becomes

$$
\begin{aligned}
& y_{1, n+1}=y_{1, n}+0.2 y_{2, n} \\
& y_{2, n+1}=y_{2, n}+0.2\left(-2 y_{2, n}-0.75 y_{1, n}\right) .
\end{aligned}
$$

The initial conditions are $y(0)=y_{1}(0)=3, y^{\prime}(0)=y_{2}(0)=-2.5$. The calculations are shown in Table 21.10. As for single ODEs, the results would not be accurate enough for practical purposes. The example merely serves to illustrate the method because the problem can be readily solved exactly,

$$
y=y_{1}=2 e^{-0.5 x}+e^{-1.5 x}, \quad \text { thus } \quad y^{\prime}=y_{2}=-e^{-0.5 x}-1.5 e^{-1.5 x} .
$$

Table 21.10 Euler Method for Systems in Example 1 (Mass-Spring System)

n	x_{n}	$y_{1, n}$	y_{1} Exact $(5 \mathrm{D})$	Error $\epsilon_{1}=y_{1}-y_{1, n}$	$y_{2, n}$	y_{2} Exact $(5 \mathrm{D})$	Error $\epsilon_{2}=y_{2}-y_{2, n}$
0	0.0	3.00000	3.00000	0.00000	-2.50000	-2.50000	0.00000
1	0.2	2.50000	2.55049	0.05049	-1.95000	-2.01606	-0.06606
2	0.4	2.11000	2.18627	0.76270	-1.54500	-1.64195	-0.09695
3	0.6	1.80100	1.88821	0.08721	-1.24350	-1.35067	-0.10717
4	0.8	1.55230	1.64183	0.08953	-1.01625	-1.12211	-0.10586
5	1.0	1.34905	1.43619	0.08714	-0.84260	-0.94123	-0.09863

Runge-Kutta Methods for Systems

As for Euler methods, we obtain RK methods for an initial value problem (1) simply by writing vector formulas for vectors with m components, which, for $m=1$, reduce to the previous scalar formulas.

Thus, for the classical RK method of fourth order in Table 21.3, we obtain

$$
\begin{equation*}
\mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0} \quad \text { (Initial values) } \tag{6a}
\end{equation*}
$$

and for each step $n=0,1, \cdots, N-1$ we obtain the 4 auxiliary quantities
(6b)

$$
\begin{array}{ll}
\mathbf{k}_{1}=h \mathbf{f}\left(x_{n},\right. & \left.\mathbf{y}_{n}\right) \\
\mathbf{k}_{2}=h \mathbf{f}\left(x_{n}+\frac{1}{2} h,\right. & \left.\mathbf{y}_{n}+\frac{1}{2} \mathbf{k}_{1}\right) \\
\mathbf{k}_{3}=h \mathbf{f}\left(x_{n}+\frac{1}{2} h,\right. & \left.\mathbf{y}_{n}+\frac{1}{2} \mathbf{k}_{2}\right) \\
\mathbf{k}_{4}=h \mathbf{f}\left(x_{n}+h,\right. & \left.\mathbf{y}_{n}+\mathbf{k}_{3}\right)
\end{array}
$$

and the new value [approximation of the solution $\mathbf{y}(x)$ at $x_{n+1}=x_{0}+(n+1) h$]
(6c)

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{1}{6}\left(\mathbf{k}_{1}+2 \mathbf{k}_{2}+2 \mathbf{k}_{3}+\mathbf{k}_{4}\right)
$$

EXAMPLE 2 RK Method for Systems. Airy's Equation. Airy Function Ai(x)

Solve the initial value problem

$$
y^{\prime \prime}=x y, \quad y(0)=1 /\left(3^{2 / 3} \cdot \Gamma\left(\frac{2}{3}\right)\right)=0.35502805, \quad y^{\prime}(0)=-1 /\left(3^{1 / 3} \cdot \Gamma\left(\frac{1}{3}\right)\right)=-0.25881940
$$

by the Runge-Kutta method for systems with $h=0.2$; do 5 steps. This is Airy's equation, ${ }^{4}$ which arose in optics (see Ref. [A13], p. 188, listed in App. 1). Γ is the gamma function (see App. A3.1). The initial conditions are such that we obtain a standard solution, the Airy function $\mathrm{Ai}(x)$, a special function that has been thoroughly investigated; for numeric values, see Ref. [GenRef1], pp. 446, 475.
Solution. For $y^{\prime \prime}=x y$, setting $y_{1}=y, y_{2}=y_{1}^{\prime}=y^{\prime}$ we obtain the system (4)

$$
\begin{aligned}
& y_{1}^{\prime}=y_{2} \\
& y_{2}^{\prime}=x y_{1} .
\end{aligned}
$$

Hence $\mathbf{f}=\left[\begin{array}{ll}f_{1} & f_{2}\end{array}\right]^{\top}$ in (1) has the components $f_{1}(x, y)=y_{2}, f_{2}(x, y)=x y_{1}$. We now write (6) in components. The initial conditions (6a) are $y_{1,0}=0.35502805, y_{2,0}=-0.25881940$. In (6 b) we have fewer subscripts by simply writing $\mathbf{k}_{1}=\mathbf{a}, \mathbf{k}_{2}=\mathbf{b}, \mathbf{k}_{3}=\mathbf{c}, \mathbf{k}_{4}=\mathbf{d}$, so that $\mathbf{a}=\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]^{\top}$, etc. Then (6b) takes the form
(6b*)

$$
\begin{aligned}
& \mathbf{a}=h\left[\begin{array}{l}
y_{2, n} \\
x_{n} y_{1, n}
\end{array}\right] \\
& \mathbf{b}=h\left[\begin{array}{l}
y_{2, n}+\frac{1}{2} a_{2} \\
\left(x_{n}+\frac{1}{2} h\right)\left(y_{1, n}+\frac{1}{2} a_{1}\right)
\end{array}\right]
\end{aligned}
$$

$$
\mathbf{c}=h\left[\begin{array}{l}
y_{2, n}+\frac{1}{2} b_{2} \\
\left(x_{n}+\frac{1}{2} h\right)\left(y_{1, n}+\frac{1}{2} b_{1}\right)
\end{array}\right]
$$

$$
\mathbf{d}=h\left[\begin{array}{l}
y_{2, n}+c_{2} \\
\left(x_{n}+h\right)\left(y_{1, n}+c_{1}\right)
\end{array}\right]
$$

For example, the second component of \mathbf{b} is obtained as follows. $\mathbf{f}(x, y)$ has the second component $f_{2}(x, y)=x y_{1}$. Now in $\mathbf{b}\left(=\mathbf{k}_{2}\right)$ the first argument is

$$
x=x_{n}+\frac{1}{2} h .
$$

The second argument in \mathbf{b} is

$$
\mathbf{y}=\mathbf{y}_{n}+\frac{1}{2} \mathbf{a},
$$

and the first component of this is

$$
y_{1}=y_{1, n}+\frac{1}{2} a_{1} .
$$

Together,

$$
x y_{1}=\left(x_{n}+\frac{1}{2} h\right)\left(y_{1, n}+\frac{1}{2} a_{1}\right) .
$$

Similarly for the other components in ($6 b^{*}$). Finally,

$$
\begin{equation*}
\mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{1}{6}(\mathbf{a}+2 \mathbf{b}+2 \mathbf{c}+\mathbf{d}) \tag{*}
\end{equation*}
$$

Table 21.11 shows the values $y(x)=y_{1}(x)$ of the Airy function $\operatorname{Ai}(x)$ and of its derivative $y^{\prime}(x)=y_{2}(x)$ as well as of the (rather small!) error of $y(x)$.

[^15]Table 21.11 RK Method for Systems: Values $\boldsymbol{y}_{\mathbf{1 , n}}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$ of the Airy Function Ai(x) in Example 2

n	x_{n}	$y_{1, n}\left(x_{n}\right)$	$y_{1}\left(x_{n}\right)$ Exact $(8 \mathrm{D})$	$10^{8} \cdot$ Error of y_{1}	$y_{2, n}\left(x_{n}\right)$
0	0.0	0.35502805	0.35502805	0	-0.25881940
1	0.2	0.30370303	0.30370315	12	-0.25240464
2	0.4	0.25474211	0.25474235	24	-0.23583073
3	0.6	0.20979973	0.20980006	33	-0.21279185
4	0.8	0.16984596	0.16984632	36	-0.18641171
5	1.0	0.13529207	0.13529242	35	-0.15914687

Runge-Kutta-Nyström Methods (RKN Methods)

RKN methods are direct extensions of RK methods (Runge-Kutta methods) to second-order ODEs $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$, as given by the Finnish mathematician E. J. Nyström [Acta Soc. Sci. fenn., 1925, L, No. 13]. The best known of these uses the following formulas, where $n=0,1, \cdots, N-1$ (N the number of steps):
(7a)

$$
\begin{aligned}
& k_{1}=\frac{1}{2} h f\left(x_{n}, y_{n}, y_{n}^{\prime}\right) \\
& k_{2}=\frac{1}{2} h f\left(x_{n}+\frac{1}{2} h, y_{n}+K, y_{n}^{\prime}+k_{1}\right) \quad \text { where } K=\frac{1}{2} h\left(y_{n}^{\prime}+\frac{1}{2} k_{1}\right) \\
& k_{3}=\frac{1}{2} h f\left(x_{n}+\frac{1}{2} h, y_{n}+K, y_{n}^{\prime}+k_{2}\right) \\
& k_{4}=\frac{1}{2} h f\left(x_{n}+h, y_{n}+L, y_{n}^{\prime}+2 k_{3}\right) \quad \text { where } L=h\left(y_{n}^{\prime}+k_{3}\right) .
\end{aligned}
$$

From this we compute the approximation y_{n+1} of $y\left(x_{n+1}\right)$ at $x_{n+1}=x_{0}+(n+1) h$,

$$
\begin{equation*}
y_{n+1}=y_{n}+h\left(y_{n}^{\prime}+\frac{1}{3}\left(k_{1}+k_{2}+k_{3}\right)\right) \tag{7b}
\end{equation*}
$$

and the approximation y_{n+1}^{\prime} of the derivative $y^{\prime}\left(x_{n+1}\right)$ needed in the next step,

$$
\begin{equation*}
y_{n+1}^{\prime}=y_{n}^{\prime}+\frac{1}{3}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \tag{7c}
\end{equation*}
$$

RKN for ODEs $\boldsymbol{y}^{\prime \prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ Not Containing \boldsymbol{y}^{\prime}. Then $k_{2}=k_{3}$ in (7), which makes the method particularly advantageous and reduces (7a)-(7c) to

$$
\begin{align*}
k_{1} & =\frac{1}{2} h f\left(x_{n}, y_{n}\right) \\
k_{2} & =\frac{1}{2} h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h\left(y_{n}^{\prime}+\frac{1}{2} k_{1}\right)\right)=k_{3} \\
k_{4} & =\frac{1}{2} h f\left(x_{n}+h, y_{n}+h\left(y_{n}^{\prime}+k_{2}\right)\right) \tag{7*}\\
y_{n+1} & =y_{n}+h\left(y_{n}^{\prime}+\frac{1}{3}\left(k_{1}+2 k_{2}\right)\right) \\
y_{n+1}^{\prime} & =y_{n}^{\prime}+\frac{1}{3}\left(k_{1}+4 k_{2}+k_{4}\right)
\end{align*}
$$

EXAMPLE 3 RKN Method. Airy's Equation. Airy Function Ai(x)

For the problem in Example 2 and $h=0.2$ as before we obtain from $\left(7^{*}\right)$ simply $k_{1}=0.1 x_{n} y_{n}$ and

$$
k_{2}=k_{3}=0.1\left(x_{n}+0.1\right)\left(y_{n}+0.1 y_{n}^{\prime}+0.05 k_{1}\right), \quad k_{4}=0.1\left(x_{n}+0.2\right)\left(y_{n}+0.2 y_{n}^{\prime}+0.2 k_{2}\right) .
$$

Table 21.12 shows the results. The accuracy is the same as in Example 2, but the work was much less.

Table 21.12 Runge-Kutta-Nyström Method Applied to Airy's Equation, Computation of the Airy Function $y=\mathbf{A i}(x)$

x_{n}	y_{n}	y_{n}^{\prime}	$y(x)$ Exact (8D)	$10^{8} \cdot$ Error of y_{n}
0.0	0.35502805	-0.25881940	0.35502805	0
0.2	0.30370304	-0.25240464	0.30370315	11
0.4	0.25474211	-0.23583070	0.25474235	24
0.6	0.20979974	-0.21279172	0.20980006	32
0.8	0.16984599	-0.18641134	0.16984632	33
1.0	0.13529218	-0.15914609	0.13529242	24

Our work in Examples 2 and 3 also illustrates that usefulness of methods for ODEs in the computation of values of "higher transcendental functions."

Backward Euler Method for Systems. Stiff Systems

The backward Euler formula (16) in Sec. 21.1 generalizes to systems in the form

$$
\begin{equation*}
\mathbf{y}_{n+1}=\mathbf{y}_{n}+h \mathbf{f}\left(x_{n+1}, \mathbf{y}_{n+1}\right) \quad(n=0,1, \cdots) \tag{8}
\end{equation*}
$$

This is again an implicit method, giving \mathbf{y}_{n+1} implicitly for given \mathbf{y}_{n}. Hence (8) must be solved for \mathbf{y}_{n+1}. For a linear system this is shown in the next example. This example also illustrates that, similar to the case of a single ODE in Sec. 21.1, the method is very useful for stiff systems. These are systems of ODEs whose matrix has eigenvalues λ of very different magnitudes, having the effect that, just as in Sec. 21.1, the step in direct methods, RK for example, cannot be increased beyond a certain threshold without losing stability. ($\lambda=-1$ and -10 in Example 4, but larger differences do occur in applications.)

EXAMPLE 4 Backward Euler Method for Systems of ODEs. Stiff Systems

Compare the backward Euler method (8) with the Euler and the RK methods for numerically solving the initial value problem

$$
y^{\prime \prime}+11 y^{\prime}+10 y=10 x+11, \quad y(0)=2, \quad y^{\prime}(0)=-10
$$

converted to a system of first-order ODEs.
Solution. The given problem can easily be solved, obtaining

$$
y=e^{-x}+e^{-10 x}+x
$$

so that we can compute errors. Conversion to a system by setting $y=y_{1}, y^{\prime}=y_{2}$ [see (4)] gives

$$
\begin{array}{ll}
y_{1}^{\prime}=y_{2} & y_{1}(0)=2 \\
y_{2}^{\prime}=-10 y_{1}-11 y_{2}+10 x+11 & y_{2}(0)=-10
\end{array}
$$

The coefficient matrix

$$
\mathbf{A}=\left[\begin{array}{rr}
0 & 1 \\
-10 & -11
\end{array}\right] \quad \text { has the characteristic determinant } \quad\left|\begin{array}{cc}
-\lambda & 1 \\
-10 & -\lambda-11
\end{array}\right|
$$

whose value is $\lambda^{2}+11 \lambda+10=(\lambda+1)(\lambda+10)$. Hence the eigenvalues are -1 and -10 as claimed above. The backward Euler formula is

$$
\mathbf{y}_{n+1}=\left[\begin{array}{l}
y_{1, n+1} \\
y_{2, n+1}
\end{array}\right]=\left[\begin{array}{c}
y_{1, n} \\
y_{2, n}
\end{array}\right]+h\left[\begin{array}{c}
y_{2, n+1} \\
-10 y_{1, n+1}-11 y_{2, n+1}+10 x_{n+1}+11
\end{array}\right] .
$$

Reordering terms gives the linear system in the unknowns $y_{1, n+1}$ and $y_{2, n+1}$

$$
\begin{aligned}
y_{1, n+1}-\quad h y_{2, n+1} & =y_{1, n} \\
10 h y_{1, n+1}+(1+11 h) y_{2, n+1} & =y_{2, n}+10 h\left(x_{n}+h\right)+11 h
\end{aligned}
$$

The coefficient determinant is $D=1+11 h+10 h^{2}$, and Cramer's rule (in Sec. 7.6) gives the solution

$$
\mathbf{y}_{n+1}=\frac{1}{D}\left[\begin{array}{r}
(1+11 h) y_{1, n}+h y_{2, n}+10 h^{2} x_{n}+11 h^{2}+10 h^{3} \\
-10 h y_{1, n}+y_{2, n}+10 h x_{n}+11 h+10 h^{2}
\end{array}\right]
$$

Table 21.13 Backward Euler Method (BEM) for Example 4. Comparison with Euler and RK
$\left.\begin{array}{|cccccccc|}\hline & \text { BEM } \\ x & h=0.2 & \text { BEM } \\ h=0.4 & \text { Euler } \\ h=0.1 & \text { Euler } \\ h=0.2\end{array} \begin{array}{c}\text { RK } \\ h=0.2\end{array} \begin{array}{c}\text { RK } \\ h=0.3\end{array}\right)$ Exact

Table 21.13 shows the following.
Stability of the backward Euler method for $h=0.2$ and 0.4 (and in fact for any h; try $h=5.0$) with decreasing accuracy for increasing h

Stability of the Euler method for $h=0.1$ but instability for $h=0.2$
Stability of RK for $h=0.2$ but instability for $h=0.3$
Figure 452 shows the Euler method for $h=0.18$, an interesting case with initial jumping (for about $x>3$) but later monotone following the solution curve of $y=y_{1}$. See also CAS Experiment 15 .

Fig. 452. Euler method with $h=0.18$ in Example 4

PROBLEMESET 21.3

1-6
 EULER FOR SYSTEMS AND

 SECOND-ORDER ODEsSolve by the Euler's method. Graph the solution in the $y_{1} y_{2}$-plane. Calculate the errors.

1. $y_{1}^{\prime}=2 y_{1}-4 y_{2}, \quad y_{2}^{\prime}=y_{1}-3 y_{2}, \quad y_{1}(0)=3$, $y_{2}(0)=0, \quad h=0.1, \quad 10$ steps
2. Spiral. $y_{1}^{\prime}=-y_{1}+y_{2}, \quad y_{2}^{\prime}=-y_{1}-y_{2}, \quad y_{1}(0)=0$, $y_{2}(0)=4, \quad h=0.2, \quad 5$ steps
3. $y^{\prime \prime}+\frac{1}{4} y=0, \quad y(0)=1, \quad y^{\prime}(0)=0, \quad h=0.2$, 5 steps
4. $y_{1}^{\prime}=-3 y_{1}+y_{2}, \quad y_{2}^{\prime}=y_{1}-3 y_{2}, \quad y_{1}(0)=2$, $y_{2}(0)=0, \quad h=0.1, \quad 5$ steps
5. $y^{\prime \prime}-y=x, \quad y(0)=1, \quad y^{\prime}(0)=-2, \quad h=0.1$, 5 steps
6. $y_{1}^{\prime}=y_{1}, \quad y_{2}^{\prime}=-y_{2}, \quad y_{1}(0)=2, \quad y_{2}(0)=2$, $h=0.1, \quad 10$ steps

7-10 RK FOR SYSTEMS

Solve by the classical RK.
7. The ODE in Prob. 5. By what factor did the error decrease?
8. The system in Prob. 2
9. The system in Prob. 1
10. The system in Prob. 4
11. Pendulum equation $y^{\prime \prime}+\sin y=0, \quad y(\pi)=0$, $y^{\prime}(\pi)=1$, as a system, $h=0.2,20$ steps. How does your result fit into Fig. 93 in Sec. 4.5?
12. Bessel Function $\boldsymbol{J}_{\mathbf{0}} \cdot x y^{\prime \prime}+y^{\prime}+x y=0, \quad y(1)=$ $0.765198, \quad y^{\prime}(1)=-0.440051, \quad h=0.5, \quad 5$ steps. (This gives the standard solution $J_{0}(x)$ in Fig. 110 in Sec. 5.4.)
13. Verify the formulas and calculations for the Airy equation in Example 2 of the text.
14. RKN. The classical RK for a first-order ODE extends to second-order ODEs (E. J. Nyström, Acta fenn. No 13, 1925). If the ODE is $y^{\prime \prime}=f(x, y)$, not containing y^{\prime}, then

$$
\begin{aligned}
k_{1} & =\frac{1}{2} h f\left(x_{n}, y_{n}\right) \\
k_{2} & =\frac{1}{2} h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h\left(y_{n}^{\prime}+\frac{1}{2} k_{1}\right)\right)=k_{3} \\
k_{4} & =\frac{1}{2} h f\left(x_{n}+h, y_{n}+h\left(y_{n}^{\prime}+k_{2}\right)\right) \\
y_{n+1} & =y_{n}+h\left(y_{n}^{\prime}+\frac{1}{3}\left(k_{1}+2 k_{2}\right)\right) \\
y_{n+1}^{\prime} & =y_{n}^{\prime}+\frac{1}{8}\left(k_{1}+4 k_{2}+k_{4}\right) .
\end{aligned}
$$

Apply this RKN (Runge-Kutta-Nyström) method to the Airy ODE in Example 2 with $h=0.2$ as before, to obtain approximate values of $\operatorname{Ai}(x)$.
15. CAS EXPERIMENT. Backward Euler and Stiffness. Extend Example 3 as follows.
(a) Verify the values in Table 21.13 and show them graphically as in Fig. 452.
(b) Compute and graph Euler values for h near the "critical" $h=0.18$ to determine more exactly when instability starts.
(c) Compute and graph RK values for values of h between 0.2 and 0.3 to find h for which the RK approximation begins to increase away from the exact solution.
(d) Compute and graph backward Euler values for large h; confirm stability and investigate the error increase for growing h.

21.4 Methods for Elliptic PDEs

We have arrived at the second half of this chapter, which is devoted to numerics for partial differential equations (PDEs). As we have seen in Chap.12, there are many applications to PDEs, such as in dynamics, elasticity, heat transfer, electromagnetic theory, quantum mechanics, and others. Selected because of their importance in applications, the PDEs covered here include the Laplace equation, the Poisson equation, the heat equation, and the wave equation. By covering these equations based on their importance in applications we also selected equations that are important for theoretical considerations. Indeed, these equations serve as models for elliptic, parabolic, and hyperbolic PDEs. For example, the Laplace equation is a representative example of an elliptic type of PDE, and so forth.

Recall, from Sec. 12.4, that a PDE is called quasilinear if it is linear in the highest derivatives. Hence a second-order quasilinear PDE in two independent variables x, y is of the form

$$
\begin{equation*}
a u_{x x}+2 b u_{x y}+c u_{y y}=F\left(x, y, u, u_{x}, u_{y}\right) . \tag{1}
\end{equation*}
$$

u is an unknown function of x and y (a solution sought). F is a given function of the indicated variables.

Depending on the discriminant $a c-b^{2}$, the PDE (1) is said to be of

$$
\begin{array}{llll}
\text { elliptic type } & \text { if } & a c-b^{2}>0 & \text { (example: } \text { Laplace equation) } \\
\text { parabolic type } & \text { if } & a c-b^{2}=0 & \text { (example: heat equation) } \\
\text { hyperbolic type } & \text { if } & a c-b^{2}<0 & \text { (example: wave equation). }
\end{array}
$$

Here, in the heat and wave equations, y is time t. The coefficients a, b, c may be functions of x, y, so that the type of (1) may be different in different regions of the $x y$-plane. This classification is not merely a formal matter but is of great practical importance because the general behavior of solutions differs from type to type and so do the additional conditions (boundary and initial conditions) that must be taken into account.

Applications involving elliptic equations usually lead to boundary value problems in a region R, called a first boundary value problem or Dirichlet problem if u is prescribed on the boundary curve C of R, a second boundary value problem or Neumann problem if $u_{n}=\partial u / \partial n$ (normal derivative of u) is prescribed on C, and a third or mixed problem if u is prescribed on a part of C and u_{n} on the remaining part. C usually is a closed curve (or sometimes consists of two or more such curves).

Difference Equations for the Laplace and Poisson Equations

In this section we develop numeric methods for the two most important elliptic PDEs that appear in applications. The two PDEs are the Laplace equation

$$
\begin{equation*}
\nabla^{2} u=u_{x x}+u_{y y}=0 \tag{2}
\end{equation*}
$$

and the Poisson equation

$$
\begin{equation*}
\nabla^{2} u=u_{x x}+u_{y y}=f(x, y) \tag{3}
\end{equation*}
$$

The starting point for developing our numeric methods is the idea that we can replace the partial derivatives of these PDEs by corresponding difference quotients. Details are as follows:

To develop this idea, we start with the Taylor formula and obtain
(a) $u(x+h, y)=u(x, y)+h u_{x}(x, y)+\frac{1}{2} h^{2} u_{x x}(x, y)+\frac{1}{6} h^{3} u_{x x x}(x, y)+\cdots$
(b) $u(x-h, y)=u(x, y)-h u_{x}(x, y)+\frac{1}{2} h^{2} u_{x x}(x, y)-\frac{1}{6} h^{3} u_{x x x}(x, y)+\cdots$.

We subtract (4b) from (4a), neglect terms in h^{3}, h^{4}, \cdots, and solve for u_{x}. Then

$$
\begin{equation*}
u_{x}(x, y) \approx \frac{1}{2 h}[u(x+h, y)-u(x-h, y)] \tag{5a}
\end{equation*}
$$

Similarly,

$$
u(x, y+k)=u(x, y)+k u_{y}(x, y)+\frac{1}{2} k^{2} u_{y y}(x, y)+\cdots
$$

and

$$
u(x, y-k)=u(x, y)-k u_{y}(x, y)+\frac{1}{2} k^{2} u_{y y}(x, y)+\cdots
$$

By subtracting, neglecting terms in k^{3}, k^{4}, \cdots, and solving for u_{y} we obtain

$$
\begin{equation*}
u_{y}(x, y) \approx \frac{1}{2 k}[u(x, y+k)-u(x, y-k)] \tag{5b}
\end{equation*}
$$

We now turn to second derivatives. Adding (4a) and (4b) and neglecting terms in h^{4}, h^{5}, \cdots, we obtain $u(x+h, y)+u(x-h, y) \approx 2 u(x, y)+h^{2} u_{x x}(x, y)$. Solving for $u_{x x}$ we have

$$
\begin{equation*}
u_{x x}(x, y) \approx \frac{1}{h^{2}}[u(x+h, y)-2 u(x, y)+u(x-h, y)] \tag{6a}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
u_{y y}(x, y) \approx \frac{1}{k^{2}}[u(x, y+k)-2 u(x, y)+u(x, y-k)] \tag{6b}
\end{equation*}
$$

We shall not need (see Prob. 1)

$$
\left.\begin{array}{rl}
u_{x y}(x, y) \approx \frac{1}{4 h k}[u(x+h, y+ & k) \tag{6c}
\end{array}\right)
$$

Figure 453a shows the points $(x+h, y),(x-h, y), \cdots$ in (5) and (6).
We now substitute (6a) and (6b) into the Poisson equation (3), choosing $k=h$ to obtain a simple formula:

$$
\begin{equation*}
u(x+h, y)+u(x, y+h)+u(x-h, y)+u(x, y-h)-4 u(x, y)=h^{2} f(x, y) \tag{7}
\end{equation*}
$$

This is a difference equation corresponding to (3). Hence for the Laplace equation (2) the corresponding difference equation is

$$
\begin{equation*}
u(x+h, y)+u(x, y+h)+u(x-h, y)+u(x, y-h)-4 u(x, y)=0 \tag{8}
\end{equation*}
$$

h is called the mesh size. Equation (8) relates u at (x, y) to u at the four neighboring points shown in Fig. 453b. It has a remarkable interpretation: u at (x, y) equals the mean of the
values of u at the four neighboring points. This is an analog of the mean value property of harmonic functions (Sec. 18.6).

Those neighbors are often called E (East), N (North), W (West), S (South). Then Fig. 453b becomes Fig. 453c and (7) is

$$
\begin{equation*}
u(E)+u(N)+u(W)+u(S)-4 u(x, y)=h^{2} f(x, y) \tag{7*}
\end{equation*}
$$

Fig. 453. Points and notation in (5)-(8) and (7*)

Our approximation of $h^{2} \nabla^{2} u$ in (7) and (8) is a 5-point approximation with the coefficient scheme or stencil (also called pattern, molecule, or star)
(9) $\left\{\begin{array}{ccc} & 1 \\ 1 & -4 & 1 \\ 1\end{array}\right\}$. We may now write (7) as $\left\{\begin{array}{cc} & \\ 1 & -4 \\ 1\end{array}\right\} u=h^{2} f(x, y)$.

Dirichlet Problem

In numerics for the Dirichlet problem in a region R we choose an h and introduce a square grid of horizontal and vertical straight lines of distance h. Their intersections are called mesh points (or lattice points or nodes). See Fig. 454.

Then we approximate the given PDE by a difference equation [(8) for the Laplace equation], which relates the unknown values of u at the mesh points in R to each other and to the given boundary values (details in Example 1). This gives a linear system of algebraic equations. By solving it we get approximations of the unknown values of u at the mesh points in R.

We shall see that the number of equations equals the number of unknowns. Now comes an important point. If the number of internal mesh points, call it p, is small, say, $p<100$, then a direct solution method may be applied to that linear system of $p<100$ equations in p unknowns. However, if p is large, a storage problem will arise. Now since each unknown u is related to only 4 of its neighbors, the coefficient matrix of the system is a sparse matrix, that is, a matrix with relatively few nonzero entries (for instance, 500 of 10,000 when $p=100$). Hence for large p we may avoid storage difficulties by using an iteration method, notably the Gauss-Seidel method (Sec. 20.3), which in PDEs is also
called Liebmann's method (note the strict diagonal dominance). Remember that in this method we have the storage convenience that we can overwrite any solution component (value of u) as soon as a "new" value is available.

Both cases, large p and small p, are of interest to the engineer, large p if a fine grid is used to achieve high accuracy, and small p if the boundary values are known only rather inaccurately, so that a coarse grid will do it because in this case it would be meaningless to try for great accuracy in the interior of the region R.

We illustrate this approach with an example, keeping the number of equations small, for simplicity. As convenient notations for mesh points and corresponding values of the solution (and of approximate solutions) we use (see also Fig. 454)

$$
\begin{equation*}
P_{i j}=(i h, j h), \quad u_{i j}=u(i h, j h) . \tag{10}
\end{equation*}
$$

Fig. 454. Region in the $x y$-plane covered by a grid of mesh h, also showing mesh points $P_{11}=(h, h), \cdots, P_{i j}=(i h, j h), \cdots$

With this notation we can write (8) for any mesh point $P_{i j}$ in the form

$$
\begin{equation*}
u_{i+1, j}+u_{i, j+1}+u_{i-1, j}+u_{i, j-1}-4 u_{i j}=0 \tag{11}
\end{equation*}
$$

Remark. Our current discussion and the example that follows illustrate what we may call the reuseability of mathematical ideas and methods. Recall that we applied the Gauss-Seidel method to a system of ODEs in Sec. 20.3 and that we can now apply it again to elliptic PDEs. This shows that engineering mathematics has a structure and important mathematical ideas and methods will appear again and again in different situations. The student should find this attractive in that previous knowledge can be reapplied.

EXAMPLE 1 Laplace Equation. Liebmann's Method

The four sides of a square plate of side 12 cm , made of homogeneous material, are kept at constant temperature $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ as shown in Fig. 455 a. Using a (very wide) grid of mesh 4 cm and applying Liebmann's method (that is, Gauss-Seidel iteration), find the (steady-state) temperature at the mesh points.

Solution. In the case of independence of time, the heat equation (see Sec. 10.8)

$$
u_{t}=c^{2}\left(u_{x x}+u_{y y}\right)
$$

reduces to the Laplace equation. Hence our problem is a Dirichlet problem for the latter. We choose the grid shown in Fig. 455b and consider the mesh points in the order $P_{11}, P_{21}, P_{12}, P_{22}$. We use (11) and, in each equation, take to the right all the terms resulting from the given boundary values. Then we obtain the system

$$
\begin{align*}
-4 u_{11}+u_{21}+u_{12} & =-200 \\
-u_{11}-4 u_{21}+u_{22} & =-200 \\
u_{11}-4 u_{12}+u_{22} & =-100 \tag{12}\\
u_{21}+u_{12}-4 u_{22} & =-100
\end{align*}
$$

In practice, one would solve such a small system by the Gauss elimination, finding $u_{11}=u_{21}=87.5$, $u_{12}=u_{22}=62.5$.

More exact values (exact to 3S) of the solution of the actual problem [as opposed to its model (12)] are 88.1 and 61.9 , respectively. (These were obtained by using Fourier series.) Hence the error is about 1%, which is surprisingly accurate for a grid of such a large mesh size h. If the system of equations were large, one would solve it by an indirect method, such as Liebmann's method. For (12) this is as follows. We write (12) in the form (divide by -4 and take terms to the right)

$$
\begin{array}{ll}
u_{11}= & 0.25 u_{21}+0.25 u_{12} \\
+0.25 u_{22}+50 \\
u_{21}=0.25 u_{11} & +0.25 u_{22}+25 \\
u_{12}=0.25 u_{11} & +25 . \\
u_{22}= & 0.25 u_{21}+0.25 u_{12}
\end{array}
$$

These equations are now used for the Gauss-Seidel iteration. They are identical with (2) in Sec. 20.3, where $u_{11}=x_{1}, u_{21}=x_{2}, u_{12}=x_{3}, u_{22}=x_{4}$, and the iteration is explained there, with $100,100,100,100$ chosen as starting values. Some work can be saved by better starting values, usually by taking the average of the boundary values that enter into the linear system. The exact solution of the system is $u_{11}=u_{21}=87.5, u_{12}=u_{22}=62.5$, as you may verify.

Fig. 455. Example 1
Remark. It is interesting to note that, if we choose mesh $h=L / n(L=$ side of $R)$ and consider the $(n-1)^{2}$ internal mesh points (i.e., mesh points not on the boundary) row by row in the order

$$
P_{11}, P_{21}, \cdots, P_{n-1,1}, P_{12}, P_{22}, \cdots, P_{n-2,2}, \cdots,
$$

then the system of equations has the $(n-1)^{2} \times(n-1)^{2}$ coefficient matrix

is an $(n-1) \times(n-1)$ matrix. (In (12) we have $n=3,(n-1)^{2}=4$ internal mesh points, two submatrices \mathbf{B}, and two submatrices \mathbf{I}.) The matrix \mathbf{A} is nonsingular. This follows by noting that the off-diagonal entries in each row of \mathbf{A} have the sum 3 (or 2), whereas each diagonal entry of \mathbf{A} equals -4 , so that nonsingularity is implied by Gerschgorin's theorem in Sec. 20.7 because no Gerschgorin disk can include 0.

A matrix is called a band matrix if it has all its nonzero entries on the main diagonal and on sloping lines parallel to it (separated by sloping lines of zeros or not). For example, \mathbf{A} in (13) is a band matrix. Although the Gauss elimination does not preserve zeros between bands, it does not introduce nonzero entries outside the limits defined by the original bands. Hence a band structure is advantageous. In (13) it has been achieved by carefully ordering the mesh points.

ADI Method

A matrix is called a tridiagonal matrix if it has all its nonzero entries on the main diagonal and on the two sloping parallels immediately above or below the diagonal. (See also Sec. 20.9.) In this case the Gauss elimination is particularly simple.

This raises the question of whether, in the solution of the Dirichlet problem for the Laplace or Poisson equations, one could obtain a system of equations whose coefficient matrix is tridiagonal. The answer is yes, and a popular method of that kind, called the ADI method (alternating direction implicit method) was developed by Peaceman and Rachford. The idea is as follows. The stencil in (9) shows that we could obtain a tridiagonal matrix if there were only the three points in a row (or only the three points in a column). This suggests that we write (11) in the form

$$
\begin{equation*}
u_{i-1, j}-4 u_{i j}+u_{i+1, j}=-u_{i, j-1}-u_{i, j+1} \tag{14a}
\end{equation*}
$$

so that the left side belongs to y-Row j only and the right side to x-Column i. Of course, we can also write (11) in the form

$$
\begin{equation*}
u_{i, j-1}-4 u_{i j}+u_{i, j+1}=-u_{i-1, j}-u_{i+1, j} \tag{14b}
\end{equation*}
$$

so that the left side belongs to Column i and the right side to Row j. In the ADI method we proceed by iteration. At every mesh point we choose an arbitrary starting value $u_{i j}^{(0)}$. In each step we compute new values at all mesh points. In one step we use an iteration formula resulting from (14a) and in the next step an iteration formula resulting from (14b), and so on in alternating order.

In detail: suppose approximations $u_{i j}^{(m)}$ have been computed. Then, to obtain the next approximations $u_{i j}^{(m+1)}$, we substitute the $u_{i j}^{(m)}$ on the right side of (14a) and solve for the $u_{i j}^{(m+1)}$ on the left side; that is, we use

$$
\begin{equation*}
u_{i-1, j}^{(m+1)}-4 u_{i j}^{(m+1)}+u_{i+1, j}^{(m+1)}=-u_{i, j-1}^{(m)}-u_{i, j+1}^{(m)} . \tag{15a}
\end{equation*}
$$

We use (15a) for a fixed j, that is, for a fixed row j, and for all internal mesh points in this row. This gives a linear system of N algebraic equations ($N=$ number of internal mesh points per row) in N unknowns, the new approximations of u at these mesh points. Note that (15a) involves not only approximations computed in the previous step but also given boundary values. We solve the system (15a) (j fixed!) by Gauss elimination. Then we go to the next row, obtain another system of N equations and solve it by Gauss, and so on, until all rows are done. In the next step we alternate direction, that is, we compute
the next approximations $u_{i j}^{(m+2)}$ column by column from the $u_{i j}^{(m+1)}$ and the given boundary values, using a formula obtained from (14b) by substituting the $u_{i j}^{(m+1)}$ on the right:

$$
\begin{equation*}
u_{i, j-1}^{(m+2)}-4 u_{i j}^{(m+2)}+u_{i, j+1}^{(m+2)}=-u_{i-1, j}^{(m+1)}-u_{i+1, j}^{(m+1)} \tag{15b}
\end{equation*}
$$

For each fixed i, that is, for each column, this is a system of M equations ($M=$ number of internal mesh points per column) in M unknowns, which we solve by Gauss elimination. Then we go to the next column, and so on, until all columns are done.

Let us consider an example that merely serves to explain the entire method.

EXAMPLE 2 Dirichlet Problem. ADI Method

Explain the procedure and formulas of the ADI method in terms of the problem in Example 1, using the same grid and starting values $100,100,100,100$.

Solution. While working, we keep an eye on Fig. 455b and the given boundary values. We obtain first approximations $u_{11}^{(1)}, u_{21}^{(1)}, u_{12}^{(1)}, u_{22}^{(1)}$ from (15a) with $m=0$. We write boundary values contained in (15a) without an upper index, for better identification and to indicate that these given values remain the same during the iteration. From (15a) with $m=0$ we have for $j=1$ (first row) the system

$$
\left.\begin{array}{cc}
(i=1) & u_{01}-4 u_{11}^{(1)}+u_{21}^{(1)}
\end{array}=-u_{10}-u_{12}^{(0)}\right)
$$

The solution is $u_{11}^{(1)}=u_{21}^{(1)}=100$. For $j=2$ (second row) we obtain from (15a) the system

$$
\begin{array}{cc}
(i=1) & u_{02}-4 u_{12}^{(1)}+u_{22}^{(1)}
\end{array}=-u_{11}^{(0)}-u_{13} .
$$

The solution is $u_{12}^{(1)}=u_{22}^{(1)}=66.667$.
Second approximations $u_{11}^{(2)}, u_{21}^{(2)}, u_{12}^{(2)}, u_{22}^{(2)}$ are now obtained from (15b) with $m=1$ by using the first approximations just computed and the boundary values. For $i=1$ (first column) we obtain from (15b) the system

$$
\begin{array}{lcl}
(j=1) & u_{10}-4 u_{11}^{(2)}+u_{12}^{(2)} & =-u_{01}-u_{21}^{(1)} \\
(j=2) & u_{11}^{(2)}-4 u_{12}^{(2)}+u_{13} & =-u_{02}-u_{22}^{(1)} .
\end{array}
$$

The solution is $u_{11}^{(2)}=91.11, u_{12}^{(2)}=64.44$, For $i=2$ (second column) we obtain from (15b) the system

$$
\begin{array}{lcl}
(j=1) & u_{20}-4 u_{21}^{(2)}+u_{22}^{(2)} & =-u_{11}^{(1)}-u_{31} \\
(j=2) & u_{21}^{(2)}-4 u_{22}^{(2)}+u_{23} & =-u_{12}^{(1)}-u_{32} .
\end{array}
$$

The solution is $u_{21}^{(2)}=91.11, u_{22}^{(2)}=64.44$.
In this example, which merely serves to explain the practical procedure in the ADI method, the accuracy of the second approximations is about the same as that of two Gauss-Seidel steps in Sec. 20.3 (where $u_{11}=x_{1}, u_{21}=x_{2}, u_{12}=x_{3}, u_{22}=x_{4}$), as the following table shows.

Method	u_{11}	u_{21}	u_{12}	u_{22}
ADI, 2nd approximations	91.11	91.11	64.44	64.44
Gauss-Seidel, 2nd approximations	93.75	90.62	65.62	64.06
Exact solution of (12)	87.50	87.50	62.50	62.50

Improving Convergence. Additional improvement of the convergence of the ADI method results from the following interesting idea. Introducing a parameter p, we can also write (11) in the form
(a) $u_{i-1, j}-(2+p) u_{i j}+u_{i+1, j}=-u_{i, j-1}+(2-p) u_{i j}-u_{i, j+1}$
(b) $u_{i, j-1}-(2+p) u_{i j}+u_{i, j+1}=-u_{i-1, j}+(2-p) u_{i j}-u_{i+1, j}$.

This gives the more general ADI iteration formulas
(a) $u_{i-1, j}^{(m+1)}-(2+p) u_{i j}^{(m+1)}+u_{i+1, j}^{(m+1)}=-u_{i, j-1}^{(m)}+(2-p) u_{i j}^{(m)}-u_{i, j+1}^{(m)}$
(b) $u_{i, j-1}^{(m+2)}-(2+p) u_{i j}^{(m+2)}+u_{i, j+1}^{(m+2)}=-u_{i-1, j}^{(m+1)}+(2-p) u_{i j}^{(m+1)}-u_{i+1, j}^{(m+1)}$.

For $p=2$, this is (15). The parameter p may be used for improving convergence. Indeed, one can show that the ADI method converges for positive p, and that the optimum value for maximum rate of convergence is

$$
\begin{equation*}
p_{0}=2 \sin \frac{\pi}{K} \tag{18}
\end{equation*}
$$

where K is the larger of $M+1$ and $N+1$ (see above). Even better results can be achieved by letting p vary from step to step. More details of the ADI method and variants are discussed in Ref. [E25] listed in App. 1.

1. Derive (5b), (6b), and (6c).
2. Verify the calculations in Example 1 of the text. Find out experimentally how many steps you need to obtain the solution of the linear system with an accuracy of 3S.
3. Use of symmetry. Conclude from the boundary values in Example 1 that $u_{21}=u_{11}$ and $u_{22}=u_{12}$. Show that this leads to a system of two equations and solve it.
4. Finer grid of 3×3 inner points. Solve Example 1, choosing $h=\frac{12}{4}=3$ (instead of $h=\frac{12}{3}=4$) and the same starting values.

5-10 GAUSS ELIMINATION, GAUSS-SEIDEL ITERATION

Fig. 456. Problems 5-10

For the grid in Fig. 456 compute the potential at the four internal points by Gauss and by 5 Gauss-Seidel steps with starting values $100,100,100,100$ (showing the details of your work) if the boundary values on the edges are:
5. $u(1,0)=60, u(2,0)=300, u=100$ on the other three edges.
6. $u=0$ on the left, x^{3} on the lower edge, $27-9 y^{2}$ on the right, $x^{3}-27 x$ on the upper edge.
7. U_{0} on the upper and lower edges, $-U_{0}$ on the left and right. Sketch the equipotential lines.
8. $u=220$ on the upper and lower edges, 110 on the left and right.
9. $u=\sin \frac{1}{3} \pi x$ on the upper edge, 0 on the other edges, 10 steps.
10. $u=x^{4}$ on the lower edge, $81-54 y^{2}+y^{4}$ on the right, $x^{4}-54 x^{2}+81$ on the upper edge, y^{4} on the left. Verify the exact solution $x^{4}-6 x^{2} y^{2}+y^{4}$ and determine the error.
11. Find the potential in Fig. 457 using (a) the coarse grid, (b) the fine grid 5×3, and Gauss elimination. Hint. In (b), use symmetry; take $u=0$ as boundary value at the two points at which the potential has a jump.

Fig. 457. Region and grids in Problem 11
12. Influence of starting values. Do Prob. 9 by GaussSeidel, starting from 0. Compare and comment.
13. For the square $0 \leqq x \leqq 4,0 \leqq y \leqq 4$ let the boundary temperatures be $0^{\circ} \mathrm{C}$ on the horizontal and $50^{\circ} \mathrm{C}$ on the vertical edges. Find the temperatures at the interior points of a square grid with $h=1$.
14. Using the answer to Prob. 13, try to sketch some isotherms.
15. Find the isotherms for the square and grid in Prob. 13 if $u=\sin \frac{1}{4} \pi x$ on the horizontal and $-\sin \frac{1}{4} \pi y$ on the vertical edges. Try to sketch some isotherms.
16. ADI. Apply the ADI method to the Dirichlet problem in Prob. 9, using the grid in Fig. 456, as before and starting values zero.
17. What p_{0} in (18) should we choose for Prob. 16? Apply the ADI formulas (17) with that value of p_{0} to Prob. 16, performing 1 step. Illustrate the improved convergence by comparing with the corresponding values 0.077, 0.308 after the first step in Prob. 16. (Use the starting values zero.)
18. CAS PROJECT. Laplace Equation. (a) Write a program for Gauss-Seidel with 16 equations in 16 unknowns, composing the matrix (13) from the indicated 4×4 submatrices and including a transformation of the vector of the boundary values into the vector \mathbf{b} of $\mathbf{A x}=\mathbf{b}$.
(b) Apply the program to the square grid in $0 \leqq x \leqq 5$, $0 \leqq y \leqq 5$ with $h=1$ and $u=220$ on the upper and lower edges, $u=110$ on the left edge and $u=-10$ on the right edge. Solve the linear system also by Gauss elimination. What accuracy is reached in the 20th Gauss-Seidel step?

21.5 Neumann and Mixed Problems. Irregular Boundary

We continue our discussion of boundary value problems for elliptic PDEs in a region R in the $x y$-plane. The Dirichlet problem was studied in the last section. In solving Neumann and mixed problems (defined in the last section) we are confronted with a new situation, because there are boundary points at which the (outer) normal derivative $u_{n}=\partial u / \partial n$ of the solution is given, but u itself is unknown since it is not given. To handle such points we need a new idea. This idea is the same for Neumann and mixed problems. Hence we may explain it in connection with one of these two types of problems. We shall do so and consider a typical example as follows.

EXAMPLE 1 Mixed Boundary Value Problem for a Poisson Equation

Solve the mixed boundary value problem for the Poisson equation

$$
\nabla^{2} u=u_{x x}+u_{y y}=f(x, y)=12 x y
$$

shown in Fig. 458a.

(a) Region R and boundary values

(b) Grid ($h=0.5$)

Fig. 458. Mixed boundary value problem in Example 1
Solution. We use the grid shown in Fig. 458b, where $h=0.5$. We recall that (7) in Sec. 21.4 has the right side $h^{2} f(x, y)=0.5^{2} \cdot 12 x y=3 x y$. From the formulas $u=3 y^{3}$ and $u_{n}=6 x$ given on the boundary we compute the boundary data
(1) $\quad u_{31}=0.375, \quad u_{32}=3, \quad \frac{\partial u_{12}}{\partial n}=\frac{\partial u_{12}}{\partial y}=6 \cdot 0.5=3 . \quad \frac{\partial u_{22}}{\partial n}=\frac{\partial u_{22}}{\partial y}=6 \cdot 1=6$.
P_{11} and P_{21} are internal mesh points and can be handled as in the last section. Indeed, from (7), Sec. 21.4, with $h^{2}=0.25$ and $h^{2} f(x, y)=3 x y$ and from the given boundary values we obtain two equations corresponding to P_{11} and P_{21}, as follows (with -0 resulting from the left boundary).

$$
\begin{align*}
-4 u_{11}+u_{21}+u_{12} & =12(0.5 \cdot 0.5) \cdot \frac{1}{4}-0=0.75 \\
u_{11}-4 u_{21}+u_{22} & =12(1 \cdot 0.5) \cdot \frac{1}{4}-0.375=1.125 . \tag{2a}
\end{align*}
$$

The only difficulty with these equations seems to be that they involve the unknown values u_{12} and u_{22} of u at P_{12} and P_{22} on the boundary, where the normal derivative $u_{n}=\partial u / \partial n=\partial u / \partial y$ is given, instead of u; but we shall overcome this difficulty as follows.

We consider P_{12} and P_{22}. The idea that will help us here is this. We imagine the region R to be extended above to the first row of external mesh points (corresponding to $y=1.5$), and we assume that the Poisson equation also holds in the extended region. Then we can write down two more equations as before (Fig. 458b)

$$
\begin{align*}
u_{11}-4 u_{12}+u_{22}+u_{13} & =1.5-0=1.5 \tag{2b}\\
u_{21}+u_{12}-4 u_{22}+u_{23} & =3-3=0
\end{align*}
$$

On the right, 1.5 is $12 x y h^{2}$ at $(0.5,1)$ and 3 is $12 x y h^{2}$ at $(1,1)$ and $0\left(\right.$ at P_{02}) and 3 (at P_{32}) are given boundary values. We remember that we have not yet used the boundary condition on the upper part of the boundary of R, and we also notice that in (2b) we have introduced two more unknowns u_{13}, u_{23}. But we can now use that condition and get rid of u_{13}, u_{23} by applying the central difference formula for $d u / d y$. From (1) we then obtain (see Fig. 458b)

$$
\begin{array}{lll}
3=\frac{\partial u_{12}}{\partial y} \approx \frac{u_{13}-u_{11}}{2 h}=u_{13}-u_{11}, & \text { hence } & u_{13}=u_{11}+3 \\
6=\frac{\partial u_{22}}{\partial y} \approx \frac{u_{23}-u_{21}}{2 h}=u_{23}-u_{21}, & \text { hence } & u_{23}=u_{21}+6 .
\end{array}
$$

Substituting these results into (2b) and simplifying, we have

$$
\begin{aligned}
2 u_{11}-4 u_{12}+u_{22} & =1.5-3=-1.5 \\
2 u_{21}+u_{12}-4 u_{22} & =3-3-6=-6 .
\end{aligned}
$$

Together with (2a) this yields, written in matrix form,

$$
\left[\begin{array}{rrrr}
-4 & 1 & 1 & 0 \tag{3}\\
1 & -4 & 0 & 1 \\
2 & 0 & -4 & 1 \\
0 & 2 & 1 & -4
\end{array}\right]\left[\begin{array}{l}
u_{11} \\
u_{21} \\
u_{12} \\
u_{22}
\end{array}\right]=\left[\begin{array}{l}
0.75 \\
1.125 \\
1.5-3 \\
0-6
\end{array}\right]=\left[\begin{array}{l}
0.75 \\
1.125 \\
-1.5 \\
-6
\end{array}\right]
$$

(The entries 2 come from u_{13} and u_{23}, and so do -3 and -6 on the right). The solution of (3) (obtained by Gauss elimination) is as follows; the exact values of the problem are given in parentheses.

$$
\begin{array}{llll}
u_{12}=0.866 & (\text { exact } 1) & u_{22}=1.812 & (\text { exact } 2) \\
u_{11}=0.077 & (\text { exact } 0.125) & u_{21}=0.191 & (\text { exact } 0.25)
\end{array}
$$

Irregular Boundary

We continue our discussion of boundary value problems for elliptic PDEs in a region R in the $x y$-plane. If R has a simple geometric shape, we can usually arrange for certain mesh points to lie on the boundary C of R, and then we can approximate partial derivatives as explained in the last section. However, if C intersects the grid at points that are not mesh points, then at points close to the boundary we must proceed differently, as follows.

The mesh point O in Fig. 459 is of that kind. For O and its neighbors A and P we obtain from Taylor's theorem

$$
\begin{align*}
& \text { (a) } u_{A}=u_{O}+a h \frac{\partial u_{O}}{\partial x}+\frac{1}{2}(a h)^{2} \frac{\partial^{2} u_{O}}{\partial x^{2}}+\cdots \\
& \text { (b) } u_{P}=u_{O}-h \frac{\partial u_{O}}{\partial x}+\frac{1}{2} h^{2} \frac{\partial^{2} u_{O}}{\partial x^{2}}+\cdots \tag{4}
\end{align*}
$$

We disregard the terms marked by dots and eliminate $\partial u_{O} / \partial x$. Equation (4b) times a plus equation (4a) gives

$$
u_{A}+a u_{P} \approx(1+a) u_{O}+\frac{1}{2} a(a+1) h^{2} \frac{\partial^{2} u_{O}}{\partial x^{2}}
$$

Fig. 459. Curved boundary C of a region R, a mesh point O near C, and neighbors A, B, P, Q

We solve this last equation algebraically for the derivative, obtaining

$$
\frac{\partial^{2} u_{O}}{\partial x^{2}} \approx \frac{2}{h^{2}}\left[\frac{1}{a(1+a)} u_{A}+\frac{1}{1+a} u_{P}-\frac{1}{a} u_{O}\right]
$$

Similarly, by considering the points O, B, and Q,

$$
\frac{\partial^{2} u_{O}}{\partial y^{2}} \approx \frac{2}{h^{2}}\left[\frac{1}{b(1+b)} u_{B}+\frac{1}{1+b} u_{Q}-\frac{1}{b} u_{O}\right]
$$

By addition,

$$
\begin{equation*}
\nabla^{2} u_{O} \approx \frac{2}{h^{2}}\left[\frac{u_{A}}{a(1+a)}+\frac{u_{B}}{b(1+b)}+\frac{u_{P}}{1+a}+\frac{u_{Q}}{1+b}-\frac{(a+b) u_{O}}{a b}\right] \tag{5}
\end{equation*}
$$

For example, if $a=\frac{1}{2}, b=\frac{1}{2}$, instead of the stencil (see Sec. 21.4)

$$
\left\{\begin{array}{rrr}
& 1 & \\
1 & -4 & 1 \\
1 &
\end{array}\right\} \quad \text { we now have } \quad\left\{\begin{array}{rrr}
& \frac{4}{3} & \\
\frac{2}{3} & -4 & \frac{4}{3} \\
& \frac{2}{3} &
\end{array}\right\}
$$

because $1 /[a(1+a)]=\frac{4}{3}$, etc. The sum of all five terms still being zero (which is useful for checking).

Using the same ideas, you may show that in the case of Fig. 460.

$$
\begin{equation*}
\nabla^{2} u_{O} \approx \frac{2}{h^{2}}\left[\frac{u_{A}}{a(a+p)}+\frac{u_{B}}{b(b+q)}+\frac{u_{P}}{p(p+a)}+\frac{u_{Q}}{q(q+b)}-\frac{a p+b q}{a b p q} u_{O}\right] \tag{6}
\end{equation*}
$$

a formula that takes care of all conceivable cases.

Fig. 460. Neighboring points A, B, P, Q of a mesh point O and notations in formula (6)

EXAMPLE 2 Dirichlet Problem for the Laplace Equation. Curved Boundary

Find the potential u in the region in Fig. 461 that has the boundary values given in that figure; here the curved portion of the boundary is an arc of the circle of radius 10 about $(0,0)$. Use the grid in the figure.
Solution. u is a solution of the Laplace equation. From the given formulas for the boundary values $u=x^{3}$, $u=512-24 y^{2}, \cdots$ we compute the values at the points where we need them; the result is shown in the figure. For P_{11} and P_{12} we have the usual regular stencil, and for P_{21} and P_{22} we use (6), obtaining

$$
P_{11}, P_{12}:\left\{\begin{array}{rr}
1 \tag{7}\\
1 & -4 \\
1 & 1
\end{array}\right\}, \quad P_{21}:\left\{\begin{array}{rrr}
0.5 & \\
0.6 & -2.5 & 0.9 \\
0.5
\end{array}\right\}, \quad P_{22}:\left\{\begin{array}{rll}
0.9 & -3 & 0.9 \\
0.6
\end{array}\right\} .
$$

Fig. 461. Region, boundary values of the potential, and grid in Example 2
We use this and the boundary values and take the mesh points in the usual order $P_{11}, P_{21}, P_{12}, P_{22}$. Then we obtain the system

$$
\begin{aligned}
-4 u_{11}+u_{21}+u_{12} & =0-27 & =-27 \\
0.6 u_{11}-2.5 u_{21} & & \\
u_{11}+0.5 u_{22} & =-0.9 \cdot 296-0.5 \cdot 216 & =-374.4 \\
-4 u_{12}+u_{22} & =702+0 & =702 \\
0.6 u_{21}+0.6 u_{12}-3 u_{22} & =0.9 \cdot 352+0.9 \cdot 936 & =1159.2
\end{aligned}
$$

In matrix form,
(8)

$$
\left[\begin{array}{cccc}
-4 & 1 & 1 & 0 \\
0.6 & -2.5 & 0 & 0.5 \\
1 & 0 & -4 & 1 \\
0 & 0.6 & 0.6 & -3
\end{array}\right]\left[\begin{array}{l}
u_{11} \\
u_{21} \\
u_{12} \\
u_{22}
\end{array}\right]=\left[\begin{array}{c}
-27 \\
-374.4 \\
702 \\
1159.2
\end{array}\right] .
$$

Gauss elimination yields the (rounded) values

$$
u_{11}=-55.6, \quad u_{21}=49.2, \quad u_{12}=-298.5, \quad u_{22}=-436.3 .
$$

Clearly, from a grid with so few mesh points we cannot expect great accuracy. The exact solution of the PDE (not of the difference equation) having the given boundary values is $u=x^{3}-3 x y^{2}$ and yields the values

$$
u_{11}=-54, \quad u_{21}=54, \quad u_{12}=-297, \quad u_{22}=-432 .
$$

In practice one would use a much finer grid and solve the resulting large system by an indirect method.

PROBB르르․ SET 21.5

1-7 MIXED BOUNDARY VALUE PROBLEMS

1. Check the values for the Poisson equation at the end of Example 1 by solving (3) by Gauss elimination.
2. Solve the mixed boundary value problem for the Poisson equation $\nabla^{2} u=2\left(x^{2}+y^{2}\right)$ in the region and for the boundary conditions shown in Fig. 462, using the indicated grid.

Fig. 462. Problems 2 and 6
3. CAS EXPERIMENT. Mixed Problem. Do Example 1 in the text with finer and finer grids of your choice and study the accuracy of the approximate values by comparing with the exact solution $u=2 x y^{3}$. Verify the latter.
4. Solve the mixed boundary value problem for the Laplace equation $\nabla^{2} u=0$ in the rectangle in Fig. 458a (using the grid in Fig. 458b) and the boundary conditions $u_{x}=0$ on the left edge, $u_{x}=3$ on the right edge, $u=x^{2}$ on the lower edge, and $u=x^{2}-1$ on the upper edge.
5. Do Example 1 in the text for the Laplace equation (instead of the Poisson equation) with grid and boundary data as before.
6. Solve $\nabla^{2} u=-\pi^{2} y \sin \frac{1}{3} \pi x$ for the grid in Fig. 462 and $u_{y}(1,3)=u_{y}(2,3)=\frac{1}{2} \sqrt{243}, u=0$ on the other three sides of the square.
7. Solve Prob. 4 when $u_{n}=110$ on the upper edge and $u=110$ on the other edges.

8-16 IRREGULAR BOUNDARY

8. Verify the stencil shown after (5).
9. Derive (5) in the general case.
10. Derive the general formula (6) in detail.
11. Derive the linear system in Example 2 of the text.
12. Verify the solution in Example 2.
13. Solve the Laplace equation in the region and for the boundary values shown in Fig. 463, using the indicated grid. (The sloping portion of the boundary is $y=4.5-x$.)

Fig. 463. Problem 13
14. If, in Prob. 13, the axes are grounded $(u=0)$, what constant potential must the other portion of the boundary have in order to produce 220 V at P_{11} ?
15. What potential do we have in Prob. 13 if $u=100 \mathrm{~V}$ on the axes and $u=0$ on the other portion of the boundary?
16. Solve the Poisson equation $\nabla^{2} u=2$ in the region and for the boundary values shown in Fig. 464, using the grid also shown in the figure.

Fig. 464. Problem 16

21.6 Methods for Parabolic PDEs

The last two sections concerned elliptic PDEs, and we now turn to parabolic PDEs. Recall that the definitions of elliptic, parabolic, and hyperbolic PDEs were given in Sec. 21.4. There it was also mentioned that the general behavior of solutions differs from type to type, and so do the problems of practical interest. This reflects on numerics as follows.

For all three types, one replaces the PDE by a corresponding difference equation, but for parabolic and hyperbolic PDEs this does not automatically guarantee the convergence of the approximate solution to the exact solution as the mesh $h \rightarrow 0$; in fact, it does not even guarantee convergence at all. For these two types of PDEs one needs additional conditions (inequalities) to assure convergence and stability, the latter meaning that small perturbations in the initial data (or small errors at any time) cause only small changes at later times.

In this section we explain the numeric solution of the prototype of parabolic PDEs, the one-dimensional heat equation

$$
u_{t}=c^{2} u_{x x}
$$

(c constant).

This PDE is usually considered for x in some fixed interval, say, $0 \leqq x \leqq L$, and time $t \geqq 0$, and one prescribes the initial temperature $u(x, 0)=f(x)$ (f given) and boundary conditions at $x=0$ and $x=L$ for all $t \geqq 0$, for instance, $u(0, t)=0, u(L, t)=0$. We may assume $c=1$ and $L=1$; this can always be accomplished by a linear transformation of x and t (Prob. 1). Then the heat equation and those conditions are

$$
\begin{array}{cl}
u_{t}=u_{x x} & 0 \leqq x \leqq 1, t \geqq 0 \\
u(x, 0)=f(x) & \text { (Initial condition) } \\
u(0, t)=u(1, t)=0 & \text { (Boundary conditions). }
\end{array}
$$

A simple finite difference approximation of (1) is [see (6a) in Sec. $21.4 ; j$ is the number of the time step]

$$
\begin{equation*}
\frac{1}{k}\left(u_{i, j+1}-u_{i j}\right)=\frac{1}{h^{2}}\left(u_{i+1, j}-2 u_{i j}+u_{i-1, j}\right) \tag{4}
\end{equation*}
$$

Figure 465 shows a corresponding grid and mesh points. The mesh size is h in the x-direction and k in the t-direction. Formula (4) involves the four points shown in Fig. 466. On the left in (4) we have used a forward difference quotient since we have no information for negative t at the start. From (4) we calculate $u_{i, j+1}$, which corresponds to time row $j+1$, in terms of the three other u that correspond to time row j. Solving (4) for $u_{i, j+1}$, we have

$$
\begin{equation*}
u_{i, j+1}=(1-2 r) u_{i j}+r\left(u_{i+1, j}+u_{i-1, j}\right), \quad r=\frac{k}{h^{2}} \tag{5}
\end{equation*}
$$

Computations by this explicit method based on (5) are simple. However, it can be shown that crucial to the convergence of this method is the condition

$$
\begin{equation*}
r=\frac{k}{h^{2}} \leqq \frac{1}{2} \tag{6}
\end{equation*}
$$

Fig. 465. Grid and mesh points corresponding to (4), (5)

Fig. 466. The four points in (4) and (5)

That is, $u_{i j}$ should have a positive coefficient in (5) or (for $r=\frac{1}{2}$) be absent from (5). Intuitively, (6) means that we should not move too fast in the t-direction. An example is given below.

Crank-Nicolson Method

Condition (6) is a handicap in practice. Indeed, to attain sufficient accuracy, we have to choose h small, which makes k very small by (6). For example, if $h=0.1$, then $k \leqq 0.005$. Accordingly, we should look for a more satisfactory discretization of the heat equation.

A method that imposes no restriction on $r=k / h^{2}$ is the Crank-Nicolson (CN) method, ${ }^{5}$ which uses values of u at the six points in Fig. 467. The idea of the method is the replacement of the difference quotient on the right side of (4) by $\frac{1}{2}$ times the sum of two such difference quotients at two time rows (see Fig. 467). Instead of (4) we then have

$$
\begin{align*}
\frac{1}{k}\left(u_{i, j+1}-u_{i j}\right) & =\frac{1}{2 h^{2}}\left(u_{i+1, j}-2 u_{i j}+u_{i-1, j}\right) \\
& +\frac{1}{2 h^{2}}\left(u_{i+1, j+1}-2 u_{i, j+1}+u_{i-1, j+1}\right) . \tag{7}
\end{align*}
$$

Multiplying by $2 k$ and writing $r=k / h^{2}$ as before, we collect the terms corresponding to time row $j+1$ on the left and the terms corresponding to time row j on the right:

$$
\begin{equation*}
(2+2 r) u_{i, j+1}-r\left(u_{i+1, j+1}+u_{i-1, j+1}=(2-2 r) u_{i j}+r\left(u_{i+1, j}+u_{i-1, j}\right) .\right. \tag{8}
\end{equation*}
$$

How do we use (8)? In general, the three values on the left are unknown, whereas the three values on the right are known. If we divide the x-interval $0 \leqq x \leqq 1$ in (1) into n equal intervals, we have $n-1$ internal mesh points per time row (see Fig. 465, where $n=4$). Then for $j=0$ and $i=1, \cdots, n-1$, formula (8) gives a linear system of $n-1$ equations for the $n-1$ unknown values $u_{11}, u_{21}, \cdots, u_{n-1,1}$ in the first time row in terms of the initial values $u_{00}, u_{10}, \cdots, u_{n 0}$ and the boundary values $u_{01}(=0), u_{n 1}(=0)$. Similarly for $j=1, j=2$, and so on; that is, for each time row we have to solve such a linear system of $n-1$ equations resulting from (8).

Although $r=k / h^{2}$ is no longer restricted, smaller r will still give better results. In practice, one chooses a k by which one can save a considerable amount of work, without

[^16]making r too large. For instance, often a good choice is $r=1$ (which would be impossible in the previous method). Then (8) becomes simply
\[

$$
\begin{equation*}
4 u_{i, j+1}-u_{i+1, j+1}-u_{i-1, j+1}=u_{i+1, j}+u_{i-1, j} \tag{9}
\end{equation*}
$$

\]

Fig. 467. The six points in the Crank-Nicolson formulas (7) and (8)

Fig. 468. Grid in Example 1

EXAMPLE 1 Temperature in a Metal Bar. Crank-Nicolson Method, Explicit Method

Consider a laterally insulated metal bar of length 1 and such that $c^{2}=1$ in the heat equation. Suppose that the ends of the bar are kept at temperature $u=0^{\circ} \mathrm{C}$ and the temperature in the bar at some instant-call it $t=0-$ is $f(x)=\sin \pi x$. Applying the Crank-Nicolson method with $h=0.2$ and $r=1$, find the temperature $u(x, t)$ in the bar for $0 \leqq t \leqq 0.2$. Compare the results with the exact solution. Also apply (5) with an r satisfying (6), say, $r=0.25$, and with values not satisfying (6), say, $r=1$ and $r=2.5$.
Solution by Crank-Nicolson. Since $r=1$, formula (8) takes the form (9). Since $h=0.2$ and $r=k / h^{2}=1$, we have $k=h^{2}=0.04$. Hence we have to do 5 steps. Figure 468 shows the grid. We shall need the initial values

$$
u_{10}=\sin 0.2 \pi=0.587785, \quad u_{20}=\sin 0.4 \pi=0.951057
$$

Also, $u_{30}=u_{20}$ and $u_{40}=u_{10}$. (Recall that u_{10} means u at P_{10} in Fig. 468, etc.) In each time row in Fig. 468 there are 4 internal mesh points. Hence in each time step we would have to solve 4 equations in 4 unknowns. But since the initial temperature distribution is symmetric with respect to $x=0.5$, and $u=0$ at both ends for all t, we have $u_{31}=u_{21}, u_{41}=u_{11}$ in the first time row and similarly for the other rows. This reduces each system to 2 equations in 2 unknowns. By (9), since $u_{31}=u_{21}$ and $u_{01}=0$, for $j=0$ these equations are

$$
\begin{array}{lll}
(i=1) & 4 u_{11}-u_{21} & =u_{00}+u_{20}=0.951057 \\
(i=2) & -u_{11}+4 u_{21}-u_{21} & =u_{10}+u_{20}=1.538842
\end{array}
$$

The solution is $u_{11}=0.399274, u_{21}=0.646039$. Similarly, for time row $j=1$ we have the system

$$
\begin{array}{ll}
(i=1) & 4 u_{12}-u_{22}=u_{01}+u_{21}=0.646039 \\
(i=2) & -u_{12}+3 u_{22}=u_{11}+u_{21}=1.045313 .
\end{array}
$$

The solution is $u_{12}=0.271221, u_{22}=0.438844$, and so on. This gives the temperature distribution (Fig. 469):

t	$x=0$	$x=0.2$	$x=0.4$	$x=0.6$	$x=0.8$	$x=1$
0.00	0	0.588	0.951	0.951	0.588	0
0.04	0	0.399	0.646	0.646	0.399	0
0.08	0	0.271	0.439	0.439	0.271	0
0.12	0	0.184	0.298	0.298	0.184	0
0.16	0	0.125	0.202	0.202	0.125	0
0.20	0	0.085	0.138	0.138	0.085	0

Fig. 469. Temperature distribution in the bar in Example 1

Comparison with the exact solution. The present problem can be solved exactly by separating variables (Sec. 12.5); the result is

$$
\begin{equation*}
u(x, t)=\sin \pi x e^{-\pi^{2} t} \tag{10}
\end{equation*}
$$

Solution by the explicit method (5) with $\boldsymbol{r}=\mathbf{0} \mathbf{0} 25$. For $h=0.2$ and $r=k / h^{2}=0.25$ we have $k=r h^{2}=0.25 \cdot 0.04=0.01$. Hence we have to perform 4 times as many steps as with the Crank-Nicolson method! Formula (5) with $r=0.25$ is

$$
\begin{equation*}
u_{i, j+1}=0.25\left(u_{i-1, j}+2 u_{i j}+u_{i+1, j}\right) . \tag{11}
\end{equation*}
$$

We can again make use of the symmetry. For $j=0$ we need $u_{00}=0, u_{10}=0.587785$ (see p. 939), $u_{20}=u_{30}=0.951057$ and compute

$$
\begin{aligned}
& u_{11}=0.25\left(u_{00}+2 u_{10}+u_{20}\right)=0.531657 \\
& u_{21}=0.25\left(u_{10}+2 u_{20}+u_{30}\right)=0.25\left(u_{10}+3 u_{20}\right)=0.860239 .
\end{aligned}
$$

Of course we can omit the boundary terms $u_{01}=0, u_{02}=0, \cdots$ from the formulas. For $j=1$ we compute

$$
\begin{aligned}
& u_{12}=0.25\left(2 u_{11}+u_{21}\right)=0.480888 \\
& u_{22}=0.25\left(u_{11}+3 u_{21}\right)=0.778094
\end{aligned}
$$

and so on. We have to perform 20 steps instead of the 5 CN steps, but the numeric values show that the accuracy is only about the same as that of the Crank-Nicolson values CN. The exact 3D-values follow from (10).

	$x=0.2$				$x=0.4$		
t	CN	By (11)	Exact		CN	By (11)	Exact
0.04	0.399	0.393	0.396		0.646	0.637	0.641
0.08	0.271	0.263	0.267		0.439	0.426	0.432
0.12	0.184	0.176	0.180		0.298	0.285	0.291
0.16	0.125	0.118	0.121		0.202	0.191	0.196
0.20	0.085	0.079	0.082		0.138	0.128	0.132

Failure of (5) with r violating (6). Formula (5) with $h=0.2$ and $r=1$ —which violates (6)—is

$$
u_{i, j+1}=u_{i-1, j}-u_{i j}+u_{i+1, j}
$$

and gives very poor values; some of these are

t	$x=0.2$	Exact	$x=0.4$	Exact
0.04	0.363	0.396	0.588	0.641
0.12	0.139	0.180	0.225	0.291
0.20	0.053	0.082	0.086	0.132

Formula (5) with an even larger $r=2.5$ (and $h=0.2$ as before) gives completely nonsensical results; some of these are

t	$x=0.2$	Exact	$x=0.4$	Exact
0.1	0.0265	0.2191	0.0429	0.3545
0.3	0.0001	0.0304	0.0001	0.0492.

1. Nondimensional form. Show that the heat equation $\widetilde{u}_{\tilde{t}}=c^{2} \widetilde{u}_{\tilde{x} \tilde{x}}, 0 \leqq \tilde{x} \leqq L$, can be transformed to the "nondimensional" standard form $u_{t}=u_{x x}, 0 \leqq x \leqq 1$, by setting $x=\widetilde{x} / L, t=c^{2} \widetilde{t} / L^{2}, u=\widetilde{u} / u_{0}$, where u_{0} is any constant temperature.
2. Difference equation. Derive the difference approximation (4) of the heat equation.
3. Explicit method. Derive (5) by solving (4) for $u_{i, j+1}$.

4. CAS EXPERIMENT. Comparison of Methods.

(a) Write programs for the explicit and the CrankNicolson methods.
(b) Apply the programs to the heat problem of a laterally insulated bar of length 1 with $u(x, 0)=\sin \pi x$ and $u(0, t)=u(1, t)=0$ for all t, using $h=0.2$, $k=0.01$ for the explicit method (20 steps), $h=0.2$ and (9) for the Crank-Nicolson method (5 steps). Obtain exact 6D-values from a suitable series and compare.
(c) Graph temperature curves in (b) in two figures similar to Fig. 299 in Sec. 12.7.
(d) Experiment with smaller $h(0.1,0.05$, etc.) for both methods to find out to what extent accuracy increases under systematic changes of h and k.

EXPLICIT METHOD

5. Using (5) with $h=1$ and $k=0.5$, solve the heat problem (1)-(3) to find the temperature at $t=2$ in a laterally insulated bar of length 10 ft and initial temperature $f(x)=x(1-0.1 x)$.
6. Solve the heat problem (1)-(3) by the explicit method with $h=0.2$ and $k=0.01,8$ time steps, when $f(x)=x$ if $0 \leqq x<\frac{1}{2}, f(x)=1-x$ if $\frac{1}{2} \leqq x \leqq 1$. Compare with the $3 S$-values $0.108,0.175$ for $t=0.08$, $x=0.2,0.4$ obtained from the series (2 terms) in Sec. 12.5.
7. The accuracy of the explicit method depends on $r\left(\leqq \frac{1}{2}\right.$). Illustrate this for Prob. 6, choosing $r=\frac{1}{2}$ (and $h=0.2$ as before). Do 4 steps. Compare the values for $t=0.04$ and 0.08 with the 3 S -values in Prob. 6, which are $0.156,0.254(t=0.04), 0.105,0.170(t=0.08)$.
8. In a laterally insulated bar of length 1 let the initial temperature be $f(x)=x$ if $0 \leqq x<0.5, f(x)=1-x$ if $0.5 \leqq x \leqq 1$. Let (1) and (3) hold. Apply the explicit method with $h=0.2, k=0.01,5$ steps. Can you expect the solution to satisfy $u(x, t)=u(1-x, t)$ for all t ?
9. Solve Prob. 8 with $f(x)=x$ if $0 \leqq x \leqq 0.2$, $f(x)=0.25(1-x)$ if $0.2<x \leqq 1$, the other data being as before.
10. Insulated end. If the left end of a laterally insulated bar extending from $x=0$ to $x=1$ is insulated, the boundary condition at $x=0$ is $u_{n}(0, t)=u_{x}(0, t)=0$. Show that, in the application of the explicit method given by (5), we can compute $u_{0 j+1}$ by the formula

$$
u_{0 j+1}=(1-2 r) u_{0 j}+2 r u_{1 j} .
$$

Apply this with $h=0.2$ and $r=0.25$ to determine the temperature $u(x, t)$ in a laterally insulated bar extending from $x=0$ to 1 if $u(x, 0)=0$, the left end is insulated and the right end is kept at temperature $g(t)=\sin \frac{50}{3} \pi t$. Hint. Use $0=\partial u_{0 j} / \partial x=\left(u_{1 j}-u_{-1 j}\right) / 2 h$.

CRANK-NICOLSON METHOD

11. Solve Prob. 9 by (9) with $h=0.2,2$ steps. Compare with exact values obtained from the series in Sec. 12.5 (2 terms) with suitable coefficients.
12. Solve the heat problem (1)-(3) by Crank-Nicolson for $0 \leqq t \leqq 0.20$ with $h=0.2$ and $k=0.04$ when $f(x)=x$ if $0 \leqq x<\frac{1}{2}, f(x)=1-x$ if $\frac{1}{2} \leqq x \leqq 1$. Compare with the exact values for $t=0.20$ obtained from the series (2 terms) in Sec. 12.5.

13-15

Solve (1)-(3) by Crank-Nicolson with $r=1$ (5 steps), where:
13. $f(x)=5 x$ if $0 \leqq x<0.25, f(x)=1.25(1-x) \quad$ if $0.25 \leqq x \leqq 1, h=0.2$
14. $f(x)=x(1-x), \quad h=0.1$. (Compare with Prob. 15.)
15. $f(x)=x(1-x), \quad h=0.2$

21.7 Method for Hyperbolic PDEs

In this section we consider the numeric solution of problems involving hyperbolic PDEs. We explain a standard method in terms of a typical setting for the prototype of a hyperbolic PDE, the wave equation:

$$
\begin{gather*}
u_{t t}=u_{x x} \tag{1}\\
u(x, 0)=f(x) \tag{2}\\
u_{t}(x, 0)=g(x) \tag{3}\\
u(0, t)=u(1, t)=0 \tag{4}
\end{gather*}
$$

$$
0 \leqq x \leqq 1, t \geqq 0
$$

(Given initial displacement)
(Given initial velocity)
(Boundary conditions).

Note that an equation $u_{t t}=c^{2} u_{x x}$ and another x-interval can be reduced to the form (1) by a linear transformation of x and t. This is similar to Sec. 21.6, Prob. 1.

For instance, (1)-(4) is the model of a vibrating elastic string with fixed ends at $x=0$ and $x=1$ (see Sec. 12.2). Although an analytic solution of the problem is given in (13), Sec. 12.4, we use the problem for explaining basic ideas of the numeric approach that are also relevant for more complicated hyperbolic PDEs.

Replacing the derivatives by difference quotients as before, we obtain from (1) [see (6) in Sec. 21.4 with $y=t$]

$$
\begin{equation*}
\frac{1}{k^{2}}\left(u_{i, j+1}-2 u_{i j}+u_{i, j-1}\right)=\frac{1}{h^{2}}\left(u_{i+1, j}-2 u_{i j}+u_{i-1, j}\right) \tag{5}
\end{equation*}
$$

where h is the mesh size in x, and k is the mesh size in t. This difference equation relates 5 points as shown in Fig. 470a. It suggests a rectangular grid similar to the grids for
parabolic equations in the preceding section. We choose $r^{*}=k^{2} / h^{2}=1$. Then $u_{i j}$ drops out and we have

$$
\begin{equation*}
u_{i, j+1}=u_{i-1, j}+u_{i+1, j}-u_{1, j-1} \tag{6}
\end{equation*}
$$

(Fig. 470b).

It can be shown that for $0<r^{*} \leqq 1$ the present explicit method is stable, so that from (6) we may expect reasonable results for initial data that have no discontinuities. (For a hyperbolic PDE the latter would propagate into the solution domain-a phenomenon that would be difficult to deal with on our present grid. For unconditionally stable implicit methods see [E1] in App. 1.)

(a) Formula (5)

Time row $j+1$
Time row j
Time row $j-1$

Fig. 470. Mesh points used in (5) and (6)

Equation (6) still involves 3 time steps $j-1, j, j+1$, whereas the formulas in the parabolic case involved only 2 time steps. Furthermore, we now have 2 initial conditions. So we ask how we get started and how we can use the initial condition (3). This can be done as follows.

From $u_{t}(x, 0)=g(x)$ we derive the difference formula

$$
\begin{equation*}
\frac{1}{2 k}\left(u_{i 1}-u_{i,-1}\right)=g_{i}, \quad \text { hence } \quad u_{i,-1}=u_{i 1}-2 k g_{i} \tag{7}
\end{equation*}
$$

where $g_{i}=g(i h)$. For $t=0$, that is, $j=0$, equation (6) is

$$
u_{i 1}=u_{i-1,0}+u_{i+1,0}-u_{i,-1}
$$

Into this we substitute $u_{i,-1}$ as given in (7). We obtain $u_{i 1}=u_{i-1,0}+u_{i+1,0}-u_{i 1}+2 k g_{i}$ and by simplification

$$
\begin{equation*}
u_{i 1}=\frac{1}{2}\left(u_{i-1,0}+u_{i+1,0}\right)+k g_{i}, \tag{8}
\end{equation*}
$$

This expresses $u_{i 1}$ in terms of the initial data. It is for the beginning only. Then use (6).

EXAMPLE 1 Vibrating String, Wave Equation

Apply the present method with $h=k=0.2$ to the problem (1)-(4), where

$$
f(x)=\sin \pi x, \quad g(x)=0 .
$$

Solution. The grid is the same as in Fig. 468, Sec. 21.6, except for the values of t, which now are $0.2,0.4, \cdots$ (instead of $0.04,0.08, \cdots$). The initial values u_{00}, u_{10}, \cdots are the same as in Example 1, Sec. 21.6. From (8) and $g(x)=0$ we have

$$
u_{i 1}=\frac{1}{2}\left(u_{i-1,0}+u_{i+1,0}\right) .
$$

From this we compute, using $u_{10}=u_{40}=\sin 0.2 \pi=0.587785, u_{20}=u_{30}=0.951057$,

$$
\begin{array}{ll}
(i=1) & u_{11}=\frac{1}{2}\left(u_{00}+u_{20}\right)=\frac{1}{2} \cdot 0.951057=0.475528 \\
(i=2) & u_{21}=\frac{1}{2}\left(u_{10}+u_{30}\right)=\frac{1}{2} \cdot 1.538842=0.769421
\end{array}
$$

and $u_{31}=u_{21}, u_{41}=u_{11}$ by symmetry as in Sec. 21.6, Example 1. From (6) with $j=1$ we now compute, using $u_{01}=u_{02}=\cdots=0$,

$$
\begin{array}{lll}
(i=1) & u_{12}=u_{01}+u_{21}-u_{10}=0.769421-0.587785 & =0.181636 \\
(i=2) & u_{22}=u_{11}+u_{31}-u_{20}=0.475528+0.769421-0.951057 & =0.293892
\end{array}
$$

and $u_{32}=u_{22}, u_{42}=u_{12}$ by symmetry; and so on. We thus obtain the following values of the displacement $u(x, t)$ of the string over the first half-cycle:

t	$x=0$	$x=0.2$	$x=0.4$	$x=0.6$	$x=0.8$	$x=1$
0.0	0	0.588	0.951	0.951	0.588	0
0.2	0	0.476	0.769	0.769	0.476	0
0.4	0	0.182	0.294	0.294	0.182	0
0.6	0	-0.182	-0.294	-0.294	-0.182	0
0.8	0	-0.476	-0.769	-0.769	-0.476	0
1.0	0	-0.588	-0.951	-0.951	-0.588	0

These values are exact to 3D (3 decimals), the exact solution of the problem being (see Sec. 12.3)

$$
u(x, t)=\sin \pi x \cos \pi t .
$$

The reason for the exactness follows from d'Alembert's solution (4), Sec. 12.4. (See Prob. 4, below.)
This is the end of Chap. 21 on numerics for ODEs and PDEs, a field that continues to develop rapidly in both applications and theoretical research. Much of the activity in the field is due to the computer serving as an invaluable tool for solving large-scale and complicated practical problems as well as for testing and experimenting with innovative ideas. These ideas could be small or major improvements on existing numeric algorithms or testing new algorithms as well as other ideas.

VIBRATING STRING

1-3 Using the present method, solve (1)-(4) with $h=k=0.2$ for the given initial deflection $f(x)$ and initial velocity 0 on the given t-interval.

1. $f(x)=x$ if $0=x<\frac{1}{5}, f(x)=\frac{1}{4}(1-x)$ if $\frac{1}{5} \leqq x \leqq 1$, $0 \leqq t \leqq 1$
2. $f(x)=x^{2}-x^{3}, \quad 0 \leqq t \leqq 2$
3. $f(x)=0.2\left(x-x^{2}\right), \quad 0 \leqq t \leqq 2$
4. Another starting formula. Show that (12) in Sec. 12.4 gives the starting formula

$$
u_{i, 1}=\frac{1}{2}\left(u_{i+1,0}+u_{i-1,0}\right)+\frac{1}{2} \int_{x_{i}-k}^{x_{i}+k} g(s) d s
$$

(where one can evaluate the integral numerically if necessary). In what case is this identical with (8)?
5. Nonzero initial displacement and speed. Illustrate the starting procedure when both f and g are not identically
zero, say, $f(x)=1-\cos 2 \pi x, \quad g(x)=x(1-x)$, $h=k=0.1, \quad 2$ time steps.
6. Solve (1)-(3) ($h=k=0.2,5$ time steps) subject to $f(x)=x^{2}, g(x)=2 x, u_{x}(0, t)=2 t, u(1, t)=(1+t)^{2}$.
7. Zero initial displacement. If the string governed by the wave equation (1) starts from its equilibrium position with initial velocity $g(x)=\sin \pi x$, what is its displacement at time $t=0.4$ and $x=0.2,0.4,0.6,0.8$? (Use the present method with $h=0.2, k=0.2$. Use (8). Compare with the exact values obtained from (12) in Sec. 12.4.)
8. Compute approximate values in Prob. 7, using a finer grid ($h=0.1, k=0.1$), and notice the increase in accuracy.
9. Compute u in Prob. 5 for $t=0.1$ and $x=0.1$, $0.2, \cdots, 0.9$, using the formula in Prob. 8, and compare the values.
10. Show that from d'Alembert's solution (13) in Sec.12.4 with $c=1$ it follows that (6) in the present section gives the exact value $u_{i, j+1}=u(i h,(j+1) h)$.

GHAPMER2REVEW QUESTIONS AND PROBLEMS

1. Explain the Euler and improved Euler methods in geometrical terms. Why did we consider these methods?
2. How did we obtain numeric methods from the Taylor series?
3. What are the local and the global orders of a method? Give examples.
4. Why did we compute auxiliary values in each RungeKutta step? How many?
5. What is adaptive integration? How does its idea extend to Runge-Kutta?
6. What are one-step methods? Multistep methods? The underlying ideas? Give examples.
7. What does it mean that a method is not self-starting? How do we overcome this problem?
8. What is a predictor-corrector method? Give an important example.
9. What is automatic step size control? When is it needed? How is it done in practice?
10. How do we extend Runge-Kutta to systems of ODEs?
11. Why did we have to treat the main types of PDEs in separate sections? Make a list of types of problems and numeric methods.
12. When and how did we use finite differences? Give as many details as you can remember without looking into the text.
13. How did we approximate the Laplace and Poisson equations?
14. How many initial conditions did we prescribe for the wave equation? For the heat equation?
15. Can we expect a difference equation to give the exact solution of the corresponding PDE?
16. In what method for PDEs did we have convergence problems?
17. Solve $y^{\prime}=y, y(0)=1$ by Euler's method, 10 steps, $h=0.1$.
18. Do Prob. 17 with $h=0.01,10$ steps. Compute the errors. Compare the error for $x=0.1$ with that in Prob. 17.
19. Solve $y^{\prime}=1+y^{2}, y(0)=0$ by the improved Euler method, $h=0.1,10$ steps.
20. Solve $y^{\prime}+y=(x+1)^{2}, y(0)=3$ by the improved Euler method, 10 steps with $h=0.1$. Determine the errors.
21. Solve Prob. 19 by RK with $h=0.1,5$ steps. Compute the error. Compare with Prob. 19.
22. Fair comparison. Solve $y^{\prime}=2 x^{-1} \sqrt{y-\ln x}+x^{-1}$, $y(1)=0$ for $1 \leqq x \leqq 1.8$ (a) by the Euler method with $h=0.1$, (b) by the improved Euler method with $h=0.2$, and (c) by RK with $h=0.4$. Verify that the exact solution is $y=(\ln x)^{2}+\ln x$. Compute and compare the errors. Why is the comparison fair?
23. Apply the Adams-Moulton method to $y^{\prime}=\sqrt{1-y^{2}}$, $y(0)=0, \quad h=0.2, \quad x=0, \cdots, 1, \quad$ starting \quad with $0.198668,0.389416,0.564637$.
24. Apply the A-M method to $y^{\prime}=(x+y-4)^{2}, y(0)=4$, $h=0.2, x=0, \cdots, 1$, starting with 4.00271, 4.02279, 4.08413.
25. Apply Euler's method for systems to $y^{\prime \prime}=x^{2} y$, $y(0)=1, y^{\prime}(0)=0, h=0.1,5$ steps.
26. Apply Euler's method for systems to $y_{1}^{\prime}=y_{2}$, $y_{2}^{\prime}=-4 y_{1}, y_{1}(0)=2, y_{2}(0)=0, h=0.2,10$ steps. Sketch the solution.
27. Apply Runge-Kutta for systems to $y^{\prime \prime}+y=2 e^{x}$, $y(0)=0, y^{\prime}(0)=1, h=0.2,5$ steps. Determine the errors.
28. Apply Runge-Kutta for systems to $y_{1}^{\prime}=6 y_{1}+9 y_{2}$, $y_{2}^{\prime}=y_{1}+6 y_{2}, y_{1}(0)=-3, y_{2}(0)=-3, h=0.05$, 3 steps.
29. Find rough approximate values of the electrostatic potential at P_{11}, P_{12}, P_{13} in Fig. 471 that lie in a field between conducting plates (in Fig. 471 appearing as sides of a rectangle) kept at potentials 0 and 220 V as shown. (Use the indicated grid.)

Fig. 471. Problem 29
30. A laterally insulated homogeneous bar with ends at $x=0$ and $x=1$ has initial temperature 0 . Its left end is kept at 0 , whereas the temperature at the right end varies sinusoidally according to

$$
u(t, 1)=g(t)=\sin \frac{25}{3} \pi t
$$

Find the temperature $u(x, t)$ in the bar [solution of (1) in Sec. 21.6] by the explicit method with $h=0.2$ and $r=0.5$ (one period, that is, $0 \leqq t \leqq 0.24$).
31. Find the solution of the vibrating string problem $u_{t t}=u_{x x}, \quad u(x, 0)=x(1-x), \quad u_{t}=0, \quad u(0, t)=$
$u(1, t)=0$ by the method in Sec. 21.7 with $h=0.1$ and $k=0.1$ for $t=0.3$.

32-34 POTENTIAL

Find the potential in Fig. 472, using the given grid and the boundary values:
32. $u\left(P_{01}\right)=u\left(P_{03}\right)=u\left(P_{41}\right)=u\left(P_{43}\right)=200$,
$u\left(P_{10}\right)=u\left(P_{30}\right)=-400, u\left(P_{20}\right)=1600$,
$u\left(P_{02}\right)=u\left(P_{42}\right)=u\left(P_{14}\right)=u\left(P_{24}\right)=u\left(P_{34}\right)=0$
33. $u\left(P_{10}\right)=u\left(P_{30}\right)=960, u\left(P_{20}\right)=-480, u=0$ elsewhere on the boundary
34. $u=70$ on the upper and left sides, $u=0$ on the lower and right sides

Fig. 472. Problems 32-34
35. Solve $u_{t}=u_{x x}(0 \leqq x \leqq 1, t \geqq 0)$,
$u(x, 0)=x^{2}(1-x), u(0, t)=u(1, t)=0$ by CrankNicolson with $h=0.2, k=0.04,5$ time steps.

SUMMARY OF CHAPYER 2

Numerics for ODEs and PDEs

In this chapter we discussed numerics for ODEs (Secs. 21.1-21.3) and PDEs (Secs. 21.4-21.7). Methods for initial value problems

$$
\begin{equation*}
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

involving a first-order ODE are obtained by truncating the Taylor series

$$
y(x+h)=y(x)+h y^{\prime}(x)+\frac{h^{2}}{2} y^{\prime \prime}(x)+\cdots
$$

where, by (1), $y^{\prime}=f, y^{\prime \prime}=f^{\prime}=\partial f / \partial x+(\partial f / \partial y) y^{\prime}$, etc. Truncating after the term $h y^{\prime}$, we get the Euler method, in which we compute step by step

$$
\begin{equation*}
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right) \quad(n=0,1, \cdots) \tag{2}
\end{equation*}
$$

Taking one more term into account, we obtain the improved Euler method. Both methods show the basic idea but are too inaccurate in most cases.

Truncating after the term in h^{4}, we get the important classical Runge-Kutta (RK) method of fourth order. The crucial idea in this method is the replacement of the cumbersome evaluation of derivatives by the evaluation of $f(x, y)$ at suitable points (x, y); thus in each step we first compute four auxiliary quantities (Sec. 21.1)

$$
\begin{align*}
& k_{1}=h f\left(x_{n}, y_{n}\right) \\
& k_{2}=h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{1}\right) \\
& k_{3}=h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{2}\right) \tag{3a}\\
& k_{4}=h f\left(x_{n}+h, y_{n}+k_{3}\right)
\end{align*}
$$

and then the new value

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \tag{3b}
\end{equation*}
$$

Error and step size control are possible by step halving or by RKF (Runge-Kutta-Fehlberg).

The methods in Sec. 21.1 are one-step methods since they get y_{n+1} from the result y_{n} of a single step. A multistep method (Sec. 21.2) uses the values of y_{n}, y_{n-1}, \cdots of several steps for computing y_{n+1}. Integrating cubic interpolation polynomials gives the Adams-Bashforth predictor (Sec. 21.2)

$$
\begin{equation*}
y_{n+1}^{*}=y_{n}+\frac{1}{24} h\left(55 f_{n}-59 f_{n-1}+37 f_{n-2}-9 f_{n-3}\right) \tag{4a}
\end{equation*}
$$

where $f_{j}=f\left(x_{j}, y_{j}\right)$, and an Adams-Moulton corrector (the actual new value)

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{1}{24} h\left(9 f_{n+1}^{*}+19 f_{n}-5 f_{n-1}+f_{n-2}\right) \tag{4b}
\end{equation*}
$$

where $f_{n+1}^{*}=f\left(x_{n+1}, y_{n+1}^{*}\right)$. Here, to get started, y_{1}, y_{2}, y_{3} must be computed by the Runge-Kutta method or by some other accurate method.

Section 19.3 concerned the extension of Euler and RK methods to systems

$$
\mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y}), \quad \text { thus } \quad y_{j}^{\prime}=f_{j}\left(x, y_{1}, \cdots, y_{m}\right), \quad j=1, \cdots, m
$$

This includes single m th-order ODEs, which are reduced to systems. Second-order equations can also be solved by RKN (Runge-Kutta-Nyström) methods. These are particularly advantageous for $y^{\prime \prime}=f(x, y)$ with f not containing y^{\prime}.

Numeric methods for PDEs are obtained by replacing partial derivatives by difference quotients. This leads to approximating difference equations, for the Laplace equation to

$$
\begin{equation*}
u_{i+1, j}+u_{i, j+1}+u_{i-1, j}+u_{i, j-1}-4 u_{i j}=0 \tag{5}
\end{equation*}
$$

for the heat equation to

$$
\begin{equation*}
\frac{1}{k}\left(u_{i, j+1}-u_{i j}\right)=\frac{1}{h^{2}}\left(u_{i+1, j}-2 u_{i j}+u_{i-1, j}\right) \tag{6}
\end{equation*}
$$

and for the wave equation to

$$
\begin{equation*}
\frac{1}{k^{2}}\left(u_{i, j+1}-2 u_{i, j}+u_{i, j-1}\right)=\frac{1}{h^{2}}\left(u_{i+1, j}-2 u_{i j}+u_{i-1, j}\right) \quad(\text { Sec. 21.7 }) ; \tag{7}
\end{equation*}
$$

here h and k are the mesh sizes of a grid in the x - and y-directions, respectively, where in (6) and (7) the variable y is time t.

These PDEs are elliptic, parabolic, and hyperbolic, respectively. Corresponding numeric methods differ, for the following reason. For elliptic PDEs we have boundary value problems, and we discussed for them the Gauss-Seidel method (also known as Liebmann's method) and the ADI method (Secs. 21.4, 21.5). For parabolic PDEs we are given one initial condition and boundary conditions, and we discussed an explicit method and the Crank-Nicolson method (Sec. 21.6). For hyperbolic PDEs, the problems are similar but we are given a second initial condition (Sec. 21.7).

PART F

Optimization, Graphs

CHAPTER 22 Unconstrained Optimization. Linear Programming
CHAPTER 23 Graphs. Combinatorial Optimization

The material of Part F is particularly useful in modeling large-scale real-world problems. Just as it is in numerics in Part E, where the greater availability of quality software and computing power is a deciding factor in the continued growth of the field, so it is also in the fields of optimization and combinatorial optimization. Problems, such as optimizing production plans for different industries (microchips, pharmaceuticals, cars, aluminum, steel, chemicals), optimizing usage of transportation systems (usage of runways in airports, tracks of subways), efficiency in running of power plants, optimal shipping (delivery services, shipping of containers, shipping goods from factories to warehouses and from warehouses to stores), designing optimal financial portfolios, and others are all examples where the size of the problem usually requires the use of optimization software. More recently, environmental concerns have put new aspects into the picture, where an important concern, added to these problems, is the minimization of environmental impact. The main task becomes to model these problems correctly. The purpose of Part F is to introduce the main ideas and methods of unconstrained and constrained optimization (Chap. 22), and graphs and combinatorial optimization (Chap. 23).

Chapter 22 introduces unconstrained optimization by the method of steepest descent and constrained optimization by the versatile simplex method. The simplex method (Secs. $22.3,22.4$) is very useful for solving many linear optimization problems (also called linear programming problems).

Graphs let us model problems in transportation logistics, efficient use of communication networks, best assignment of workers to jobs, and others. We consider shortest path problems (Secs. 22.2, 22.3), shortest spanning trees (Secs. 23.4, 23.5), flow problems in networks (Secs. 23.6, 23.7), and assignment problems (Sec. 23.8). We discuss algorithms of Moore, Dijkstra (both for shortest path), Kruskal, Prim (shortest spanning trees), and Ford-Fulkerson (for flow).

Unconstrained Optimization. Linear Programming

Optimization is a general term used to describe types of problems and solution techniques that are concerned with the best ("optimal") allocation of limited resources in projects. The problems are called optimization problems and the methods optimization methods. Typical problems are concerned with planning and making decisions, such as selecting an optimal production plan. A company has to decide how many units of each product from a choice of (distinct) products it should make. The objective of the company may be to maximize overall profit when the different products have different individual profits. In addition, the company faces certain limitations (constraints). It may have a certain number of machines, it takes a certain amount of time and usage of these machines to make a product, it requires a certain number of workers to handle the machines, and other possible criteria. To solve such a problem, you assign the first variable to number of units to be produced of the first product, the second variable to the second product, up to the number of different (distinct) products the company makes. When you multiply these, for example, by the price, you obtain a linear function called the objective function. You also express the constraints in terms of these variables, thereby obtaining several inequalities, called the constraints. Because the variables in the objective function also occur in the constraints, the objective function and the constraints are tied mathematically to each other and you have set up a linear optimization problem, also called a linear programming problem.

The main focus of this chapter is to set up (Sec. 22.2) and solve (Secs. 22.3, 22.4) such linear programming problems. A famous and versatile method for doing so is the simplex method. In the simplex method, the objective function and the constraints are set up in the form of an augmented matrix as in Sec. 7.3, however, the method of solving such linear constrained optimization problems is a new approach.

The beauty of the simplex method is that it allows us to scale problems up to thousands or more constraints, thereby modeling real-world situations. We can start with a small model and gradually add more and more constraints. The most difficult part is modeling the problem correctly. The actual task of solving large optimization problems is done by software implementations for the simplex method or perhaps by other optimization methods.

Besides optimal production plans, problems in optimal shipping, optimal location of warehouses and stores, easing traffic congestion, efficiency in running power plants are all examples of applications of optimization. More recent applications are in minimizing environmental damages due to pollutants, carbon dioxide emissions, and other factors. Indeed, new fields of green logistics and green manufacturing are evolving and naturally make use of optimization methods.

Prerequisite: a modest working knowledge of linear systems of equations.
References and Answers to Problems: App. 1 Part F, App. 2.

22.1 Basic Concepts. Unconstrained Optimization: Method of Steepest Descent

In an optimization problem the objective is to optimize (maximize or minimize) some function f. This function f is called the objective function. It is the focal point or goal of our optimization problem.

For example, an objective function f to be maximized may be the revenue in a production of TV sets, the rate of return of a financial portfolio, the yield per minute in a chemical process, the mileage per gallon of a certain type of car, the hourly number of customers served in a bank, the hardness of steel, or the tensile strength of a rope.

Similarly, we may want to minimize f if f is the cost per unit of producing certain cameras, the operating cost of some power plant, the daily loss of heat in a heating system, CO_{2} emissions from a fleet of trucks for freight transport, the idling time of some lathe, or the time needed to produce a fender.

In most optimization problems the objective function f depends on several variables

$$
x_{1}, \cdots, x_{n}
$$

These are called control variables because we can "control" them, that is, choose their values.
For example, the yield of a chemical process may depend on pressure x_{1} and temperature x_{2}. The efficiency of a certain air-conditioning system may depend on temperature x_{1}, air pressure x_{2}, moisture content x_{3}, cross-sectional area of outlet x_{4}, and so on.

Optimization theory develops methods for optimal choices of x_{1}, \cdots, x_{n}, which maximize (or minimize) the objective function f, that is, methods for finding optimal values of x_{1}, \cdots, x_{n}.

In many problems the choice of values of x_{1}, \cdots, x_{n} is not entirely free but is subject to some constraints, that is, additional restrictions arising from the nature of the problem and the variables.

For example, if x_{1} is production cost, then $x_{1} \geqq 0$, and there are many other variables (time, weight, distance traveled by a salesman, etc.) that can take nonnegative values only. Constraints can also have the form of equations (instead of inequalities).

We first consider unconstrained optimization in the case of a function $f\left(x_{1}, \cdots, x_{n}\right)$. We also write $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)$ and $f(\mathbf{x})$, for convenience.

By definition, f has a minimum at a point $\mathbf{x}=\mathbf{X}_{0}$ in a region R (where f is defined) if

$$
f(\mathbf{x}) \geqq f\left(\mathbf{X}_{0}\right)
$$

for all \mathbf{x} in R. Similarly, f has a maximum at \mathbf{X}_{0} in R if

$$
f(\mathbf{x}) \leqq f\left(\mathbf{X}_{0}\right)
$$

for all \mathbf{x} in R. Minima and maxima together are called extrema.
Furthermore, f is said to have a local minimum at \mathbf{X}_{0} if

$$
f(\mathbf{x}) \geqq f\left(\mathbf{X}_{0}\right)
$$

for all \mathbf{x} in a neighborhood of \mathbf{X}_{0}, say, for all \mathbf{x} satisfying

$$
\left|\mathbf{x}-\mathbf{X}_{0}\right|=\left[\left(x_{1}-X_{1}\right)^{2}+\cdots+\left(x_{n}-X_{n}\right)^{2}\right]^{1 / 2}<r,
$$

where $\mathbf{X}_{0}=\left(X_{1}, \cdots, X_{n}\right)$ and $r>0$ is sufficiently small.

Similarly, f has a local maximum at \mathbf{X}_{0} if $f(\mathbf{x}) \leqq f\left(\mathbf{X}_{0}\right)$ for all \mathbf{x} satisfying $\left|\mathbf{x}-\mathbf{X}_{0}\right|<r$.
If f is differentiable and has an extremum at a point \mathbf{X}_{0} in the interior of a region R (that is, not on the boundary), then the partial derivatives $\partial f / \partial x_{1}, \cdots, \partial f / \partial x_{n}$ must be zero at $\mathbf{X}_{\mathbf{0}}$. These are the components of a vector that is called the gradient of f and denoted by $\operatorname{grad} f$ or ∇f. (For $n=3$ this agrees with Sec. 9.7.) Thus

$$
\begin{equation*}
\nabla f\left(\mathbf{X}_{0}\right)=\mathbf{0} . \tag{1}
\end{equation*}
$$

A point \mathbf{X}_{0} at which (1) holds is called a stationary point of f.
Condition (1) is necessary for an extremum of f at \mathbf{X}_{0} in the interior of R, but is not sufficient. Indeed, if $n=1$, then for $y=f(x)$, condition (1) is $y^{\prime}=f^{\prime}\left(X_{0}\right)=0$; and, for instance, $y=x^{3}$ satisfies $y^{\prime}=3 x^{2}=0$ at $x=X_{0}=0$ where f has no extremum but a point of inflection. Similarly, for $f(\mathbf{x})=x_{1} x_{2}$ we have $\nabla f(\mathbf{0})=\mathbf{0}$, and f does not have an extremum but has a saddle point at $\mathbf{0}$. Hence, after solving (1), one must still find out whether one has obtained an extremum. In the case $n=1$ the conditions $y^{\prime}\left(X_{0}\right)=0$, $y^{\prime \prime}\left(X_{0}\right)>0$ guarantee a local minimum at X_{0} and the conditions $y^{\prime}\left(X_{0}\right)=0, y^{\prime \prime}\left(X_{0}\right)<0$ a local maximum, as is known from calculus. For $n>1$ there exist similar criteria. However, in practice, even solving (1) will often be difficult. For this reason, one generally prefers solution by iteration, that is, by a search process that starts at some point and moves stepwise to points at which f is smaller (if a minimum of f is wanted) or larger (in the case of a maximum).

The method of steepest descent or gradient method is of this type. We present it here in its standard form. (For refinements see Ref. [E25] listed in App. 1.)

The idea of this method is to find a minimum of $f(\mathbf{x})$ by repeatedly computing minima of a function $g(t)$ of a single variable t, as follows. Suppose that f has a minimum at \mathbf{X}_{0} and we start at a point \mathbf{x}. Then we look for a minimum of f closest to \mathbf{x} along the straight line in the direction of $-\nabla f(\mathbf{x})$, which is the direction of steepest descent (= direction of maximum decrease) of f at \mathbf{x}. That is, we determine the value of t and the corresponding point

$$
\begin{equation*}
\mathbf{z}(t)=\mathbf{x}-t \nabla f(\mathbf{x}) \tag{2}
\end{equation*}
$$

at which the function

$$
\begin{equation*}
g(t)=f(\mathbf{z}(t)) \tag{3}
\end{equation*}
$$

has a minimum. We take this $\mathbf{z}(t)$ as our next approximation to \mathbf{X}_{0}.

EXAMPLE 1
 Method of Steepest Descent

Determine a minimum of

$$
\begin{equation*}
f(\mathbf{x})=x_{1}^{2}+3 x_{2}^{2}, \tag{4}
\end{equation*}
$$

starting from $\mathbf{x}_{0}=(6,3)=6 \mathbf{i}+3 \mathbf{j}$ and applying the method of steepest descent.
Solution. Clearly, inspection shows that $f(\mathbf{x})$ has a minimum at $\mathbf{0}$. Knowing the solution gives us a better feel of how the method works. We obtain $\nabla f(\mathbf{x})=2 x_{1} \mathbf{i}+6 x_{2} \mathbf{j}$ and from this

$$
\begin{aligned}
& \mathbf{z}(t)=\mathbf{x}-t \nabla f(\mathbf{x})=(1-2 t) x_{1} \mathbf{i}+(1-6 t) x_{2} \mathbf{j} \\
& g(t)=f(\mathbf{z}(t))=(1-2 t)^{2} x_{1}^{2}+3(1-6 t)^{2} x_{2}^{2} .
\end{aligned}
$$

We now calculate the derivative

$$
g^{\prime}(t)=2(1-2 t) x_{1}^{2}(-2)+6(1-6 t) x_{2}^{2}(-6),
$$

set $g^{\prime}(t)=0$, and solve for t, finding

$$
t=\frac{x_{1}^{2}+9 x_{2}^{2}}{2 x_{1}^{2}+54 x_{2}^{2}} .
$$

Starting from $x_{0}=6 \mathbf{i}+3 \mathbf{j}$, we compute the values in Table 22.1, which are shown in Fig. 473.
Figure 473 suggests that in the case of slimmer ellipses ("a long narrow valley"), convergence would be poor. You may confirm this by replacing the coefficient 3 in (4) with a large coefficient. For more sophisticated descent and other methods, some of them also applicable to vector functions of vector variables, we refer to the references listed in Part F of App. 1; see also [E25].

Fig. 473. Method of steepest descent in Example 1

Table 22.1 Method of Steepest Descent, Computations in Example 1

n	\mathbf{x}		t	$1-2 t$	$1-6 t$
0	6.000	3.000	0.210	0.581	-0.258
1	3.484	-0.774	0.310	0.381	-0.857
2	1.327	0.664	0.210	0.581	-0.258
3	0.771	-0.171	0.310	0.381	-0.857
4	0.294	0.147	0.210	0.581	-0.258
5	0.170	-0.038	0.310	0.381	-0.857
6	0.065	0.032			

PROBAEMESET22.1

1. Orthogonality. Show that in Example 1, successive gradients are orthogonal (perpendicular). Why?
2. What happens if you apply the method of steepest descent to $f(\mathbf{x})=x_{1}^{2}+x_{2}^{2}$? First guess, then calculate.

3-9 STEEPEST DESCENT

Do steepest descent steps when:
3. $f(\mathbf{x})=2 x_{1}^{2}+x_{2}^{2}-4 x_{1}+4 x_{2}, \quad \mathbf{x}_{0}=\mathbf{0}, \quad 3$ steps
4. $f(\mathbf{x})=x_{1}^{2}+0.5 x_{2}^{2}-5.0 x_{1}-3.0 x_{2}+24.95$, $x_{0}=(3,4), \quad 5$ steps
5. $f(\mathbf{x})=a x_{1}+b x_{2}, \quad a \neq 0, b \neq 0$. First guess, then compute.
6. $f(\mathbf{x})=x_{1}^{2}-x_{2}^{2}, \quad \mathbf{x}_{0}=(1,2), \quad 5$ steps. First guess, then compute. Sketch the path. What if $\mathbf{x}_{0}=(2,1)$?
7. $f(\mathbf{x})=x_{1}^{2}+c x_{2}^{2}, \mathbf{x}_{0}=(c, 1)$. Show that 2 steps give $(c, 1)$ times a factor, $-4 c^{2} /\left(c^{2}-1\right)^{2}$. What can you conclude from this about the speed of convergence?
8. $f(\mathbf{x})=x_{1}^{2}-x_{2}, \mathbf{x}_{0}=(1,1) ; 3$ steps. Sketch your path. Predict the outcome of further steps.
9. $f(\mathbf{x})=0.1 x_{1}^{2}+x_{2}^{2}-0.02 x_{1}, \quad \mathbf{x}_{0}=(3,3), \quad 5$ steps
10. CAS EXPERIMENT. Steepest Descent. (a) Write a program for the method.
(b) Apply your program to $f(\mathbf{x})=x_{1}^{2}+4 x_{2}^{2}$, experimenting with respect to speed of convergence depending on the choice of \mathbf{x}_{0}.
(c) Apply your program to $f(\mathbf{x})=x_{1}^{2}+x_{2}^{4}$ and to $f(\mathbf{x})=x_{1}^{4}+x_{2}^{4}, \mathbf{x}_{0}=(2,1)$. Graph level curves and your path of descent. (Try to include graphing directly in your program.)

22.2 Linear Programming

Linear programming or linear optimization consists of methods for solving optimization problems with constraints, that is, methods for finding a maximum (or a minimum) $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)$ of a linear objective function

$$
z=f(\mathbf{x})=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

satisfying the constraints. The latter are linear inequalities, such as $3 x_{1}+4 x_{2} \leqq 36$, or $x_{1} \geqq 0$, etc. (examples below). Problems of this kind arise frequently, almost daily, for instance, in production, inventory management, bond trading, operation of power plants, routing delivery vehicles, airplane scheduling, and so on. Progress in computer technology has made it possible to solve programming problems involving hundreds or thousands or more variables. Let us explain the setting of a linear programming problem and the idea of a "geometric" solution, so that we shall see what is going on.

EXAMPLE 1 Production Plan

Energy Savers, Inc., produces heaters of types S and L. The wholesale price is $\$ 40$ per heater for S and $\$ 88$ for L. Two time constraints result from the use of two machines M_{1} and M_{2}. On M_{1} one needs 2 min for an S heater and 8 min for an L heater. On M_{2} one needs 5 min for an S heater and 2 min for an L heater. Determine production figures x_{1} and x_{2} for S and L, respectively (number of heaters produced per hour), so that the hourly revenue

$$
z=f(\mathbf{x})=40 x_{1}+88 x_{2}
$$

is maximum.
Solution. Production figures x_{1} and x_{2} must be nonnegative. Hence the objective function (to be maximized) and the four constraints are

$$
\begin{align*}
& z=40 x_{1}+88 x_{2} \tag{0}\\
& 2 x_{1}+8 x_{2} \leqq 60 \text { min time on machine } M_{1} \tag{1}\\
& 5 x_{1}+2 x_{2} \leqq 60 \text { min time on machine } M_{2} \tag{2}\\
& x_{1} \geqq 0 \tag{3}\\
& x_{2} \geqq 0 . \tag{4}
\end{align*}
$$

Figure 474 shows (0)-(4) as follows. Constancy lines

$$
z=\mathrm{const}
$$

are marked (0). These are lines of constant revenue. Their slope is $-40 / 88=-5 / 11$. To increase z we must move the line upward (parallel to itself), as the arrow shows. Equation (1) with the equality sign is marked (1). It intersects the coordinate axes at $x_{1}=60 / 2=30\left(\right.$ set $\left.x_{2}=0\right)$ and $x_{2}=60 / 8=7.5\left(\right.$ set $\left.x_{1}=0\right)$. The arrow marks the side on which the points (x_{1}, x_{2}) lie that satisfy the inequality in (1). Similarly for Eqs. (2)-(4). The blue quadrangle thus obtained is called the feasibility region. It is the set of all feasible solutions, meaning
solutions that satisfy all four constraints. The figure also lists the revenue at O, A, B, C. The optimal solution is obtained by moving the line of constant revenue up as much as possible without leaving the feasibility region completely. Obviously, this optimum is reached when that line passes through B, the intersection $(10,5)$ of (1) and (2). We see that the optimal revenue

$$
z_{\max }=40 \cdot 10+88 \cdot 5=\$ 840
$$

is obtained by producing twice as many S heaters as L heaters.

Fig. 474. Linear programming in Example 1

Note well that the problem in Example 1 or similar optimization problems cannot be solved by setting certain partial derivatives equal to zero, because crucial to such problems is the region in which the control variables are allowed to vary.

Furthermore, our "geometric" or graphic method illustrated in Example 1 is confined to two variables x_{1}, x_{2}. However, most practical problems involve much more than two variables, so that we need other methods of solution.

Normal Form of a Linear Programming Problem

To prepare for general solution methods, we show that constraints can be written more uniformly. Let us explain the idea in terms of (1),

$$
2 x_{1}+8 x_{2} \leqq 60
$$

This inequality implies $60-2 x_{1}-8 x_{2} \geqq 0$ (and conversely), that is, the quantity

$$
x_{3}=60-2 x_{1}-8 x_{2}
$$

is nonnegative. Hence, our original inequality can now be written as an equation

$$
2 x_{1}+8 x_{2}+x_{3}=60
$$

where

$$
x_{3} \geqq 0
$$

x_{3} is a nonnegative auxiliary variable introduced for converting inequalities to equations. Such a variable is called a slack variable, because it "takes up the slack" or difference between the two sides of the inequality.

EXAMPLE 2 Conversion of Inequalities by the Use of Slack Variables

With the help of two slack variables x_{3}, x_{4} we can write the linear programming problem in Example 1 in the following form. Maximize

$$
f=40 x_{1}+88 x_{2}
$$

subject to the constraints

$$
\begin{gathered}
2 x_{1}+8 x_{2}+x_{3} \quad=60 \\
5 x_{1}+2 x_{2} \quad+x_{4}=60 \\
x_{i} \geqq 0 \quad(i=1, \cdots, 4) .
\end{gathered}
$$

We now have $n=4$ variables and $m=2$ (linearly independent) equations, so that two of the four variables, for example, x_{1}, x_{2}, determine the others. Also note that each of the four sides of the quadrangle in Fig. 474 now has an equation of the form $x_{i}=0$:

$$
\begin{aligned}
& O A: x_{2}=0, \\
& A B: x_{4}=0, \\
& B C: x_{3}=0, \\
& C O: x_{1}=0,
\end{aligned}
$$

A vertex of the quadrangle is the intersection of two sides. Hence at a vertex, $n-m=4-2=2$ of the variables are zero and the others are nonnegative. Thus at A we have $x_{2}=0, x_{4}=0$, and so on.

Our example suggests that a general linear optimization problem can be brought to the following normal form. Maximize

$$
\begin{equation*}
f=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \tag{5}
\end{equation*}
$$

subject to the constraints

$$
\begin{aligned}
& a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+\cdots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

(6)

$$
\begin{aligned}
& a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=b_{m} \\
& x_{i} \geqq 0 \quad(i=1, \cdots, n)
\end{aligned}
$$

with all b_{j} nonnegative. (If a $b_{j}<0$, multiply the equation by -1 .) Here x_{1}, \cdots, x_{n} include the slack variables (for which the c_{j} 's in f are zero). We assume that the equations in (6) are linearly independent. Then, if we choose values for $n-m$ of the variables, the system uniquely determines the others. Of course, since we must have

$$
x_{1} \geqq 0, \cdots, x_{n} \geqq 0,
$$

this choice is not entirely free.

Our problem also includes the minimization of an objective function f since this corresponds to maximizing $-f$ and thus needs no separate consideration.

An n-tuple $\left(x_{1}, \cdots, x_{n}\right)$ that satisfies all the constraints in (6) is called a feasible point or feasible solution. A feasible solution is called an optimal solution if, for it, the objective function f becomes maximum, compared with the values of f at all feasible solutions.

Finally, by a basic feasible solution we mean a feasible solution for which at least $n-m$ of the variables x_{1}, \cdots, x_{n} are zero. For instance, in Example 2 we have $n=4$, $m=2$, and the basic feasible solutions are the four vertices O, A, B, C in Fig. 474. Here B is an optimal solution (the only one in this example).

The following theorem is fundamental.

THEOREM 1

Optimal Solution

Some optimal solution of a linear programming problem (5), (6) is also a basic feasible solution of (5), (6).

For a proof, see Ref. [F5], Chap. 3 (listed in App. 1). A problem can have many optimal solutions and not all of them may be basic feasible solutions; but the theorem guarantees that we can find an optimal solution by searching through the basic feasible solutions only. This is a great simplification; but since there are $\binom{n}{n-m}=\binom{n}{m}$ different ways of equating $n-m$ of the n variables to zero, considering all these possibilities, dropping those which are not feasible and then searching through the rest would still involve very much work, even when n and m are relatively small. Hence a systematic search is needed. We shall explain an important method of this type in the next section.

1-6 REGIONS, CONSTRAINTS

Describe and graph the regions in the first quadrant of the $x_{1} x_{2}$-plane determined by the given inequalities.

1. $x_{1}-3 x_{2} \geqq-6$
$x_{1}+x_{2} \leqq 6$
2. $2 x_{1}-x_{2} \geqq 6$
$8 x_{1}+10 x_{2} \leqq 80$
$x_{1}-2 x_{2} \geqq-3$
3. $-0.5 x_{1}+x_{2} \leqq 2$
$x_{1}+x_{2} \geqq 2$
$-x_{1}+5 x_{2} \geqq 5$
4. $-x_{1}+x_{2} \leqq 5$
$2 x_{1}+x_{2} \geqq 10$
$x_{2} \geqq \quad 4$
$10 x_{1}+15 x_{2} \leqq 150$
5. $-x_{1}+x_{2} \geqq 0$
$x_{1}+x_{2} \leqq 5$
$-2 x_{1}+x_{2} \leqq 16$
6. $x_{1}+x_{2} \geqq 2$
$3 x_{1}+5 x_{2} \geqq 15$
$2 x_{1}-x_{2} \geqq-2$
$-x_{1}+2 x_{2} \leqq 10$
7. Location of maximum. Could we find a profit $f\left(x_{1}, x_{2}\right)=a_{1} x_{1}+a_{2} x_{2}$ whose maximum is at an interior point of the quadrangle in Fig. 474? Give reason for your answer.
8. Slack variables. Why are slack variables always nonnegative? How many of them do we need?
9. What is the meaning of the slack variables x_{3}, x_{4} in Example 2 in terms of the problem in Example 1?
10. Uniqueness. Can we always expect a unique solution (as in Example 1)?

11-16 MAXIMIZATION, MINIMIZATION

Maximize or minimize the given objective function f subject to the given constraints.
11. Maximize $f=30 x_{1}+10 x_{2}$ in the region in Prob. 5 .
12. Minimize $f=45.0 x_{1}+22.5 x_{2}$ in the region in Prob. 4 .
13. Maximize $f=5 x_{1}+25 x_{2}$ in the region in Prob. 5.
14. Minimize $f=5 x_{1}+25 x_{2}$ in the region in Prob. 3 .
15. Maximize $f=20 x_{1}+30 x_{2}$ subject to $4 x_{1}+3 x_{2} \geqq$ $12, \quad x_{1}-x_{2} \geqq-3, \quad x_{2} \leqq 6, \quad 2 x_{1}-3 x_{2} \leqq 0$.
16. Maximize $f=-10 x_{1}+2 x_{2}$ subject to $x_{1} \geqq 0$, $x_{2} \geqq 0, \quad-x_{1}+x_{2} \geqq-1, \quad x_{1}+x_{2} \leqq 6, \quad x_{2} \leqq 5$.
17. Maximum profit. United Metal, Inc., produces alloys B_{1} (special brass) and B_{2} (yellow tombac). B_{1} contains 50% copper and 50% zinc. (Ordinary brass contains about 65% copper and 35% zinc.) B_{2} contains 75% copper and 25% zinc. Net profits are $\$ 120$ per ton of B_{1} and $\$ 100$ per ton of B_{2}. The daily copper supply is 45 tons. The daily zinc supply is 30 tons. Maximize the net profit of the daily production.
18. Maximum profit. The DC Drug Company produces two types of liquid pain killer, N (normal) and S (Super). Each bottle of N requires 2 units of drug $A, 1$ unit of drug B, and 1 unit of drug C. Each bottle of S requires 1 unit of $A, 1$ unit of B, and 3 units of C. The company is able to produce, each week, only 1400 units of $A, 800$ units of B, and 1800 units of C. The profit per bottle of N and S is $\$ 11$ and $\$ 15$, respectively. Maximize the total profit.
19. Maximum output. Giant Ladders, Inc., wants to maximize its daily total output of large step ladders by producing x_{1} of them by a process P_{1} and x_{2} by a process P_{2}, where P_{1} requires 2 hours of labor and 4 machine hours per ladder, and P_{2} requires 3 hours of labor and 2 machine hours. For this kind of work, 1200 hours of labor and 1600 hours on the machines are, at most, available per day. Find the optimal x_{1} and x_{2}.
20. Minimum cost. Hardbrick, Inc., has two kilns. Kiln I can produce 3000 gray bricks, 2000 red bricks, and 300 glazed bricks daily. For Kiln II the corresponding figures are 2000, 5000, and 1500. Daily operating costs of Kilns I and II are $\$ 400$ and $\$ 600$, respectively. Find the number of days of operation of each kiln so that the operation cost in filling an order of 18,000 gray, 34,000 red, and 9000 glazed bricks is minimized.
21. Maximum profit. Universal Electric, Inc., manufactures and sells two models of lamps, L_{1} and L_{2}, the profit being $\$ 150$ and $\$ 100$, respectively. The process involves two workers W_{1} and W_{2} who are available for this kind of work 100 and 80 hours per month, respectively. W_{1} assembles L_{1} in 20 min and L_{2} in 30 min . W_{2} paints L_{1} in 20 min and L_{2} in 10 min . Assuming that all lamps made can be sold without difficulty, determine production figures that maximize the profit.
22. Nutrition. Foods A and B have 600 and 500 calories, contain 15 g and 30 g of protein, and cost $\$ 1.80$ and $\$ 2.10$ per unit, respectively. Find the minimum cost diet of at least 3900 calories containing at least 150 g of protein.

22.3 Simplex Method

From the last section we recall the following. A linear optimization problem (linear programming problem) can be written in normal form; that is:

Maximize

$z=f(x)=c_{1} x_{1}+\cdots+c_{n} x_{n}$

subject to the constraints

$$
\begin{aligned}
& a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+\cdots+a_{2 n} x_{n}=b_{2} \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=b_{m} \\
& x_{i} \geqq 0 \quad(i=1, \cdots, n) .
\end{aligned}
$$

For finding an optimal solution of this problem, we need to consider only the basic feasible solutions (defined in Sec. 22.2), but there are still so many that we have to follow a systematic search procedure. In 1948 G. B. Dantzig ${ }^{1}$ published an iterative method, called the simplex method, for that purpose. In this method, one proceeds stepwise from one basic feasible solution to another in such a way that the objective function f always increases its value. Let us explain this method in terms of the example in the last section.

In its original form the problem concerned the maximization of the objective function
subject to

$$
\begin{aligned}
& z=40 x_{1}+88 x_{2} \\
& 2 x_{1}+8 x_{2} \leqq 60 \\
& 5 x_{1}+2 x_{2} \leqq 60 \\
& x_{1} \geqq 0 \\
& x_{2} \geqq 0 .
\end{aligned}
$$

Converting the first two inequalities to equations by introducing two slack variables x_{3}, x_{4}, we obtained the normal form of the problem in Example 2. Together with the objective function (written as an equation $z-40 x_{1}-88 x_{2}=0$) this normal form is

$$
\begin{align*}
z-40 x_{1}-88 x_{2} & =0 \\
2 x_{1}+8 x_{2}+x_{3} & =60 \tag{3}\\
5 x_{1}+2 x_{2}+x_{4} & =60
\end{align*}
$$

where $x_{1} \geqq 0, \cdots, x_{4} \geqq 0$. This is a linear system of equations. To find an optimal solution of it, we may consider its augmented matrix (see Sec. 7.3)

$$
\mathbf{T}_{0}=\left[\begin{array}{cccccc}
z & x_{1} & x_{2} & x_{3} & x_{4} & b \tag{4}\\
\hline \begin{array}{r}
1 \\
0
\end{array} & -40 & -88 & 0 & 0 & 0 \\
0 & 2 & 8 & 1 & 0 & 60 \\
0 & 2 & 2 & 0 & 1 & 60
\end{array}\right]
$$

[^17]This matrix is called a simplex tableau or simplex table (the initial simplex table). These are standard names. The dashed lines and the letters

$$
z, \quad x_{1}, \quad \cdots, \quad b
$$

are for ease in further manipulation.
Every simplex table contains two kinds of variables x_{j}. By basic variables we mean those whose columns have only one nonzero entry. Thus x_{3}, x_{4} in (4) are basic variables and x_{1}, x_{2} are nonbasic variables.

Every simplex table gives a basic feasible solution. It is obtained by setting the nonbasic variables to zero. Thus (4) gives the basic feasible solution

$$
x_{1}=0, \quad x_{2}=0, \quad x_{3}=60 / 1=60, \quad x_{4}=60 / 1=60, \quad z=0
$$

with x_{3} obtained from the second row and x_{4} from the third.
The optimal solution (its location and value) is now obtained stepwise by pivoting, designed to take us to basic feasible solutions with higher and higher values of z until the maximum of z is reached. Here, the choice of the pivot equation and pivot are quite different from that in the Gauss elimination. The reason is that $x_{1}, x_{2}, x_{3}, x_{4}$ are restricted to nonnegative values.

Step 1. Operation O_{1} : Selection of the Column of the Pivot

Select as the column of the pivot the first column with a negative entry in Row 1. In (4) this is Column 2 (because of the -40).

Operation $\boldsymbol{O}_{\mathbf{2}}$: Selection of the Row of the Pivot. Divide the right sides [60 and 60 in (4)] by the corresponding entries of the column just selected ($60 / 2=30,60 / 5=12$). Take as the pivot equation the equation that gives the smallest quotient. Thus the pivot is 5 because $60 / 5$ is smallest.

Operation $\boldsymbol{O}_{\mathbf{3}}$: Elimination by Row Operations. This gives zeros above and below the pivot (as in Gauss-Jordan, Sec. 7.8).

With the notation for row operations as introduced in Sec. 7.3, the calculations in Step 1 give from the simplex table \mathbf{T}_{0} in (4) the following simplex table (augmented matrix), with the blue letters referring to the previous table.

$$
\mathbf{T}_{1}=\left[\begin{array}{c:ccccc}
z & x_{1} & x_{2} & x_{3} & x_{4} & b \tag{5}\\
\left.\hdashline \begin{array}{c:ccccc}
1 & 0 & -72 & 0 & 8 & 480 \\
0 & 0 & 7.2 & 1 & -0.4 & 36 \\
0 & 5 & 2 & 0 & 1 & 60
\end{array}\right]
\end{array} \begin{array}{c}
\text { Row 1 + 8 Row 3 } \\
\hdashline \begin{array}{c}
0
\end{array} \\
\text { Row 2 - 0.4 Row 3 }
\end{array}\right.
$$

We see that basic variables are now x_{1}, x_{3} and nonbasic variables are x_{2}, x_{4}. Setting the latter to zero, we obtain the basic feasible solution given by \mathbf{T}_{1},

$$
x_{1}=60 / 5=12, \quad x_{2}=0, \quad x_{3}=36 / 1=36, \quad x_{4}=0, \quad z=480
$$

This is A in Fig. 474 (Sec. 22.2). We thus have moved from $O:(0,0)$ with $z=0$ to $A:(12,0)$ with the greater $z=480$. The reason for this increase is our elimination of a
term $\left(-40 x_{1}\right)$ with a negative coefficient. Hence elimination is applied only to negative entries in Row 1 but to no others. This motivates the selection of the column of the pivot.

We now motivate the selection of the row of the pivot. Had we taken the second row of \mathbf{T}_{0} instead (thus 2 as the pivot), we would have obtained $z=1200$ (verify!), but this line of constant revenue $z=1200$ lies entirely outside the feasibility region in Fig. 474. This motivates our cautious choice of the entry 5 as our pivot because it gave the smallest quotient ($60 / 5=12$).

Step 2. The basic feasible solution given by (5) is not yet optimal because of the negative entry -72 in Row 1. Accordingly, we perform the operations O_{1} to O_{3} again, choosing a pivot in the column of -72 .

Operation $\boldsymbol{O}_{\mathbf{1}}$. Select Column 3 of $\mathbf{T}_{\mathbf{1}}$ in (5) as the column of the pivot (because $-72<0$).

Operation $\boldsymbol{O}_{\mathbf{2}}$. We have $36 / 7.2=5$ and $60 / 2=30$. Select 7.2 as the pivot (because $5<30$).

Operation \boldsymbol{O}_{3}. Elimination by row operations gives

$\mathbf{T}_{2}=$| z | x_{1} | x_{2} | x_{3} | x_{4} | b |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left.\begin{array}{cc:cc:ccc}1 & 0 & 0 & 10 & 4 & 840 \\ -0 & 0 & 7.2 & 1 & -0.4 & 36 \\ 0 & 5 & 0 & -\frac{1}{3.6} & \frac{1}{0.9} & 50\end{array}\right]$ | | | | | | Row 1+10 Row 2

We see that now x_{1}, x_{2} are basic and x_{3}, x_{4} nonbasic. Setting the latter to zero, we obtain from \mathbf{T}_{2} the basic feasible solution

$$
x_{1}=50 / 5=10, \quad x_{2}=36 / 7.2=5, \quad x_{3}=0, \quad x_{4}=0, \quad z=840
$$

This is B in Fig. 474 (Sec. 22.2). In this step, z has increased from 480 to 840 , due to the elimination of -72 in \mathbf{T}_{1}. Since \mathbf{T}_{2} contains no more negative entries in Row 1 , we conclude that $z=f(10,5)=40 \cdot 10+88 \cdot 5=840$ is the maximum possible revenue. It is obtained if we produce twice as many S heaters as L heaters. This is the solution of our problem by the simplex method of linear programming.

Minimization. If we want to minimize $z=f(\mathbf{x})$ (instead of maximize), we take as the columns of the pivots those whose entry in Row 1 is positive (instead of negative). In such a Column k we consider only positive entries $t_{j k}$ and take as pivot a $t_{j k}$ for which $b_{j} / t_{j k}$ is smallest (as before). For examples, see the problem set.

PROBBE=SME22.3

1. Verify the calculations in Example 1 of the text.

2-14 SIMPLEX METHOD

Write in normal form and solve by the simplex method, assuming all x_{j} to be nonnegative.
2. The problem in the example in the text with the constraints interchanged.
3. Maximize $f=3 x_{1}+2 x_{2}$ subject to $3 x_{1}+4 x_{2} \leqq 60$, $4 x_{1}+3 x_{2} \leqq 60, \quad 10 x_{1}+2 x_{2} \leqq 120$.
4. Maximize the daily output in producing x_{1} chairs by Process P_{1} and x_{2} chairs by Process P_{2} subject to $3 x_{1}+4 x_{2} \leqq 550$ (machine hours), $5 x_{1}+4 x_{2} \leqq 650$ (labor).
5. Minimize $f=5 x_{1}-20 x_{2}$ subject to $-2 x_{1}+10 x_{2}$ $\leqq 5, \quad 2 x_{1}+5 x_{2} \leqq 10$.
6. Prob. 19 in Sec. 22.2.
7. Suppose we produce x_{1} AA batteries by Process P_{1} and x_{2} by Process P_{2}, furthermore x_{3} A batteries by Process P_{3} and x_{4} by Process P_{4}. Let the profit for 100 batteries be $\$ 10$ for AA and $\$ 20$ for A. Maximize the total profit subject to the constraints

$$
\begin{aligned}
12 x_{1}+8 x_{2} & +6 x_{3}+4 x_{4} \leqq 120 \\
3 x_{1}+6 x_{2}+12 x_{3}+24 x_{4} \leqq 180 & \text { (Mabor) } .
\end{aligned}
$$

8. Maximize the daily profit in producing x_{1} metal frames F_{1} (profit $\$ 90$ per frame) and x_{2} frames F_{2} (profit $\$ 50$ per frame) subject to $x_{1}+3 x_{2} \leqq 18$ (material), $x_{1}+x_{2} \leqq 10$ (machine hours), $3 x_{1}+x_{2} \leqq 24$ (labor).
9. Maximize $f=2 x_{1}+x_{2}+3 x_{3}$ subject to $4 x_{1}+3 x_{2}+$ $6 x_{3}=12$.
10. Minimize $f=4 x_{1}-10 x_{2}-20 x_{3}$ subject to $3 x_{1}+$ $4 x_{2}+5 x_{3} \leqq 60, \quad 2 x_{1}+x_{2} \leqq 20,2 x_{1}+3 x_{3} \leqq 30$.
11. Prob. 22 in Problem Set 22.2.
12. Maximize $f=2 x_{1}+3 x_{2}+x_{3}$ subject to $x_{1}+x_{2}+$ $x_{3} \leqq 4.8,10 x_{1}+x_{3} \leqq 9.9, x_{2}-x_{3} \leqq 0.2$.
13. Maximize $f=34 x_{1}+29 x_{2}+32 x_{3}$ subject to $8 x_{1}+$ $2 x_{2}+x_{3} \leqq 54,3 x_{1}+8 x_{2}+2 x_{3} \leqq 59, x_{1}+x_{2}+$ $5 x_{3} \leqq 39$.
14. Maximize $f=2 x_{1}+3 x_{2}$ subject to $5 x_{1}+3 x_{2} \leqq 105$, $3 x_{1}+6 x_{2} \leqq 126$.
15. CAS PROJECT. Simple Method. (a) Write a program for graphing a region R in the first quadrant of the $x_{1} x_{2}$-plane determined by linear constraints.
(b) Write a program for maximizing $z=a_{1} x_{1}+a_{2} x_{2}$ in R.
(c) Write a program for maximizing $z=a_{1} x_{1}+$ $\cdots+a_{n} x_{n}$ subject to linear constraints.
(d) Apply your programs to problems in this problem set and the previous one.

22.4 Simplex Method: Difficulties

In solving a linear optimization problem by the simplex method, we proceed stepwise from one basic feasible solution to another. By so doing, we increase the value of the objective function f. We continue this stepwise procedure, until we reach an optimal solution. This was all explained in Sec. 22.3. However, the method does not always proceed so smoothly. Occasionally, but rather infrequently in practice, we encounter two kinds of difficulties. The first one is the degeneracy and the second one concerns difficulties in starting.

Degeneracy

A degenerate feasible solution is a feasible solution at which more than the usual number $n-m$ of variables are zero. Here n is the number of variables (slack and others) and m the number of constraints (not counting the $x_{j} \geqq 0$ conditions). In the last section, $n=4$ and $m=2$, and the occurring basic feasible solutions were nondegenerate; $n-m=2$ variables were zero in each such solution.

In the case of a degenerate feasible solution we do an extra elimination step in which a basic variable that is zero for that solution becomes nonbasic (and a nonbasic variable becomes basic instead). We explain this in a typical case. For more complicated cases and techniques (rarely needed in practice) see Ref. [F5] in App. 1.

EXAMPLE 1 Simplex Method, Degenerate Feasible Solution

AB Steel, Inc., produces two kinds of iron I_{1}, I_{2} by using three kinds of raw material R_{1}, R_{2}, R_{3} (scrap iron and two kinds of ore) as shown. Maximize the daily profit.

Raw Material	Raw Material Needed per Ton	Raw Material Available per Day (tons)
	Iron I_{1}	Iron I_{2}

Solution. Let x_{1} and x_{2} denote the amount (in tons) of iron I_{1} and I_{2}, respectively, produced per day. Then our problem is as follows. Maximize

$$
\begin{equation*}
z=f(x)=150 x_{1}+300 x_{2} \tag{1}
\end{equation*}
$$

subject to the constraints $x_{1} \geqq 0, x_{2} \geqq 0$ and

$$
\begin{array}{rlr}
2 x_{1}+x_{2} & \leqq 16 & \\
x_{1}+x_{2} & \leqq 8 & \left(\text { raw material } R_{1}\right) \\
x_{2} & \leqq 3.5 & \left(\text { raw material } R_{2}\right) \\
\left.R_{3}\right) .
\end{array}
$$

By introducing slack variables x_{3}, x_{4}, x_{5} we obtain the normal form of the constraints
(2)

$$
\begin{array}{cl}
2 x_{1}+x_{2}+x_{3} & =16 \\
x_{1}+x_{2}+x_{4} & =8 \\
x_{2} & +x_{5}= \\
x_{i} \geqq 0 & (i=1, \cdots, 5) .
\end{array}
$$

As in the last section we obtain from (1) and (2) the initial simplex table

$$
\mathbf{T}_{0}=\left[\begin{array}{ccccccc}
z & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & b \tag{3}\\
\left.\hline \begin{array}{c:cccccc}
1 & -150 & -300 & 0 & 0 & 0 & 0 \\
\hdashline 0 & 2 & 1 & 1 & 0 & 0 & 16 \\
0 & 1 & 1 & 0 & 1 & 0 & 8 \\
0 & 0 & 1 & 0 & 0 & 1 & 3.5
\end{array}\right] .
\end{array}\right.
$$

We see that x_{1}, x_{2} are nonbasic variables and x_{3}, x_{4}, x_{5} are basic. With $x_{1}=x_{2}=0$ we have from (3) the basic feasible solution

$$
x_{1}=0, \quad x_{2}=0, \quad x_{3}=16 / 1=16, \quad x_{4}=8 / 1=8, \quad x_{5}=3.5 / 1=3.5, \quad z=0 .
$$

This is $O:(0,0)$ in Fig. 475. We have $n=5$ variables $x_{j}, m=3$ constraints, and $n-m=2$ variables equal to zero in our solution, which thus is nondegenerate.

Step 1 of Pivoting

Operation $\boldsymbol{O}_{\mathbf{1}}$: Column Selection of Pivot. Column 2 (since $-150<0$).
Operation \boldsymbol{O}_{2} : Row Selection of Pivot. $16 / 2=8,8 / 1=8 ; 3.5 / 0$ is not possible. Hence we could choose Row 2 or Row 3. We choose Row 2. The pivot is 2 .

Operation \boldsymbol{O}_{3} : Elimination by Row Operations. This gives the simplex table

$$
\mathbf{T}_{1}=\begin{array}{ccccccc}
z & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & b \\
\left.\hdashline \begin{array}{cccccccc}
1 & 0 & -225 & 75 & 0 & 0 & 1200 \\
\hdashline 0 & 2 & 1 & 1 & 0 & 0 & 16 \\
0 & 0 & \frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 3.5
\end{array}\right]
\end{array} \begin{aligned}
& \text { Row } 1+75 \text { Row } 2 \tag{4}\\
& \text { Row 3- } \\
& \text { Row } 4
\end{aligned}
$$

We see that the basic variables are x_{1}, x_{4}, x_{5} and the nonbasic are x_{2}, x_{3}. Setting the nonbasic variables to zero, we obtain from \mathbf{T}_{1} the basic feasible solution

Fig. 475. Example 1, where A is degenerate

$$
x_{1}=16 / 2=8, \quad x_{2}=0, \quad x_{3}=0, \quad x_{4}=0 / 1=0, \quad x_{5}=3.5 / 1=3.5, \quad z=1200
$$

This is $A:(8,0)$ in Fig. 475. This solution in degenerate because $x_{4}=0$ (in addition to $x_{2}=0, x_{3}=0$); geometrically: the straight line $x_{4}=0$ also passes through A. This requires the next step, in which x_{4} will become nonbasic.

Step 2 of Pivoting

Operation $\boldsymbol{O}_{\mathbf{1}}$: Column Selection of Pivot. Column 3 (since $-225<0$).
Operation O_{2} : Row Selection of Pivot. $16 / 1=16,0 / \frac{1}{2}=0$. Hence $\frac{1}{2}$ must serve as the pivot.
Operation \boldsymbol{O}_{3} : Elimination by Row Operations. This gives the following simplex table.

$$
\mathbf{T}_{2}=\left[\begin{array}{ccccccc}
z & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & b \tag{5}\\
\hline\left[\begin{array}{cccc:ccc}
1 & 0 & 0 & -150 & 450 & 0 & 1200 \\
\hdashline 0 & 2 & 0 & 2 & -2 & 0 & 16 \\
0 & 0 & \frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & 1 & 3.5
\end{array}\right] & \left.\begin{array}{c}
\text { Row } 1+450 \text { Row } 3 \\
\text { Row } 2-2 \text { Row } 3 \\
\text { Row } 4-2 \text { Row } 3
\end{array}\right]
\end{array}\right.
$$

We see that the basic variables are x_{1}, x_{2}, x_{5} and the nonbasic are x_{3}, x_{4}. Hence x_{4} has become nonbasic, as intended. By equating the nonbasic variables to zero we obtain from \mathbf{T}_{2} the basic feasible solution

$$
x_{1}=16 / 2=8, \quad x_{2}=0 / \frac{1}{2}=0, \quad x_{3}=0, \quad x_{4}=0, \quad x_{5}=3.5 / 1=3.5, \quad z=1200
$$

This is still $A:(8,0)$ in Fig. 475 and z has not increased. But this opens the way to the maximum, which we reach in the next step.

Step 3 of Pivoting

Operation $\boldsymbol{O}_{\mathbf{1}}$: Column Selection of Pivot. Column 4 (since $-150<0$).
Operation \boldsymbol{O}_{2} : Row Selection of Pivot. $16 / 2=8,0 /\left(-\frac{1}{2}\right)=0,3.5 / 1=3.5$. We can take 1 as the pivot. (With $-\frac{1}{2}$ as the pivot we would not leave A. Try it.)

Operation \boldsymbol{O}_{3} : Elimination by Row Operations. This gives the simplex table

$$
\mathbf{T}_{3}=\left[\begin{array}{ccccccc}
z & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & b \\
\left.\hline \begin{array}{c:cc:ccc:c}
1 & 0 & 0 & 0 & 150 & 150 & 1725 \\
\hdashline 0 & 2 & 0 & 0 & 2 & -2 & 9 \\
0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 1.75 \\
0 & 0 & 0 & 1 & -2 & 1 & 3.5
\end{array}\right]
\end{array} \begin{array}{l}
\text { Row 1 + } 150 \text { Row } 4 \tag{6}\\
\text { Row 2 - 2 Row 4 } \\
\text { Row 3 + } \frac{1}{2} \text { Row } 4
\end{array}\right.
$$

We see that basic variables are x_{1}, x_{2}, x_{3} and nonbasic x_{4}, x_{5}. Equating the latter to zero we obtain from \mathbf{T}_{3} the basic feasible solution

$$
x_{1}=9 / 2=4.5, \quad x_{2}=1.75 / \frac{1}{2}=3.5, \quad x_{3}=3.5 / 1=3.5, \quad x_{4}=0, \quad x_{5}=0, \quad z=1725 .
$$

This is B : $(4.5,3.5)$ in Fig. 475 . Since Row 1 of \mathbf{T}_{3} has no negative entries, we have reached the maximum daily profit $z_{\text {max }}=f(4.5,3.5)=150 \cdot 4.5+300 \cdot 3.5=\$ 1725$. This is obtained by using 4.5 tons of iron I_{1} and 3.5 tons of iron I_{2}.

Difficulties in Starting

As a second kind of difficulty, it may sometimes be hard to find a basic feasible solution to start from. In such a case the idea of an artificial variable (or several such variables) is helpful. We explain this method in terms of a typical example.

EXAMPLE 2 Simplex Method: Difficult Start, Artificial Variable

Maximize

$$
\begin{equation*}
z=f(\mathbf{x})=2 x_{1}+x_{2} \tag{7}
\end{equation*}
$$

subject to the constraints $x_{1} \geqq 0, x_{2} \geqq 0$ and (Fig. 476)

$$
\begin{aligned}
x_{1}-\frac{1}{2} x_{2} & \geqq 1 \\
x_{1}-x_{2} & \leqq 2 \\
x_{1}+x_{2} & \leqq 4 .
\end{aligned}
$$

Solution. By means of slack variables we achieve the normal form of the constraints

$$
\begin{align*}
z-2 x_{1}-x_{2} & =0 \\
x_{1}-\frac{1}{2} x_{2}-x_{3} & =1 \\
x_{1}-x_{2}+x_{4} & =2 \tag{8}\\
x_{1}+x_{2}+x_{5} & =4 \\
x_{i} \geqq 0 \quad(i=1, \cdots, 5) . &
\end{align*}
$$

Note that the first slack variable is negative (or zero), which makes x_{3} nonnegative within the feasibility region (and negative outside). From (7) and (8) we obtain the simplex table

z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	b	
[1	-2	-1	0	0	0	0	
0	1	- $\frac{1}{2}$	-1	0	0	1	
0	1	-1	0	1	0	2	
0	1	1	0	0	1	4	

x_{1}, x_{2} are nonbasic, and we would like to take x_{3}, x_{4}, x_{5} as basic variables. By our usual process of equating the nonbasic variables to zero we obtain from this table

$$
x_{1}=0, \quad x_{2}=0, \quad x_{3}=1 /(-1)=-1, \quad x_{4}=\frac{2}{1}=2, \quad x_{5}=\frac{4}{1}=4, \quad z=0 .
$$

$x_{3}<0$ indicates that $(0,0)$ lies outside the feasibility region. Since $x_{3}<0$, we cannot proceed immediately. Now, instead of searching for other basic variables, we use the following idea. Solving the second equation in (8) for x_{3}, we have

$$
x_{3}=-1+x_{1}-\frac{1}{2} x_{2} .
$$

To this we now add a variable x_{6} on the right,

Fig. 476. Feasibility region in Example 2

$$
\begin{equation*}
x_{3}=-1+x_{1}-\frac{1}{2} x_{2}+x_{6} . \tag{9}
\end{equation*}
$$

x_{6} is called an artificial variable and is subject to the constraint $x_{6} \geqq 0$.
We must take care that x_{6} (which is not part of the given problem!) will disappear eventually. We shall see that we can accomplish this by adding a term $-M x_{6}$ with very large M to the objective function. Because of (7) and (9) (solved for x_{6}) this gives the modified objective function for this "extended problem"

$$
\begin{equation*}
\hat{z}=z-M x_{6}=2 x_{1}+x_{2}-M x_{6}=(2+M) x_{1}+\left(1-\frac{1}{2} M\right) x_{2}-M x_{3}-M \tag{10}
\end{equation*}
$$

We see that the simplex table corresponding to (10) and (8) is

$$
\mathbf{T}_{0}=\left[\begin{array}{cccccccc}
\hat{z} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & b \\
\hdashline \begin{array}{c:cccccc}
1 & -2-M & -1+\frac{1}{2} M & M & 0 & 0 & 0 \\
0 & 1 & -\frac{1}{2} & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & -\frac{1}{2} & -1 & 0 & 0 & 1
\end{array} & 1
\end{array}\right] .
$$

The last row of this table results from (9) written as $x_{1}-\frac{1}{2} x_{2}-x_{3}+x_{6}=1$. We see that we can now start, taking x_{4}, x_{5}, x_{6} as the basic variables and x_{1}, x_{2}, x_{3} as the nonbasic variables. Column 2 has a negative first entry. We can take the second entry (1 in Row 2) as the pivot. This gives

This corresponds to $x_{1}=1, x_{2}=0$ (point A in Fig. 476), $x_{3}=0, x_{4}=1, x_{5}=3, x_{6}=0$. We can now drop Row 5 and Column 7. In this way we get rid of x_{6}, as wanted, and obtain

$$
\mathbf{T}_{2}=\left[\begin{array}{cccccccc}
z & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & b \\
\hdashline\left[\begin{array}{cccccccc}
1 & 0 & -2 & -2 & 0 & 0 & 2 \\
0 & 1 & -\frac{1}{2} & -1 & 0 & 0 & 1 \\
0 & 0 & -\frac{1}{2} & 1 & 1 & 0 & 1 \\
0 & 0 & \frac{3}{2} & 1 & 0 & 1 & 3
\end{array}\right] .
\end{array}\right.
$$

In Column 3 we choose $\frac{3}{2}$ as the next pivot. We obtain

$$
\mathbf{T}_{3}=\left[\begin{array}{cccccccc}
z & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & b \\
\left.\hdashline \begin{array}{c:cc:ccc:c}
1 & 0 & 0 & -\frac{2}{3} & 0 & \frac{4}{3} & 6 \\
\hdashline 0 & 1 & 0 & -\frac{2}{3} & 0 & \frac{1}{3} & 2 \\
0 & 0 & 0 & \frac{4}{3} & 1 & \frac{1}{3} & 2 \\
0 & 0 & \frac{3}{2} & 1 & 0 & 1 & 3
\end{array}\right]
\end{array}\right.
$$

This corresponds to $x_{1}=2, x_{2}=2$ (this is B in Fig. 476), $x_{3}=0, x_{4}=2, x_{5}=0$. In Column 4 we choose $\frac{4}{3}$ as the pivot, by the usual principle. This gives

$$
\mathbf{T}_{4}=\left[\begin{array}{ccccccc}
z & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & b \\
\left.\hdashline \begin{array}{c:ccccccc}
1 & 0 & 0 & 0 & \frac{1}{2} & \frac{3}{2} & 7 \\
\hdashline 0 & 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 3 \\
0 & 0 & 0 & \frac{4}{3} & 1 & \frac{1}{3} & 2 \\
0 & 0 & \frac{3}{2} & 0 & -\frac{3}{4} & \frac{3}{4} & \frac{3}{2}
\end{array}\right]
\end{array}\right.
$$

This corresponds to $x_{1}=3, x_{2}=1$ (point C in Fig. 476), $x_{3}=\frac{3}{2}, x_{4}=0, x_{5}=0$. This is the maximum $f_{\text {max }}=f(3,1)=7$.

We have reached the end of our discussion on linear programming. We have presented the simplex method in great detail as this method has many beautiful applications and works well on most practical problems. Indeed, problems of optimization appear in civil engineering, chemical engineering, environmental engineering, management science, logistics, strategic planning, operations management, industrial engineering, finance, and other areas. Furthermore, the simplex method allows your problem to be scaled up from a small modeling attempt to a larger modeling attempt, by adding more constraints and
variables, thereby making your model more realistic. The area of optimization is an active field of development and research and optimization methods, besides the simplex method, are being explored and experimented with.

1. Maximize $z=f_{1}(\mathbf{x})=7 x_{1}+14 x_{2}$ subject to $0 \leqq x_{1}$ $\leqq 6,0 \leqq x_{2} \leqq 3,7 x_{1}+14 x_{2} \leqq 84$.
2. Do Prob. 1 with the last two constraints interchanged.
3. Maximize the daily output in producing x_{1} steel sheets by process P_{A} and x_{2} steel sheets by process P_{B} subject to the constraints of labor hours, machine hours, and raw material supply:

$$
\begin{gathered}
3 x_{1}+2 x_{2} \leqq 180, \quad 4 x_{1}+6 x_{2} \leqq 200 \\
5 x_{1}+3 x_{2} \leqq 160 .
\end{gathered}
$$

4. Maximize $z=300 x_{1}+500 x_{2}$ subject to $2 x_{1}+8 x_{2}$ $\leqq 60,2 x_{1}+x_{2} \leqq 30,4 x_{1}+4 x_{2} \leqq 60$.
5. Do Prob. 4 with the last two constraints interchanged. Comment on the resulting simplification.
6. Maximize the total output $f=x_{1}+x_{2}+x_{3}$ (production from three distinct processes) subject to input constraints (limitation of time available for production)

$$
\begin{aligned}
5 x_{1}+6 x_{2}+7 x_{3} & \leqq 12 \\
7 x_{1}+4 x_{2}+x_{3} & \leqq 12 .
\end{aligned}
$$

7. Maximize $f=5 x_{1}+8 x_{2}+4 x_{3}$ subject to $x_{j} \geqq 0$ $(j=1, \cdots, 5) \quad$ and $\quad x_{1}+x_{3}+x_{5}=1, x_{2}+x_{3}$ $+x_{4}=1$.
8. Using an artificial variable, minimize $f=4 x_{1}-x_{2}$ subject to $x_{1}+x_{2} \geqq 2,-2 x_{1}+3 x_{2} \leqq 1,5 x_{1}+4 x_{2} \leqq 50$.
9. Maximize $f=2 x_{1}+3 x_{2}+2 x_{3}, x_{1} \geqq 0, x_{2} \geqq 0$, $x_{3} \geqq 0, x_{1}+2 x_{2}-4 x_{3} \leqq 2, x_{1}+2 x_{2}+2 x_{3} \leqq 5$.

CHAPMER22REVIEW OUESTIONS AND PROBLEMS

1. What is unconstrained optimization? Constraint optimization? To which one do methods of calculus apply?
2. State the idea and the formulas of the method of steepest descent.
3. Write down an algorithm for the method of steepest descent.
4. Design a "method of steepest ascent" for determining maxima.
5. What is the method of steepest descent for a function of a single variable?
6. What is the basic idea of linear programming?
7. What is an objective function? A feasible solution?
8. What are slack variables? Why did we introduce them?
9. What happens in Example 1 of Sec. 22.1 if you replace $f(\mathbf{x})=x_{1}^{2}+3 x_{2}^{2}$ with $f(\mathbf{x})=x_{1}^{2}+5 x_{2}^{2}$? Start from $\mathbf{x}_{0}=\left[\begin{array}{ll}6 & 3\end{array}\right]^{\top}$. Do 5 steps. Is the convergence faster or slower?
10. Apply the method of steepest descent to $f(\mathbf{x})=9 x_{1}^{2}+$ $x_{2}^{2}+18 x_{1}-4 x_{2}, 5$ steps. Start from $\mathbf{x}_{0}=\left[\begin{array}{ll}2 & 4\end{array}\right]^{\top}$.
11. In Prob. 10 , could you start from $\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$ and do 5 steps?
12. Show that the gradients in Prob. 11 are orthogonal. Give a reason.
13-16 Graph or sketch the region in the first quadrant of the $x_{1} x_{2}$-plane determined by the following inequalities.
13. $x_{1}-2 x_{2} \leqq-2$
$0.8 x_{1}+x_{2} \leqq 6$
14. $x_{1}-2 x_{2} \geqq-4$
$2 x_{1}+x_{2} \leqq 12$
$x_{1}+x_{2} \leqq 8$
15. $x_{1}+x_{2} \leqq 5$
$x_{2} \leqq 3$
$-x_{1}+x_{2} \leqq 2$
16. $x_{1}+x_{2} \geqq 2$
$2 x_{1}-3 x_{2} \geqq-12$
$x_{1} \leqq 15$

17-20 Maximize or minimize as indicated.
17. Maximize $f=10 x_{1}+20 x_{2}$ subject to $x_{1} \leqq 5, x_{1}+$ $x_{2} \leqq 6, x_{2} \leqq 4$.
18. Maximize $f=x_{1}+x_{2}$ subject to $x_{1}+2 x_{2} \leqq 10$, $2 x_{2}+x_{2} \leqq 10, x_{2} \leqq 4$.
19. Minimize $f=2 x_{1}-10 x_{2}$ subject to $x_{1}-x_{2} \leqq 4$, $2 x_{1}+x_{2} \leqq 14, \quad x_{1}+x_{2} \leqq 9,-x_{1}+3 x_{2} \leqq 15$.
20. A factory produces two kinds of gaskets, G_{1}, G_{2}, with net profit of $\$ 60$ and $\$ 30$, respectively, Maximize the total daily profit subject to the constraints ($x_{j}=$ number of gaskets G_{j} produced per day):

$$
\begin{aligned}
40 x_{1}+40 x_{2} & \leqq 1800 \quad \text { (Machine hours) } \\
200 x_{1}+20 x_{2} & \leqq 6300 \quad \text { (Labor) }
\end{aligned}
$$

SUMMARY OF CHAPIER 2 ?
 Unconstrained Optimization.
 Linear Programming

In optimization problems we maximize or minimize an objective function $z=f(\mathbf{x})$ depending on control variables x_{1}, \cdots, x_{m} whose domain is either unrestricted ("unconstrained optimization," Sec. 22.1) or restricted by constraints in the form of inequalities or equations or both ("constrained optimization," Sec. 22.2).

If the objective function is linear and the constraints are linear inequalities in x_{1}, \cdots, x_{m}, then by introducing slack variables x_{m+1}, \cdots, x_{n} we can write the optimization problem in normal form with the objective function given by

$$
\begin{equation*}
f_{1}=c_{1} x_{1}+\cdots+c_{n} x_{n} \tag{1}
\end{equation*}
$$

(where $c_{m+1}=\cdots=c_{n}=0$) and the constraints given by

$$
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}
$$

(2)

$$
\begin{gathered}
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m} \\
x_{1} \geqq 0, \cdots, x_{n} \geqq 0 .
\end{gathered}
$$

In this case we can then apply the widely used simplex method (Sec. 22.3), a systematic stepwise search through a very much reduced subset of all feasible solutions. Section 22.4 shows how to overcome difficulties with this method.

Graphs. Combinatorial Optimization

Many problems in electrical engineering, civil engineering, operations research, industrial engineering, management, logistics, marketing, and economics can be modeled by graphs and directed graphs, called digraphs. This is not surprising as they allow us to model networks, such as roads and cables, where the nodes may be cities or computers. The task then is to find the shortest path through the network or the best way to connect computers. Indeed, many researchers who made contributions to combinatorial optimization and graphs, and whose names lend themselves to fundamental algorithms in this chapter, such as Fulkerson, Kruskal, Moore, and Prim, all worked at Bell Laboratories in New Jersey, the major R\&D facilities of the huge telephone and telecommunication company AT\&T. As such, they were interested in methods of optimally building computer networks and telephone networks. The field has progressed into looking for more and more efficient algorithms for very large problems.

Combinatorial optimization deals with optimization problems that are of a pronounced discrete or combinatorial nature. Often the problems are very large and so a direct search may not be possible. Just like in linear programming (Chap. 22), the computer is an indispensible tool and makes solving large-scale modeling problems possible. Because the area has a distinct flavor, different from ODEs, linear algebra, and other areas, we start with the basics and gradually introduce algorithms for shortest path problems (Secs. 22.2, 22.3), shortest spanning trees (Secs. 23.4, 23.5), flow problems in networks (Secs. 23.6, 23.7), and assignment problems (Sec. 23.8).

Prerequisite: none.
References and Answers to Problems: App. 1 Part F, App. 2.

23.1 Graphs and Digraphs

Roughly, a graph consists of points, called vertices, and lines connecting them, called edges. For example, these may be four cities and five highways connecting them, as in Fig. 477. Or the points may represent some people, and we connect by an edge those who do business with each other. Or the vertices may represent computers in a network and the edge connections between them. Let us now give a formal definition.

Fig. 477. Graph consisting of 4 vertices and 5 edges

Fig. 478. Isolated vertex, loop, double edge. (Excluded by definition.)

Graph

A graph G consists of two finite sets (sets having finitely many elements), a set V of points, called vertices, and a set E of connecting lines, called edges, such that each edge connects two vertices, called the endpoints of the edge. We write

$$
G=(V, E)
$$

Excluded are isolated vertices (vertices that are not endpoints of any edge), loops (edges whose endpoints coincide), and multiple edges (edges that have both endpoints in common). See Fig. 478.

CAUTION! Our three exclusions are practical and widely accepted, but not uniformly. For instance, some authors permit multiple edges and call graphs without them simple graphs.

We denote vertices by letters, u, v, \cdots or v_{1}, v_{2}, \cdots or simply by numbers $1,2, \cdots$ (as in Fig. 477). We denote edges by e_{1}, e_{2}, \cdots or by their two endpoints; for instance, $e_{1}=(1,4), e_{2}=(1,2)$ in Fig. 477.

An edge $\left(v_{i}, v_{j}\right)$ is called incident with the vertex v_{i} (and conversely); similarly, (v_{i}, v_{j}) is incident with v_{j}. The number of edges incident with a vertex v is called the degree of v. Two vertices are called adjacent in G if they are connected by an edge in G (that is, if they are the two endpoints of some edge in G).

We meet graphs in different fields under different names: as "networks" in electrical engineering, "structures" in civil engineering, "molecular structures" in chemistry, "organizational structures" in economics, "sociograms," "road maps," "telecommunication networks," and so on.

Digraphs (Directed Graphs)

Nets of one-way streets, pipeline networks, sequences of jobs in construction work, flows of computation in a computer, producer-consumer relations, and many other applications suggest the idea of a "digraph" (= directed graph), in which each edge has a direction (indicated by an arrow, as in Fig. 479).

Fig. 479. Digraph

DEFINITION

Digraph (Directed Graph)

A digraph $G=(V, E)$ is a graph in which each edge $e=(i, j)$ has a direction from its "initial point" i to its "terminal point" j.

Two edges connecting the same two points i, j are now permitted, provided they have opposite directions, that is, they are (i, j) and (j, i). Example. $(1,4)$ and $(4,1)$ in Fig. 479.

A subgraph or subdigraph of a given graph or digraph $G=(V, E)$, respectively, is a graph or digraph obtained by deleting some of the edges and vertices of G, retaining the other edges of G (together with their pairs of endpoints). For instance, e_{1}, e_{3} (together with the vertices 1, 2, 4) form a subgraph in Fig. 477, and e_{3}, e_{4}, e_{5} (together with the vertices 1, 3, 4) form a subdigraph in Fig. 479.

Computer Representation of Graphs and Digraphs

Drawings of graphs are useful to people in explaining or illustrating specific situations. Here one should be aware that a graph may be sketched in various ways; see Fig. 480. For handling graphs and digraphs in computers, one uses matrices or lists as appropriate data structures, as follows.

Fig. 480. Different sketches of the same graph

Adjacency Matrix of a Graph \boldsymbol{G} : Matrix $\mathbf{A}=\left[a_{i j}\right]$ with entries

$$
a_{i j}= \begin{cases}1 & \text { if } G \text { has an edge }(i, j), \\ 0 & \text { else }\end{cases}
$$

Thus $a_{i j}=1$ if and only if two vertices i and j are adjacent in G. Here, by definition, no vertex is considered to be adjacent to itself; thus, $a_{i i}=0$. \mathbf{A} is symmetric, $a_{i j}=a_{j i}$. (Why?)

The adjacency matrix of a graph is generally much smaller than the so-called incidence matrix (see Prob. 18) and is preferred over the latter if one decides to store a graph in a computer in matrix form.

EXAMPLE 1 Adjacency Matrix of a Graph

$\left.\begin{array}{r}\text { Vertex } \\ \text { Vertex } 1 \\ 2 \\ 3 \\ 4\end{array} \begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$

Adjacency Matrix of a Digraph \boldsymbol{G} : Matrix $\mathbf{A}=\left[a_{i j}\right]$ with entries

$$
a_{i j}= \begin{cases}1 & \text { if } G \text { has a directed edge }(i, j) \\ 0 & \text { else }\end{cases}
$$

This matrix A need not be symmetric. (Why?)

EXAMPLE 2 Adjacency Matrix of a Digraph

Lists. The vertex incidence list of a graph shows, for each vertex, the incident edges. The edge incidence list shows for each edge its two endpoints. Similarly for a digraph; in the vertex list, outgoing edges then get a minus sign, and in the edge list we now have ordered pairs of vertices.

EXAMPLE 3 Vertex Incidence List and Edge Incidence List of a Graph

This graph is the same as in Example 1, except for notation.

Vertex	Incident Edges		Edge	Endpoints
	e_{1}, e_{5}		e_{1}	v_{1}, v_{2}
v_{2}	e_{1}, e_{2}, e_{3}		e_{2}	v_{2}, v_{3}
v_{3}	e_{2}, e_{4}		e_{3}	v_{2}, v_{4}
v_{4}	e_{3}, e_{4}, e_{5}		e_{4}	v_{3}, v_{4}
			e_{5}	v_{1}, v_{4}

Sparse graphs are graphs with few edges (far fewer than the maximum possible number $n(n-1) / 2$, where n is the number of vertices). For these graphs, matrices are not efficient. Lists then have the advantage of requiring much less storage and being easier to handle; they can be ordered, sorted, or manipulated in various other ways directly within the computer. For instance, in tracing a "walk" (a connected sequence of edges with pairwise common endpoints), one can easily go back and forth between the two lists just discussed, instead of scanning a large column of a matrix for a single 1 .

Computer science has developed more refined lists, which, in addition to the actual content, contain "pointers" indicating the preceding item or the next item to be scanned or both items (in the case of a "walk": the preceding edge or the subsequent one). For details, see Refs. [E16] and [F7].

This section was devoted to basic concepts and notations needed throughout this chapter, in which we shall discuss some of the most important classes of combinatorial optimization problems. This will at the same time help us to become more and more familiar with graphs and digraphs.

1. Explain how the following can be regarded as a graph or a digraph: a family tree, air connections between given cities, trade relations between countries, a tennis tournament, and memberships of some persons in some committees.
2. Sketch the graph consisting of the vertices and edges of a triangle. Of a pentagon. Of a tetrahedron.
3. How would you represent a net of two-way and oneway streets by a digraph?
4. Worker W_{1} can do jobs J_{1}, J_{3}, J_{4}, worker W_{2} job J_{3}, and worker W_{3} jobs J_{2}, J_{3}, J_{4}. Represent this by a graph.
5. Find further situations that can be modeled by a graph or diagraph.

ADJACENCY MATRIX

6. Show that the adjacency matrix of a graph is symmetric.
7. When will the adjacency matrix of a digraph be symmetric?

8-13 Find the adjacency matrix of the given graph or

 digraph.8.

9.

10.

11.

12.

13.

14-15 Sketch the graph for the given adjacency matrix.
14. $\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$ 15. $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
16. Complete graph. Show that a graph G with n vertices can have at most $n(n-1) / 2$ edges, and G has exactly $n(n-1) / 2$ edges if G is complete, that is, if every pair of vertices of G is joined by an edge. (Recall that loops and multiple edges are excluded.)
17. In what case are all the off-diagonal entries of the adjacency matrix of a graph G equal to one?
18. Incidence matrix \mathbf{B} of a graph. The definition is $\mathbf{B}=\left[b_{j k}\right]$, where

$$
b_{j k}= \begin{cases}1 & \text { if vertex } j \text { is an endpoint of edge } e_{k} \\ 0 & \text { otherwise }\end{cases}
$$

Find the incidence matrix of the graph in Prob. 8.
19. Incidence matrix $\widetilde{\mathbf{B}}$ of a digraph. The definition is $\widetilde{\mathbf{B}}=\left[b_{j k}\right]$, where

$$
\widetilde{b}_{j k}=\left\{\begin{aligned}
-1 & \text { if edge } e_{k} \text { leaves vertex } j \\
1 & \text { if edge } e_{k} \text { enters vertex } j \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Find the incidence matrix of the digraph in Prob. 11.
20. Make the vertex incidence list of the digraph in Prob. 11.

23.2 Shortest Path Problems. Complexity

The rest of this chapter is devoted to the most important classes of problems of combinatorial optimization that can be represented by graphs and digraphs. We selected these problems because of their importance in applications, and present their solutions in algorithmic form. Although basic ideas and algorithms will be explained and illustrated by small graphs, you should keep in mind that real-life problems may often involve many thousands or even millions of vertices and edges. Think of computer networks, telephone networks, electric power grids, worldwide air travel, and companies that have offices and stores in all larger cities. You can also think of other ideas for networks related to the Internet, such as electronic commerce (networks of buyers and sellers of goods over the Internet) and social networks and related websites, such as Facebook. Hence reliable and efficient systematic methods are an absolute necessitysolutions by trial and error would no longer work, even if "nearly optimal" solutions were acceptable.

We begin with shortest path problems, as they arise, for instance, in designing shortest (or least expensive, or fastest) routes for a traveling salesman, for a cargo ship, etc. Let us first explain what we mean by a path.

In a graph $G=(V, E)$ we can walk from a vertex v_{1} along some edges to some other vertex v_{k}. Here we can
(A) make no restrictions, or
(B) require that each edge of G be traversed at most once, or
(C) require that each vertex be visited at most once.

In case (A) we call this a walk. Thus a walk from v_{1} to v_{k} is of the form

$$
\begin{equation*}
\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \cdots,\left(v_{k-1}, v_{k}\right), \tag{1}
\end{equation*}
$$

where some of these edges or vertices may be the same. In case (B), where each edge may occur at most once, we call the walk a trail. Finally, in case (C), where each vertex may occur at most once (and thus each edge automatically occurs at most once), we call the trail a path.

We admit that a walk, trail, or path may end at the vertex it started from, in which case we call it closed; then $v_{k}=v_{1}$ in (1).

A closed path is called a cycle. A cycle has at least three edges (because we do not have double edges; see Sec. 23.1). Figure 481 illustrates all these concepts.

Fig. 481. Walk, trail, path, cycle

$$
\begin{aligned}
& 1-2-3-2 \text { is a walk (not a trail). } \\
& 4-1-2-3-4-5 \text { is a trail (not a path). } \\
& 1-2-3-4-5 \text { is a path (not a cycle). } \\
& 1-2-3-4-1 \text { is a cycle. }
\end{aligned}
$$

Shortest Path

To define the concept of a shortest path, we assume that $G=(V, E)$ is a weighted graph, that is, each edge $\left(v_{i}, v_{j}\right)$ in G has a given weight or length $l_{i j}>0$. Then a shortest path $v_{1} \rightarrow v_{k}$ (with fixed v_{1} and v_{k}) is a path (1) such that the sum of the lengths of its edges

$$
l_{12}+l_{23}+l_{34}+\cdots+l_{k-1, k}
$$

($l_{12}=$ length of $\left(v_{1}, v_{2}\right)$, etc.) is minimum (as small as possible among all paths from v_{1} to v_{k}). Similarly, a longest path $v_{1} \rightarrow v_{k}$ is one for which that sum is maximum.

Shortest (and longest) path problems are among the most important optimization problems. Here, "length" $l_{i j}$ (often also called "cost" or "weight") can be an actual length measured in miles or travel time or fuel expenses, but it may also be something entirely different.

For instance, the traveling salesman problem requires the determination of a shortest Hamiltonian ${ }^{1}$ cycle in a graph, that is, a cycle that contains all the vertices of the graph.

In more detail, the traveling salesman problem in its most basic and intuitive form can be stated as follows. You have a salesman who has to drive by car to his customers. He has to drive to n cities. He can start at any city and after completion of the trip he has to return to that city. Furthermore, he can only visit each city once. All the cities are linked by roads to each other, so any city can be visited from any other city directly, that is, if he wants to go from one city to another city, there is only one direct road connecting those two cities. He has to find the optimal route, that is, the route with the shortest total mileage for the overall trip. This is a classic problem in combinatorial optimization and comes up in many different versions and applications. The maximum number of possible paths to be examined in the process of selecting the optimal path for n cities is $(n-1)!/ 2$, because, after you pick the first city, you have $n-1$ choices for the second city, $n-2$ choices for the third city, etc. You get a total of $(n-1)$! (see Sec. 24.4). However, since the mileage does not depend on the direction of the tour (e.g., for $n=4$ (four cities $1,2,3,4$), the tour $1-2-3-4-1$ has the same mileage as $1-4-3-2-1$, etc., so that we counted all the tours twice!), the final answer is $(n-1)!/ 2$. Even for a small number of cities, say $n=15$, the maximum number of possible paths is very large. Use your calculator or CAS to see for yourself! This means that this is a very difficult problem for larger n and typical of problems in combinatorial optimization, in that you want a discrete solution but where it might become nearly impossible to explicitly search through all the possibilities and therefore some heuristics (rules of thumbs, shortcuts) might be used, and a less than optimal answer suffices.

[^18]A variation of the traveling salesman problem is the following. By choosing the "most profitable" route $v_{1} \rightarrow v_{k}$, a salesman may want to maximize $\Sigma l_{i j}$, where $l_{i j}$ is his expected commission minus his travel expenses for going from town i to town j.

In an investment problem, i may be the day an investment is made, j the day it matures, and $l_{i j}$ the resulting profit, and one gets a graph by considering the various possibilities of investing and reinvesting over a given period of time.

Shortest Path If All Edges Have Length $l=1$

Obviously, if all edges have length l, then a shortest path $v_{1} \rightarrow v_{k}$ is one that has the smallest number of edges among all paths $v_{1} \rightarrow v_{k}$ in a given graph G. For this problem we discuss a BFS algorithm. BFS stands for Breadth First Search. This means that in each step the algorithm visits all neighboring (all adjacent) vertices of a vertex reached, as opposed to a DFS algorithm (Depth First Search algorithm), which makes a long trail (as in a maze). This widely used BFS algorithm is shown in Table 23.1.

We want to find a shortest path in G from a vertex s (start) to a vertex t (terminal). To guarantee that there is a path from s to t, we make sure that G does not consist of separate portions. Thus we assume that G is connected, that is, for any two vertices v and w there is a path $v \rightarrow w$ in G. (Recall that a vertex v is called adjacent to a vertex u if there is an edge (u, v) in G.)

Table 23.1 Moore's ${ }^{\mathbf{2}}$ BFS for Shortest Path (All Lengths One)
Proceedings of the International Symposium for Switching Theory, Part II. pp. 285-292. Cambridge: Harvard University Press, 1959.

ALGORITHM MOORE $[G=(V, E), s, t]$

This algorithm determines a shortest path in a connected graph $G=(V, E)$ from a vertex s to a vertex t.

INPUT: Connected graph $G=(V, E)$, in which one vertex is denoted by s and one by t, and each edge (i, j) has length $l_{i j}=1$. Initially all vertices are unlabeled.

OUTPUT: A shortest path $s \rightarrow t$ in $G=(V, E)$

1. Label s with 0 .
2. Set $i=0$.
3. Find all unlabeled vertices adjacent to a vertex labeled i.
4. Label the vertices just found with $i+1$.
5. If vertex t is labeled, then "backtracking" gives the shortest path

$$
k(=\text { label of } t), k-1, k-2, \cdots, 0
$$

OUTPUT $k, k-1, k-2, \cdots, 0$. Stop
Else increase i by 1 . Go to Step 3 .
End MOORE

[^19]
EXAMPLE 1 Application of Moore's BFS Algorithm

Find a shortest path $s \rightarrow t$ in the graph G shown in Fig. 482.
Solution. Figure 482 shows the labels. The blue edges form a shortest path (length 4). There is another shortest path $s \rightarrow t$. (Can you find it?) Hence in the program we must introduce a rule that makes backtracking unique because otherwise the computer would not know what to do next if at some step there is a choice (for instance, in Fig. 482 when it got back to the vertex labeled 2). The following rule seems to be natural.
Backtracking rule. Using the numbering of the vertices from 1 to n (not the labeling!), at each step, if a vertex labeled i is reached, take as the next vertex that with the smallest number (not label!) among all the vertices labeled $i-1$.

Fig. 482. Example 1, given graph and result of labeling

Complexity of an Algorithm

Complexity of Moore's algorithm. To find the vertices to be labeled 1, we have to scan all edges incident with s. Next, when $i=1$, we have to scan all edges incident with vertices labeled 1, etc. Hence each edge is scanned twice. These are $2 m$ operations ($m=$ number of edges of G). This is a function $c(m)$. Whether it is $2 m$ or $5 m+3$ or $12 m$ is not so essential; it is essential that $c(m)$ is proportional to m (not m^{2}, for example); it is of the "order" m. We write for any function $a m+b$ simply $O(m)$, for any function $a m^{2}+b m+d$ simply $O\left(m^{2}\right)$, and so on; here, O suggests order. The underlying idea and practical aspect are as follows.

In judging an algorithm, we are mostly interested in its behavior for very large problems (large m in the present case), since these are going to determine the limits of the applicability of the algorithm. Thus, the essential item is the fastest growing term $\left(a m^{2}\right.$ in $a m^{2}+b m+d$, etc.) since it will overwhelm the others when m is large enough. Also, a constant factor in this term is not very essential; for instance, the difference between two algorithms of orders, say, $5 m^{2}$ and $8 m^{2}$ is generally not very essential and can be made irrelevant by a modest increase in the speed of computers. However, it does make a great practical difference whether an algorithm is of order m or m^{2} or of a still higher power m^{p}. And the biggest difference occurs between these "polynomial orders" and "exponential orders," such as 2^{m}.

For instance, on a computer that does 10^{9} operations per second, a problem of size $m=50$ will take 0.3 sec with an algorithm that requires m^{5} operations, but 13 days with an algorithm that requires 2^{m} operations. But this is not our only reason for regarding polynomial orders as good and exponential orders as bad. Another reason is the gain in using a faster computer. For example, let two algorithms be $O(m)$ and $O\left(m^{2}\right)$. Then, since $1000=31.6^{2}$, an increase in speed by a factor 1000 has the effect that per hour we can do problems 1000 and 31.6 times as big, respectively. But since $1000=2^{9.97}$, with an algorithm that is $O\left(2^{m}\right)$, all we gain is a relatively modest increase of 10 in problem size because $2^{9.97} \cdot 2^{m}=2^{m+9.97}$.

The symbol \boldsymbol{O} is quite practical and commonly used whenever the order of growth is essential, but not the specific form of a function. Thus if a function $g(m)$ is of the form

$$
g(m)=k h(m)+\text { more slowly growing terms } \quad(k \neq 0, \text { constant })
$$

we say that $g(m)$ is of the $\operatorname{order} h(m)$ and write

$$
g(m)=O(h(m))
$$

For instance,

$$
a m+b=O(m), \quad a m^{2}+b m+d=O\left(m^{2}\right), \quad 5 \cdot 2^{m}+3 m^{2}=O\left(2^{m}\right)
$$

We want an algorithm \mathscr{A} to be "efficient," that is, "good" with respect to
(i) Time (number $c_{\mathscr{A}}(m)$ of computer operations), or
(ii) Space (storage needed in the internal memory)
or both. Here $c_{\mathscr{A}}$ suggests "complexity" of \mathscr{A}. Two popular choices for $c_{\mathscr{A}}$ are
(Worst case) $\quad c_{\mathscr{A}}(m)=$ longest time \mathscr{A} takes for a problem of size m,
(Average case) $\quad c_{\mathscr{A}}(m)=$ average time \mathscr{A} takes for a problem of size m.
In problems on graphs, the "size" will often be m (number of edges) or n (number of vertices). For Moore's algorithm, $c_{\mathscr{A}}(m)=2 m$ in both cases. Hence the complexity of Moore's algorithm is of order $O(m)$.

For a "good" algorithm \mathscr{A}, we want that $c_{\mathscr{A}}(m)$ does not grow too fast. Accordingly, we call \mathscr{A} efficient if $c_{\mathscr{A}}(m)=O\left(m^{k}\right)$ for some integer $k \geqq 0$; that is, $c_{\mathscr{A}}$ may contain only powers of m (or functions that grow even more slowly, such as $\ln m$), but no exponential functions. Furthermore, we call \mathscr{A} polynomially bounded if \mathscr{A} is efficient when we choose the "worst case" $c_{\mathscr{A}}(m)$. These conventional concepts have intuitive appeal, as our discussion shows.

Complexity should be investigated for every algorithm, so that one can also compare different algorithms for the same task. This may often exceed the level in this chapter; accordingly, we shall confine ourselves to a few occasional comments in this direction.

PROBHEMMET-23.2

SHORTEST PATHS, MOORE'S BFS

(All edges length one)
1-4 Find a shortest path $P: s \rightarrow t$ and its length by Moore's algorithm. Sketch the graph with the labels and indicate P by heavier lines as in Fig. 482.
1.

2.

5. Moore's algorithm. Show that if vertex v has label $\lambda(v)=k$, then there is a path $s \rightarrow v$ of length k.
6. Maximum length. What is the maximum number of edges that a shortest path between any two vertices in a graph with n vertices can have? Give a reason. In a complete graph with all edges of length 1 ?
7. Nonuniqueness. Find another shortest path from s to t in Example 1 of the text.
8. Moore's algorithm. Call the length of a shortest path $s \rightarrow v$ the distance of v from s. Show that if v has distance l, it has label $\lambda(v)=l$.
9. CAS PROBLEM. Moore's Algorithm. Write a computer program for the algorithm in Table 23.1. Test the program with the graph in Example 1. Apply it to Probs. 1-3 and to some graphs of your own choice.

10-12 HAMILTONIAN CYCLE

10. Find and sketch a Hamiltonian cycle in the graph of a dodecahedron, which has 12 pentagonal faces and 20 vertices (Fig. 483). This is a problem Hamilton himself considered.

Fig. 483. Problem 10
11. Find and sketch a Hamiltonian cycle in Prob. 1.
12. Does the graph in Prob. 4 have a Hamiltonian cycle?

13-14 POSTMAN PROBLEM

13. The postman problem is the problem of finding a closed walk $W: s \rightarrow s$ (s the post office) in a graph G with edges (i, j) of length $l_{i j}>0$ such that every edge of G is traversed at least once and the length of W is minimum. Find a solution for the graph in Fig. 484 by inspection. (The problem is also called the Chinese postman problem since it was published in the journal Chinese Mathematics 1 (1962), 273-277.)

Fig. 484. Problem 13
14. Show that the length of a shortest postman trail is the same for every starting vertex.

15-17 EULER GRAPHS

15. An Euler graph G is a graph that has a closed Euler trail. An Euler trail is a trail that contains every edge of G exactly once. Which subgraph with four edges of the graph in Example 1, Sec. 23.1, is an Euler graph?
16. Find four different closed Euler trails in Fig. 485.

Fig. 485. Problem 16
17. Is the graph in Fig. 484 an Euler graph. Give reason.

18-20 ORDER

18. Show that $O\left(m^{3}\right)+O\left(m^{3}\right)=O\left(m^{3}\right)$ and $k O\left(m^{p}\right)=$ $O\left(m^{p}\right)$.
19. Show that $\sqrt{1+m^{2}}=O(m), 0.02 e^{m}+100 m^{2}=$ $O\left(e^{m}\right)$.
20. If we switch from one computer to another that is 100 times as fast, what is our gain in problem size per hour in the use of an algorithm that is $O(m), O\left(m^{2}\right), O\left(m^{5}\right)$, $O\left(e^{m}\right)$?

23.3 Bellman's Principle. Dijkstra's Algorithm

We continue our discussion of the shortest path problem in a graph G. The last section concerned the special case that all edges had length 1 . But in most applications the edges (i, j) will have any lengths $l_{i j}>0$, and we now turn to this general case, which is of greater practical importance. We write $l_{i j}=\infty$ for any edge (i, j) that does not exist in G (setting $\infty+a=\infty$ for any number a, as usual).

We consider the problem of finding shortest paths from a given vertex, denoted by 1 and called the origin, to all other vertices $2,3, \cdots, n$ of G. We let L_{j} denote the length of a shortest path $P_{j}: 1 \rightarrow j$ in G.

Bellman's Minimality Principle or Optimality Principle ${ }^{3}$

If $P_{j}: 1 \rightarrow j$ is a shortest path from 1 to j in G and (i, j) is the last edge of P_{j} (Fig. 486), then $P_{i}: 1 \rightarrow i\left[\right.$ obtained by dropping (i, j) from $\left.P_{j}\right]$ is a shortest path $1 \rightarrow i$.

Fig. 486. Paths P and P_{i} in Bellman's minimality principle
PROOF Suppose that the conclusion is false. Then there is a path $P_{i}^{*}: 1 \rightarrow i$ that is shorter than P_{i}. Hence, if we now add (i, j) to P_{i}^{*}, we get a path $1 \rightarrow j$ that is shorter than P_{j}. This contradicts our assumption that P_{j} is shortest.

From Bellman's principle we can derive basic equations as follows. For fixed j we may obtain various paths $1 \rightarrow j$ by taking shortest paths P_{i} for various i for which there is in G an edge (i, j), and add (i, j) to the corresponding P_{i}. These paths obviously have lengths $L_{i}+l_{i j}\left(L_{i}=\right.$ length of $\left.P_{i}\right)$. We can now take the minimum over i, that is, pick an i for which $L_{i}+l_{i j}$ is smallest. By the Bellman principle, this gives a shortest path $1 \rightarrow j$. It has the length

$$
\begin{align*}
L_{1} & =0 \\
L_{j} & =\min _{i \neq j}\left(L_{i}+l_{i j}\right), \tag{1}
\end{align*}
$$

$$
j=2, \cdots, n .
$$

These are the Bellman equations. Since $l_{i i}=0$ by definition, instead of $\min _{i \neq j}$ we can simply write $\min _{i}$. These equations suggest the idea of one of the best-known algorithms for the shortest path problem, as follows.

Dijkstra's Algorithm for Shortest Paths

Dijkstra's ${ }^{4}$ algorithm is shown in Table 23.2, where a connected graph G is a graph in which, for any two vertices v and w in G, there is a path $v \rightarrow w$. The algorithm is a labeling procedure. At each stage of the computation, each vertex v gets a label, either
(PL) a permanent label $=$ length L_{v} of a shortest path $1 \rightarrow v$
or
(TL) a temporary label $=$ upper bound \widetilde{L}_{v} for the length of a shortest path $1 \rightarrow v$.

[^20]We denote by $\mathscr{P} \mathscr{L}$ and $\mathscr{T} \mathscr{L}$ the sets of vertices with a permanent label and with a temporary label, respectively. The algorithm has an initial step in which vertex 1 gets the permanent label $L_{1}=0$ and the other vertices get temporary labels, and then the algorithm alternates between Steps 2 and 3. In Step 2 the idea is to pick k "minimally." In Step 3 the idea is that the upper bounds will in general improve (decrease) and must be updated accordingly. Namely, the new temporary label \widetilde{L}_{j} of vertex j will be the old one if there is no improvement or it will be $L_{k}+l_{k j}$ if there is.

Table 23.2 Dijkstra's Algorithm for Shortest Paths

ALGORITHM DIJKSTRA $\left[G=(V, E), V=\{1, \cdots, n\}, l_{i j}\right.$ for all (i, j) in $\left.E\right]$
Given a connected graph $G=(V, E)$ with vertices $1, \cdots, n$ and edges (i, j) having lengths $l_{i j}>0$, this algorithm determines the lengths of shortest paths from vertex 1 to the vertices $2, \cdots, n$.

INPUT: Number of vertices n, edges (i, j), and lengths $l_{i j}$
OUTPUT: Lengths L_{j} of shortest paths $1 \rightarrow j, j=2, \cdots, n$

1. Initial step

Vertex 1 gets PL: $L_{1}=0$.
Vertex $j(=2, \cdots, n)$ gets TL: $\widetilde{L}_{j}=l_{1 j}(=\infty$ if there is no edge $(1, j)$ in $G)$.
Set $\mathscr{P} \mathscr{L}=\{1\}, \mathscr{T} \mathscr{L}=\{2,3, \cdots, n\}$.
2. Fixing a permanent label

Find a k in $\mathscr{T} \mathscr{L}$ for which \widetilde{L}_{k} is miminum, set $L_{k}=\widetilde{L}_{k}$. Take the smallest k if there are several. Delete k from $\mathscr{T} \mathscr{L}$ and include it in $\mathscr{P} \mathscr{L}$.
If $\mathscr{T} \mathscr{L}=\varnothing$ (that is, $\mathscr{T} \mathscr{L}$ is empty) then

$$
\text { OUTPUT } L_{2}, \cdots, L_{n} . \text { Stop }
$$

Else continue (that is, go to Step 3).
3. Updating temporary labels

For all j in $\mathscr{T} \mathscr{L}$, set $\widetilde{L}_{j}=\min _{k}\left\{\widetilde{L}_{j}, L_{k}+l_{k j}\right\}$ (that is, take the smaller of \widetilde{L}_{j} and $L_{k}+l_{k j}$ as your new \widetilde{L}_{j}).
Go to Step 2.
End DIJKSTRA

EXAMPLE 1 Application of Dijkstra's Algorithm

Applying Dijkstra's algorithm to the graph in Fig. 487a, find shortest paths from vertex 1 to vertices 2, 3, 4.
Solution. We list the steps and computations.

1. $L_{1}=0, \widetilde{L}_{2}=8, \widetilde{L}_{3}=5, \widetilde{L}_{4}=7$,
2. $L_{3}=\min \left\{\widetilde{L}_{2}, \widetilde{L}_{3}, \widetilde{L}_{4}\right\}=5, k=3$,
3. $\widetilde{L}_{2}=\min \left\{8, L_{3}+l_{32}\right\}=\min \{8,5+1\}=6$ $\widetilde{L}_{4}=\min \left\{7, L_{3}+l_{34}\right\}=\min \{7, \infty\}=7$
4. $L_{2}=\min \left\{\widetilde{L}_{2}, \widetilde{L}_{4}\right\}=\min \{6,7\}=6, k=2, \quad \mathscr{P} \mathscr{L}=\{1,2,3\}, \quad \mathscr{T} \mathscr{L}=\{4\}$
5. $\widetilde{L}_{4}=\min \left\{7, L_{2}+l_{24}\right\}=\min \{7,6+2\}=7$
6. $L_{4}=7, k=4$

$$
\begin{array}{ll}
\mathscr{P} \mathscr{L}=\{1\}, & \mathscr{T} \mathscr{L}=\{2,3,4\} \\
\mathscr{P} \mathscr{L}=\{1,3\}, & \mathscr{T} \mathscr{L}=\{2,4\}
\end{array}
$$

2. $L_{4}=7, k=4$

$$
\mathscr{P} \mathscr{L}=\{1,2,3,4\}, \quad \mathscr{T} \mathscr{L}=\varnothing .
$$

Figure 487b shows the resulting shortest paths, of lengths $L_{2}=6, L_{3}=5, L_{4}=7$.

(a) Given graph G

(b) Shortest paths in G

Fig. 487. Example 1

Complexity. Dijkstra's algorithm is $O\left(n^{2}\right)$.
PROOF Step 2 requires comparison of elements, first $n-2$, the next time $n-3$, etc., a total of $(n-2)(n-1) / 2$. Step 3 requires the same number of comparisons, a total of $(n-2)(n-1) / 2$, as well as additions, first $n-2$, the next time $n-3$, etc., again a total of $(n-2)(n-) / 2$. Hence the total number of operations is $3(n-2)(n-1) / 2=O\left(n^{2}\right)$.

1. The net of roads in Fig. 488 connecting four villages is to be reduced to minimum length, but so that one can still reach every village from every other village. Which of the roads should be retained? Find the solution (a) by inspection, (b) by Dijkstra's algorithm.

Fig. 488. Problem 1
2. Show that in Dijkstra's algorithm, for L_{k} there is a path $P: 1 \rightarrow k$ of length L_{k}.
3. Show that in Dijkstra's algorithm, at each instant the demand on storage is light (data for fewer than n edges).

4-9 DIJKSTRA'S ALGORITHM

For each graph find the shortest paths.
4.

5.

6.

7.

23.4 Shortest Spanning Trees: Greedy Algorithm

So far we have discussed shortest path problems. We now turn to a particularly important kind of graph, called a tree, along with related optimization problems that arise quite often in practice.

By definition, a tree T is a graph that is connected and has no cycles. "Connected" was defined in Sec. 23.3; it means that there is a path from any vertex in T to any other vertex in T. A cycle is a path $s \rightarrow t$ of at least three edges that is closed $(t=s)$; see also Sec. 23.2. Figure 489a shows an example.

CAUTION: The terminology varies; cycles are sometimes also called circuits.
A spanning tree T in a given connected graph $G=(V, E)$ is a tree containing all the n vertices of G. See Fig. 489b. Such a tree has $n-1$ edges. (Proof?)

A shortest spanning tree T in a connected graph G (whose edges (i, j) have lengths $l_{i j}>0$) is a spanning tree for which $\Sigma l_{i j}$ (sum over all edges of T) is minimum compared to $\Sigma l_{i j}$ for any other spanning tree in G.

Fig. 489. Example of (a) a cycle, (b) a spanning tree in a graph

Trees are among the most important types of graphs, and they occur in various applications. Familiar examples are family trees and organization charts. Trees can be used to exhibit, organize, or analyze electrical networks, producer-consumer and other business relations, information in database systems, syntactic structure of computer programs, etc. We mention a few specific applications that need no lengthy additional explanations.

The set of shortest paths from vertex 1 to the vertices $2, \cdots, n$ in the last section forms a spanning tree.

Railway lines connecting a number of cities (the vertices) can be set up in the form of a spanning tree, the "length" of a line (edge) being the construction cost, and one wants to minimize the total construction cost. Similarly for bus lines, where "length" may be
the average annual operating cost. Or for steamship lines (freight lines), where "length" may be profit and the goal is the maximization of total profit. Or in a network of telephone lines between some cities, a shortest spanning tree may simply represent a selection of lines that connect all the cities at minimal cost. In addition to these examples we could mention others from distribution networks, and so on.

We shall now discuss a simple algorithm for the problem of finding a shortest spanning tree. This algorithm (Table 23.3) is particularly suitable for sparse graphs (graphs with very few edges; see Sec. 23.1).

Table 23.3 Kruskal's ${ }^{5}$ Greedy Algorithm for Shortest Spanning Trees
Proceedings of the American Mathematical Society 7 (1956), 48-50.

ALGORITHM KRUSKAL $\left[G=(V, E), l_{i j}\right.$ for all (i, j) in $\left.E\right]$

Given a connected graph $G=(V, E)$ with vertices $1,2, \cdots, n$ and edges (i, j) having length $l_{i j}>0$, the algorithm determines a shortest spanning tree T in G.

INPUT: Edges (i, j) of G and their lengths $l_{i j}$
OUTPUT: Shortest spanning tree T in G

1. Order the edges of G in ascending order of length.
2. Choose them in this order as edges of \boldsymbol{T}, rejecting an edge only if it forms a cycle with edges already chosen.

If $n-1$ edges have been chosen, then
OUTPUT T (= the set of edges chosen). Stop
End KRUSKAL

EXAMPLE 1 Application of Kruskal's Algorithm

Using Kruskal's algorithm, we shall determine a shortest spanning tree in the graph in Fig. 490.

Fig. 490. Graph in Example 1

Table 23.4 Solution in Example 1

Edge	Length	Choice
$(3,6)$	1	1 st
$(1,2)$	2	2nd
$(1,3)$	4	3rd
$(4,5)$	6	4th
$(2,3)$	7	Reject
$(3,4)$	8	5th
$(5,6)$	9	
$(2,4)$	11	

Solution. See Table 23.4. In some of the intermediate stages the edges chosen form a disconnected graph (see Fig. 491); this is typical. We stop after $n-1=5$ choices since a spanning tree has $n-1$ edges. In our problem the edges chosen are in the upper part of the list. This is typical of problems of any size; in general, edges farther down in the list have a smaller chance of being chosen.

[^21]The efficiency of Kruskal's method is greatly increased by double labeling of vertices.

Double Labeling of Vertices. Each vertex i carries a double label $\left(r_{i}, p_{i}\right)$, where

$$
\begin{aligned}
& r_{i}=\text { Root of the subtree to which } i \text { belongs, } \\
& p_{i}=\text { Predecessor of } i \text { in its subtree }, \\
& p_{i}=0 \text { for roots. }
\end{aligned}
$$

This simplifies rejecting.
Rejecting. If (i, j) is next in the list to be considered, reject (i, j) if $r_{i}=r_{j}$ (that is, i and j are in the same subtree, so that they are already joined by edges and (i, j) would thus create a cycle). If $r_{i} \neq r_{j}$, include (i, j) in T.

If there are several choices for r_{i}, choose the smallest. If subtrees merge (become a single tree), retain the smallest root as the root of the new subtree.

For Example 1 the double-label list is shown in Table 23.5. In storing it, at each instant one may retain only the latest double label. We show all double labels in order to exhibit the process in all its stages. Labels that remain unchanged are not listed again. Underscored are the two 1's that are the common root of vertices 2 and 3, the reason for rejecting the edge (2,3). By reading for each vertex the latest label we can read from this list that 1 is the vertex we have chosen as a root and the tree is as shown in the last part of Fig. 491.

Fig. 491. Choice process in Example 1

Table 23.5 List of Double Labels in Example 1

Vertex	Choice 1 $(3,6)$	Choice 2 $(1,2)$	Choice 3 $(1,3)$	Choice 4 $(4,5)$	Choice 5 $(3,4)$
1		$(1,0)$			
2		$(1,1)$			
3	$(3,0)$		$(1,1)$	$(4,0)$	$(1,3)$
4				$(4,4)$	$(1,4)$
5	$(3,3)$		$(1,3)$		
6					

This is made possible by the predecessor label that each vertex carries. Also, for accepting or rejecting an edge we have to make only one comparison (the roots of the two endpoints of the edge).

Ordering is the more expensive part of the algorithm. It is a standard process in data processing for which various methods have been suggested (see Sorting in Ref. [E25] listed in App. 1). For a complete list of m edges, an algorithm would be $O\left(m \log _{2} m\right)$, but since the $n-1$ edges of the tree are most likely to be found earlier, by inspecting the $q(<m)$ topmost edges, for such a list of q edges one would have $O\left(q \log _{2} m\right)$.

PROBEEM SET 23.4

1-6 KRUSKAL'S GREEDY ALGORITHM

Find a shortest spanning tree by Kruskal's algorithm. Sketch it.
1.

2.

3.

4.

5.

6.

7. CAS PROBLEM. Kruskal's Algorithm. Write a corresponding program. (Sorting is discussed in Ref. [E25] listed in App. 1.)
8. To get a minimum spanning tree, instead of adding shortest edges, one could think of deleting longest edges. For what graphs would this be feasible? Describe an algorithm for this.
9. Apply the method suggested in Prob. 8 to the graph in Example 1. Do you get the same tree?
10. Design an algorithm for obtaining longest spanning trees.
11. Apply the algorithm in Prob. 10 to the graph in Example 1. Compare with the result in Example 1.
12. Forest. A (not necessarily connected) graph without cycles is called a forest. Give typical examples of applications in which graphs occur that are forests or trees.

	Dallas	Denver	Los Angeles	New York	Washington, DC
Chicago	800	900	1800	700	650
Dallas		650	1300	1350	1200
Denver			850	1650	1500
Los Angeles				2500	2350
New York					200

13. Air cargo. Find a shortest spanning tree in the complete graph of all possible 15 connections between the six cities given (distances by airplane, in miles, rounded). Can you think of a practical application of the result?

14-20 GENERAL PROPERTIES OF TREES

Prove the following. Hint. Use Prob. 14 in proving 15 and 18; use Probs. 16 and 18 in proving 20.
14. Uniqueness. The path connecting any two vertices u and v in a tree is unique.
15. If in a graph any two vertices are connected by a unique path, the graph is a tree.
16. If a graph has no cycles, it must have at least 2 vertices of degree 1 (definition in Sec. 23.1).
17. A tree with exactly two vertices of degree 1 must be a path.
18. A tree with n vertices has $n-1$ edges. (Proof by induction.)
19. If two vertices in a tree are joined by a new edge, a cycle is formed.
20. A graph with n vertices is a tree if and only if it has $n-1$ edges and has no cycles.

23.5 Shortest Spanning Trees: Prim's Algorithm

Prim's ${ }^{6}$ algorithm, shown in Table 23.6, is another popular algorithm for the shortest spanning tree problem (see Sec. 23.4). This algorithm avoids ordering edges and gives a tree T at each stage, a property that Kruskal's algorithm in the last section did not have (look back at Fig. 491 if you did not notice it).

In Prim's algorithm, starting from any single vertex, which we call 1, we "grow" the tree T by adding edges to it, one at a time, according to some rule (in Table 23.6) until T finally becomes a spanning tree, which is shortest.

We denote by U the set of vertices of the growing tree T and by S the set of its edges. Thus, initially $U=\{1\}$ and $S=\varnothing$; at the end, $U=V$, the vertex set of the given graph $G=(V, E)$, whose edges (i, j) have length $l_{i j}>0$, as before.

[^22]Thus at the beginning (Step 1) the labels

$$
\lambda_{2}, \cdots, \lambda_{n} \quad \text { of the vertices } \quad 2, \cdots, n
$$

are the lengths of the edges connecting them to vertex 1 (or ∞ if there is no such edge in G). And we pick (Step 2) the shortest of these as the first edge of the growing tree T and include its other end j in U (choosing the smallest j if there are several, to make the process unique). Updating labels in Step 3 (at this stage and at any later stage) concerns each vertex k not yet in U. Vertex k has label $\lambda_{k}=l_{i(k), k}$ from before. If $l_{j k}<\lambda_{k}$, this means that k is closer to the new member j just included in U than k is to its old "closest neighbor" $i(k)$ in U. Then we update the label of k, replacing $\lambda_{k}=l_{i(k), k}$ by $\lambda_{k}=l_{j k}$ and setting $i(k)=j$. If, however, $l_{j k} \geqq \lambda_{k}$ (the old label of k), we don't touch the old label. Thus the label λ_{k} always identifies the closest neighbor of k in U, and this is updated in Step 3 as U and the tree T grow. From the final labels we can backtrack the final tree, and from their numeric values we compute the total length (sum of the lengths of the edges) of this tree.

Prim's algorithm is useful for computer network design, cable, distribution networks, and transportation networks.

Table 23.6 Prim's Algorithm for Shortest Spanning Trees
Bell System Technical Journal 36 (1957), 1389-1401.
For an improved version of the algorithm, see Cheriton and Tarjan, SIAM Journal on Computation 5 (1976), 724-742.

ALGORITHM PRIM $\left[G=(V, E), V=\{1, \cdots, n\}, l_{i j}\right.$ for all (i, j) in $\left.E\right]$
Given a connected graph $G=(V, E)$ with vertices $1,2, \cdots, n$ and edges (i, j) having length $l_{i j}>0$, this algorithm determines a shortest spanning tree T in G and its length $L(T)$.

INPUT: n, edges (i, j) of G and their lengths $l_{i j}$
OUTPUT: Edge set S of a shortest spanning tree T in $G ; L(T)$
[Initially, all vertices are unlabeled.]

1. Initial step

Set $i(k)=1, U=\{1\}, S=\varnothing$.
Label vertex $k(=2, \cdots, n)$ with $\lambda_{k}=l_{i k}[=\infty$ if G has no edge $(1, k)]$.
2. Addition of an edge to the tree T

Let λ_{j} be the smallest λ_{k} for vertex k not in U. Include vertex j in U and edge $(i(j), j)$ in S.
If $U=V$ then compute
$L(T)=\Sigma l_{i j}($ sum over all edges in $S)$
OUTPUT $S, L(T)$. Stop
[S is the edge set of a shortest spanning tree T in G.]
Else continue (that is, go to Step 3).
3. Label updating

For every k not in U, if $l_{j k}<\lambda_{k}$, then set $\lambda_{k}=l_{j k}$ and $i(k)=j$.
Go to Step 2.

End PRIM

EXAMPLE 1 Application of Prim's Algorithm

Fig. 492. Graph in Example 1

Find a shortest spanning tree in the graph in Fig. 492 (which is the same as in Example 1, Sec. 23.4, so that we can compare).

Solution. The steps are as follows.

1. $i(k)=1, U=\{1\}, S=\varnothing$, initial labels see Table 23.7.
2. $\lambda_{2}=l_{12}=2$ is smallest, $U=\{1,2\}, S=\{(1,2)\}$.
3. Update labels as shown in Table 23.7, column (I).
4. $\lambda_{3}=l_{13}=4$ is smallest, $U=\{1,2,3\}, S=\{(1,2),(1,3)\}$.
5. Update labels as shown in Table 23.7, column (II).
6. $\lambda_{6}=l_{36}=1$ is smallest, $U=\{1,2,3,6\}, S=\{(1,2),(1,3),(3,6)\}$.
7. Update labels as shown in Table 23.7, column (III).
8. $\lambda_{4}=l_{34}=8$ is smallest, $U=\{1,2,3,4,6\}, S=\{(1,2),(1,3),(3,4),(3,6)\}$.
9. Update labels as shown in Table 23.7, column (IV).
10. $\lambda_{5}=l_{45}=6$ is smallest, $U=V, S=(1,2),(1,3),(3,4),(3,6),(4,5)$. Stop.

The tree is the same as in Example 1, Sec. 23.4. Its length is 21. You will find it interesting to compare the growth process of the present tree with that in Sec. 23.4.

Table 23.7 Labeling of Vertices in Example 1

Vertex	Initial Label	(I)	(II)	(III)	(IV)
		$l_{12}=2$	-	-	-
		$l_{13}=4$	-	-	-
3		$l_{24}=11$	$l_{34}=8$	$l_{34}=8$	-
4		∞	∞	$l_{65}=9$	$l_{45}=6$
5	∞	∞	$l_{36}=1$	-	-
6					

PROBBEEMESET-23.5

SHORTEST SPANNING TREES. PRIM'S ALGORITHM

1. When will $S=E$ at the end in Prim's algorithm?
2. Complexity. Show that Prim's algorithm has complexity $O\left(n^{2}\right)$.
3. What is the result of applying Prim's algorithm to a graph that is not connected?
4. If for a complete graph (or one with very few edges missing), our data is an $n \times n$ distance table (as in Prob. 13 , Sec. 23.4), show that the present algorithm [which is $O\left(n^{2}\right)$] cannot easily be replaced by an algorithm of order less than $O\left(n^{2}\right)$.
5. How does Prim's algorithm prevent the generation of cycles as you grow T ?

6-13 Find a shortest spanning tree by Prim's algorithm.

6.

7.

8.

9.

10. For the graph in Prob. 6, Sec. 23.4.
11. For the graph in Prob. 4, Sec. 23.4.
12. For the graph in Prob. 2, Sec. 23.4.
13. CAS PROBLEM. Prim's Algorithm. Write a program and apply it to Probs. 6-9.
14. TEAM PROJECT. Center of a Graph and Related Concepts. (a) Distance, Eccentricity. Call the length of a shortest path $u \rightarrow v$ in a graph $G=(V, E)$ the
distance $d(u, v)$ from u to v. For fixed u, call the greatest $d(u, v)$ as v ranges over V the eccentricity $\epsilon(u)$ of u. Find the eccentricity of vertices $1,2,3$ in the graph in Prob. 7.
(b) Diameter, Radius, Center. The diameter $d(G)$ of a graph $G=(V, E)$ is the maximum of $d(u, v)$ as u and v vary over V, and the radius $r(G)$ is the smallest eccentricity $\epsilon(v)$ of the vertices v. A vertex v with $\epsilon(v)=r(G)$ is called a central vertex. The set of all central vertices is called the center of G. Find $d(G), r(G)$, and the center of the graph in Prob. 7.
(c) What are the diameter, radius, and center of the spanning tree in Example 1 of the text?
(d) Explain how the idea of a center can be used in setting up an emergency service facility on a transportation network. In setting up a fire station, a shopping center. How would you generalize the concepts in the case of two or more such facilities?
(e) Show that a tree T whose edges all have length 1 has center consisting of either one vertex or two adjacent vertices.
(f) Set up an algorithm of complexity $O(n)$ for finding the center of a tree T.

23.6 Flows in Networks

After shortest path problems and problems for trees, as a third large area in combinatorial optimization we discuss flow problems in networks (electrical, water, communication, traffic, business connections, etc.), turning from graphs to digraphs (directed graphs; see Sec. 23.1).

By definition, a network is a digraph $G=(V, E)$ in which each edge (i, j) has assigned to it a capacity $c_{i j}>0[=$ maximum possible flow along $(i, j)]$, and at one vertex, s, called the source, a flow is produced that flows along the edges of the digraph G to another vertex, t, called the target or sink, where the flow disappears.

In applications, this may be the flow of electricity in wires, of water in pipes, of cars on roads, of people in a public transportation system, of goods from a producer to consumers, of e-mail from senders to recipients over the Internet, and so on.

We denote the flow along a (directed!) edge (i, j) by $f_{i j}$ and impose two conditions:

1. For each edge (i, j) in G the flow does not exceed the capacity $c_{i j}$,

$$
\begin{equation*}
0 \leqq f_{i j} \leqq c_{i j} \tag{1}
\end{equation*}
$$

('Edge condition").
2. For each vertex i, not s or t,

$$
\text { Inflow }=\text { Outflow } \quad(\text { "Vertex condition," "Kirchhoff's law"); }
$$

in a formula,

$$
\underbrace{\sum_{k} f_{k i}}_{\text {Inflow }}-\underbrace{\sum_{j} f_{i j}}_{\text {Outflow }}=\left\{\begin{array}{c}
0 \text { if vertex } i \neq s, i \neq t \tag{2}\\
-f \text { at the source } s, \\
f \text { at the target (sink) } t
\end{array}\right.
$$

where f is the total flow (and at s the inflow is zero, whereas at t the outflow is zero). Figure 493 illustrates the notation (for some hypothetical figures).

Fig. 493. Notation in (2): inflow and outflow for a vertex i (not s or t)

Paths

By a path $v_{1} \rightarrow v_{k}$ from a vertex v_{1} to a vertex v_{k} in a digraph G we mean a sequence of edges

$$
\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \cdots,\left(v_{k-1}, v_{k}\right)
$$

regardless of their directions in \boldsymbol{G}, that forms a path as in a graph (see Sec. 23.2). Hence when we travel along this path from v_{1} to v_{k} we may traverse some edge in its given direction-then we call it a forward edge of our path-or opposite to its given directionthen we call it a backward edge of our path. In other words, our path consists of one-way streets, and forward edges (backward edges) are those that we travel in the right direction (in the wrong direction). Figure 494 shows a forward edge (u, v) and a backward edge (w, v) of a path $v_{1} \rightarrow v_{k}$.

CAUTION! Each edge in a network has a given direction, which we cannot change. Accordingly, if (u, v) is a forward edge in a path $v_{1} \rightarrow v_{k}$, then (u, v) can become a backward edge only in another path $x_{1} \rightarrow x_{j}$ in which it is an edge and is traversed in the opposite direction as one goes from x_{1} to x_{j}; see Fig. 495. Keep this in mind, to avoid misunderstandings.

Fig. 494. Forward edge (u, v) and backward edge (w, v) of a path $v_{1} \rightarrow v_{k}$

Fig. 495. Edge (u, v) as forward edge in the path $v_{1} \rightarrow v_{k}$ and as backward edge in the path $x_{1} \rightarrow x_{j}$

Flow Augmenting Paths

Our goal will be to maximize the flow from the source s to the target t of a given network. We shall do this by developing methods for increasing an existing flow (including the special case in which the latter is zero). The idea then is to find a path $P: s \rightarrow t$ all of
whose edges are not fully used, so that we can push additional flow through P. This suggests the following concept.

DEFINITION

Flow Augmenting Path

A flow augmenting path in a network with a given flow $f_{i j}$ on each edge (i, j) is a path $P: s \rightarrow t$ such that
(i) no forward edge is used to capacity; thus $f_{i j}<c_{i j}$ for these;
(ii) no backward edge has flow 0 ; thus $f_{i j}>0$ for these.

EXAMPLE 1 Flow Augmenting Paths

Find flow augmenting paths in the network in Fig. 496, where the first number is the capacity and the second number a given flow.

Fig. 496. Network in Example 1
First number $=$ Capacity, Second number $=$ Given flow
Solution. In practical problems, networks are large and one needs a systematic method for augmenting flows, which we discuss in the next section. In our small network, which should help to illustrate and clarify the concepts and ideas, we can find flow augmenting paths by inspection and augment the existing flow $f=9$ in Fig. 496. (The outflow from s is $5+4=9$, which equals the inflow $6+3$ into t.)

We use the notation

$$
\begin{aligned}
\Delta_{i j} & =c_{i j}-f_{i j} & & \text { for forward edges } \\
\Delta_{i j} & =f_{i j} & & \text { for backward edges } \\
\Delta & =\min \Delta_{i j} & & \text { taken over all edges of a path. }
\end{aligned}
$$

From Fig. 496 we see that a flow augmenting path $P_{1}: s \rightarrow t$ is $P_{1}: 1-2-3-6$ (Fig. 497), with $\Delta_{12}=20-5=15$, etc., and $\Delta=3$. Hence we can use P_{1} to increase the given flow 9 to $f=9+3=12$. All three edges of P_{1} are forward edges. We augment the flow by 3. Then the flow in each of the edges of P_{1} is increased by 3 , so that we now have $f_{12}=8$ (instead of 5), $f_{23}=11$ (instead of 8), and $f_{36}=9$ (instead of $6)$. Edge $(2,3)$ is now used to capacity. The flow in the other edges remains as before.

We shall now try to increase the flow in this network in Fig. 496 beyond $f=12$.
There is another flow augmenting path $P_{2}: s \rightarrow t$, namely, $P_{2}: 1-4-5-3-6$ (Fig. 497). It shows how a backward edge comes in and how it is handled. Edge $(3,5)$ is a backward edge. It has flow 2 , so that $\Delta_{36}=2$. We compute $\Delta_{14}=10-4=6$, etc. (Fig. 497) and $\Delta=2$. Hence we can use P_{2} for another augmentation to get $f=12+2=14$. The new flow is shown in Fig. 498. No further augmentation is possible. We shall confirm later that $f=14$ is maximum.

Fig. 497. Flow augmenting paths in Example 1

Cut Sets

A cut set is a set of edges in a network. The underlying idea is simple and natural. If we want to find out what is flowing from s to t in a network, we may cut the network somewhere between s and t (Fig. 498 shows an example) and see what is flowing in the edges hit by the cut, because any flow from s to t must sometimes pass through some of these edges. These form what is called a cut set. [In Fig. 498, the cut set consists of the edges $(2,3),(5,2),(4,5)$.] We denote this cut set by (S, T). Here S is the set of vertices on that side of the cut on which s lies $(S=\{s, 2,4\}$ for the cut in Fig. 498) and T is the set of the other vertices $(T=\{3,5, t\}$ in Fig. 498). We say that a cut partitions the vertex set V into two parts S and T. Obviously, the corresponding cut set (S, T) consists of all the edges in the network with one end in S and the other end in T.

Fig. 498. Maximum flow in Example 1

By definition, the capacity cap (S, T) of a cut set (S, T) is the sum of the capacities of all forward edges in (S, T) (forward edges only!), that is, the edges that are directed from S to T,

$$
\begin{equation*}
\operatorname{cap}(S, T)=\Sigma c_{i j} \tag{3}
\end{equation*}
$$

[sum over the forward edges of (S, T)].

Thus, cap $(S, T)=11+7=18$ in Fig. 498.
Explanation. This can be seen as follows. Look at Fig. 498. Recall that for each edge in that figure, the first number denotes capacity and the second number flow. Intuitively, you can think of the edges as roads, where the capacity of the road is how many cars can actually be on the road, and the flow denotes how many cars actually are on the road. To compute capacity cap (S, T) we are only looking at the first number on the edges. Take a look and see that the cut physically cuts three edges, that is, $(2,3),(4,5)$, and $(5,2)$. The cut concerns only forward edges that are being cut, so it concerns edges $(2,3)$ and $(4,5)$ (and does not include edge $(5,2)$ which is also being cut, but since it goes backwards, it does not count). Hence $(2,3)$ contributes 11 and $(4,5)$ contributes 7 to the capacity cap (S, T), for a total of 18 in Fig. 498. Hence cap $(S, T)=18$.

The other edges (directed from T to S) are called backward edges of the cut set (S, T), and by the net flow through a cut set we mean the sum of the flows in the forward edges minus the sum of the flows in the backward edges of the cut set.

CAUTION! Distinguish well between forward and backward edges in a cut set and in a path: $(5,2)$ in Fig. 498 is a backward edge for the cut shown but a forward edge in the path $1-4-5-2-3-6$.

For the cut in Fig. 498 the net flow is $11+6-3=14$. For the same cut in Fig. 496 (not indicated there), the net flow is $8+4-3=9$. In both cases it equals the flow f.

We claim that this is not just by chance, but cuts do serve the purpose for which we have introduced them:

Net Flow in Cut Sets

Any given flow in a network G is the net flow through any cut set (S, T) of G.

PROOF By Kirchhoff's law (2), multiplied by -1 , at a vertex i we have

$$
\underbrace{\sum_{j} f_{i j}}_{\text {Outflow }}-\underbrace{\sum_{l} f_{l i}}_{\text {Inflow }}= \begin{cases}0 & \text { if } i \neq s, t, \tag{4}\\ f & \text { if } i=s .\end{cases}
$$

Here we can sum over j and l from 1 to n ($=$ number of vertices) by putting $f_{i j}=0$ for $j=i$ and also for edges without flow or nonexisting edges; hence we can write the two sums as one,

$$
\sum_{j}\left(f_{i j}-f_{j i}\right)= \begin{cases}0 & \text { if } i \neq s, t \\ f & \text { if } i=s\end{cases}
$$

We now sum over all i in S. Since s is in S, this sum equals f :

$$
\begin{equation*}
\sum_{i \in S} \sum_{j \in V}\left(f_{i j}-f_{j i}\right)=f \tag{5}
\end{equation*}
$$

We claim that in this sum, only the edges belonging to the cut set contribute. Indeed, edges with both ends in T cannot contribute, since we sum only over i in S; but edges (i, j) with both ends in S contribute $+f_{i j}$ at one end and $-f_{i j}$ at the other, a total contribution of 0 . Hence the left side of (5) equals the net flow through the cut set. By (5), this is equal to the flow f and proves the theorem.

This theorem has the following consequence, which we shall also need later in this section.

Upper Bound for Flows

A flow f in a network G cannot exceed the capacity of any cut set (S, T) in G.

PROOF By Theorem 1 the flow f equals the net flow through the cut set, $f=f_{1}-f_{2}$, where f_{1} is the sum of the flows through the forward edges and $f_{2}(\geqq 0)$ is the sum of the flows through the backward edges of the cut set. Thus $f \leqq f_{1}$. Now f_{1} cannot exceed the sum of the capacities of the forward edges; but this sum equals the capacity of the cut set, by definition. Together, $f \leqq \operatorname{cap}(S, T)$, as asserted.

Cut sets will now bring out the full importance of augmenting paths:

Main Theorem. Augmenting Path Theorem for Flows
A flow from s to t in a network G is maximum if and only if there does not exist a flow augmenting path $s \rightarrow t$ in G.

PROOF (a) If there is a flow augmenting path $P: s \rightarrow t$, we can use it to push through it an additional flow. Hence the given flow cannot be maximum.
(b) On the other hand, suppose that there is no flow augmenting path $s \rightarrow t$ in G. Let S_{0} be the set of all vertices i (including s) such that there is a flow augmenting path $s \rightarrow i$, and let T_{0} be the set of the other vertices in G. Consider any edge (i, j) with i in S_{0} and j in T_{0}. Then we have a flow augmenting path $s \rightarrow i$ since i is in S_{0}, but $s \rightarrow i \rightarrow j$ is not flow augmenting because j is not in S_{0}. Hence we must have

$$
f_{i j}=\left\{\begin{array} { l }
{ c _ { i j } } \tag{6}\\
{ 0 }
\end{array} \quad \text { if } (i , j) \text { is a } \left\{\begin{array}{l}
\text { forward } \\
\text { backward }
\end{array} \text { edge of the path } s \rightarrow i \rightarrow j\right.\right.
$$

Otherwise we could use (i, j) to get a flow augmenting path $s \rightarrow i \rightarrow j$. Now (S_{0}, T_{0}) defines a cut set (since t is in T_{0}; why?). Since by (6), forward edges are used to capacity and backward edges carry no flow, the net flow through the cut set $\left(S_{0}, T_{0}\right)$ equals the sum of the capacities of the forward edges, which is cap (S_{0}, T_{0}) by definition. This net flow equals the given flow f by Theorem 1 . Thus $f=\operatorname{cap}\left(S_{0}, T_{0}\right)$. We also have $f \leqq \operatorname{cap}\left(S_{0}, T_{0}\right)$ by Theorem 2. Hence f must be maximum since we have reached equality.

The end of this proof yields another basic result (by Ford and Fulkerson, Canadian Journal of Mathematics 8 (1956), 399-404), namely, the so-called

Max-Flow Min-Cut Theorem

The maximum flow in any network G equals the capacity of a "minimum cut set" ($=$ a cut set of minimum capacity) in G.

PROOF We have just seen that $f=\operatorname{cap}\left(S_{0}, T_{0}\right)$ for a maximum flow f and a suitable cut set $\left(S_{0}, T_{0}\right)$. Now by Theorem 2 we also have $f \leqq \operatorname{cap}(S, T)$ for this f and any cut set (S, T) in G. Together, cap $\left(S_{0}, T_{0}\right) \leqq \operatorname{cap}(S, T)$. Hence $\left(S_{0}, T_{0}\right)$ is a minimum cut set.

The existence of a maximum flow in this theorem follows for rational capacities from the algorithm in the next section and for arbitrary capacities from the Edmonds-Karp BFS also in that section.

The two basic tools in connection with networks are flow augmenting paths and cut sets. In the next section we show how flow augmenting paths can be used in an algorithm for maximum flows.

PROBHEM S

1-6 CUT SETS, CAPACITY

Find T and cap (S, T) for:

1. Fig. $498, S=\{1,2,4,5\}$
2. Fig. $499, S=\{1,2,3\}$
3. Fig. 498, $S=\{1,2,3\}$
4. Fig. 499, $S=\{1,2\}$
5. Fig. 499, $S=\{1,2,4,5\}$
6. Fig. $498, S=\{1,3,5\}$

Fig. 499. Problems 2, 4, and 5

7-8 MINIMUM CUT SET

Find a minimum cut set and its capacity for the network:
7. In Fig. 499
8. In Fig. 496. Verify that its capacity equals the maximum flow.
9. Why are backward edges not considered in the definition of the capacity of a cut set?
10. Incremental network. Sketch the network in Fig. 499, and on each edge (i, j) write $c_{i j}-f_{i j}$ and $f_{i j}$. Do you recognize that from this "incremental network" one can more easily see flow augmenting paths?
11. Omission of edges. Which edges could be omitted from the network in Fig. 499 without decreasing the maximum flow?

12-15 FLOW AUGMENTING PATHS

Find flow augmenting paths:
12.

13.

14.

15.

16-19 MAXIMUM FLOW

Find the maximum flow by inspection:
16. In Prob. 13
17.

18. In Prob. 12
19.

20. Find another maximum flow $f=15$ in Prob. 19 .

23.7 Maximum Flow: Ford-Fulkerson Algorithm

Flow augmenting paths, as discussed in the last section, are used as the basic tool in the Ford-Fulkerson ${ }^{7}$ algorithm in Table 23.8 in which a given flow (for instance, zero flow in all edges) is increased until it is maximum. The algorithm accomplishes the increase by a stepwise construction of flow augmenting paths, one at a time, until no further such paths can be constructed, which happens precisely when the flow is maximum.

In Step 1, an initial flow may be given. In Step 3, a vertex j can be labeled if there is an edge (i, j) with i labeled and

$$
c_{i j}>f_{i j}
$$

("forward edge")
or if there is an edge (j, i) with i labeled and

$$
f_{j i}>0 \quad \text { ("backward edge"). }
$$

To scan a labeled vertex i means to label every unlabeled vertex j adjacent to i that can be labeled. Before scanning a labeled vertex i, scan all the vertices that got labeled before i. This BFS (Breadth First Search) strategy was suggested by Edmonds and Karp in 1972 (Journal of the Association for Computing Machinery 19, 248-64). It has the effect that one gets shortest possible augmenting paths.

Table 23.8 Ford-Fulkerson Algorithm for Maximum Flow
Canadian Journal of Mathematics 9 (1957), 210-218

ALGORITHM FORD-FULKERSON

$\left[G=(V, E)\right.$, vertices $1(=s), \cdots, n(=t)$, edges $\left.(i, j), c_{i j}\right]$
This algorithm computes the maximum flow in a network G with source $s, \operatorname{sink} t$, and capacities $c_{i j}>0$ of the edges (i, j).

INPUT: $n, s=1, t=n$, edges (i, j) of $G, c_{i j}$
OUTPUT: Maximum flow f in G

1. Assign an initial flow $f_{i j}$ (for instance, $f_{i j}=0$ for all edges), compute f.
2. Label s by \varnothing. Mark the other vertices "unlabeled."
3. Find a labeled vertex i that has not yet been scanned. Scan i as follows. For every unlabeled adjacent vertex j, if $c_{i j}>f_{i j}$, compute

$$
\Delta_{i j}=c_{i j}-f_{i j} \quad \text { and } \quad \Delta_{j}= \begin{cases}\Delta_{i j} & \text { if } i=1 \\ \min \left(\Delta_{i}, \Delta_{i j}\right) & \text { if } i>1\end{cases}
$$

and label j with a "forward label" $\left(i^{+}, \Delta_{j}\right)$; or if $f_{j i}>0$, compute

$$
\Delta_{j}=\min \left(\Delta_{i}, f_{j i}\right)
$$

and label j by a "backward label" $\left(i^{-}, \Delta_{j}\right)$.

[^23]If no such j exists then OUTPUT f. Stop
[f is the maximum flow.]
Else continue (that is, go to Step 4).
4. Repeat Step 3 until t is reached.
[This gives a flow augmenting path $P: s \rightarrow t$.]
If it is impossible to reach t then OUTPUT f. Stop
[f is the maximum flow.]
Else continue (that is, go to Step 5).
5. Backtrack the path P, using the labels.
6. Using P, augment the existing flow by Δ_{t}. Set $f=f+\Delta_{t}$.
7. Remove all labels from vertices $2, \cdots, n$. Go to Step 3 .

End FORD-FULKERSON

EXAMPLE 1 Ford-Fulkerson Algorithm

Applying the Ford-Fulkerson algorithm, determine the maximum flow for the network in Fig. 500 (which is the same as that in Example 1, Sec. 23.6, so that we can compare).

Solution. The algorithm proceeds as follows.

1. An initial flow $f=9$ is given.
2. Label $s(=1)$ by \varnothing. Mark 2, 3, 4, 5, 6 "unlabeled."

Fig. 500. Network in Example 1 with capacities (first numbers) and given flow
3. Scan 1 .

Compute $\Delta_{12}=20-5=15=\Delta_{2}$. Label 2 by $\left(1^{+}, 15\right)$.
Compute $\Delta_{14}=10-4=6=\Delta_{4}$. Label 4 by $\left(1^{+}, 6\right)$.
4. Scan 2 .

Compute $\Delta_{23}=11-8=3, \Delta_{3}=\min \left(\Delta_{2}, 3\right)=3$. Label 3 by $\left(2^{+}, 3\right)$.
Compute $\Delta_{5}=\min \left(\Delta_{2}, 3\right)=3$. Label 5 by $\left(2^{-}, 3\right)$.
Scan 3.
Compute $\Delta_{36}=13-6=7, \Delta_{6}=\Delta_{t}=\min \left(\Delta_{3}, 7\right)=3$. Label 6 by $\left(3^{+}, 3\right)$.
5. $P: 1-2-3-6(=t)$ is a flow augmenting path.
6. $\Delta_{t}=3$. Augmentation gives $f_{12}=8, f_{23}=11, f_{36}=9$, other $f_{i j}$ unchanged. Augmented flow $f=9+3=12$.
7. Remove labels on vertices $2, \cdots, 6$. Go to Step 3 .
3. Scan 1 .

Compute $\Delta_{12}=20-8=12=\Delta_{2}$. Label 2 by $\left(1^{+}, 12\right)$.
Compute $\Delta_{14}=10-4=6=\Delta_{4}$. Label 4 by ($1^{+}, 6$).
4. Scan 2 .

Compute $\Delta_{5}=\min \left(\Delta_{2}, 3\right)=3$. Label 5 by $\left(2^{-}, 3\right)$.
Scan 4. [No vertex left for labeling.]
Scan 5.
Compute $\Delta_{3}=\min \left(\Delta_{5}, 2\right)=2$. Label 3 by $\left(5^{-}, 2\right)$.
Scan 3.
Compute $\Delta_{36}=13-9=4, \Delta_{6}=\min \left(\Delta_{3}, 4\right)=2$. Label 6 by $\left(3^{+}, 2\right)$.
5. $P: 1-2-5-3-6(=t)$ is a flow augmenting path.
6. $\Delta_{t}=2$. Augmentation gives $f_{12}=10, f_{32}=1, f_{35}=0, f_{36}=11$, other $f_{i j}$ unchanged. Augmented flow $f=12+2=14$.
7. Remove labels on vertices $2, \cdots, 6$. Go to Step 3 .

One can now scan 1 and then scan 2, as before, but in scanning 4 and then 5 one finds that no vertex is left for labeling. Thus one can no longer reach t. Hence the flow obtained (Fig. 501) is maximum, in agreement with our result in the last section.

Fig. 501. Maximum flow in Example 1

1. Do the computations indicated near the end of Example 1 in detail.
2. Solve Example 1 by Ford-Fulkerson with initial flow 0. Is it more work than in Example 1?
3. Which are the "bottleneck" edges by which the flow in Example 1 is actually limited? Hence which capacities could be decreased without decreasing the maximum flow?
4. What is the (simple) reason that Kirchhoff's law is preserved in augmenting a flow by the use of a flow augmenting path?
5. How does Ford-Fulkerson prevent the formation of cycles?

6-9 MAXIMUM FLOW

Find the maximum flow by Ford-Fulkerson:
6. In Prob. 12, Sec. 23.6
7. In Prob. 15, Sec. 23.6
8. In Prob. 14, Sec. 23.6
9.

10. Integer flow theorem. Prove that, if the capacities in a network G are integers, then a maximum flow exists and is an integer.
11. CAS PROBLEM. Ford-Fulkerson. Write a program and apply it to Probs. 6-9.
12. How can you see that Ford-Fulkerson follows a BFS technique?
13. Are the consecutive flow augmenting paths produced by Ford-Fulkerson unique?
14. If the Ford-Fulkerson algorithm stops without reaching t, show that the edges with one end labeled and the other end unlabeled form a cut set (S, T) whose capacity equals the maximum flow.
15. Find a minimum cut set in Fig. 500 and its capacity.
16. Show that in a network G with all $c_{i j}=1$, the maximum flow equals the number of edge-disjoint paths $s \rightarrow t$.
17. In Prob. 15, the cut set contains precisely all forward edges used to capacity by the maximum flow (Fig. 501). Is this just by chance?
18. Show that in a network G with capacities all equal to 1 , the capacity of a minimum cut set (S, T) equals the minimum number q of edges whose deletion destroys all directed paths $s \rightarrow t$. (A directed path $v \rightarrow w$ is a path in which each edge has the direction in which it is traversed in going from v to w.)
19. Several sources and sinks. If a network has several sources s_{1}, \cdots, s_{k}, show that it can be reduced to the case of a single-source network by introducing a new vertex s and connecting s to s_{1}, \cdots, s_{k} by k edges of capacity ∞. Similarly if there are several sinks. Illustrate this idea by a network with two sources and two sinks.
20. Find the maximum flow in the network in Fig. 502 with

Fig. 502. Problem 20

23.8 Bipartite Graphs.
 Assignment Problems

From digraphs we return to graphs and discuss another important class of combinatorial optimization problems that arises in assignment problems of workers to jobs, jobs to machines, goods to storage, ships to piers, classes to classrooms, exams to time periods, and so on. To explain the problem, we need the following concepts.

A bipartite graph $G=(V, E)$ is a graph in which the vertex set V is partitioned into two sets S and T (without common elements, by the definition of a partition) such that every edge of G has one end in S and the other in T. Hence there are no edges in G that have both ends in S or both ends in T. Such a graph $G=(V, E)$ is also written $G=(S, T ; E)$.

Figure 503 shows an illustration. V consists of seven elements, three workers a, b, c, making up the set S, and four jobs $1,2,3,4$, making up the set T. The edges indicate that worker a can do the jobs 1 and 2, worker b the jobs $1,2,3$, and worker c the job 4 . The problem is to assign one job to each worker so that every worker gets one job to do. This suggests the next concept, as follows.

Maximum Cardinality Matching

A matching in $G=(S, T ; E)$ is a set M of edges of G such that no two of them have a vertex in common. If M consists of the greatest possible number of edges, we call it a maximum cardinality matching in G.

For instance, a matching in Fig. 503 is $M_{1}=\{(a, 2),(b, 1)\}$. Another is $M_{2}=\{(a, 1)$, $(b, 3),(c, 4)\}$; obviously, this is of maximum cardinality.

Fig. 503. Bipartite graph in the assignment of a set $S=\{a, b, c\}$ of workers to a set $T=\{1,2,3,4\}$ of jobs

A vertex v is exposed (or not covered) by a matching M if v is not an endpoint of an edge of M. This concept, which always refers to some matching, will be of interest when we begin to augment given matchings (below). If a matching leaves no vertex exposed,
we call it a complete matching. Obviously, a complete matching can exist only if S and T consist of the same number of vertices.

We now want to show how one can stepwise increase the cardinality of a matching M until it becomes maximum. Central in this task is the concept of an augmenting path.

An alternating path is a path that consists alternately of edges in M and not in M (Fig. 504A). An augmenting path is an alternating path both of whose endpoints (a and b in Fig. 504B) are exposed. By dropping from the matching M the edges that are on an augmenting path P (two edges in Fig. 504B) and adding to M the other edges of P (three in the figure), we get a new matching, with one more edge than M. This is how we use an augmenting path in augmenting a given matching by one edge. We assert that this will always lead, after a number of steps, to a maximum cardinality matching. Indeed, the basic role of augmenting paths is expressed in the following theorem.

(A) Alternating path

(B) Augmenting path P

Fig. 504. Alternating and augmenting paths. Heavy edges are those belonging to a matching M

Augmenting Path Theorem for Bipartite Matching

A matching M in a bipartite graph $G=(S, T ; E)$ is of maximum cardinality if and only if there does not exist an augmenting path P with respect to M.
(a) We show that if such a path P exists, then M is not of maximum cardinality. Let P have q edges belonging to M. Then P has $q+1$ edges not belonging to M. (In Fig. 504B we have $q=2$.) The endpoints a and b of P are exposed, and all the other vertices on P are endpoints of edges in M, by the definition of an alternating path. Hence if an edge of M is not an edge of P, it cannot have an endpoint on P since then M would not be a matching. Consequently, the edges of M not on P, together with the $q+1$ edges of P not belonging to M form a matching of cardinality one more than the cardinality of M because we omitted q edges from M and added $q+1$ instead. Hence M cannot be of maximum cardinality.
(b) We now show that if there is no augmenting path for M, then M is of maximum cardinality. Let M^{*} be a maximum cardinality matching and consider the graph H consisting of all edges that belong either to M or to M^{*}, but not to both. Then it is possible that two edges of H have a vertex in common, but three edges cannot have a vertex in common since then two of the three would have to belong to M (or to M^{*}), violating that M and M^{*} are matchings. So every v in V can be in common with two edges of H or with one or none. Hence we can characterize each "component" (= maximal connected subset) of H as follows.
(A) A component of H can be a closed path with an even number of edges (in the case of an odd number, two edges from M or two from M^{*} would meet, violating the matching property). See (A) in Fig. 505.
(B) A component of H can be an open path P with the same number of edges from M and edges from M^{*}, for the following reason. P must be alternating, that is, an edge of M is followed by an edge of M^{*}, etc. (since M and M^{*} are matchings). Now if P had an edge more from M^{*}, then P would be augmenting for M [see (B2) in Fig. 505], contradicting our assumption that there is no augmenting path for M. If P had an edge more from M, it would be augmenting for M^{*} [see (B3) in Fig. 505], violating the maximum cardinality of M^{*}, by part (a) of this proof. Hence in each component of H, the two matchings have the same number of edges. Adding to this the number of edges that belong to both M and M^{*} (which we left aside when we made up H), we conclude that M and M^{*} must have the same number of edges. Since M^{*} is of maximum cardinality, this shows that the same holds for M, as we wanted to prove.

Fig. 505. Proof of the augmenting path theorem for bipartite matching

This theorem suggests the algorithm in Table 23.9 for obtaining augmenting paths, in which vertices are labeled for the purpose of backtracking paths. Such a label is in addition to the number of the vertex, which is also retained. Clearly, to get an augmenting path, one must start from an exposed vertex, and then trace an alternating path until one arrives at another exposed vertex. After Step 3 all vertices in S are labeled. In Step 4, the set T contains at least one exposed vertex, since otherwise we would have stopped at Step 1.

Table 23.9 Bipartite Maximum Cardinality Matching

ALGORITHM MATCHING $[G=(S, T ; E), M, n]$
This algorithm determines a maximum cardinality matching M in a bipartite graph G by augmenting a given matching in G.

INPUT: Bipartite graph $G=(S, T ; E)$ with vertices $1, \cdots, n$, matching M in G (for instance, $M=\varnothing$)
OUTPUT: Maximum cardinality matching M in G

1. If there is no exposed vertex in S then

OUTPUT M. Stop
[M is of maximum cardinality in G.]
Else label all exposed vertices in S with \varnothing.
2. For each i in S and edge (i, j) not in M, label j with i, unless already labeled.
3. For each nonexposed j in T, label i with j, where i is the other end of the unique edge (i, j) in M.
4. Backtrack the alternating path P ending on an exposed vertex in T by using the labels on the vertices.
5. If no P in Step 4 is augmenting then OUTPUT M. Stop [M is of maximum cardinality in G.]

Else augment M by using an augmenting path P. Remove all labels. Go to Step 1.

End MATCHING

EXAMPLE 1 Maximum Cardinality Matching

Is the matching M_{1} in Fig. 506a of maximum cardinality? If not, augment it until maximum cardinality is reached.

(a) Given graph and matching M_{1}

(b) Matching M_{2} and new labels

Fig. 506. Example 1

Solution. We apply the algorithm.

1. Label 1 and 4 with \varnothing.
2. Label 7 with 1 . Label $5,6,8$ with 3 .
3. Label 2 with 6 , and 3 with 7 .
[All vertices are now labeled as shown in Fig. 506a.]
4. $P_{1}: 1-7-3-5$. [By backtracking, P_{1} is augmenting.]
$P_{2}: 1-7-3-8$. [P_{2} is augmenting. $]$
5. Augment M_{1} by using P_{1}, dropping $(3,7)$ from M_{1} and including $(1,7)$ and $(3,5)$. Remove all labels. Go to Step 1.

Figure 506b shows the resulting matching $M_{2}=\{(1,7),(2,6),(3,5)\}$.

1. Label 4 with \varnothing.
2. Label 7 with 2 . Label 6 and 8 with 3 .
3. Label 1 with 7 , and 2 with 6 , and 3 with 5 .
4. $P_{3}: 5-3-8$. [P_{3} is alternating but not augmenting. $]$
5. Stop. M_{2} is of maximum cardinality (namely, 3).

PROBAEMESET-23.8

1-7 BIPARTITE OR NOT?

If you answer is yes, find S and T :
1.

2.

3.

4.

5.

6.

7.

8. Can you obtain the answer to Prob. 3 from that to Prob. 1?
9. Can you obtain a bipartite subgraph in Prob. 4 by omitting two edges? Any two edges? Any two edges without a common vertex?

10-12 MATCHING. AUGMENTING PATHS

Find an augmenting path:
10.

11.

12.

13-15 MAXIMUM CARDINALITY MATCHING

Using augmenting paths, find a maximum cardinality matching:
13. In Prob. 11
14. In Prob. 10
15. In Prob. 12
16. Complete bipartite graphs. A bipartite graph $G=(S, T ; E)$ is called complete if every vertex in S is joined to every vertex in T by an edge, and is denoted by $K_{n_{1}, n_{2}}$, where n_{1} and n_{2} are the numbers of vertices in S and T, respectively. How many edges does this graph have?
17. Planar graph. A planar graph is a graph that can be drawn on a sheet of paper so that no two edges cross. Show that the complete graph K_{4} with four vertices is planar. The complete graph K_{5} with five vertices is not planar. Make this plausible by attempting to draw K_{5} so that no edges cross. Interpret the result in terms of a net of roads between five cities.
18. Bipartite graph $K_{\mathbf{3 , 3}}$ not planar. Three factories 1 , 2, 3 are each supplied underground by water, gas, and electricity, from points A, B, C, respectively. Show that this can be represented by $K_{3,3}$ (the complete bipartite graph $G=(S, T ; E)$ with S and T consisting of three vertices each) and that eight of the nine supply lines (edges) can be laid out without crossing. Make it plausible that $K_{3,3}$ is not planar by attempting to draw the ninth line without crossing the others.

19-25 VERTEX COLORING

19. Vertex coloring and exam scheduling. What is the smallest number of exam periods for six subjects a, b, c, d, e, f if some of the students simultaneously take a, b, f, some c, d, e, some a, c, e, and some c, e ? Solve this as follows. Sketch a graph with six vertices a, \cdots, f and join vertices if they represent subjects simultaneously taken by some students. Color the vertices so that adjacent vertices receive different colors. (Use numbers $1,2, \cdots$ instead of actual colors if you want.) What is the minimum number of colors you need? For any graph G, this minimum number is called the
(vertex) chromatic number $\chi_{v}(G)$. Why is this the answer to the problem? Write down a possible schedule.
20. Scheduling and matching. Three teachers x_{1}, x_{2}, x_{3} teach four classes $y_{1}, y_{2}, y_{3}, y_{4}$ for these numbers of periods:

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	1	0	1	1
x_{2}	1	1	1	1
x_{3}	0	1	1	1

Show that this arrangement can be represented by a bipartite graph G and that a teaching schedule for one period corresponds to a matching in G. Set up a teaching schedule with the smallest possible number of periods.
21. How many colors do you need for vertex coloring any tree?
22. Harbor management. How many piers does a harbor master need for accommodating six cruise ships S_{1}, \cdots, S_{6} with expected dates of arrival A and departure D in July, $(A, D)=(10,13),(13,15),(14,17)$, $(12,15),(16,18),(14,17)$, respectively, if each pier can
accommodate only one ship, arrival being at 6 am and departures at 11 pm ? Hint. Join S_{i} and S_{j} by an edge if their intervals overlap. Then color vertices.
23. What would be the answer to Prob. 22 if only the five ships S_{1}, \cdots, S_{5} had to be accommodated?
24. Four- (vertex) color theorem. The famous four-color theorem states that one can color the vertices of any planar graph (so that adjacent vertices get different colors) with at most four colors. It had been conjectured for a long time and was eventually proved in 1976 by Appel and Haken [Illinois J. Math 21 (1977), 429-567]. Can you color the complete graph K_{5} with four colors? Does the result contradict the four-color theorem? (For more details, see Ref. [F1] in App. 1.)
25. Find a graph, as simple as possible, that cannot be vertex colored with three colors. Why is this of interest in connection with Prob. 24?
26. Edge coloring. The edge chromatic number $\chi_{e}(G)$ of a graph G is the minimum number of colors needed for coloring the edges of G so that incident edges get different colors. Clearly, $\chi_{e}(G) \geqq \max d(u)$, where $d(u)$ is the degree of vertex u. If $G=(S, T ; E)$ is bipartite, the equality sign holds. Prove this for $K_{n, n}$ the complete (cf. Sec. 23.1) bipartite graph $G=(S, T, E)$ with S and T consisting of n vertices each.

1. What is a graph, a digraph, a cycle, a tree?
2. State some typical problems that can be modeled and solved by graphs or digraphs.
3. State from memory how graphs can be handled on computers.
4. What is a shortest path problem? Give applications.
5. What situations can be handled in terms of the traveling salesman problem?
6. Give typical applications involving spanning trees.
7. What are the basic ideas and concepts in handling flows?
8. What is combinatorial optimization? Which sections of this chapter involved it? Explain details.
9. Define bipartite graphs and describe some typical applications of them.
10. What is BFS? DFS? In what connection did these concepts occur?

11-16 MATRICES FOR GRAPHS AND DIGRAPHS

Find the adjacency matrix of:

12.

13.

14-16 Sketch the graph whose adjacency matrix is:
14. $\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$
15. $\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$
16. $\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$
17. Vertex incidence list. Make it for the graph in Prob. 15.
18. Find a shortest path and its length by Moore's BFS algorithm, assuming that all the edges have length 1 .

Problem 18
19. Find shortest paths by Dijkstra's algorithm.

Problem 19
20. Find a shortest spanning tree.

Problem 20
21. Company A has offices in Chicago, Los Angeles, and New York; Company B in Boston and New York; Company C in Chicago, Dallas, and Los Angeles. Represent this by a bipartite graph.
22. Find flow augmenting paths and the maximum flow.

23. Using augmenting paths, find a maximum cardinality matching.

Problem 25
24. Find an augmenting path,

Problem 24

SUMMARY OF CHAPIER 2 3

Graphs. Combinatorial Optimization

Combinatorial optimization concerns optimization problems of a discrete or combinatorial structure. It uses graphs and digraphs (Sec. 23.1) as basic tools.

A graph $G=(V, E)$ consists of a set V of vertices $v_{1}, v_{2}, \cdots, v_{n}$ (often simply denoted by $1,2, \cdots, n$) and a set E of edges $e_{1}, e_{2}, \cdots, e_{m}$, each of which connects two vertices. We also write (i, j) for an edge with vertices i and j as endpoints. A digraph (= directed graph) is a graph in which each edge has a direction (indicated by an arrow). For handling graphs and digraphs in computers, one can use matrices or lists (Sec. 23.1).

This chapter is devoted to important classes of optimization problems for graphs and digraphs that all arise from practical applications, and corresponding algorithms, as follows.

In a shortest path problem (Sec. 23.2) we determine a path of minimum length (consisting of edges) from a vertex s to a vertex t in a graph whose edges (i, j) have a "length" $l_{i j}>0$, which may be an actual length or a travel time or cost or an electrical resistance [if (i, j) is a wire in a net], and so on. Dijkstra's algorithm (Sec. 23.3) or, when all $l_{i j}=1$, Moore's algorithm (Sec. 23.2) are suitable for these problems.

A tree is a graph that is connected and has no cycles (no closed paths). Trees are very important in practice. A spanning tree in a graph G is a tree containing all the vertices of G. If the edges of G have lengths, we can determine a shortest spanning tree, for which the sum of the lengths of all its edges is minimum, by Kruskal's algorithm or Prim's algorithm (Secs. 23.4, 23.5).

A network (Sec. 23.6) is a digraph in which each edge (i, j) has a capacity $c_{i j}>0[=$ maximum possible flow along $(i, j)]$ and at one vertex, the source s, a flow is produced that flows along the edges to a vertex t, the sink or target, where the flow disappears. The problem is to maximize the flow, for instance, by applying the Ford-Fulkerson algorithm (Sec. 23.7), which uses flow augmenting paths (Sec. 23.6). Another related concept is that of a cut set, as defined in Sec. 23.6.

A bipartite graph $G=(V, E)($ Sec. 23.8 $)$ is a graph whose vertex set V consists of two parts S and T such that every edge of G has one end in S and the other in T, so that there are no edges connecting vertices in S or vertices in T. A matching in G is a set of edges, no two of which have an endpoint in common. The problem then is to find a maximum cardinality matching in G, that is, a matching M that has a maximum number of edges. For an algorithm, see Sec. 23.8.

PART

Probability, Statistics

CHAPTER 24 Data Analysis. Probability Theory
 CHAPTER 25 Mathematical Statistics

Probability theory (Chap. 24) provides models of probability distributions (theoretical models of the observable reality involving chance effects) to be tested by statistical methods, and it will also supply the mathematical foundation of these methods in Chap. 25.

Modern mathematical statistics (Chap. 25) has various engineering applications, for instance, in testing materials, control of production processes, quality control of production outputs, performance tests of systems, robotics, and automatization in general, production planning, marketing analysis, and so on.

To this we could add a long list of fields of applications, for instance, in agriculture, biology, computer science, demography, economics, geography, management of natural resources, medicine, meteorology, politics, psychology, sociology, traffic control, urban planning, etc. Although these applications are very heterogeneous, we shall see that most statistical methods are universal in the sense that each of them can be applied in various fields.

Additional Software for Probability and Statistics

See also the list of software at the beginning of Part E on Numerical Analysis.
Data Desk. Data Description, Inc., Ithaca, NY. Phone 1-800-573-5121 or (607) 257-1000, website at www.datadesk.com.

MINITAB. Minitab, Inc., State College, PA. Phone 1-800-448-3555 or (814) 238-3280, website at www.minitab.com.
SAS. SAS Institute, Inc., Cary, NC. Phone 1-800-727-0025 or (919) 677-8000, website at www.sas.com.
R. website at www.r-project.org. Free software, part of the GNU/Free Software Foundation project.
SPSS. SPSS, Inc., Chicago, IL. (part of IBM) Phone 1-800-543-2185 or (312) 651-3000, website at www.spss.com.
STATISTICA. StatSoft, Inc., Tulsa, OK. Phone (918) 749-1119, website at www.statsoft.com.
TIBCO Spotfire S+. TIBCO Software Inc., Palo Alto, CA; Office for this software: Somerville, MA. Phone 1-866-240-0491 (toll-free), (617) 702-1602, website at spotfire. tibco.com/products/s-plus/statistical-analysis-software.aspx

We first show how to handle data numerically or in terms of graphs, and how to extract information (average size, spread of data, etc.) from them. If these data are influenced by "chance," by factors whose effect we cannot predict exactly (e.g., weather data, stock prices, life spans of tires, etc.), we have to rely on probability theory. This theory originated in games of chance, such as flipping coins, rolling dice, or playing cards. Nowadays it gives mathematical models of chance processes called random experiments or, briefly, experiments. In such an experiment we observe a random variable X, that is, a function whose values in a trial (a performance of an experiment) occur "by chance" (Sec. 24.3) according to a probability distribution that gives the individual probabilities with which possible values of X may occur in the long run. (Example: Each of the six faces of a die should occur with the same probability, 1/6.) Or we may simultaneously observe more than one random variable, for instance, height and weight of persons or hardness and tensile strength of steel. This is discussed in Sec. 24.9, which will also give the basis for the mathematical justification of the statistical methods in Chapter 25.

Prerequisite: Calculus.
References and Answers to Problems: App. 1 Part G, App. 2.

24.1 Data Representation. Average. Spread

Data can be represented numerically or graphically in various ways. For instance, your daily newspaper may contain tables of stock prices and money exchange rates, curves or bar charts illustrating economical or political developments, or pie charts showing how your tax dollar is spent. And there are numerous other representations of data for special purposes.

In this section we discuss the use of standard representations of data in statistics. (For these, software packages, such as DATA DESK, R, and MINITAB, are available, and Maple or Mathematica may also be helpful; see pp. 789 and 1009) We explain corresponding concepts and methods in terms of typical examples.

Sample values (observations, measurements) should be recorded in the order in which they occur. Sorting, that is, ordering the sample values by size, is done as a first step of investigating properties of the sample and graphing it. Sorting is a standard process on the computer; see Ref. [E35], listed in App. 1.

Super alloys is a collective name for alloys used in jet engines and rocket motors, requiring high temperature (typically $1800^{\circ} \mathrm{F}$), high strength, and excellent resistance to oxidation. Thirty specimens of Hastelloy C (nickelbased steel, investment cast) had the tensile strength (in $1000 \mathrm{lb} / \mathrm{sq} \mathrm{in}$.), recorded in the order obtained and rounded to integer values,

	89	77	88	91	88	93	99	79	87	84	86	82	88	89	78
90	91	81	90	83	83	92	87	89	86	89	81	87	84	89	

Sorting gives

77	78	79	81	81	82	83	83	84	84	86	86	87	87	87
88	88	88	89	89	89	89	89	90	90	91	91	92	93	99

Graphic Representation of Data

We shall now discuss standard graphic representations used in statistics for obtaining information on properties of data.

EXAMPLE 2 Stem-and-Leaf Plot (Fig. 507)

This is one of the simplest but most useful representations of data. For (1) it is shown in Fig. 507. The numbers in (1) range from 78 to 99 ; see (2). We divide these numbers into 5 groups, $75-79,80-84,85-89,90-94$, 95-99. The integers in the tens position of the groups are 7, 8, 8, 9, 9. These form the stem in Fig. 507. The first leaf is 789 , representing $77,78,79$. The second leaf is 1123344 , representing $81,81,82,83,83,84,84$. And so on.

The number of times a value occurs is called its absolute frequency. Thus 78 has absolute frequency 1 , the value 89 has absolute frequency 5, etc. The column to the extreme left in Fig. 507 shows the cumulative absolute frequencies, that is, the sum of the absolute frequencies of the values up to the line of the leaf. Thus, the number 10 in the second line on the left shows that (1) has 10 values up to and including 84 . The number 23 in the next line shows that there are 23 values not exceeding 89, etc. Dividing the cumulative absolute frequencies by $n(=30$ in Fig. 507) gives the cumulative relative frequencies $0.1,0.33,0.76,0.93,1.00$.

EXAMPLE 3 Histogram (Fig. 508)

For large sets of data, histograms are better in displaying the distribution of data than stem-and-leaf plots. The principle is explained in Fig. 508. (An application to a larger data set is shown in Sec. 25.7). The bases of the rectangles in Fig. 508 are the x-intervals (known as class intervals) 74.5-79.5, 79.5-84.5, 84.5-89.5, 89.5-94.5, 94.5-99.5, whose midpoints (known as class marks) are $x=77,82,87,92,97$, respectively. The height of a rectangle with class mark x is the relative class frequency $f_{\text {rel }}(x)$, defined as the number of data values in that class interval, divided by $n(=30$ in our case). Hence the areas of the rectangles are proportional to these relative frequencies, $0.10,0.23,0.43,0.17,0.07$, so that histograms give a good impression of the distribution of data.

	Leaf unit $=1.0$	
3	7	789
10	8	1123344
23	8	6677788899999
29	9	001123
30	9	9

Fig. 507. Stem-and-leaf plot of the data in Example 1

Fig. 508. Histogram of the data in Example 1 (grouped as in Fig. 507)

EXAMPLE 4 Boxplot. Median. Interquartile Range. Outlier

A boxplot of a set of data illustrates the average size and the spread of the values, in many cases the two most important quantities characterizing the set, as follows.

The average size is measured by the median, or middle quartile, q_{M}. If the number n of values of the set is odd, then q_{M} is the middlemost of the values when ordered as in (2). If n is even, then q_{M} is the average of the two middlemost values of the ordered set. In (2) we have $n=30$ and thus $q_{M}=\frac{1}{2}\left(x_{15}+x_{16}\right)=\frac{1}{2}(87+88)=87.5$. (In general, q_{M} will be a fraction if n is even.)

The spread of values can be measured by the range $R=x_{\max }-x_{\text {min }}$, the largest value minus the smallest one.

Better information on the spread gives the interquartile range $\mathrm{IQR}=q_{U}-q_{L}$. Here q_{U} is the middlemost value (or the average of the two middlemost values) in the data above the median; and q_{L} is the middlemost value (or the average of the two middlemost values) in the data below the median. Hence in (2) we have $q_{U}=x_{23}=89, q_{L}=x_{8}=83$, and IQR $=89-83=6$.

The box in Fig. 509 extends vertically from q_{L} to q_{U}; it has height $\mathrm{IQR}=6$. The vertical lines below and above the box extend from $x_{\min }=77$ to $x_{\max }=99$, so that they show $R=22$.

Fig. 509. Boxplot of the data set (1)

The line above the box is suspiciously long. This suggests the concept of an outlier, a value that is more than 1.5 times the IQR away from either end of the box; here 1.5 is purely conventional. An outlier indicates that something might have gone wrong in the data collection. In (2) we have $89+1.5 \mathrm{IQR}=98$, and we regard 99 as an outlier.

Mean. Standard Deviation. Variance. Empirical Rule

Medians and quartiles are easily obtained by ordering and counting, practically without calculation. But they do not give full information on data: you can change data values to some extent without changing the median. Similarly for the quartiles.

The average size of the data values can be measured in a more refined way by the mean

$$
\begin{equation*}
\bar{x}=\frac{1}{n} \sum_{j=1}^{n} x_{j}=\frac{1}{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right) \tag{3}
\end{equation*}
$$

This is the arithmetic mean of the data values, obtained by taking their sum and dividing by the data size n. Thus in (1),

$$
\bar{x}=\frac{1}{30}(89+77+\cdots+89)=\frac{260}{3} \approx 86.7
$$

Every data value contributes, and changing one of them will change the mean.
Similarly, the spread (variability) of the data values can be measured in a more refined way by the standard deviation s or by its square, the variance

$$
\begin{equation*}
s^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}=\frac{1}{n-1}\left[\left(x_{1}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}\right] \tag{4}
\end{equation*}
$$

Thus, to obtain the variance of the data, take the difference $x_{j}-\bar{x}$ of each data value from the mean, square it, take the sum of these n squares, and divide it by $n-1$ (not n, as we motivate in Sec. 25.2). To get the standard deviation s, take the square root of s^{2}.

For example, using $\bar{x}=260 / 3$, we get for the data (1) the variance

$$
s^{2}=\frac{1}{29}\left[\left(89-\frac{260}{3}\right)^{2}+\left(77-\frac{260}{3}\right)^{2}+\cdots+\left(89-\frac{260}{3}\right)^{2}\right]=\frac{2006}{87} \approx 23.06
$$

Hence the standard deviation is $s=\sqrt{2006 / 87} \approx 4.802$. Note that the standard deviation has the same dimension as the data values $\left(\mathrm{kg} / \mathrm{mm}^{2}\right.$, see at the beginning), which is an advantage. On the other hand, the variance is preferable to the standard deviation in developing statistical methods, as we shall see in Chap. 25.

CAUTION! Your CAS (Maple, for instance) may use $1 / n$ instead of $1 /(n-1)$ in (4), but the latter is better when n is small (see Sec. 25.2).

Mean and standard deviation, introduced to give center and spread, actually give much more information according to this rule.

Empirical Rule. For any mound-shaped, nearly symmetric distribution of data the intervals

$$
\bar{x} \pm s, \quad \bar{x} \pm 2 s, \quad \bar{x} \pm 3 s \quad \text { contain about } \quad 68 \%, 95 \%, 99.7 \%
$$

respectively, of the data points.

EXAMPLE 5 Empirical Rule and Outliers. z-Score

For (1), with $\bar{x}=86.7$ and $s=4.8$, the three intervals in the Rule are $81.9 \leqq x \leqq 91.5, \quad 77.1 \leqq x \leqq 96.3$, $72.3 \leqq x \leqq 101.1$ and contain 73% (22 values remain, 5 are too small, and 5 too large), 93% (28 values, 1 too small, and 1 too large), and 100%, respectively.

If we reduce the sample by omitting the outlier 99 , mean and standard deviation reduce to $\bar{x}_{\text {red }}=86.2, s_{\text {red }}=4.3$, approximately, and the percentage values become 67% (5 and 5 values outside), 93% (1 and 1 outside), and 100%.

Finally, the relative position of a value x in a set of mean \bar{x} and standard deviation s can be measured by the z-score

$$
z(s)=\frac{x-\bar{x}}{s}
$$

This is the distance of x from the mean \bar{x} measured in multiples of s. For instance, $z(83)=(83-86.7) /$ $4.8=-0.77$. This is negative because 83 lies below the mean. By the Empirical Rule, the extreme z-values are about -3 and 3 .

1-10 DATA REPRESENTATIONS

Represent the data by a stem-and-leaf plot, a histogram, and a boxplot:

1. Length of nails [mm]

$$
\begin{array}{llllllll}
19 & 21 & 19 & 20 & 19 & 20 & 21 & 20
\end{array}
$$

2. Phone calls per minute in an office between 9:00 A.M. and 9:10 A.M.

$$
\begin{array}{llllllllll}
6 & 6 & 4 & 2 & 1 & 7 & 0 & 4 & 6 & 7
\end{array}
$$

3. Systolic blood pressure of 15 female patients of ages 20-22

156	158	154	133	141	130	144	137
151	146	156	138	138	149	139	

4. Iron content [\%] of 15 specimens of hermatite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$

72.8	70.4	71.2	69.2	70.3	68.9	71.1	69.8
71.5	69.7	70.5	71.3	69.1	70.9	70.6	

5. Weight of filled bags [g] in an automatic filling

$$
\begin{array}{lllllll}
203 & 199 & 198 & 201 & 200 & 201 & 201
\end{array}
$$

6. Gasoline consumption [miles per gallon, rounded] of six cars of the same model under similar conditions

$$
\begin{array}{llllll}
15.0 & 15.5 & 14.5 & 15.0 & 15.5 & 15.0
\end{array}
$$

7. Release time [sec] of a relay

1.3	1.2	1.4	1.5	1.3	1.3	1.4	1.1	1.5	1.4
1.6	1.3	1.5	1.1	1.4	1.2	1.3	1.5	1.4	1.4

8. Foundrax test of Brinell hardness (2.5 mm steel ball, 62.5 kg load, 30 sec) of 20 copper plates (values in $\mathrm{kg} / \mathrm{mm}^{2}$)

86	86	87	89	76	85	82	86	87	85
90	88	89	90	88	80	84	89	90	89

9. Efficiency [\%] of seven Voith Francis turbines of runner diameter 2.3 m under a head range of 185 m

$$
\left.\begin{array}{rcccccc}
91.8 & 89.1 & 89.9 & 92.5 & 90.7 & 91.2 & 91.0 \\
\text { 10. } & -0.51 & 0.12 & -0.47 & 0.95 & 0.25 & -0.18
\end{array}\right)-0.54
$$

11-16 AVERAGE AND SPREAD

Find the mean and compare it with the median. Find the standard deviation and compare it with the interquartile range.
11. For the data in Prob. 1
12. For the phone call data in Prob. 2
13. For the medical data in Prob. 3
14. For the iron contents in Prob. 4
15. For the release times in Prob. 7
16. For the Brinell hardness data in Prob. 8
17. Outlier, reduced data. Calculate s for the data $\begin{array}{llllll}4 & 1 & 3 & 10 & 2 \text {. Then reduce the data by deleting }\end{array}$ the outlier and calculate s. Comment.
18. Outlier, reduction. Do the same tasks as in Prob. 17 for the hardness data in Prob. 8.
19. Construct the simplest possible data with $\bar{x}=100$ but $q_{M}=0$. What is the point of this problem?
20. Mean. Prove that \bar{x} must always lie between the smallest and the largest data values.

24.2 Experiments, Outcomes, Events

We now turn to probability theory. This theory has the purpose of providing mathematical models of situations affected or even governed by "chance effects," for instance, in weather forecasting, life insurance, quality of technical products (computers, batteries, steel sheets, etc.), traffic problems, and, of course, games of chance with cards or dice. And the accuracy of these models can be tested by suitable observations or experiments-this is a main purpose of statistics to be explained in Chap. 25.

We begin by defining some standard terms. An experiment is a process of measurement or observation, in a laboratory, in a factory, on the street, in nature, or wherever; so "experiment" is used in a rather general sense. Our interest is in experiments that involve randomness, chance effects, so that we cannot predict a result exactly. A trial is a single performance of an experiment. Its result is called an outcome or a sample point. n trials then give a sample of size n consisting of n sample points. The sample space S of an experiment is the set of all possible outcomes.

EXAMPLES 1-6 Random Experiments. Sample Spaces

(1) Inspecting a lightbulb. $S=\{$ Defective, Nondefective $\}$.
(2) Rolling a die. $S=\{1,2,3,4,5,6\}$.
(3) Measuring tensile strength of wire. S the numbers in some interval.
(4) Measuring copper content of brass. $S: 50 \%$ to 90%, say.
(5) Counting daily traffic accidents in New York. S the integers in some interval.
(6) Asking for opinion about a new car model. $S=\{$ Like, Dislike, Undecided $\}$.

The subsets of S are called events and the outcomes simple events.

EXAMPLE 7 Events

In (2), events are $A=\{1,3,5\}$ ("Odd number"), $B=\{2,4,6\}$ ("Even number"), $C=\{5,6\}$. etc. Simple events are $\{1\},\{2\}, \cdots,\{6\}$.

If, in a trial, an outcome a happens and $a \in A$ (a is an element of A), we say that A happens. For instance, if a die turns up a 3, the event A: Odd number happens. Similarly, if C in Example 7 happens (meaning 5 or 6 turns up), then, say, $D=\{4,5,6\}$ happens. Also note that S happens in each trial, meaning that some event of S always happens. All this is quite natural.

Unions, Intersections, Complements of Events

In connection with basic probability laws we shall need the following concepts and facts about events (subsets) A, B, C, \cdots of a given sample space S.

The union $A \cup B$ of A and B consists of all points in A or B or both.
The intersection $A \cap B$ of A and B consists of all points that are in both A and B.
If A and B have no points in common, we write

$$
A \cap B=\varnothing
$$

where \varnothing is the empty set (set with no elements) and we call A and B mutually exclusive (or disjoint) because, in a trial, the occurrence of A excludes that of B (and conversely)if your die turns up an odd number, it cannot turn up an even number in the same trial. Similarly, a coin cannot turn up Head and Tail at the same time.

Complement A^{c} of A. This is the set of all the points of S not in A. Thus,

$$
A \cap A^{\mathrm{c}}=\varnothing, \quad A \cup A^{\mathrm{c}}=S
$$

In Example 7 we have $A^{\mathrm{c}}=B$, hence $A \cup A^{\mathrm{c}}=\{1,2,3,4,5,6\}=S$.
Another notation for the complement of A is \bar{A} (instead of A^{c}), but we shall not use this because in set theory \bar{A} is used to denote the closure of A (not needed in our work).

Unions and intersections of more events are defined similarly. The union

$$
\bigcup_{j=1}^{m} A_{j}=A_{1} \cup A_{2} \cup \cdots \cup A_{m}
$$

of events A_{1}, \cdots, A_{m} consists of all points that are in at least one A_{j}. Similarly for the union $A_{1} \cup A_{2} \cup \cdots$ of infinitely many subsets A_{1}, A_{2}, \cdots of an infinite sample space S (that is, S consists of infinitely many points). The intersection

$$
\bigcap_{j=1}^{m} A_{j}=A_{1} \cap A_{2} \cap \cdots \cap A_{m}
$$

of A_{1}, \cdots, A_{m} consists of the points of S that are in each of these events. Similarly for the intersection $A_{1} \cap A_{2} \cap \cdots$ of infinitely many subsets of S.

Working with events can be illustrated and facilitated by Venn diagrams ${ }^{1}$ for showing unions, intersections, and complements, as in Figs. 510 and 511, which are typical examples that give the idea.

EXAMPLE 8 Unions and Intersections of 3 Events

In rolling a die, consider the events

A: Number greater than 3, $\quad B: \quad$ Number less than 6, $\quad C: \quad$ Even number.

Then $A \cap B=\{4,5\}, B \cap C=\{2,4\}, C \cap A=\{4,6\}, A \cap B \cap C=\{4\}$. Can you sketch a Venn diagram of this? Furthermore, $A \cup B=S$, hence $A \cup B \cup C=S$ (why?).

Fig. 510. Venn diagrams showing two events A and B in a sample space S and their union $A \cup B$ (colored) and intersection $A \cap B$ (colored)

Fig. 511. Venn diagram for the experiment of rolling a die, showing S,

$$
A=\{1,3,5\}, C=\{5,6\}, A \cup C=\{1,3,5,6\}, A \cap C=\{5\}
$$

1-12 SAMPLE SPACES, EVENTS

Graph a sample space for the experiments:

1. Drawing 3 screws from a lot of right-handed and lefthanded screws
2. Tossing 2 coins
3. Rolling 2 dice
4. Rolling a die until the first Six appears
5. Tossing a coin until the first Head appears
6. Recording the lifetime of each of 3 lightbulbs

[^24]7. Recording the daily maximum temperature X and the daily maximum air pressure Y at Times Square in New York
8. Choosing a committee of 2 from a group of 5 people
9. Drawing gaskets from a lot of 10 , containing one defective D, unitil D is drawn, one at a time and assuming sampling without replacement, that is, gaskets drawn are not returned to the lot. (More about this in Sec. 24.6)
10. In rolling 3 dice, are the events A: Sum divisible by 3 and B : Sum divisible by 5 mutually exclusive?
11. Answer the questions in Prob. 10 for rolling 2 dice.
12. List all 8 subsets of the sample space $S=\{a, b, c\}$.
13. In Prob. 3 circle and mark the events A : Faces are equal, B : Sum of faces less than $5, A \cup B, A \cap B, A^{\mathrm{c}}, B^{\mathrm{c}}$.
14. In drawing 2 screws from a lot of right-handed and left-handed screws, let A, B, C, D mean at a least 1 right-handed, at least 1 left-handed, 2 right-handed, 2 left-handed, respectively. Are A and B mutually exclusive? C and D ?

15-20 VENN DIAGRAMS

15. In connection with a trip to Europe by some students, consider the events P that they see Paris, G that they have a good time, and M that they run out of money, and describe in words the events $1, \cdots, 7$ in the diagram.

Problem 15
16. Show that, by the definition of complement, for any subset A of a sample space S.

$$
\begin{gathered}
\left(A^{\mathrm{c}}\right)^{\mathrm{c}}=A, \quad S^{\mathrm{c}}=\varnothing, \quad \varnothing^{\mathrm{c}}=S, \\
A \cup A^{\mathrm{c}}=S, \quad A \cap A^{\mathrm{c}}=\varnothing
\end{gathered}
$$

17. Using a Venn diagram, show that $A \subseteq B$ if and only if $A \cup B=B$.
18. Using a Venn diagram, show that $A \subseteq B$ if and only if $A \cap B=A$.
19. (De Morgan's laws) Using Venn diagrams, graph and check De Morgan's laws

$$
\begin{aligned}
& (A \cup B)^{\mathrm{c}}=A^{\mathrm{c}} \cap B^{\mathrm{c}} \\
& (A \cap B)^{\mathrm{c}}=A^{\mathrm{c}} \cup B^{\mathrm{c}} .
\end{aligned}
$$

20. Using Venn diagrams, graph and check the rules

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) .
\end{aligned}
$$

24.3 Probability

The "probability" of an event A in an experiment is supposed to measure how frequently A is about to occur if we make many trials. If we flip a coin, then heads H and tails T will appear about equally often-we say that H and T are "equally likely." Similarly, for a regularly shaped die of homogeneous material ("fair die") each of the six outcomes $1, \cdots, 6$ will be equally likely. These are examples of experiments in which the sample space S consists of finitely many outcomes (points) that for reasons of some symmetry can be regarded as equally likely. This suggests the following definition.

DEFINITION 1

First Definition of Probability

If the sample space S of an experiment consists of finitely many outcomes (points) that are equally likely, then the probability $P(A)$ of an event A is

$$
\begin{equation*}
P(A)=\frac{\text { Number of points in } A}{\text { Number of points in } S} . \tag{1}
\end{equation*}
$$

From this definition it follows immediately that, in particular,

$$
\begin{equation*}
P(S)=1 \tag{2}
\end{equation*}
$$

EXAMPLE 1 Fair Die

In rolling a fair die once, what is the probability $P(A)$ of A of obtaining a 5 or a 6 ? The probability of B : "Even number"?
Solution. The six outcomes are equally likely, so that each has probability $1 / 6$. Thus $P(A)=2 / 6=1 / 3$ because $A=\{5,6\}$ has 2 points, and $P(B)=3 / 6=1 / 2$.

Definition 1 takes care of many games as well as some practical applications, as we shall see, but certainly not of all experiments, simply because in many problems we do not have finitely many equally likely outcomes. To arrive at a more general definition of probability, we regard probability as the counterpart of relative frequency. Recall from Sec. 24.1 that the absolute frequency $f(A)$ of an event A in n trials is the number of times A occurs, and the relative frequency of A in these trials is $f(A) / n$; thus

$$
\begin{equation*}
f_{\mathrm{rel}}(A)=\frac{f(A)}{n}=\frac{\text { Number of times } A \text { occurs }}{\text { Number of trials }} . \tag{3}
\end{equation*}
$$

Now if A did not occur, then $f(A)=0$. If A always occurred, then $f(A)=n$. These are the extreme cases. Division by n gives

$$
\begin{equation*}
0 \leqq f_{\mathrm{rel}}(A) \leqq 1 \tag{4*}
\end{equation*}
$$

In particular, for $A=S$ we have $f(S)=n$ because S always occurs (meaning that some event always occurs; if necessary, see Sec. 24.2, after Example 7). Division by n gives

$$
\begin{equation*}
f_{\mathrm{rel}}(S)=1 . \tag{5*}
\end{equation*}
$$

Finally, if A and B are mutually exclusive, they cannot occur together. Hence the absolute frequency of their union $A \cup B$ must equal the sum of the absolute frequencies of A and B. Division by n gives the same relation for the relative frequencies,

$$
\begin{equation*}
f_{\mathrm{rel}}(A \cup B)=f_{\mathrm{rel}}(A)+f_{\mathrm{rel}}(B) \quad(A \cap B=\varnothing) . \tag{6*}
\end{equation*}
$$

We are now ready to extend the definition of probability to experiments in which equally likely outcomes are not available. Of course, the extended definition should include Definition 1. Since probabilities are supposed to be the theoretical counterpart of relative frequencies, we choose the properties in $\left(4^{*}\right),\left(5^{*}\right),\left(6^{*}\right)$ as axioms. (Historically, such a choice is the result of a long process of gaining experience on what might be best and most practical.)

General Definition of Probability

Given a sample space S, with each event A of S (subset of S) there is associated a number $P(A)$, called the probability of A, such that the following axioms of probability are satisfied.

1. For every A in S,

$$
\begin{equation*}
0 \leqq P(A) \leqq 1 \tag{4}
\end{equation*}
$$

2. The entire sample space S has the probability

$$
\begin{equation*}
P(S)=1 \tag{5}
\end{equation*}
$$

3. For mutually exclusive events A and $B(A \cap B=\varnothing$; see Sec. 24.2),

$$
\begin{equation*}
P(A \cup B)=P(A)+P(B) \quad(A \cap B=\varnothing) \tag{6}
\end{equation*}
$$

If S is infinite (has infinitely many points), Axiom 3 has to be replaced by 3^{\prime}. For mutually exclusive events A_{1}, A_{2}, \cdots,
$\left(6^{\prime}\right)$

$$
P\left(A_{1} \cup A_{2} \cup \cdots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots
$$

In the infinite case the subsets of S on which $P(A)$ is defined are restricted to form a so-called σ-algebra, as explained in Ref. [GenRef6] (not [G6]!) in App. 1. This is of no practical consequence to us.

Basic Theorems of Probability

We shall see that the axioms of probability will enable us to build up probability theory and its application to statistics. We begin with three basic theorems. The first of them is useful if we can get the probability of the complement A^{c} more easily than $P(A)$ itself.

THEOREM 1

Complementation Rule

For an event A and its complement A^{c} in a sample space S,

$$
\begin{equation*}
P\left(A^{\mathrm{c}}\right)=1-P(A) \tag{7}
\end{equation*}
$$

PROOF By the definition of complement (Sec. 24.2), we have $S=A \cup A^{\mathrm{c}}$ and $A \cap A^{\mathrm{c}}=\varnothing$. Hence by Axioms 2 and 3,

$$
1=P(S)=P(A)+P\left(A^{\mathrm{c}}\right), \quad \text { thus } \quad P\left(A^{\mathrm{c}}\right)=1-P(A)
$$

EXAMPLE 2 Coin Tossing

Five coins are tossed simultaneously. Find the probability of the event A: At least one head turns up. Assume that the coins are fair.

Solution. Since each coin can turn up heads or tails, the sample space consists of $2^{5}=32$ outcomes. Since the coins are fair, we may assign the same probability $(1 / 32)$ to each outcome. Then the event A^{c} (No heads turn up) consists of only 1 outcome. Hence $P\left(A^{\mathrm{c}}\right)=1 / 32$, and the answer is $P(A)=1-P\left(A^{\mathrm{c}}\right)=31 / 32$.

The next theorem is a simple extension of Axiom 3, which you can readily prove by induction.

Addition Rule for Mutually Exclusive Events

For mutually exclusive events A_{1}, \cdots, A_{m} in a sample space S,

$$
\begin{equation*}
P\left(A_{1} \cup A_{2} \cup \cdots A_{m}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{m}\right) \tag{8}
\end{equation*}
$$

EXAMPLE 3 Mutually Exclusive Events

If the probability that on any workday a garage will get $10-20,21-30,31-40$, over 40 cars to service is 0.20 , $0.35,0.25,0.12$, respectively, what is the probability that on a given workday the garage gets at least 21 cars to service?
Solution. Since these are mutually exclusive events, Theorem 2 gives the answer $0.35+0.25+0.12=0.72$. Check this by the complementation rule.

In many cases, events will not be mutually exclusive. Then we have

THEOREM 3

Addition Rule for Arbitrary Events

For events A and B in a sample space,

$$
\begin{equation*}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \tag{9}
\end{equation*}
$$

PROOF C, D, E in Fig. 512 make up $A \cup B$ and are mutually exclusive (disjoint). Hence by Theorem 2,

$$
P(A \cup B)=P(C)+P(D)+P(E)
$$

This gives (9) because on the right $P(C)+P(D)=P(A)$ by Axiom 3 and disjointness; and $P(E)=P(B)-P(D)=P(B)-P(A \cap B)$, also by Axiom 3 and disjointness.

Fig. 512. Proof of Theorem 3

Note that for mutually exclusive events A and B we have $A \cap B=\varnothing$ by definition and, by comparing (9) and (6),

$$
\begin{equation*}
P(\varnothing)=0 \tag{10}
\end{equation*}
$$

(Can you also prove this by (5) and (7)?)

EXAMPLE 4 Union of Arbitrary Events

In tossing a fair die, what is the probability of getting an odd number or a number less than 4 ?
Solution. Let A be the event "Odd number" and B the event "Number less than 4." Then Theorem 3 gives the answer

$$
P(A \cup B)=\frac{3}{6}+\frac{3}{6}-\frac{2}{6}=\frac{2}{3}
$$

because $A \cap B=$ "Odd number less than $4 "=\{1,3\}$.

Conditional Probability. Independent Events

Often it is required to find the probability of an event B under the condition that an event A occurs. This probability is called the conditional probability of B given A and is denoted by $P(B \mid A)$. In this case A serves as a new (reduced) sample space, and that probability is the fraction of $P(A)$ which corresponds to $A \cap B$. Thus

$$
\begin{equation*}
P(B \mid A)=\frac{P(A \cap B)}{P(A)} \quad[P(A) \neq 0] \tag{11}
\end{equation*}
$$

Similarly, the conditional probability of A given B is

$$
\begin{equation*}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad[P(B) \neq 0] \tag{12}
\end{equation*}
$$

Solving (11) and (12) for $P(A \cap B)$, we obtain

Multiplication Rule

If A and B are events in a sample space S and $P(A) \neq 0, P(B) \neq 0$, then

$$
\begin{equation*}
P(A \cap B)=P(A) P(B \mid A)=P(B) P(A \mid B) \tag{13}
\end{equation*}
$$

Multiplication Rule

In producing screws, let A mean "screw too slim" and B "screw too short." Let $P(A)=0.1$ and let the conditional probability that a slim screw is also too short be $P(B \mid A)=0.2$. What is the probability that a screw that we pick randomly from the lot produced will be both too slim and too short?
Solution. $\quad P(A \cap B)=P(A) P(B \mid A)=0.1 \cdot 0.2=0.02=2 \%$, by Theorem 4 .
Independent Events. If events A and B are such that

$$
\begin{equation*}
P(A \cap B)=P(A) P(B) \tag{14}
\end{equation*}
$$

they are called independent events. Assuming $P(A) \neq 0, P(B) \neq 0$, we see from (11)-(13) that in this case

$$
P(A \mid B)=P(A), \quad P(B \mid A)=P(B)
$$

This means that the probability of A does not depend on the occurrence or nonoccurrence of B, and conversely. This justifies the term "independent."

Independence of \boldsymbol{m} Events. Similarly, m events A_{1}, \cdots, A_{m} are called independent if

$$
\begin{equation*}
P\left(A_{1} \cap \cdots \cap A_{m}\right)=P\left(A_{1}\right) \cdots P\left(A_{m}\right) \tag{15a}
\end{equation*}
$$

as well as for every k different events $A_{j_{1}}, A_{j_{2}}, \cdots, A_{j_{k}}$.

$$
\begin{equation*}
P\left(A_{j_{1}} \cap A_{j_{2}} \cap \cdots \cap A_{j_{k}}\right)=P\left(A_{j_{1}}\right) P\left(A_{j_{2}}\right) \cdots P\left(A_{j_{k}}\right) \tag{15b}
\end{equation*}
$$

where $k=2,3, \cdots, m-1$.
Accordingly, three events A, B, C are independent if and only if

$$
\begin{align*}
P(A \cap B) & =P(A) P(B) \\
P(B \cap C) & =P(B) P(C), \tag{16}\\
P(C \cap A) & =P(C) P(A), \\
P(A \cap B \cap C) & =P(A) P(B) P(C)
\end{align*}
$$

Sampling. Our next example has to do with randomly drawing objects, one at a time, from a given set of objects. This is called sampling from a population, and there are two ways of sampling, as follows.

1. In sampling with replacement, the object that was drawn at random is placed back to the given set and the set is mixed thoroughly. Then we draw the next object at random.
2. In sampling without replacement the object that was drawn is put aside.

EXAMPLE 6 Sampling With and Without Replacement

A box contains 10 screws, three of which are defective. Two screws are drawn at random. Find the probability that neither of the two screws is defective

Solution. We consider the events
A: First drawn screw nondefective.
B: Second drawn screw nondefective.
Clearly, $P(A)=\frac{7}{10}$ because 7 of the 10 screws are nondefective and we sample at random, so that each screw has the same probability $\left(\frac{1}{10}\right)$ of being picked. If we sample with replacement, the situation before the second drawing is the same as at the beginning, and $P(B)=\frac{7}{10}$. The events are independent, and the answer is

$$
P(A \cap B)=P(A) P(B)=0.7 \cdot 0.7=0.49=49 \% \text {. }
$$

If we sample without replacement, then $P(A)=\frac{7}{10}$, as before. If A has occurred, then there are 9 screws left in the box, 3 of which are defective. Thus $P(B \mid A)=\frac{6}{9}=\frac{2}{3}$, and Theorem 4 yields the answer

$$
P(A \cap B)=\frac{7}{10} \cdot \frac{2}{3}=47 \%
$$

Is it intuitively clear that this value must be smaller than the preceding one?

1. In rolling 3 fair dice, what is the probability of obtaining a sum not greater than 16 ?
2. In rolling 2 fair dice, what is the probability of a sum greater than 3 but not exceeding 6 ?
3. Three screws are drawn at random from a lot of 100 screws, 10 of which are defective. Find the probability of the event that all 3 screws drawn are nondefective, assuming that we draw (a) with replacement, (b) without replacement.
4. In Prob. 3 find the probability of E: At least 1 defective (i) directly, (ii) by using complements; in both cases (a) and (b).
5. If a box contains 10 left-handed and 20 right-handed screws, what is the probability of obtaining at least one right-handed screw in drawing 2 screws with replacement?
6. Will the probability in Prob. 5 increase or decrease if we draw without replacement. First guess, then calculate.
7. Under what conditions will it make practically no difference whether we sample with or without replacement?
8. If a certain kind of tire has a life exceeding 40,000 miles with probability 0.90 , what is the probability that a set of these tires on a car will last longer than 40,000 miles?
9. If we inspect photocopy paper by randomly drawing 5 sheets without replacement from every pack of 500, what is the probability of getting 5 clean sheets although 0.4% of the sheets contain spots?
10. Suppose that we draw cards repeatedly and with replacement from a file of 100 cards, 50 of which refer to male and 50 to female persons. What is the probability of obtaining the second "female" card before the third "male" card?
11. A batch of 200 iron rods consists of 50 oversized rods, 50 undersized rods, and 100 rods of the desired length. If two rods are drawn at random without replacement, what is the probability of obtaining (a) two rods of the
desired length, (b) exactly one of the desired length, (c) none of the desired length?
12. If a circuit contains four automatic switches and we want that, with a probability of 99%, during a given time interval the switches to be all working, what probability of failure per time interval can we admit for a single switch?
13. A pressure control apparatus contains 3 electronic tubes. The apparatus will not work unless all tubes are operative. If the probability of failure of each tube during some interval of time is 0.04 , what is the corresponding probability of failure of the apparatus?
14. Suppose that in a production of spark plugs the fraction of defective plugs has been constant at 2% over a long time and that this process is controlled every half hour by drawing and inspecting two just produced. Find the probabilities of getting (a) no defectives, (b) 1 defective, (c) 2 defectives. What is the sum of these probabilities?
15. What gives the greater probability of hitting at least once: (a) hitting with probability $1 / 2$ and firing 1 shot, (b) hitting with probability $1 / 4$ and firing 2 shots, (c) hitting with probability $1 / 8$ and firing 4 shots? First guess.
16. You may wonder whether in (16) the last relation follows from the others, but the answer is no. To see this, imagine that a chip is drawn from a box containing 4 chips numbered $000,011,101,110$, and let A, B, C be the events that the first, second, and third digit, respectively, on the drawn chip is 1 . Show that then the first three formulas in (16) hold but the last one does not hold.
17. Show that if B is a subset of A, then $P(B) \leqq P(A)$.
18. Extending Theorem 4, show that $P(A \cap B \cap C)=$ $P(A) P(B \mid A) P(C \mid A \cap B)$.
19. Make up an example similar to Prob. 16, for instance, in terms of divisibility of numbers.

24.4 Permutations and Combinations

Permutations and combinations help in finding probabilities $P(A)=a / k$ by systematically counting the number a of points of which an event A consists; here, k is the number of points of the sample space S. The practical difficulty is that a may often be surprisingly large, so that actual counting becomes hopeless. For example, if in assembling some instrument you need 10 different screws in a certain order and you want to draw them
randomly from a box (which contains nothing else) the probability of obtaining them in the required order is only $1 / 3,628,800$ because there are

$$
10!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10=3,628,800
$$

orders in which they can be drawn. Similarly, in many other situations the numbers of orders, arrangements, etc. are often incredibly large. (If you are unimpressed, take 20 screws-how much bigger will the number be?)

Permutations

A permutation of given things (elements or objects) is an arrangement of these things in a row in some order. For example, for three letters a, b, c there are $3!=1 \cdot 2 \cdot 3=6$ permutations: $a b c, a c b, b a c, b c a, c a b, c b a$. This illustrates (a) in the following theorem.

Permutations

(a) Different things. The number of permutations of n different things taken all at a time is

$$
\begin{equation*}
n!=1 \cdot 2 \cdot 3 \cdots n \quad \text { (read " } n \text { factorial"). } \tag{1}
\end{equation*}
$$

(b) Classes of equal things. If n given things can be divided into c classes of alike things differing from class to class, then the number of permutations of these things taken all at a time is

$$
\begin{equation*}
\frac{n!}{n_{1}!n_{2}!\cdots n_{c}!} \quad\left(n_{1}+n_{2}+\cdots+n_{c}=n\right) \tag{2}
\end{equation*}
$$

Where n_{j} is the number of things in the jth class.

PROOF (a) There are n choices for filling the first place in the row. Then $n-1$ things are still available for filling the second place, etc.
(b) n_{1} alike things in class 1 make n_{1} ! permutations collapse into a single permutation (those in which class 1 things occupy the same n_{1} positions), etc., so that (2) follows from (1).

EXAMPLE 1 Illustration of Theorem 1(b)
If a box contains 6 red and 4 blue balls, the probability of drawing first the red and then the blue balls is

$$
P=6!4!/ 10!=1 / 210 \approx 0.5 \% .
$$

A permutation of \boldsymbol{n} things taken \boldsymbol{k} at a time is a permutation containing only \boldsymbol{k} of the n given things. Two such permutations consisting of the same k elements, in a different order, are different, by definition. For example, there are 6 different permutations of the three letters a, b, c, taken two letters at a time, $a b, a c, b c, b a, c a, c b$.

A permutation of \boldsymbol{n} things taken \boldsymbol{k} at a time with repetitions is an arrangement obtained by putting any given thing in the first position, any given thing, including a repetition of the one just used, in the second, and continuing until k positions are filled. For example, there
are $3^{2}=9$ different such permutations of a, b, c taken 2 letters at a time, namely, the preceding 6 permutations and $a a, b b, c c$. You may prove (see Team Project 14):

THEOREM 2

Permutations

The number of different permutations of n different things taken k at a time without repetitions is

$$
\begin{equation*}
n(n-1)(n-2) \cdots(n-k+1)=\frac{n!}{(n-k)!} \tag{3a}
\end{equation*}
$$

and with repetitions is
(3b)

$$
n^{k}
$$

EXAMPLE 2 Illustration of Theorem 2

In an encrypted message the letters are arranged in groups of five letters, called words. From (3b) we see that the number of different such words is

$$
26^{5}=11,881,376
$$

From (3a) it follows that the number of different such words containing each letter no more than once is

$$
26!/(26-5)!=26 \cdot 25 \cdot 24 \cdot 23 \cdot 22=7,893,600
$$

Combinations

In a permutation, the order of the selected things is essential. In contrast, a combination of given things means any selection of one or more things without regard to order. There are two kinds of combinations, as follows.

The number of combinations of \boldsymbol{n} different things, taken \boldsymbol{k} at a time, without repetitions is the number of sets that can be made up from the n given things, each set containing k different things and no two sets containing exactly the same k things.

The number of combinations of \boldsymbol{n} different things, taken \boldsymbol{k} at a time, with repetitions is the number of sets that can be made up of k things chosen from the given n things, each being used as often as desired.

For example, there are three combinations of the three letters a, b, c, taken two letters at a time, without repetitions, namely, $a b, a c, b c$, and six such combinations with repetitions, namely, $a b, a c, b c, a a, b b, c c$.

Combinations

The number of different combinations of n different things taken, k at a time, without repetitions, is

$$
\begin{equation*}
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n(n-1) \cdots(n-k+1)}{1 \cdot 2 \cdots k} \tag{4a}
\end{equation*}
$$

and the number of those combinations with repetitions is

$$
\begin{equation*}
\binom{n+k-1}{k} \tag{4b}
\end{equation*}
$$

PROOF The statement involving (4a) follows from the first part of Theorem 2 by noting that there are k ! permutations of k things from the given n things that differ by the order of the elements (see Theorem 1), but there is only a single combination of those k things of the type characterized in the first statement of Theorem 3. The last statement of Theorem 3 can be proved by induction (see Team Project 14).

EXAMPLE 3 Illustration of Theorem 3

The number of samples of five lightbulbs that can be selected from a lot of 500 bulbs is [see (4a)]

$$
\binom{500}{5}=\frac{500!}{5!495!}=\frac{500 \cdot 499 \cdot 498 \cdot 497 \cdot 496}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}=255,244,687,600 .
$$

Factorial Function

In (1)-(4) the factorial function is basic. By definition,

$$
\begin{equation*}
0!=1 \tag{5}
\end{equation*}
$$

Values may be computed recursively from given values by

$$
\begin{equation*}
(n+1)!=(n+1) n! \tag{6}
\end{equation*}
$$

For large n the function is very large (see Table A3 in App. 5). A convenient approximation for large n is the Stirling formula ${ }^{2}$

$$
\begin{equation*}
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \quad(e=2.718 \cdots) \tag{7}
\end{equation*}
$$

where \sim is read "asymptotically equal" and means that the ratio of the two sides of (7) approaches 1 as n approaches infinity.

EXAMPLE 4 Stirling Formula

$n!$	By (7)	Exact Value	Relative Error
$4!$	23.5	24	2.1%
$10!$	$3,598,696$	$3,628,800$	0.8%
$20!$	$2.42279 \cdot 10^{18}$	$2,432,902,008,176,640,000$	0.4%

Binomial Coefficients

The binomial coefficients are defined by the formula

$$
\begin{equation*}
\binom{a}{k}=\frac{a(a-1)(a-2) \cdots(a-k+1)}{k!} \quad(k \geqq 0, \text { integer }) \tag{8}
\end{equation*}
$$

[^25]The numerator has k factors. Furthermore, we define

$$
\begin{equation*}
\binom{a}{0}=1, \quad \text { in particular, } \quad\binom{0}{0}=1 \tag{9}
\end{equation*}
$$

For integer $a=n$ we obtain from (8)

$$
\begin{equation*}
\binom{n}{k}=\binom{n}{n-k} \quad(n \geqq 0,0 \leqq k \leqq n) \tag{10}
\end{equation*}
$$

Binomial coefficients may be computed recursively, because

$$
\begin{equation*}
\binom{a}{k}+\binom{a}{k+1}=\binom{a+1}{k+1} \quad(k \geqq 0, \text { integer }) \tag{11}
\end{equation*}
$$

Formula (8) also yields

$$
\begin{equation*}
\binom{-m}{k}=(-1)^{k}\binom{m+k-1}{k} \quad(k \geqq 0, \text { integer }) \tag{12}
\end{equation*}
$$

There are numerous further relations; we mention two important ones,

$$
\begin{equation*}
\sum_{s=0}^{n-1}\binom{k+s}{k}=\binom{n+k}{k+1} \quad(k \geqq 0, n \geqq 1 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{r}\binom{p}{k}\binom{q}{r-k}=\binom{p+q}{r} \quad(r \geqq 0, \text { integer }) . \tag{14}
\end{equation*}
$$

Note the large numbers in the answers to some of these problems, which would make counting cases hopeless!

1. In how many ways can a company assign 10 drivers to n buses, one driver to each bus and conversely?
2. List (a) all permutations, (b) all combinations without repetitions, (c) all combinations with repetitions, of 5 letters a, e, i, o, u taken 2 at a time.
3. If a box contains 4 rubber gaskets and 2 plastic gaskets, what is the probability of drawing (a) first the plastic and then the rubber gaskets, (b) first the rubber and then the plastic ones? Do this by using a theorem and checking it by multiplying probabilities.
4. An urn contains 2 green, 3 yellow, and 5 red balls. We draw 1 ball at random and put it aside. Then we draw the next ball, and so on. Find the probability of drawing
at first the 2 green balls, then the 3 yellow ones, and finally the red ones.
5. In how many different ways can we select a committee consisting of 3 engineers, 2 physicists, and 2 computer scientists from 10 engineers, 5 physicists, and 6 computer scientists? First guess.
6. How many different samples of 4 objects can we draw from a lot of 50 ?
7. Of a lot of 10 items, 2 are defective. (a) Find the number of different samples of 4 . Find the number of samples of 4 containing (b) no defectives, (c) 1 defective, (d) 2 defectives.
8. Determine the number of different bridge hands. (A bridge hand consists of 13 cards selected from a full deck of 52 cards.)
9. In how many different ways can 6 people be seated at a round table?
10. If a cage contains 100 mice, 3 of which are male, what is the probability that the 3 male mice will be included if 10 mice are randomly selected?
11. How many automobile registrations may the police have to check in a hit-and-run accident if a witness reports KDP7 and cannot remember the last two digits on the license plate but is certain that all three digits were different?
12. If 3 suspects who committed a burglary and 6 innocent persons are lined up, what is the probability that a witness who is not sure and has to pick three persons will pick the three suspects by chance? That the witness picks 3 innocent persons by chance?
13. CAS PROJECT. Stirling formula. (a) Using (7), compute approximate values of $n!$ for $n=1, \cdots, 20$.
(b) Determine the relative error in (a). Find an empirical formula for that relative error.
(c) An upper bound for that relative error is $e^{1 / 12 n}-1$. Try to relate your empirical formula to this.
(d) Search through the literature for further information on Stirling's formula. Write a short eassy about your
findings, arranged in logical order and illustrated with numeric examples.
14. TEAM PROJECT. Permutations, Combinations.
(a) Prove Theorem 2.
(b) Prove the last statement of Theorem 3.
(c) Derive (11) from (8).
(d) By the binomial theorem,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k},
$$

so that $a^{k} b^{n-k}$ has the coefficient $\binom{n}{k}$. Can you conclude this from Theorem 3 or is this a mere coincidence?
(e) Prove (14) by using the binomial theorem.
(f) Collect further formulas for binomial coefficients from the literature and illustrate them numerically.
15. Birthday problem. What is the probability that in a group of 20 people (that includes no twins) at least two have the same birthday, if we assume that the probability of having birthday on a given day is $1 / 365$ for every day. First guess. Hint. Consider the complementary event.

24.5 Random Variables. Probability Distributions

In Sec. 24.1 we considered frequency distributions of data. These distributions show the absolute or relative frequency of the data values. Similarly, a probability distribution or, briefly, a distribution, shows the probabilities of events in an experiment. The quantity that we observe in an experiment will be denoted by X and called a random variable (or stochastic variable) because the value it will assume in the next trial depends on chance, on randomness-if you roll a die, you get one of the numbers from 1 to 6 , but you don't know which one will show up next. Thus $X=$ Number a die turns up is a random variable. So is $X=$ Elasticity of rubber (elongation at break). ("Stochastic" means related to chance.)

If we count (cars on a road, defective screws in a production, tosses until a die shows the first Six), we have a discrete random variable and distribution. If we measure (electric voltage, rainfall, hardness of steel), we have a continuous random variable and distribution. Precise definitions follow. In both cases the distribution of X is determined by the distribution function

$$
\begin{equation*}
F(x)=P(X \leqq x) \tag{1}
\end{equation*}
$$

this is the probability that in a trial, X will assume any value not exceeding x.
CAUTION: The terminology is not uniform. $F(x)$ is sometimes also called the cumulative distribution function.

For (1) to make sense in both the discrete and the continuous case we formulate conditions as follows.

Random Variable

A random variable X is a function defined on the sample space S of an experiment. Its values are real numbers. For every number a the probability

$$
P(X=a)
$$

with which X assumes a is defined. Similarly, for any interval I the probability

$$
P(X \in I)
$$

with which X assumes any value in I is defined.

Although this definition is very general, in practice only a very small number of distributions will occur over and over again in applications.

From (1) we obtain the fundamental formula for the probability corresponding to an interval $a<x \leqq b$,

$$
\begin{equation*}
P(a<X \leqq b)=F(b)-F(a) \tag{2}
\end{equation*}
$$

This follows because $X \leqq a$ (" X assumes any value not exceeding a ") and $a<X \leqq b$ ("X assumes any value in the interval $a<x \leqq b$ ") are mutually exclusive events, so that by (1) and Axiom 3 of Definition 2 in Sec. 24.3

$$
\begin{aligned}
F(b)=P(X \leqq b) & =P(X \leqq a)+P(a<X \leqq b) \\
& =F(a)+P(a<X \leqq b)
\end{aligned}
$$

and subtraction of $F(a)$ on both sides gives (2).

Discrete Random Variables and Distributions

By definition, a random variable X and its distribution are discrete if X assumes only finitely many or at most countably many values $x_{1}, x_{2}, x_{3}, \cdots$, called the possible values of X, with positive probabilities $p_{1}=P\left(X=x_{1}\right), p_{2}=P\left(X=x_{2}\right), p_{3}=P\left(X=x_{3}\right), \cdots$, whereas the probability $P(X \in I)$ is zero for any interval I containing no possible value.

Clearly, the discrete distribution of X is also determined by the probability function $f(x)$ of X, defined by

$$
f(x)=\left\{\begin{array}{ll}
p_{j} & \text { if } x=x_{j} \tag{3}\\
0 & \text { otherwise }
\end{array} \quad(j=1,2, \cdots)\right.
$$

From this we get the values of the distribution function $F(x)$ by taking sums,

$$
\begin{equation*}
F(x)=\sum_{x_{j} \leqq x} f\left(x_{j}\right)=\sum_{x_{j} \leqq x} p_{j} \tag{4}
\end{equation*}
$$

where for any given x we sum all the probabilities p_{j} for which x_{j} is smaller than or equal to that of x. This is a step function with upward jumps of size p_{j} at the possible values x_{j} of X and constant in between.

EXAMPLE 1 Probability Function and Distribution Function

Figure 513 shows the probability function $f(x)$ and the distribution function $F(x)$ of the discrete random variable

$$
X=\text { Number a fair die turns up. }
$$

X has the possible values $x=1,2,3,4,5,6$ with probability $1 / 6$ each. At these x the distribution function has upward jumps of magnitude $1 / 6$. Hence from the graph of $f(x)$ we can construct the graph of $F(x)$ and conversely.

In Figure 513 (and the next one) at each jump the fat dot indicates the function value at the jump!

Fig. 513. Probability function $f(x)$ and distribution function $F(x)$ of the random variable $X=$ Number obtained in tossing a fair die once

Fig. 514. Probability function $f(x)$ and distribution function $F(x)$ of the random variable $X=$ Sum of the two numbers obtained in tossing two fair dice once

EXAMPLE 2 Probability Function and Distribution Function

The random variable $X=$ Sum of the two numbers two fair dice turn up is discrete and has the possible values $2(=1+1), 3,4, \cdots, 12(=6+6)$. There are $6 \cdot 6=36$ equally likely outcomes $(1,1)(1,2), \cdots,(6,6)$, where the first number is that shown on the first die and the second number that on the other die. Each such outcome has probability $1 / 36$. Now $X=2$ occurs in the case of the outcome $(1,1) ; X=3$ in the case of the two outcomes $(1,2)$ and $(2,1) ; X=4$ in the case of the three outcomes $(1,3),(2,2),(3,1)$; and so on. Hence $f(x)=P(X=x)$ and $F(x)=P(X \leqq x)$ have the values

x	2	3	4	5	6	7	8	9	10	11	12
$f(x)$	$1 / 36$	$2 / 36$	$3 / 36$	$4 / 36$	$5 / 36$	$6 / 36$	$5 / 36$	$4 / 36$	$3 / 36$	$2 / 36$	$1 / 36$
$F(x)$	$1 / 36$	$3 / 36$	$6 / 36$	$10 / 36$	$15 / 36$	$21 / 36$	$26 / 36$	$30 / 36$	$33 / 36$	$35 / 36$	$36 / 36$

Figure 514 shows a bar chart of this function and the graph of the distribution function, which is again a step function, with jumps (of different height!) at the possible values of X.

Two useful formulas for discrete distributions are readily obtained as follows. For the probability corresponding to intervals we have from (2) and (4)

$$
\begin{equation*}
P(a<X \leqq b)=F(b)-F(a)=\sum_{a<x_{j} \leqq b} p_{j} \quad \quad(X \text { discrete }) \tag{5}
\end{equation*}
$$

This is the sum of all probabilities p_{j} for which x_{j} satisfies $a<x_{j} \leqq b$. (Be careful about $<$ and \leqq !) From this and $P(S)=1$ (Sec. 24.3) we obtain the following formula.

$$
\begin{equation*}
\sum_{j} p_{j}=1 \quad \text { (sum of all probabilities). } \tag{6}
\end{equation*}
$$

EXAMPLE 3 Illustration of Formula (5)

In Example 2, compute the probability of a sum of at least 4 and at most 8 .
Solution. $\quad P(3<X \leqq 8)=F(8)-F(3)=\frac{26}{36}-\frac{3}{36}=\frac{23}{36}$.

EXAMPLE 4 Waiting Time Problem. Countably Infinite Sample Space

In tossing a fair coin, let $X=$ Number of trials until the first head appears. Then, by independence of events (Sec. 24.3),

$$
\begin{array}{lll}
P(X=1)=P(H)=\frac{1}{2} & & (H=\text { Head }) \\
P(X=2)=P(T H)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} & & (T=\text { Tail }) \\
P(X=3)=P(T T H)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}, & \text { etc. } &
\end{array}
$$

and in general $P(X=n)=\left(\frac{1}{2}\right)^{n}, n=1,2, \cdots$. Also, (6) can be confirmed by the sum formula for the geometric series,

$$
\begin{aligned}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots & =-1+\frac{1}{1-\frac{1}{2}} \\
& =-1+2=1
\end{aligned}
$$

Continuous Random Variables and Distributions

Discrete random variables appear in experiments in which we count (defectives in a production, days of sunshine in Chicago, customers standing in a line, etc.). Continuous random variables appear in experiments in which we measure (lengths of screws, voltage in a power line, Brinell hardness of steel, etc.). By definition, a random variable X and its distribution are of continuous type or, briefly, continuous, if its distribution function $F(x)$ [defined in (1)] can be given by an integral

$$
\begin{equation*}
F(x)=\int_{-\infty}^{x} f(v) d v \tag{7}
\end{equation*}
$$

(we write v because x is needed as the upper limit of the integral) whose integrand $f(x)$, called the density of the distribution, is nonnegative, and is continuous, perhaps except for finitely many x-values. Differentiation gives the relation of f to F as

$$
\begin{equation*}
f(x)=F^{\prime}(x) \tag{8}
\end{equation*}
$$

for every x at which $f(x)$ is continuous.
From (2) and (7) we obtain the very important formula for the probability corresponding to an interval:

$$
\begin{equation*}
P(a<X \leqq b)=F(b)-F(a)=\int_{a}^{b} f(v) d v \tag{9}
\end{equation*}
$$

This is the analog of (5).
From (7) and $P(S)=1$ (Sec. 24.3) we also have the analog of (6):
(10)

$$
\int_{-\infty}^{\infty} f(v) d v=1
$$

Continuous random variables are simpler than discrete ones with respect to intervals. Indeed, in the continuous case the four probabilities corresponding to $a<X \leqq b$, $a<X<b, a \leqq X<b$, and $a \leqq X \leqq b$ with any fixed a and b ($>a$) are all the same. Can you see why? (Answer. This probability is the area under the density curve, as in Fig. 515, and does not change by adding or subtracting a single point in the interval of integration.) This is different from the discrete case! (Explain.)

The next example illustrates notations and typical applications of our present formulas.

Fig. 515. Example illustrating formula (9)

EXAMPLE 5 Continuous Distribution

Let X have the density function $f(x)=0.75\left(1-x^{2}\right)$ if $-1 \leqq x \leqq 1$ and zero otherwise. Find the distribution function. Find the probabilities $P\left(-\frac{1}{2} \leqq X \leqq \frac{1}{2}\right)$ and $P\left(\frac{1}{4} \leqq X \leqq 2\right)$. Find x such that $P(X \leqq x)=0.95$.

Solution. From (7) we obtain $F(x)=0$ if $x \leqq-1$,

$$
F(x)=0.75 \int_{-1}^{x}\left(1-v^{2}\right) d v=0.5+0.75 x-0.25 x^{3} \quad \text { if }-1<x \leqq 1,
$$

and $F(x)=1$ if $x>1$. From this and (9) we get

$$
P\left(-\frac{1}{2} \leqq X \leqq \frac{1}{2}\right)=F\left(\frac{1}{2}\right)-F\left(-\frac{1}{2}\right)=0.75 \int_{-1 / 2}^{1 / 2}\left(1-v^{2}\right) d v=68.75 \%
$$

(because $P\left(-\frac{1}{2} \leqq X \leqq \frac{1}{2}\right)=P\left(-\frac{1}{2}<X \leqq \frac{1}{2}\right)$ for a continuous distribution) and

$$
P\left(\frac{1}{4} \leqq X \leqq 2\right)=F(2)-F\left(\frac{1}{4}\right)=0.75 \int_{1 / 4}^{1}\left(1-v^{2}\right) d v=31.64 \%
$$

(Note that the upper limit of integration is 1, not 2. Why?) Finally,

$$
P(X \leqq x)=F(x)=0.5+0.75 x-0.25 x^{3}=0.95 .
$$

Algebraic simplification gives $3 x-x^{3}=1.8$. A solution is $x=0.73$, approximately.
Sketch $f(x)$ and mark $x=-\frac{1}{2}, \frac{1}{2}, \frac{1}{4}$, and 0.73 , so that you can see the results (the probabilities) as areas under the curve. Sketch also $F(x)$.

Further examples of continuous distributions are included in the next problem set and in later sections.

1. Graph the probability function $f(x)=k x^{2}(x=1,2,3$, 4,$5 ; k$ suitable) and the distribution function.
2. Graph the density function $f(x)=k x^{2}(0 \leqq x \leqq 5$; k suitable) and the distribution function.
3. Uniform distribution. Graph f and F when the density of X is $f(x)=k=$ const if $-2 \leqq x \leqq 2$ and 0 elsewhere. Find $P(0 \leqq X \leqq 2)$.
4. In Prob. 3 find c and \widetilde{c} such that $P(-c<X<c)=$ 95% and $P(0<X<\widetilde{c})=95 \%$.
5. Graph f and F when $f(-2)=f(2)=\frac{1}{8}, f(-1)=$ $f(1)=\frac{3}{8}$. Can f have further positive values?
6. A box contains 4 right-handed and 6 left-handed screws. Two screws are drawn at random without replacement. Let X be the number of left-handed screws drawn. Find the probabilities $P(X=0)$, $P(X=1), \quad P(X=2), \quad P(1<X<2), \quad P(X \leqq 1)$, $P(X \geqq 1), P(X>1)$, and $P(0.5<X<10)$.
7. Let X be the number of years before a certain kind of pump needs replacement. Let X have the probability function $f(x)=k x^{3}, x=0,1,2,3,4$, Find k. Sketch f and F.
8. Graph the distribution function $F(x)=1-e^{-3 x}$ if $x>0, F(x)=0$ if $x \leqq 0$, and the density $f(x)$. Find x such that $F(x)=0.9$.
9. Let X [millimeters] be the thickness of washers. Assume that X has the density $f(x)=k x$ if $0.9<x<1.1$ and 0 otherwise. Find k. What is the probability that a washer will have thickness between 0.95 mm and 1.05 mm ?
10. If the diameter X of axles has the density $f(x)=k$ if $119.9 \leqq x \leqq 120.1$ and 0 otherwise, how many defectives will a lot of 500 axles approximately contain if defectives are axles slimmer than 119.91 or thicker than 120.09 ?
11. Find the probability that none of three bulbs in a traffic signal will have to be replaced during the first 1500 hours of operation if the lifetime X of a bulb is a random variable with the density $f(x)=6\left[0.25-(x-1.5)^{2}\right]$ when $1 \leqq x \leqq 2$ and $f(x)=0$ otherwise, where x is measured in multiples of 1000 hours.

12 Let X be the ratio of sales to profits of some company. Assume that X has the distribution function $F(x)=0$ if $x<2, F(x)=\left(x^{2}-4\right) / 5$ if $2 \leqq x<3, F(x)=1$ if $x \geqq 3$. Find and sketch the density. What is the probability that X is between 2.5 (40% profit) and 5 (20% profit)?
13. Suppose that in an automatic process of filling oil cans, the content of a can (in gallons) is $Y=100+X$, where X is a random variable with density $f(x)=1-|x|$ when $|x| \leqq 1$ and 0 when $|x|>1$. Sketch $f(x)$ and $F(x)$. In a lot of 1000 cans, about how many will contain 100 gallons or more? What is the probability that a can will contain less than 99.5 gallons? Less than 99 gallons?
14. Find the probability function of $X=$ Number of times a fair die is rolled until the first Six appears and show that it satisfies (6).
15. Let X be a random variable that can assume every real value. What are the complements of the events $X \leqq b$, $X<b, X \geqq c, X>c, b \leqq X \leqq c, b<X \leqq c$?

24.6 Mean and Variance of a Distribution

The mean μ and variance σ^{2} of a random variable X and of its distribution are the theoretical counterparts of the mean \bar{x} and variance s^{2} of a frequency distribution in Sec. 24.1 and serve a similar purpose. Indeed, the mean characterizes the central location and the variance the spread (the variability) of the distribution. The mean μ (mu) is defined by
(a) $\quad \mu=\sum_{j} x_{j} f\left(x_{j}\right)$
(Discrete distribution)
(b) $\quad \mu=\int_{-\infty}^{\infty} x f(x) d x$
(Continuous distribution)
and the variance σ^{2} (sigma square) by

$$
\begin{array}{llr}
\text { (a) } & \sigma^{2}=\sum_{j}\left(x_{j}-\mu\right)^{2} f\left(x_{j}\right) & \text { (Discrete distribution) } \tag{2}\\
\text { (b) } & \sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x & \text { (Continuous distribution). }
\end{array}
$$

σ (the positive square root of σ^{2}) is called the standard deviation of X and its distribution. f is the probability function or the density, respectively, in (a) and (b).

The mean μ is also denoted by $E(X)$ and is called the expectation of X because it gives the average value of X to be expected in many trials. Quantities such as μ and σ^{2} that measure certain properties of a distribution are called parameters. μ and σ^{2} are the two most important ones. From (2) we see that

$$
\begin{equation*}
\sigma^{2}>0 \tag{3}
\end{equation*}
$$

(except for a discrete "distribution" with only one possible value, so that $\sigma^{2}=0$). We assume that μ and σ^{2} exist (are finite), as is the case for practically all distributions that are useful in applications.

EXAMPLE 1 Mean and Variance

The random variable $X=$ Number of heads in a single toss of a fair coin has the possible values $X=0$ and $X=1$ with probabilities $P(X=0)=\frac{1}{2}$ and $P(X=1)=\frac{1}{2}$. From (la) we thus obtain the mean $\mu=0 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}=\frac{1}{2}$, and (2a) yields the variance

$$
\sigma^{2}=\left(0-\frac{1}{2}\right)^{2} \cdot \frac{1}{2}+\left(1-\frac{1}{2}\right)^{2} \cdot \frac{1}{2}=\frac{1}{4} .
$$

EXAMPLE 2 Uniform Distribution. Variance Measures Spread

The distribution with the density

$$
f(x)=\frac{1}{b-a} \quad \text { if } \quad a<x<b
$$

and $f=0$ otherwise is called the uniform distribution on the interval $a<x<b$. From (1b) (or from Theorem 1, below) we find that $\mu=(a+b) / 2$, and (2b) yields the variance

$$
\sigma^{2}=\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} \frac{1}{b-a} d x=\frac{(b-a)^{2}}{12}
$$

Figure 516 illustrates that the spread is large if and only if σ^{2} is large.

Fig. 516. Uniform distributions having the same mean (0.5) but different variances σ^{2}

Symmetry. We can obtain the mean μ without calculation if a distribution is symmetric. Indeed, you may prove

Mean of a Symmetric Distribution

If a distribution is symmetric with respect to $x=c$, that is, $f(c-x)=f(c+x)$, then $\mu=c$. (Examples 1 and 2 illustrate this.)

Transformation of Mean and Variance

Given a random variable X with mean μ and variance σ^{2}, we want to calculate the mean and variance of $X^{*}=a_{1}+a_{2} X$, where a_{1} and a_{2} are given constants. This problem is important in statistics, where it often appears.

Transformation of Mean and Variance

(a) If a random variable X has mean μ and variance σ^{2}, then the random variable

$$
\begin{equation*}
X^{*}=a_{1}+a_{2} X \quad\left(a_{2}>0\right) \tag{4}
\end{equation*}
$$

has the mean μ^{*} and variance $\sigma^{* 2}$, where

$$
\begin{equation*}
\mu^{*}=a_{1}+a_{2} \mu \quad \text { and } \quad \sigma^{* 2}=a_{2}^{2} \sigma^{2} \tag{5}
\end{equation*}
$$

(b) In particular, the standardized random variable Z corresponding to X, given by

$$
\begin{equation*}
Z=\frac{X-\mu}{\sigma} \tag{6}
\end{equation*}
$$

has the mean 0 and the variance 1 .

PROOF We prove (5) for a continuous distribution. To a small interval I of length Δx on the x-axis there corresponds the probability $f(x) \Delta x$ [approximately; the area of a rectangle of base Δx and height $f(x)$]. Then the probability $f(x) \Delta x$ must equal that for the corresponding interval on the x^{*}-axis, that is, $f^{*}\left(x^{*}\right) \Delta x^{*}$, where f^{*} is the density of X^{*} and Δx^{*} is the length of the interval on the x^{*}-axis corresponding to I. Hence for differentials we have $f^{*}\left(x^{*}\right) d x^{*}=f(x) d x$. Also, $x^{*}=a_{1}+a_{2} x$ by (4), so that (1b) applied to X^{*} gives

$$
\begin{aligned}
\mu^{*} & =\int_{-\infty}^{\infty} x^{*} f^{*}\left(x^{*}\right) d x^{*} \\
& =\int_{-\infty}^{\infty}\left(a_{1}+a_{2} x\right) f(x) d x \\
& =a_{1} \int_{-\infty}^{\infty} f(x) d x+a_{2} \int_{-\infty}^{\infty} x f(x) d x
\end{aligned}
$$

On the right the first integral equals 1 , by (10) in Sec. 24.5. The second intergral is μ. This proves (5) for μ^{*}. It implies

$$
x^{*}-\mu^{*}=\left(a_{1}+a_{2} x\right)-\left(a_{1}+a_{2} \mu\right)=a_{2}(x-\mu) .
$$

From this and (2) applied to X^{*}, again using $f^{*}\left(x^{*}\right) d x^{*}=f(x) d x$, we obtain the second formula in (5),

$$
\sigma^{* 2}=\int_{-\infty}^{\infty}\left(x^{*}-\mu^{*}\right)^{2} f^{*}\left(x^{*}\right) d x^{*}=a_{2}^{2} \int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x=a_{2}^{2} \sigma^{2}
$$

For a discrete distribution the proof of (5) is similar.
Choosing $a_{1}=-\mu / \sigma$ and $a_{2}=1 / \sigma$ we obtain (6) from (4), writing $X^{*}=Z$. For these a_{1}, a_{2} formula (5) gives $\mu^{*}=0$ and $\sigma^{* 2}=1$, as claimed in (b).

Expectation, Moments

Recall that (1) defines the expectation (the mean) of X, the value of X to be expected on the average, written $\mu=E(X)$. More generally, if $g(x)$ is nonconstant and continuous for all x, then $g(X)$ is a random variable. Hence its mathematical expectation or, briefly, its
expectation $E(g(X))$ is the value of $g(X)$ to be expected on the average, defined [similarly to (1)] by

$$
\begin{equation*}
E(g(X))=\sum_{j} g\left(x_{j}\right) f\left(x_{j}\right) \quad \text { or } \quad E(g(X))=\int_{-\infty}^{\infty} g(x) f(x) d x \tag{7}
\end{equation*}
$$

In the first formula, f is the probability function of the discrete random variable X. In the second formula, f is the density of the continuous random variable X. Important special cases are the \boldsymbol{k} th moment of X (where $k=1,2, \cdots$)

$$
\begin{equation*}
E\left(X^{k}\right)=\sum_{j} x_{j}^{k} f\left(x_{j}\right) \quad \text { or } \quad \int_{-\infty}^{\infty} x^{k} f(x) d x \tag{8}
\end{equation*}
$$

and the \boldsymbol{k} th central moment of $X(k=1,2, \cdots)$

$$
\begin{equation*}
E\left([X-\mu]^{k}\right)=\sum_{j}\left(x_{j}-\mu\right)^{k} f\left(x_{j}\right) \quad \text { or } \quad \int_{-\infty}^{\infty}(x-\mu)^{k} f(x) d x \tag{9}
\end{equation*}
$$

This includes the first moment, the mean of X

$$
\begin{equation*}
\mu=E(X) \tag{10}
\end{equation*}
$$

[(8) with $k=1$].

It also includes the second central moment, the variance of X

$$
\begin{equation*}
\sigma^{2}=E\left([X-\mu]^{2}\right) \quad[(9) \text { with } k=2] \tag{11}
\end{equation*}
$$

For later use you may prove

$$
\begin{equation*}
E(1)=1 \tag{12}
\end{equation*}
$$

1-8 MEAN, VARIANCE

Find the mean and variance of the random variable X with probability function or density $f(x)$.

1. $f(x)=k x(0 \leqq x \leqq 2, k$ suitable $)$
2. $X=$ Number a fair die turns up
3. Uniform distribution on $[0,2 \pi$]
4. $Y=\sqrt{3}(X-\mu) / \pi$ with X as in Prob. 3
5. $f(x)=4 e^{-4 x}(x \geqq 0)$
6. $f(x)=k\left(1-x^{2}\right)$ if $-1 \leqq x \leqq 1$ and 0 otherwise
7. $f(x)=C e^{-x / 2} \quad(x=0)$
8. $X=$ Number of times a fair coin is flipped until the first Head appears. (Calculate μ only.)
9. If the diameter $X[\mathrm{~cm}]$ of certain bolts has the density $f(x)=k(x-0.9)(1.1-x)$ for $0.9<x<1.1$ and 0 for other x, what are k, μ, and σ^{2} ? Sketch $f(x)$.
10. If, in Prob. 9, a defective bolt is one that deviates from 1.00 cm by more than 0.06 cm , what percentage of defectives should we expect?
11. For what choice of the maximum possible deviation from 1.00 cm shall we obtain 10% defectives in Probs. 9 and 10 ?
12. What total sum can you expect in rolling a fair die 20 times? Do the experiment. Repeat it a number of times and record how the sum varies.
13. What is the expected daily profit if a store sells X air conditioners per day with probability $f(10)=0.1$, $f(11)=0.3, f(12)=0.4, f(13)=0.2$ and the profit per conditioner is $\$ 55$?
14. Find the expectation of $g(X)=X^{2}$, where X is uniformly distributed on the interval $-1 \leqq x \leqq 1$.
15. A small filling station is supplied with gasoline every Saturday afternoon. Assume that its volume X of sales in ten thousands of gallons has the probability density $f(x)=6 x(1-x)$ if $0 \leqq x \leqq 1$ and 0 otherwise. Determine the mean, the variance, and the standardized variable.
16. What capacity must the tank in Prob. 15 have in order that the probability that the tank will be emptied in a given week be 5% ?
17. James rolls 2 fair dice, and Harry pays k cents to James, where k is the product of the two faces that show on the dice. How much should James pay to Harry for each game to make the game fair?
18. What is the mean life of a lightbulb whose life X [hours] has the density $f(x)=0.001 e^{-0.001 x}(x \geqq 0)$?
19. Let X be discrete with probability function $f(0)=f(3)=$ $\frac{1}{8}, f(1)=f(2)=\frac{3}{8}$. Find the expectation of X^{3}.
20. TEAM PROJECT. Means, Variances, Expectations.
(a) Show that $E(X-\mu)=0, \sigma^{2}=E\left(X^{2}\right)-\mu^{2}$.
(b) Prove (10)-(12).
(c) Find all the moments of the uniform distribution on an interval $a \leqq x \leqq b$.
(d) The skewness γ of a random variable X is defined by

$$
\begin{equation*}
\gamma=\frac{1}{\sigma^{3}} E\left([X-\mu]^{3}\right) . \tag{13}
\end{equation*}
$$

Show that for a symmetric distribution (whose third central moment exists) the skewness is zero.
(e) Find the skewness of the distribution with density $f(x)=x e^{-x}$ when $x>0$ and $f(x)=0$ otherwise. Sketch $f(x)$.
(f) Calculate the skewness of a few simple discrete distributions of your own choice.
(g) Find a nonsymmetric discrete distribution with 3 possible values, mean 0 , and skewness 0 .

24.7 Binomial, Poisson, and Hypergeometric Distributions

These are the three most important discrete distributions, with numerous applications.

Binomial Distribution

The binomial distribution occurs in games of chance (rolling a die, see below, etc.), quality inspection (e.g., counting of the number of defectives), opinion polls (counting number of employees favoring certain schedule changes, etc.), medicine (e.g., recording the number of patients who recovered on a new medication), and so on. The conditions of its occurrence are as follows.

We are interested in the number of times an event A occurs in n independent trials. In each trial the event A has the same probability $P(A)=p$. Then in a trial, A will not occur with probability $q=1-p$. In n trials the random variable that interests us is

$$
X=\text { Number of times the event } A \text { occurs in } n \text { trials. }
$$

X can assume the values $0,1, \cdots, n$, and we want to determine the corresponding probabilities. Now $X=x$ means that A occurs in x trials and in $n-x$ trials it does not occur. This may look as follows.

$$
\begin{equation*}
\underbrace{A \quad A \cdots A}_{x \text { times }} \quad \underbrace{B \quad B \cdots B .}_{n-x \text { times }} \tag{1}
\end{equation*}
$$

Here $B=A^{\mathrm{c}}$ is the complement of A, meaning that A does not occur (Sec. 24.2). We now use the assumption that the trials are independent, that is, they do not influence each other. Hence (1) has the probability (see Sec. 24.3 on independent events)
(1*)

$$
\underbrace{p p \cdots p}_{x \text { times }} \cdot \underbrace{q q \cdots q}_{n-x \text { times }}=p^{x} q^{n-x} .
$$

Now (1) is just one order of arranging $x A$'s and $n-x B$'s. We now use Theorem 1(b) in Sec. 24.4, which gives the number of permutations of n things (the n outcomes of the n trials) consisting of 2 classes, class 1 containing the $n_{1}=x$ A's and class 2 containing the $n-n_{1}=n-x B$'s. This number is

$$
\frac{n!}{x!(n-x)!}=\binom{n}{x}
$$

Accordingly, $\left(1^{*}\right)$, multiplied by this binomial coefficient, gives the probability $P(X=x)$ of $X=x$, that is, of obtaining A precisely x times in n trials. Hence X has the probability function

$$
\begin{equation*}
f(x)=\binom{n}{x} p^{x} q^{n-x} \quad(x=0,1, \cdots, n) \tag{2}
\end{equation*}
$$

and $f(x)=0$ otherwise. The distribution of X with probability function (2) is called the binomial distribution or Bernoulli distribution. The occurrence of A is called success (regardless of what it actually is; it may mean that you miss your plane or lose your watch) and the nonoccurrence of A is called failure. Figure 517 shows typical examples. Numeric values can be obtained from Table A5 in App. 5 or from your CAS.

The mean of the binomial distribution is (see Team Project 16)

$$
\begin{equation*}
\mu=n p \tag{3}
\end{equation*}
$$

and the variance is (see Team Project 16)

$$
\begin{equation*}
\sigma^{2}=n p q \tag{4}
\end{equation*}
$$

For the symmetric case of equal chance of success and failure $\left(p=q=\frac{1}{2}\right)$ this gives the mean $n / 2$, the variance $n / 4$, and the probability function

$$
\begin{equation*}
f(x)=\binom{n}{x}\left(\frac{1}{2}\right)^{n} \quad(x=0,1, \cdots, n) \tag{*}
\end{equation*}
$$

Fig. 517. Probability function (2) of the binomial distribution for $n=5$ and various values of p

EXAMPLE 1 Binomial Distribution

Compute the probability of obtaining at least two "Six" in rolling a fair die 4 times.
Solution. $\quad p=P(A)=P($ "Six" $)=\frac{1}{6}, q=\frac{5}{6}, n=4$. The event "At least two 'Six'" occurs if we obtain 2 or 3 or 4 "Six." Hence the answer is

$$
\begin{aligned}
P=f(2)+f(3)+f(4) & =\binom{4}{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{2}+\binom{4}{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)+\binom{4}{4}\left(\frac{1}{6}\right)^{4} \\
& =\frac{1}{6^{4}}(6 \cdot 25+4 \cdot 5+1)=\frac{171}{1296}=13.2 \%
\end{aligned}
$$

Poisson Distribution

The discrete distribution with infinitely many possible values and probability function

$$
\begin{equation*}
f(x)=\frac{\mu^{x}}{x!} e^{-\mu} \quad(x=0,1, \cdots) \tag{5}
\end{equation*}
$$

is called the Poisson distribution, named after S. D. Poisson (Sec. 18.5). Figure 518 shows (5) for some values of μ. It can be proved that this distribution is obtained as a limiting case of the binomial distribution, if we let $p \rightarrow 0$ and $n \rightarrow \infty$ so that the mean $\mu=n p$ approaches a finite value. (For instance, $\mu=n p$ may be kept constant.) The Poisson distribution has the mean μ and the variance (see Team Project 16)

$$
\begin{equation*}
\sigma^{2}=\mu \tag{6}
\end{equation*}
$$

Figure 518 gives the impression that, with increasing mean, the spread of the distribution increases, thereby illustrating formula (6), and that the distribution becomes more and more (approximately) symmetric.

$\mu=0.5$

$\mu=2$

$\mu=5$

Fig. 518. Probability function (5) of the Poisson distribution for various values of μ

EXAMPLE 2 Poisson Distribution

If the probability of producing a defective screw is $p=0.01$, what is the probability that a lot of 100 screws will contain more than 2 defectives?

Solution. The complementary event is A^{c} : Not more than 2 defectives. For its probability we get, from the binomial distribution with mean $\mu=n p=1$, the value [see (2)]

$$
P\left(A^{\mathrm{c}}\right)=\binom{100}{0} 0.99^{100}+\binom{100}{1} 0.01 \cdot 0.99^{99}+\binom{100}{2} 0.01^{2} \cdot 0.99^{98}
$$

Since p is very small, we can approximate this by the much more convenient Poisson distribution with mean $\mu=n p=100 \cdot 0.01=1$, obtaining [see (5)]

$$
\begin{aligned}
P\left(A^{c}\right) & \approx e^{-1}\left(1+1+\frac{1}{2}\right) \\
& =91.97 \% .
\end{aligned}
$$

Thus $P(A)=8.03 \%$. Show that the binomial distribution gives $P(A)=7.94 \%$, so that the Poisson approximation is quite good.

EXAMPLE 3 Parking Problems. Poisson Distribution

If on the average, 2 cars enter a certain parking lot per minute, what is the probability that during any given minute 4 or more cars will enter the lot?

Solution. To understand that the Poisson distribution is a model of the situation, we imagine the minute to be divided into very many short time intervals, let p be the (constant) probability that a car will enter the lot during any such short interval, and assume independence of the events that happen during those intervals. Then we are dealing with a binomial distribution with very large n and very small p, which we can approximate by the Poisson distribution with

$$
\mu=n p=2,
$$

because 2 cars enter on the average. The complementary event of the event " 4 cars or more during a given minute" is " 3 cars or fewer enter the lot" and has the probability

$$
\begin{aligned}
f(0)+f(1)+f(2)+f(3) & =e^{-2}\left(\frac{2^{0}}{0!}+\frac{2^{1}}{1!}+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}\right) \\
& =0.857 .
\end{aligned}
$$

Answer: 14.3%. (Why did we consider that complement?)

Sampling with Replacement

This means that we draw things from a given set one by one, and after each trial we replace the thing drawn (put it back to the given set and mix) before we draw the next thing. This guarantees independence of trials and leads to the binomial distribution. Indeed, if a box contains N things, for example, screws, M of which are defective, the probability of drawing a defective screw in a trial is $p=M / N$. Hence the probability of drawing a nondefective screw is $q=1-p=1-M / N$, and (2) gives the probability of drawing x defectives in n trials in the form

$$
\begin{equation*}
f(x)=\binom{n}{x}\left(\frac{M}{N}\right)^{x}\left(1-\frac{M}{N}\right)^{n-x} \quad(x=0,1, \cdots, n) . \tag{7}
\end{equation*}
$$

Sampling without Replacement. Hypergeometric Distribution

Sampling without replacement means that we return no screw to the box. Then we no longer have independence of trials (why?), and instead of (7) the probability of drawing x defectives in n trials is

$$
f(x)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}
$$

$$
(x=0,1, \cdots, n)
$$

The distribution with this probability function is called the hypergeometric distribution (because its moment generating function (see Team Project 16) can be expressed by the hypergeometric function defined in Sec. 5.4, a fact that we shall not use).

Derivation of (8). By (4a) in Sec. 24.4 there are
(a) $\binom{N}{n}$ different ways of picking n things from N,
(b) $\binom{M}{x}$ different ways of picking x defectives from M,
(c) $\binom{N-M}{n-x}$ different ways of picking $n-x$ nondefectives from $N-M$,
and each way in (b) combined with each way in (c) gives the total number of mutually exclusive ways of obtaining x defectives in n drawings without replacement. Since (a) is the total number of outcomes and we draw at random, each such way has the probability $1 /\binom{N}{n}$. From this, (8) follows.

The hypergeometric distribution has the mean (Team Project 16)

$$
\begin{equation*}
\mu=n \frac{M}{N} \tag{9}
\end{equation*}
$$

and the variance

$$
\begin{equation*}
\sigma^{2}=\frac{n M(N-M)(N-n)}{N^{2}(N-1)} \tag{10}
\end{equation*}
$$

EXAMPLE 4 Sampling with and without Replacement

We want to draw random samples of two gaskets from a box containing 10 gaskets, three of which are defective. Find the probability function of the random variable $X=$ Number of defectives in the sample.
Solution. We have $N=10, M=3, N-M=7, n=2$. For sampling with replacement, (7) yields

$$
f(x)=\binom{2}{x}\left(\frac{3}{10}\right)^{x}\left(\frac{7}{10}\right)^{2-x}, \quad f(0)=0.49, \quad f(1)=0.42, \quad f(2)=0.09
$$

For sampling without replacement we have to use (8), finding

$$
f(x)=\binom{3}{x}\binom{7}{2-x} /\binom{10}{2}, \quad f(0)=f(1)=\frac{21}{45} \approx 0.47, \quad f(2)=\frac{3}{45} \approx 0.07
$$

Abstract

If N, M, and $N-M$ are large compared with n, then it does not matter too much whether we sample with or without replacement, and in this case the hypergeometric distribution may be approximated by the binomial distribution (with $p=M / N$), which is somewhat simpler.

Hence, in sampling from an indefinitely large population ("infinite population"), we may use the binomial distribution, regardless of whether we sample with or without replacement.

1. Mark the positions of μ in Fig. 517. Comment.
2. Graph (2) for $n=8$ as in Fig. 517 and compare with Fig. 517.
3. In Example 3, if 5 cars enter the lot on the average, what is the probability that during any given minute 6 or more cars will enter? First guess. Compare with Example 3.
4. How do the probabilities in Example 4 of the text change if you double the numbers: drawing 4 gaskets from 20, 6 of which are defective? First guess.
5. Five fair coins are tossed simultaneously. Find the probability function of the random variable $X=$ Number of heads and compute the probabilities of obtaining no heads, precisely 1 head, at least 1 head, not more than 4 heads.
6. Suppose that 4% of steel rods made by a machine are defective, the defectives occurring at random during production. If the rods are packaged 100 per box, what is the Poisson approximation of the probability that a given box will contain $x=0,1, \cdots, 5$ defectives?
7. Let X be the number of cars per minute passing a certain point of some road between 8 A.m. and 10 A.m. on a Sunday. Assume that X has a Poisson distribution with mean 5 . Find the probability of observing 4 or fewer cars during any given minute.
8. Suppose that a telephone switchboard of some company on the average handles 300 calls per hour, and that the board can make at most 10 connections per minute. Using the Poisson distribution, estimate the probability that the board will be overtaxed during a given minute. (Use Table A6 in App. 5 or your CAS.)
9. Rutherford-Geiger experiments. In 1910, E. Rutherford and H. Geiger showed experimentally that the number of alpha particles emitted per second in a radioactive process is a random variable X having a Poisson distribution. If X has mean 0.5 , what is the probability of observing two or more particles during any given second?
10. Let $p=2 \%$ be the probability that a certain type of lightbulb will fail in a 24 -hour test. Find the probability
that a sign consisting of 15 such bulbs will burn 24 hours with no bulb failures.
11. Guess how much less the probability in Prob. 10 would be if the sign consisted of 100 bulbs. Then calculate.
12. Suppose that a certain type of magnetic tape contains, on the average, 2 defects per 100 meters. What is the probability that a roll of tape 300 meters long will contain (a) x defects, (b) no defects?
13. Suppose that a test for extrasensory perception consists of naming (in any order) 3 cards randomly drawn from a deck of 13 cards. Find the probability that by chance alone, the person will correctly name (a) no cards, (b) 1 card, (c) 2 cards, (d) 3 cards.
14. If a ticket office can serve at most 4 customers per minute and the average number of customers is 120 per hour, what is the probability that during a given minute customers will have to wait? (Use the Poisson distribution, Table 6 in Appendix 5.)
15. Suppose that in the production of 60 -ohm radio resistors, nondefective items are those that have a resistance between 58 and 62 ohms and the probability of a resistor's being defective is 0.1%. The resistors are sold in lots of 200 , with the guarantee that all resistors are nondefective. What is the probability that a given lot will violate this guarantee? (Use the Poisson distribution.)
16. TEAM PROJECT. Moment Generating Function. The moment generating function $G(t)$ is defined by

$$
G(t)=E\left(e^{t X_{j}}\right)=\sum_{j} e^{t x_{j}} f\left(x_{j}\right)
$$

or

$$
G(t)=E\left(e^{t X}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x
$$

where X is a discrete or continuous random variable, respectively.
(a) Assuming that termwise differentiation and differentiation under the integral sign are permissible, show
that $E\left(X^{k}\right)=G^{(k)}(0)$, where $G^{(k)}=d^{k} G / d t^{k}$, in particular, $\mu=G^{\prime}(0)$.
(b) Show that the binomial distribution has the moment generating function

$$
\begin{aligned}
G(t)=\sum_{x=0}^{n} e^{t x}\binom{n}{x} p^{x} q^{n-x} & =\sum_{x=0}^{n}\binom{n}{x}\left(p e^{t}\right)^{x} q^{n-x} \\
& =\left(p e^{t}+q\right)^{n} .
\end{aligned}
$$

(c) Using (b), prove (3).
(d) Prove (4).
(e) Show that the Poisson distribution has the moment generating function $G(t)=e^{-\mu} e^{\mu e^{t}}$ and prove (6).
(f) Prove $x\binom{M}{x}=M\binom{M-1}{x-1}$.

Using this, prove (9).
17. Multinomial distribution. Suppose a trial can result in precisely one of k mutually exclusive events
A_{1}, \cdots, A_{k} with probabilities p_{1}, \cdots, p_{k}, respectively, where $p_{1}+\cdots+p_{k}=1$. Suppose that n independent trials are performed. Show that the probability of getting $x_{1} A_{1}{ }^{\prime} s, \cdots, x_{k} A_{k}$'s is

$$
f\left(x_{1}, \cdots, x_{k}\right)=\frac{n!}{x!\cdots x_{k}!} p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}
$$

where $0 \leqq x_{j} \leqq n, \quad j=1, \cdots, k$, and $\quad x_{1}+\cdots+$ $x_{k}=n$. The distribution having this probability function is called the multinomial distribution.
18. A process of manufacturing screws is checked every hour by inspecting n screws selected at random from that hour's production. If one or more screws are defective, the process is halted and carefully examined. How large should n be if the manufacturer wants the probability to be about 95% that the process will be halted when 10% of the screws being produced are defective? (Assume independence of the quality of any screw from that of the other screws.)

24.8 Normal Distribution

Turning from discrete to continuous distributions, in this section we discuss the normal distribution. This is the most important continuous distribution because in applications many random variables are normal random variables (that is, they have a normal distribution) or they are approximately normal or can be transformed into normal random variables in a relatively simple fashion. Furthermore, the normal distribution is a useful approximation of more complicated distributions, and it also occurs in the proofs of various statistical tests.

The normal distribution or Gauss distribution is defined as the distribution with the density

$$
\begin{equation*}
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right] \quad(\sigma>0) \tag{1}
\end{equation*}
$$

where \exp is the exponential function with base $e=2.718 \cdots$. This is simpler than it may at first look. $f(x)$ has these features (see also Fig. 519).

1. μ is the mean and σ the standard deviation.
2. $1 /(\sigma \sqrt{2 \pi})$ is a constant factor that makes the area under the curve of $f(x)$ from $-\infty$ to ∞ equal to 1 , as it must be by (10), Sec. 24.5.
3. The curve of $f(x)$ is symmetric with respect to $x=\mu$ because the exponent is quadratic. Hence for $\mu=0$ it is symmetric with respect to the y-axis $x=0$ (Fig. 519, "bell-shaped curves").
4. The exponential function in (1) goes to zero very fast-the faster the smaller the standard deviation σ is, as it should be (Fig. 519).

Fig. 519. Density (1) of the normal distribution with $\mu=0$ for various values of σ

Distribution Function $F(x)$

From (7) in Sec. 24.5 and (1) we see that the normal distribution has the distribution function

$$
\begin{equation*}
F(x)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left[-\frac{1}{2}\left(\frac{v-\mu}{\sigma}\right)^{2}\right] d v \tag{2}
\end{equation*}
$$

Here we needed x as the upper limit of integration and wrote v (instead of x) in the integrand.
For the corresponding standardized normal distribution with mean 0 and standard deviation 1 we denote $F(x)$ by $\Phi(z)$. Then we simply have from (2)

$$
\begin{equation*}
\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-u^{2} / 2} d u \tag{3}
\end{equation*}
$$

This integral cannot be integrated by one of the methods of calculus. But this is no serious handicap because its values can be obtained from Table A7 in App. 5 or from your CAS. These values are needed in working with the normal distribution. The curve of $\Phi(z)$ is S-shaped. It increases monotone (why?) from 0 to 1 and intersects the vertical axis at $\frac{1}{2}$ (why?), as shown in Fig. 520.

Relation Between $\boldsymbol{F}(\boldsymbol{x})$ and $\Phi(z)$. Although your CAS will give you values of $F(x)$ in (2) with any μ and σ directly, it is important to comprehend that and why any such an $F(x)$ can be expressed in terms of the tabulated standard $\Phi(z)$, as follows.

Fig. 520. Distribution function $\Phi(z)$ of the normal distribution with mean 0 and variance 1

THEOREM 1

Use of the Normal Table A7 in App. 5

The distribution function $F(x)$ of the normal distribution with any μ and σ [see (2)] is related to the standardized distribution function $\Phi(z)$ in (3) by the formula

$$
\begin{equation*}
F(x)=\Phi\left(\frac{x-\mu}{\sigma}\right) \tag{4}
\end{equation*}
$$

PROO F Comparing (2) and (3) we see that we should set

$$
u=\frac{v-\mu}{\sigma} . \quad \text { Then } v=x \text { gives } \quad u=\frac{x-\mu}{\sigma}
$$

as the new upper limit of integration. Also $v-\mu=\sigma u$, thus $d v=\sigma d u$. Together, since σ drops out,

$$
F(x)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{(x-\mu) / \sigma} e^{-u^{2} / 2} \sigma d u=\Phi\left(\frac{x-\mu}{\sigma}\right)
$$

Probabilities corresponding to intervals will be needed quite frequently in statistics in Chap. 25. These are obtained as follows.

Normal Probabilities for Intervals

The probability that a normal random variable X with mean μ and standard deviation σ assume any value in an interval $a<x \leqq b$ is

$$
\begin{equation*}
P(a<X \leqq b)=F(b)-F(a)=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right) \tag{5}
\end{equation*}
$$

PROOF Formula (2) in Sec. 24.5 gives the first equality in (5), and (4) in this section gives the second equality.

Numeric Values

In practical work with the normal distribution it is good to remember that about $\frac{2}{3}$ of all values of X to be observed will lie between $\mu \pm \sigma$, about 95% between $\mu \pm 2 \sigma$, and practically all between the three-sigma limits $\mu \pm 3 \sigma$. More precisely, by Table A7 in App. 5,
(a) $\quad P(\mu-\sigma<X \leqq \mu+\sigma) \approx 68 \%$
(b) $\quad P(\mu-2 \sigma<X \leqq \mu+2 \sigma) \approx 95.5 \%$
(c) $\quad P(\mu-3 \sigma<X \leqq \mu+3 \sigma) \approx 99.7 \%$.

Formulas (6a) and (6b) are illustrated in Fig. 521.

The formulas in (6) show that a value deviating from μ by more than $\sigma, 2 \sigma$, or 3σ will occur in one of about 3,20 , and 300 trials, respectively.

Fig. 521. Illustration of formula (6)

In tests (Chap. 25) we shall ask, conversely, for the intervals that correspond to certain given probabilities; practically most important are the probabilities of $95 \%, 99 \%$, and 99.9%. For these, Table A8 in App. 5 gives the answers $\mu \pm 2 \sigma, \mu \pm 2.6 \sigma$, and $\mu \pm 3.3 \sigma$, respectively. More precisely,
(a) $\quad P(\mu-1.96 \sigma<X \leqq \mu+1.96 \sigma)=95 \%$
(b) $\quad P(\mu-2.58 \sigma<X \leqq \mu+2.58 \sigma)=99 \%$
(c) $\quad P(\mu-3.29 \sigma<X \leqq \mu+3.29 \sigma)=99.9 \%$.

Working with the Normal Tables A7 and A8 in App. 5

There are two normal tables in App. 5, Tables A7 and A8. If you want probabilities, use Table A7. If probabilities are given and corresponding intervals or x-values are wanted, use Table A8. The following examples are typical. Do them with care, verifying all values, and don't just regard them as dull exercises for your software. Make sketches of the density to see whether the results look reasonable.

EXAMPLE 1 Reading Entries from Table A7

If X is standardized normal (so that $\mu=0, \sigma=1$), then

$$
\begin{aligned}
& P(X \leqq 2.44)=0.9927 \approx 99 \frac{1}{4} \% \\
& P(X \leqq-1.16)=1-\Phi(1.16)=1-0.8770=0.1230=12.3 \% \\
& P(X \geqq 1)=1-P(X \leqq 1)=1-0.8413=0.1587) \text { by }(7), \text { Sec. } 24.3 \\
& P(1.0 \leqq X \leqq 1.8)=\Phi(1.8)-\Phi(1.0)=0.9641-0.8413=0.1228
\end{aligned}
$$

EXAMPLE 2 Probabilities for Given Intervals, Table A7

Let X be normal with mean 0.8 and variance 4 (so that $\sigma=2$). Then by (4) and (5)

$$
P(X \leqq 2.44)=F(2.44)=\Phi\left(\frac{2.44-0.80}{2}\right)=\Phi(0.82)=0.7939 \approx 80 \%
$$

or, if you like it better, (similarly in the other cases)

$$
\begin{aligned}
& P(X \leqq 2.44)=P\left(\frac{X-0.80}{2} \leqq \frac{2.44-0.80}{2}\right)=P(Z \leqq 0.82)=0.7939 \\
& P(X \geqq 1)=1-P(X \leqq 1)=1-\Phi\left(\frac{1-0.8}{2}\right)=1-0.5398=0.4602 \\
& P(1.0 \leqq X \leqq 1.8)=\Phi(0.5)-\Phi(0.1)=0.6915-0.5398=0.1517
\end{aligned}
$$

EXAMPLE 3 Unknown Values c for Given Probabilities, Table A8

Let X be normal with mean 5 and variance 0.04 (hence standard deviation 0.2). Find c or k corresponding to the given probability

$$
\begin{aligned}
& P(X \leqq c)=95 \%, \quad \Phi\left(\frac{c-5}{0.2}\right)=95 \%, \quad \frac{c-5}{0.2}=1.645, \quad c=5.329 \\
& P(5-k \leqq X \leqq 5+k)=90 \%, \quad 5+k=5.329 \quad \text { (as before; why?) } \\
& P(X \geqq c)=1 \%, \quad \text { thus } P(X \leqq c)=99 \%, \quad \frac{c-5}{0.2}=2.326, \quad c=5.465 .
\end{aligned}
$$

EXAMPLE 4
 Defectives

In a production of iron rods let the diameter X be normally distributed with mean 2 in . and standard deviation 0.008 in.
(a) What percentage of defectives can we expect if we set the tolerance limits at $2 \pm 0.02 \mathrm{in}$.?
(b) How should we set the tolerance limits to allow for 4% defectives?

Solution. (a) $1 \frac{1}{4} \%$ because from (5) and Table A7 we obtain for the complementary event the probability

$$
\begin{aligned}
P(1.98 \leqq X \leqq 2.02) & =\Phi\left(\frac{2.02-2.00}{0.008}\right)-\Phi\left(\frac{1.98-2.00}{0.008}\right) \\
& =\Phi(2.5)-\Phi(-2.5) \\
& =0.9938-(1-0.9938) \\
& =0.9876 \\
& =98 \frac{3}{4} \%
\end{aligned}
$$

(b) 2 ± 0.0164 because, for the complementary event, we have

$$
0.96=P(2-c \leqq X \leqq 2+c)
$$

or

$$
0.98=P(X \leqq 2+c)
$$

so that Table A8 gives

$$
\begin{aligned}
& 0.98=\Phi\left(\frac{2+c-2}{0.008}\right) \\
& \frac{2+c-2}{0.008}=2.054, \quad c=0.0164
\end{aligned}
$$

Normal Approximation of the Binomial Distribution

The probability function of the binomial distribution is (Sec. 24.7)

$$
\begin{equation*}
f(x)=\binom{n}{x} p^{x} q^{n-x} \quad(x=0,1, \cdots, n) . \tag{8}
\end{equation*}
$$

If n is large, the binomial coefficients and powers become very inconvenient. It is of great practical (and theoretical) importance that, in this case, the normal distribution provides a good approximation of the binomial distribution, according to the following theorem, one of the most important theorems in all probability theory.

Limit Theorem of De Moivre and Laplace

For large n,

$$
\begin{equation*}
f(x) \sim f^{*}(x) \quad(x=0,1, \cdots, n) \tag{9}
\end{equation*}
$$

Here f is given by (8). The function

$$
\begin{equation*}
f^{*}(x)=\frac{1}{\sqrt{2 \pi} \sqrt{n p q}} e^{-z^{2} / 2}, \quad z=\frac{x-n p}{\sqrt{n p q}} \tag{10}
\end{equation*}
$$

is the density of the normal distribution with mean $\mu=n p$ and variance $\sigma^{2}=n p q$ (the mean and variance of the binomial distribution). The symbol \sim (read asymptotically equal) means that the ratio of both sides approaches 1 as n approaches ∞. Furthermore, for any nonnegative integers a and $b(>a)$,

$$
\begin{gather*}
P(a \leqq X \leqq b)=\sum_{x=a}^{b}\binom{n}{x} p^{x} q^{n-x} \sim \Phi(\beta)-\Phi(\alpha), \\
\alpha=\frac{a-n p-0.5}{\sqrt{n p q}}, \quad \beta=\frac{b-n p+0.5}{\sqrt{n p q}} . \tag{11}
\end{gather*}
$$

A proof of this theorem can be found in [G3] listed in App. 1. The proof shows that the term 0.5 in α and β is a correction caused by the change from a discrete to a continuous distribution.

1. Let X be normal with mean 10 and variance 4 . Find $P(X>12), P(X<10), P(X<11), P(9<X<13)$.
2. Let X be normal with mean 105 and variance 25 . Find $P(X \leqq 112.5), P(x>100), P(110.5<X<111.25)$.
3. Let X be normal with mean 50 and variance 9 . Determine c such that $P(X<c)=5 \%, P(X>c)=$ $1 \%, P(50-c<X<50+c)=50 \%$.
4. Let X be normal with mean 3.6 and variance 0.01 . Find c such that $P(X \leqq c)=50 \%, P(X>c)=10 \%$, $P(-c<X-3.6 \leqq c)=99.9 \%$.
5. If the lifetime X of a certain kind of automobile battery is normally distributed with a mean of 5 years and a standard deviation of 1 year, and the manufacturer wishes to guarantee the battery for 4 years, what percentage of the batteries will he have to replace under the guarantee?
6. If the standard deviation in Prob. 5 were smaller, would that percentage be larger or smaller?
7. A manufacturer knows from experience that the resistance of resistors he produces is normal with mean
$\mu=150 \Omega$ and standard deviation $\sigma=5 \Omega$. What percentage of the resistors will have resistance between 148Ω and 152Ω ? Between 140Ω and 160Ω ?
8. The breaking strength $X[\mathrm{~kg}]$ of a certain type of plastic block is normally distributed with a mean of 1500 kg and a standard deviation of 50 kg . What is the maximum load such that we can expect no more than 5% of the blocks to break?
9. If the mathematics scores of the SAT college entrance exams are normal with mean 480 and standard deviation 100 (these are about the actual values over the past years) and if some college sets 500 as the minimum score for new students, what percent of students would not reach that score?
10. A producer sells electric bulbs in cartons of 1000 bulbs. Using (11), find the probability that any given carton contains not more than 1% defective bulbs, assuming the production process to be a Bernoulli experiment with $p=1 \%$ ($=$ probability that any given bulb will be defective). First guess. Then calculate.
11. If sick-leave time X used by employees of a company in one month is (very roughly) normal with mean 1000 hours and standard deviation 100 hours, how much time t should be budgeted for sick leave during the next month if t is to be exceeded with probability of only 20% ?
12. If the monthly machine repair and maintenance cost X in a certain factory is known to be normal with mean $\$ 12,000$ and standard deviation $\$ 2000$, what is the probability that the repair cost for the next month will exceed the budgeted amount of $\$ 15,000$?
13. If the resistance X of certain wires in an electrical network is normal with mean 0.01Ω and standard deviation 0.001Ω, how many of 1000 wires will meet the specification that they have resistance between 0.009 and 0.011Ω ?
14. TEAM PROJECT. Normal Distribution. (a) Derive the formulas in (6) and (7) from the appropriate normal table.
(b) Show that $\Phi(-z)=1-\Phi(z)$. Give an example.
(c) Find the points of inflection of the curve of (1).
(d) Considering $\Phi^{2}(\infty)$ and introducing polar coordinates in the double integral (a standard trick worth remembering), prove

$$
\begin{equation*}
\Phi(\infty)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-u^{2} / 2} d u=1 \tag{12}
\end{equation*}
$$

(e) Show that σ in (1) is indeed the standard deviation of the normal distribution. [Use (12).]
(f) Bernoulli's law of large numbers. In an experiment let an event A have probability $p(0<p<1)$, and let X be the number of times A happens in n independent trials. Show that for any given $\epsilon>0$,

$$
P\left(\left|\frac{X}{n}-p\right| \leqq \epsilon\right) \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

(g) Transformation. If X is normal with mean μ and variance σ^{2}, show that $X^{*}=c_{1} X+c_{2}\left(c_{1}>0\right)$ is normal with mean $\mu^{*}=c_{1} \mu+c_{2}$ and variance $\sigma^{* 2}=c_{1}^{2} \sigma^{2}$.
15. WRITING PROJECT. Use of Tables, Use of CAS. Give a systematic discussion of the use of Tables A7 and A8 for obtaining $P(X<b), P(X>a), P(a<X<b)$, $P(X<c)=k, P(X>c)=k$, as well as $P(\mu-c<$ $X<\mu+c)=k$; include simple examples. If you have a CAS, describe to what extent it makes the use of those tables superfluous; give examples.

24.9 Distributions of Several Random Variables

Distributions of two or more random variables are of interest for two reasons:

1. They occur in experiments in which we observe several random variables, for example, carbon content X and hardness Y of steel, amount of fertilizer X and yield of corn Y, height X_{1}, weight X_{2}, and blood pressure X_{3} of persons, and so on.
2. They will be needed in the mathematical justification of the methods of statistics in Chap. 25.

In this section we consider two random variables X and Y or, as we also say, a twodimensional random variable (X, Y). For (X, Y) the outcome of a trial is a pair of numbers $X=x, Y=y$, briefly $(X, Y)=(x, y)$, which we can plot as a point in the $X Y$-plane.

The two-dimensional probability distribution of the random variable (X, Y) is given by the distribution function

$$
\begin{equation*}
F(x, y)=P(X \leqq x, Y \leqq y) \tag{1}
\end{equation*}
$$

This is the probability that in a trial, X will assume any value not greater than x and in the same trial, Y will assume any value not greater than y. This corresponds to the blue region in Fig. 522, which extends to $-\infty$ to the left and below. $F(x, y)$ determines the

Fig. 522. Formula (1)
probability distribution uniquely, because in analogy to formula (2) in Sec. 24.5, that is, $P(a<X \leqq b)=F(b)-F(a)$, we now have for a rectangle (see Prob. 16)

$$
\begin{equation*}
P\left(a_{1}<X \leqq b_{1}, \quad a_{2}<Y \leqq b_{2}\right)=F\left(b_{1}, b_{2}\right)-F\left(a_{1}, b_{2}\right)-F\left(b_{1}, a_{2}\right)+F\left(a_{1}, a_{2}\right) \tag{2}
\end{equation*}
$$

As before, in the two-dimensional case we shall also have discrete and continuous random variables and distributions.

Discrete Two-Dimensional Distributions

In analogy to the case of a single random variable (Sec. 24.5), we call (X, Y) and its distribution discrete if (X, Y) can assume only finitely many or at most countably infinitely many pairs of values $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots$ with positive probabilities, whereas the probability for any domain containing none of those values of (X, Y) is zero.

Let $\left(x_{i}, y_{j}\right)$ be any of those pairs and let $P\left(X=x_{i}, Y=y_{j}\right)=p_{i j}$ (where we admit that $p_{i j}$ may be 0 for certain pairs of subscripts i, j). Then we define the probability function $f(x, y)$ of (X, Y) by

$$
\begin{equation*}
f(x, y)=p_{i j} \quad \text { if } \quad x=x_{i}, y=y_{j} \quad \text { and } \quad f(x, y)=0 \quad \text { otherwise } \tag{3}
\end{equation*}
$$

here, $i=1,2, \cdots$ and $j=1,2, \cdots$ independently. In analogy to (4), Sec. 24.5, we now have for the distribution function the formula

$$
\begin{equation*}
F(x, y)=\sum_{x_{i} \leqq x} \sum_{y_{j} \leqq y} f\left(x_{i}, y_{j}\right) \tag{4}
\end{equation*}
$$

Instead of (6) in Sec. 24.5 we now have the condition

$$
\begin{equation*}
\sum_{i} \sum_{j} f\left(x_{i}, y_{j}\right)=1 \tag{5}
\end{equation*}
$$

EXAMPLE 1 Two-Dimensional Discrete Distribution

If we simultaneously toss a dime and a nickel and consider
$X=$ Number of heads the dime turns up,
$Y=$ Number of heads the nickel turns up,
then X and Y can have the values 0 or 1, and the probability function is

$$
f(0,0)=f(1,0)=f(0,1)=f(1,1)=\frac{1}{4}, \quad f(x, y)=0 \text { otherwise. }
$$

Fig. 523. Notion of a two-dimensional distribution

Continuous Two-Dimensional Distributions

In analogy to the case of a single random variable (Sec. 24.5) we call (X, Y) and its distribution continuous if the corresponding distribution function $F(x, y)$ can be given by a double integral

$$
\begin{equation*}
F(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f\left(x^{*}, y^{*}\right) d x^{*} d y^{*} \tag{6}
\end{equation*}
$$

whose integrand f, called the density of (X, Y), is nonnegative everywhere, and is continuous, possibly except on finitely many curves.

From (6) we obtain the probability that (X, Y) assume any value in a rectangle (Fig. 523) given by the formula

$$
\begin{equation*}
P\left(a_{1}<X \leqq b_{1}, \quad a_{2}<Y \leqq b_{2}\right)=\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(x, y) d x d y \tag{7}
\end{equation*}
$$

EXAMPLE 2 Two-Dimensional Uniform Distribution in a Rectangle

Let R be the rectangle $\alpha_{1}<x \leqq \beta_{1}, \alpha_{2}<y \leqq \beta_{2}$. The density (see Fig. 524)

$$
\begin{equation*}
f(x, y)=1 / k \quad \text { if }(x, y) \text { is in } R, \quad f(x, y)=0 \text { otherwise } \tag{8}
\end{equation*}
$$

defines the so-called uniform distribution in the rectangle R; here $k=\left(\beta_{1}-\alpha_{1}\right)\left(\beta_{2}-\alpha_{2}\right)$ is the area of R. The distribution function is shown in Fig. 525.

Fig. 524. Density function (8) of the uniform distribution

Fig. 525. Distribution function of the uniform distribution defined by (8)

Marginal Distributions of a Discrete Distribution

This is a rather natural idea, without counterpart for a single random variable. It amounts to being interested only in one of the two variables in (X, Y), say, X, and asking for its distribution, called the marginal distribution of X in (X, Y). So we ask for the probability
$P(X=x, Y$ arbitrary). Since (X, Y) is discrete, so is X. We get its probability function, call it $f_{1}(x)$, from the probability function $f(x, y)$ of (X, Y) by summing over y :

$$
\begin{equation*}
f_{1}(x)=P(X=x, Y \text { arbitrary })=\sum_{y} f(x, y) \tag{9}
\end{equation*}
$$

where we sum all the values of $f(x, y)$ that are not 0 for that x.
From (9) we see that the distribution function of the marginal distribution of X is

$$
\begin{equation*}
F_{1}(x)=P(X \leqq x, Y \text { arbitrary })=\sum_{x^{*} \leqq x} f_{1}\left(x^{*}\right) \tag{10}
\end{equation*}
$$

Similarly, the probability function

$$
\begin{equation*}
f_{2}(y)=P(X \text { arbitrary, } Y \leqq y)=\sum_{x} f(x, y) \tag{11}
\end{equation*}
$$

determines the marginal distribution of Y in (X, Y). Here we sum all the values of $f(x, y)$ that are not zero for the corresponding y. The distribution function of this marginal distribution is

$$
\begin{equation*}
F_{2}(y)=P(X \text { arbitrary }, Y \leqq y)=\sum_{y^{*} \leqq y} f_{2}\left(y^{*}\right) \tag{12}
\end{equation*}
$$

EXAMPLE 3 Marginal Distributions of a Discrete Two-Dimensional Random Variable

In drawing 3 cards with replacement from a bridge deck let us consider

$$
(X, Y), \quad X=\text { Number of queens }, \quad Y=\text { Number of kings or aces. }
$$

The deck has 52 cards. These include 4 queens, 4 kings, and 4 aces. Hence in a single trial a queen has probability $\frac{4}{52}=\frac{1}{13}$ and a king or ace $\frac{8}{52}=\frac{2}{13}$. This gives the probability function of (X, Y),

$$
f(x, y)=\frac{3!}{x!y!(3-x-y)!}\left(\frac{1}{13}\right)^{x}\left(\frac{2}{13}\right)^{y}\left(\frac{10}{13}\right)^{3-x-y} \quad(x+y \leqq 3)
$$

and $f(x, y)=0$ otherwise. Table 24.1 shows in the center the values of $f(x, y)$ and on the right and lower margins the values of the probability functions $f_{1}(x)$ and $f_{2}(y)$ of the marginal distributions of X and Y, respectively.

Table 24.1 Values of the Probability Functions $f(x, y), f_{1}(x), f_{2}(y)$ in Drawing Three Cards with Replacement from a Bridge Deck, where \boldsymbol{X} is the Number of Queens Drawn and Y is the Number of Kings or Aces Drawn

x	y	0	1	2	3
0	$\frac{1000}{2197}$	$\frac{600}{2197}$	$\frac{120}{2197}$	$\frac{8}{2197}$	$\frac{1728}{2197}$
1	$\frac{300}{2197}$	$\frac{120}{2197}$	$\frac{12}{2197}$	0	$\frac{432}{2197}$
2	$\frac{30}{2197}$	$\frac{6}{2197}$	0	0	$\frac{36}{2197}$
3	$\frac{1}{2197}$	0	0	0	$\frac{1}{2197}$
$f_{2}(y)$	$\frac{1331}{2197}$	$\frac{726}{2197}$	$\frac{132}{2197}$	$\frac{8}{2197}$	

Marginal Distributions of a Continuous Distribution

This is conceptually the same as for discrete distributions, with probability functions and sums replaced by densities and integrals. For a continuous random variable (X, Y) with density $f(x, y)$ we now have the marginal distribution of X in (X, Y), defined by the distribution function

$$
\begin{equation*}
F_{1}(x)=P(X \leqq x,-\infty<Y<\infty)=\int_{-\infty}^{x} f_{1}\left(x^{*}\right) d x^{*} \tag{13}
\end{equation*}
$$

with the density f_{1} of X obtained from $f(x, y)$ by integration over y,

$$
\begin{equation*}
f_{1}(x)=\int_{-\infty}^{\infty} f(x, y) d y \tag{14}
\end{equation*}
$$

Interchanging the roles of X and Y, we obtain the marginal distribution of Y in (X, Y) with the distribution function

$$
\begin{equation*}
F_{2}(y)=P(-\infty<X<\infty, Y \leqq y)=\int_{-\infty}^{y} f_{2}\left(y^{*}\right) d y^{*} \tag{15}
\end{equation*}
$$

and density

$$
\begin{equation*}
f_{2}(y)=\int_{-\infty}^{\infty} f(x, y) d x \tag{16}
\end{equation*}
$$

Independence of Random Variables

X and Y in a (discrete or continuous) random variable (X, Y) are said to be independent if

$$
\begin{equation*}
F(x, y)=F_{1}(x) F_{2}(y) \tag{17}
\end{equation*}
$$

holds for all (x, y). Otherwise these random variables are said to be dependent. These definitions are suggested by the corresponding definitions for events in Sec. 24.3.

Necessary and sufficient for independence is

$$
\begin{equation*}
f(x, y)=f_{1}(x) f_{2}(y) \tag{18}
\end{equation*}
$$

for all x and y. Here the f^{\prime} s are the above probability functions if (X, Y) is discrete or those densities if (X, Y) is continuous. (See Prob. 20.)

In tossing a dime and a nickel, $X=$ Number of heads on the dime, $Y=$ Number of heads on the nickel may assume the values 0 or 1 and are independent. The random variables in Table 24.1 are dependent.

Extension of Independence to \boldsymbol{n}-Dimensional Random Variables. This will be needed throughout Chap. 25. The distribution of such a random variable $\mathbf{X}=\left(X_{1}, \cdots, X_{n}\right)$ is determined by a distribution function of the form

$$
F\left(x_{1}, \cdots, x_{n}\right)=P\left(X_{1} \leqq x_{1}, \cdots, X_{n} \leqq x_{n}\right)
$$

The random variables X_{1}, \cdots, X_{n} are said to be independent if

$$
\begin{equation*}
F\left(x_{1}, \cdots, x_{n}\right)=F_{1}\left(x_{1}\right) F_{2}\left(x_{2}\right) \cdots F_{n}\left(x_{n}\right) \tag{19}
\end{equation*}
$$

for all $\left(x_{1}, \cdots, x_{n}\right)$. Here $F_{j}\left(x_{j}\right)$ is the distribution function of the marginal distribution of X_{j} in \mathbf{X}, that is,

$$
F_{j}\left(x_{j}\right)=P\left(X_{j} \leqq x_{j}, X_{k} \text { arbitrary, } k=1, \cdots, n, k \neq j\right)
$$

Otherwise these random variables are said to be dependent.

Functions of Random Variables

When $n=2$, we write $X_{1}=X, X_{2}=Y, x_{1}=x, x_{2}=y$. Taking a nonconstant continuous function $g(x, y)$ defined for all x, y, we obtain a random variable $Z=g(X, Y)$. For example, if we roll two dice and X and Y are the numbers the dice turn up in a trial, then $Z=X+Y$ is the sum of those two numbers (see Fig. 514 in Sec. 24.5).

In the case of a discrete random variable (X, Y) we may obtain the probability function $f(z)$ of $Z=g(X, Y)$ by summing all $f(x, y)$ for which $g(x, y)$ equals the value of z considered; thus

$$
\begin{equation*}
f(z)=P(Z=z)=\sum_{g(x, y)=z} f(x, y) \tag{20}
\end{equation*}
$$

Hence the distribution function of Z is

$$
\begin{equation*}
F(z)=P(Z \leqq z)=\sum_{g(x, y) \leqq z} f(x, y) \tag{21}
\end{equation*}
$$

where we sum all values of $f(x, y)$ for which $g(x, y) \leqq z$.
In the case of a continuous random variable (X, Y) we similarly have

$$
\begin{equation*}
F(z)=P(Z \leqq z)=\iint_{g(x, y) \leqq z} f(x, y) d x d y \tag{22}
\end{equation*}
$$

where for each z we integrate the density $f(x, y)$ of (X, Y) over the region $g(x, y) \leqq z$ in the $x y$-plane, the boundary curve of this region being $g(x, y)=z$.

Addition of Means

The number

$$
E(g(X, Y))=\left\{\begin{array}{cc}
\sum_{x} \sum_{y} g(x, y) f(x, y) & {[(X, Y) \text { discrete }]} \tag{23}\\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) d x d y & {[(X, Y) \text { continuous }]}
\end{array}\right.
$$

is called the mathematical expectation or, briefly, the expectation of $g(X, Y)$. Here it is assumed that the double series converges absolutely and the integral of $|g(x, y)| f(x, y)$ over the $x y$-plane exists (is finite). Since summation and integration are linear processes, we have from (23)

$$
\begin{equation*}
E(a g(X, Y)+b h(X, Y))=a E(g(X, Y))+b E(h(X, Y)) . \tag{24}
\end{equation*}
$$

An important special case is

$$
E(X+Y)=E(X)+E(Y)
$$

and by induction we have the following result.

Addition of Means

The mean (expectation) of a sum of random variables equals the sum of the means (expectations), that is,

$$
\begin{equation*}
E\left(X_{1}+X_{2}+\cdots+X_{n}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots+E\left(X_{n}\right) \tag{25}
\end{equation*}
$$

Furthermore, we readily obtain

Multiplication of Means

The mean (expectation) of the product of independent random variables equals the product of the means (expectations), that is,

$$
\begin{equation*}
E\left(X_{1} X_{2} \cdots X_{n}\right)=E\left(X_{1}\right) E\left(X_{2}\right) \cdots E\left(X_{n}\right) \tag{26}
\end{equation*}
$$

PROOF If X and Y are independent random variables (both discrete or both continuous), then $E(X Y)=E(X) E(Y)$. In fact, in the discrete case we have

$$
E(X Y)=\sum_{x} \sum_{y} x y f(x, y)=\sum_{x} x f_{1}(x) \sum_{y} y f_{2}(y)=E(X) E(Y)
$$

and in the continuous case the proof of the relation is similar. Extension to n independent random variables gives (26), and Theorem 2 is proved.

Addition of Variances

This is another matter of practical importance that we shall need. As before, let $Z=X+Y$ and denote the mean and variance of Z by μ and σ^{2}. Then we first have (see Team Project 20(a) in Problem Set 24.6)

$$
\sigma^{2}=E\left([Z-\mu]^{2}\right)=E\left(Z^{2}\right)-[E(Z)]^{2}
$$

From (24) we see that the first term on the right equals

$$
E\left(Z^{2}\right)=E\left(X^{2}+2 X Y+Y^{2}\right)=E\left(X^{2}\right)+2 E(X Y)+E\left(Y^{2}\right)
$$

For the second term on the right we obtain from Theorem 1

$$
[E(Z)]^{2}=[E(X)+E(Y)]^{2}=[E(X)]^{2}+2 E(X) E(Y)+[E(Y)]^{2}
$$

By substituting these expressions into the formula for σ^{2} we have

$$
\begin{aligned}
\sigma^{2}=E(& \left.X^{2}\right)-[E(X)]^{2}+E\left(Y^{2}\right)-[E(Y)]^{2} \\
& +2[E(X Y)-E(X) E(Y)]
\end{aligned}
$$

From Team Project 20, Sec. 24.6, we see that the expression in the first line on the right is the sum of the variances of X and Y, which we denote by σ_{1}^{2} and σ_{2}^{2}, respectively. The quantity in the second line (except for the factor 2) is

$$
\begin{equation*}
\sigma_{X Y}=E(X Y)-E(X) E(Y) \tag{27}
\end{equation*}
$$

and is called the covariance of X and Y. Consequently, our result is

$$
\begin{equation*}
\sigma^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+2 \sigma_{X Y} \tag{28}
\end{equation*}
$$

If X and Y are independent, then

$$
E(X Y)=E(X) E(Y)
$$

hence $\sigma_{X Y}=0$, and

$$
\begin{equation*}
\sigma^{2}=\sigma_{1}^{2}+\sigma_{2}^{2} \tag{29}
\end{equation*}
$$

Extension to more than two variables gives the basic

The variance of the sum of independent random variables equals the sum of the variances of these variables.

CAUTION! In the numerous applications of Theorems 1 and 3 we must always remember that Theorem 3 holds only for independent variables.

This is the end of Chap. 24 on probability theory. Most of the concepts, methods, and special distributions discussed in this chapter will play a fundamental role in the next chapter, which deals with methods of statistical inference, that is, conclusions from samples to populations, whose unknown properties we want to know and try to discover by looking at suitable properties of samples that we have obtained.

PROBBE日

1. Let $f(x, y)=k$ when $8 \leqq x \leqq 12$ and $0 \leqq y \leqq 2$ and zero elsewhere. Find k. Find $P(X \leqq 11,1 \leqq Y \leqq 1.5)$ and $P(9 \leqq X \leqq 13, Y \leqq 1)$.
2. Find $P(X>4, Y>4)$ and $P(X \leqq 1, Y \leqq 1)$ if (X, Y) has the density $f(x, y)=\frac{1}{32}$ if $x \geqq 0, y \geqq 0, x+y \leqq 8$.
3. Let $f(x, y)=k$ if $x>0, y>0, x+y<3$ and 0 otherwise. Find k. Sketch $f(x, y)$. Find $P(X+Y \leqq 1), P(Y>X)$.
4. Find the density of the marginal distribution of X in Prob. 2.
5. Find the density of the marginal distribution of Y in Fig. 524.
6. If certain sheets of wrapping paper have a mean weight of 10 g each, with a standard deviation of 0.05 g , what are the mean weight and standard deviation of a pack of 10,000 sheets?
7. What are the mean thickness and the standard deviation of transformer cores each consisting of 50 layers of sheet metal and 49 insulating paper layers if the metal sheets have mean thickness 0.5 mm each with a standard deviation of 0.05 mm and the paper layers have mean 0.05 mm each with a standard deviation of 0.02 mm ?
8. Let $X[\mathrm{~cm}]$ and $Y[\mathrm{~cm}]$ be the diameters of a pin and hole, respectively. Suppose that (X, Y) has the density
$f(x, y)=625$ if $0.98<x<1.02, \quad 1.00<y<1.04$
and 0 otherwise. (a) Find the marginal distributions. (b) What is the probability that a pin chosen at random will fit a hole whose diameter is 1.00 ?
9. Using Theorems 1 and 3 , obtain the formulas for the mean and the variance of the binomial distribution.
10. Using Theorem 1, obtain the formula for the mean of the hypergeometric distribution. Can you use Theorem 3 to obtain the variance of that distribution?
11. A 5-gear assembly is put together with spacers between the gears. The mean thickness of the gears is 5.020 cm with a standard deviation of 0.003 cm . The mean thickness of the spacers is 0.040 cm with a standard deviation of 0.002 cm . Find the mean and standard deviation of the assembled units consisting of 5 randomly selected gears and 4 randomly selected spacers.
12. If the mean weight of certain (empty) containers is 5 lb the standard deviation is 0.2 lb , and if the filling of the containers has mean weight 100 lb and standard deviation 0.5 lb , what are the mean weight and the standard deviation of filled containers?
13. Find $P(X>Y)$ when (X, Y) has the density

$$
f(x, y)=0.25 e^{-0.5(x+y)} \quad \text { if } \quad x \geqq 0, y \geqq 0
$$

and 0 otherwise.
14. An electronic device consists of two components. Let X and Y [years] be the times to failure of the first and second components, respectively. Assume that (X, Y) has the density $f(x, y)=4 e^{-2(x+y)}$ if $x>0$ and $y>0$ and 0 otherwise. (a) Are X and Y dependent or independent? (b) Find the densities of the marginal distributions. (c) What is the probability that the first component will have a lifetime of 2 years or longer?
15. Give an example of two different discrete distributions that have the same marginal distributions.
16. Prove (2).
17. Let (X, Y) have the probability function

$$
\begin{aligned}
& f(0,0)=f(1,1)=\frac{1}{8}, \\
& f(0,1)=f(1,0)=\frac{3}{8} .
\end{aligned}
$$

Are X and Y independent?
18. Let (X, Y) have the density

$$
f(x, y)=k \text { if } x^{2}+y^{2}<1
$$

and 0 otherwise. Determine k. Find the densities of the marginal distributions. Find the probability

$$
P\left(X^{2}+Y^{2}<\frac{1}{4}\right)
$$

19. Show that the random variables with the densities

$$
f(x, y)=x+y
$$

and

$$
g(x, y)=\left(x+\frac{1}{2}\right)\left(y+\frac{1}{2}\right)
$$

if $0 \leqq x \leqq 1,0 \leqq y \leqq 1 \quad$ and $\quad f(x, y)=0 \quad$ and $g(x, y)=0$ elsewhere, have the same marginal distribution.
20. Prove the statement involving (18).

CHAPMER24 REVEW QUESTIONS AND PROBLEMS

1. What are stem-and-leaf plots? Boxplots? Histograms? Compare their advantages.
2. What properties of data are measured by the mean? The median? The standard deviation? The variance?
3. What do we mean by an experiment? An outcome? An event? Give examples.
4. What is a random variable? Its distribution function? Its probability function or density?
5. State the definition of probability from memory. Give simple examples.
6. What is sampling with and without replacement? What distributions are involved?
7. When is the Poisson distribution a good approximation of the binomial distribution? The normal distribution?
8. Explain the use of the tables of the normal distribution. If you have a CAS, how would you proceed without the tables?
9. State the main theorems on probability. Illustrate them by simple examples.
10. State the most important facts about distributions of two random variables and their marginal distributions.
11. Make a stem-and-leaf plot, histogram, and boxplot of the data 110, 113, 109, 118, 110, 115, 104, 111, 116, 113.
12. Same task as in Prob. 11. for the data 13.5, 13.2, 12.1, 13.6, 13.3.
13. Find the mean, standard deviation, and variance in Prob. 11.
14. Find the mean, standard deviation, and variance in Prob. 12.
15. Show that the mean always lies between the smallest and the largest data value.
16. What are the outcomes in the sample space of the experiment of simultaneously tossing three coins?
17. Plot a histogram of the data $8,2,4,10$ and guess \bar{x} and s by inspecting the histogram. Then calculate \bar{x}, s^{2}, and s.
18. Using a Venn diagram, show that $A \subseteq B$ if and only if $A \cap B=A$.
19. Suppose that 3% of bolts made by a machine are defective, the defectives occurring at random during production. If the bolts are packaged 50 per box, what is the binomial approximation of the probability that a given box will contain $x=0,1, \cdots, 5$ defectives?
20. Of a lot of 12 items, 3 are defective. (a) Find the number of different samples of 3 items. Find the number of samples of 3 items containing (b) no defectives, (c) 1 defective, (d) 2 defectives, (e) 3 defectives.
21. Find the probability function of $X=$ Number of times of tossing a fair coin until the first head appears.
22. If the life of ball bearings has the density $f(x)=k e^{-x}$ if $0 \leqq x \leqq 2$ and 0 otherwise, what is k ? What is the probability $P(X \geqq 1)$?
23. Find the mean and variance of a discrete random variable X having the probability function $f(0)=\frac{1}{4}, f(1)=\frac{1}{2}$, $f(2)=\frac{1}{4}$.
24. Let X be normal with mean 14 and variance 4 . Determine c such that $P(X \leqq c)=95 \%, \quad P(X \leqq c)=5 \%$, $P(X \leqq c)=99.5 \%$.
25. Let X be normal with mean 80 and variance 9 . Find $P(X>83), P(X<81), P(X<80)$, and $P(78<X<82)$.

SUMMARY OF GHAPTER 24

Data Analysis. Probability Theory

A random experiment, briefly called experiment, is a process in which the result ("outcome") depends on "chance" (effects of factors unknown to us). Examples are games of chance with dice or cards, measuring the hardness of steel, observing weather conditions, or recording the number of accidents in a city. (Thus the word "experiment" is used here in a much wider sense than in common language.) The outcomes are regarded as points (elements) of a set S, called the sample space, whose subsets are called events. For events E we define a probability $P(E)$ by the axioms (Sec. 24.3)

$$
\begin{gather*}
0 \leqq P(E) \leqq 1 \\
P(S)=1 \tag{1}
\end{gather*}
$$

$$
P\left(E_{1} \cup E_{2} \cup \cdots\right)=P\left(E_{1}\right)+P\left(E_{2}\right)+\cdots \quad\left(E_{j} \cap E_{k}=\varnothing\right)
$$

These axioms are motivated by properties of frequency distributions of data (Sec. 24.1).

The complement E^{c} of E has the probability

$$
\begin{equation*}
P\left(E^{\mathrm{c}}\right)=1-P(E) \tag{2}
\end{equation*}
$$

The conditional probability of an event B under the condition that an event A happens is (Sec. 24.3)

$$
\begin{equation*}
P(B \mid A)=\frac{P(A \cap B)}{P(A)} \quad[P(A)>0] \tag{3}
\end{equation*}
$$

Two events A and B are called independent if the probability of their simultaneous appearance in a trial equals the product of their probabilities, that is, if

$$
\begin{equation*}
P(A \cap B)=P(A) P(B) \tag{4}
\end{equation*}
$$

With an experiment we associate a random variable X. This is a function defined on S whose values are real numbers; furthermore, X is such that the probability $P(X=a)$ with which X assumes any value a, and the probability $P(a<X \leqq b)$ with which X assumes any value in an interval $a<X \leqq b$ are defined (Sec. 24.5). The probability distribution of X is determined by the distribution function

$$
\begin{equation*}
F(x)=P(X \leqq x) \tag{5}
\end{equation*}
$$

In applications there are two important kinds of random variables: those of the discrete type, which appear if we count (defective items, customers in a bank, etc.) and those of the continuous type, which appear if we measure (length, speed, temperature, weight, etc.).

A discrete random variable has a probability function

$$
\begin{equation*}
f(x)=P(X=x) \tag{6}
\end{equation*}
$$

Its mean μ and variance σ^{2} are (Sec. 24.6)

$$
\begin{equation*}
\mu=\sum_{j} x_{j} f\left(x_{j}\right) \quad \text { and } \quad \sigma^{2}=\sum_{j}\left(x_{j}-\mu\right)^{2} f\left(x_{j}\right) \tag{7}
\end{equation*}
$$

where the x_{j} are the values for which X has a positive probability. Important discrete random variables and distributions are the binomial, Poisson, and hypergeometric distributions discussed in Sec. 24.7.

A continuous random variable has a density

$$
f(x)=F^{\prime}(x) \quad[\text { see }(5)]
$$

Its mean and variance are (Sec. 24.6)

$$
\begin{equation*}
\mu=\int_{-\infty}^{\infty} x f(x) d x \quad \text { and } \quad \sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x \tag{9}
\end{equation*}
$$

Very important is the normal distribution (Sec. 24.8), whose density is

$$
\begin{equation*}
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right] \tag{10}
\end{equation*}
$$

and whose distribution function is (Sec. 24.8; Tables A7, A8 in App. 5)

$$
\begin{equation*}
F(x)=\Phi\left(\frac{x-\mu}{\sigma}\right) \tag{11}
\end{equation*}
$$

A two-dimensional random variable (X, Y) occurs if we simultaneously observe two quantities (for example, height X and weight Y of adults). Its distribution function is (Sec. 24.9)

$$
\begin{equation*}
F(x, y)=P(X \leqq x, Y \leqq y) . \tag{12}
\end{equation*}
$$

X and Y have the distribution functions (Sec. 24.9)
(13) $\quad F_{1}(x)=P(X \leqq x, Y$ arbitrary $) \quad$ and $\quad F_{2}(y)=P(x$ arbitrary, $Y \leqq y)$
respectively; their distributions are called marginal distributions. If both X and Y are discrete, then (X, Y) has a probability function

$$
f(x, y)=P(X=x, Y=y)
$$

If both X and Y are continuous, then (X, Y) has a density $f(x, y)$.

In probability theory we set up mathematical models of processes that are affected by "chance." In mathematical statistics or, briefly, statistics, we check these models against the observable reality. This is called statistical inference. It is done by sampling, that is, by drawing random samples, briefly called samples. These are sets of values from a much larger set of values that could be studied, called the population. An example is 10 diameters of screws drawn from a large lot of screws. Sampling is done in order to see whether a model of the population is accurate enough for practical purposes. If this is the case, the model can be used for predictions, decisions, and actions, for instance, in planning productions, buying equipment, investing in business projects, and so on.

Most important methods of statistical inference are estimation of parameters (Secs. 25.2), determination of confidence intervals (Sec. 25.3), and hypothesis testing (Sec. 25.4, 25.7, 25.8), with application to quality control (Sec. 25.5) and acceptance sampling (Sec. 25.6).

In the last section (25.9) we give an introduction to regression and correlation analysis, which concern experiments involving two variables.

Prerequisite: Chap. 24.
Sections that may be omitted in a shorter course: 25.5, 25.6, 25.8.
References, Answers to Problems, and Statistical Tables: App. 1 Part G, App. 2, App. 5.

25.1 Introduction. Random Sampling

Mathematical statistics consists of methods for designing and evaluating random experiments to obtain information about practical problems, such as exploring the relation between iron content and density of iron ore, the quality of raw material or manufactured products, the efficiency of air-conditioning systems, the performance of certain cars, the effect of advertising, the reactions of consumers to a new product, etc.

Random variables occur more frequently in engineering (and elsewhere) than one would think. For example, properties of mass-produced articles (screws, lightbulbs, etc.) always show random variation, due to small (uncontrollable!) differences in raw material or manufacturing processes. Thus the diameter of screws is a random variable X and we have nondefective screws, with diameter between given tolerance limits, and defective screws, with diameter outside those limits. We can ask for the distribution of X, for the percentage of defective screws to be expected, and for necessary improvements of the production process.

Samples are selected from populations- 20 screws from a lot of 1000, 100 of 5000 voters, 8 beavers in a wildlife conservation project-because inspecting the entire population would be too expensive, time-consuming, impossible or even senseless (think
of destructive testing of lightbulbs or dynamite). To obtain meaningful conclusions, samples must be random selections. Each of the 1000 screws must have the same chance of being sampled (of being drawn when we sample), at least approximately. Only then will the sample mean $\bar{x}=\left(x_{1}+\cdots+x_{20}\right) / 20$ (Sec. 24.1) of a sample of size $n=20$ (or any other n) be a good approximation of the population mean μ (Sec. 24.6); and the accuracy of the approximation will generally improve with increasing n, as we shall see. Similarly for other parameters (standard deviation, variance, etc.).

Independent sample values will be obtained in experiments with an infinite sample space S (Sec. 24.2), certainly for the normal distribution. This is also true in sampling with replacement. It is approximately true in drawing small samples from a large finite population (for instance, 5 or 10 of 1000 items). However, if we sample without replacement from a small population, the effect of dependence of sample values may be considerable.

Random numbers help in obtaining samples that are in fact random selections. This is sometimes not easy to accomplish because there are many subtle factors that can bias sampling (by personal interviews, by poorly working machines, by the choice of nontypical observation conditions, etc.). Random numbers can be obtained from a random number generator in Maple, Mathematica, or other systems listed on p. 789. (The numbers are not truly random, as they would be produced in flipping coins or rolling dice, but are calculated by a tricky formula that produces numbers that do have practically all the essential features of true randomness. Because these numbers eventually repeat, they must not be used in cryptography, for example, where true randomness is required.)

EXAMPLE 1 Random Numbers from a Random Number Generator

To select a sample of size $n=10$ from 80 given ball bearings, we number the bearings from 1 to 80 . We then let the generator randomly produce 10 of the integers from 1 to 80 and include the bearings with the numbers obtained in our sample, for example.

$$
\begin{array}{llllllllll}
44 & 55 & 53 & 03 & 52 & 61 & 67 & 78 & 39 & 54
\end{array}
$$

or whatever.
Random numbers are also contained in (older) statistical tables.

Representing and processing data were considered in Sec. 24.1 in connection with frequency distributions. These are the empirical counterparts of probability distributions and helped motivating axioms and properties in probability theory. The new aspect in this chapter is randomness: the data are samples selected randomly from a population. Accordingly, we can immediately make the connection to Sec. 24.1, using stem-and-leaf plots, box plots, and histograms for representing samples graphically.

Also, we now call the mean \bar{x} in (5), Sec. 24.1, the sample mean

$$
\begin{equation*}
\bar{x}=\frac{1}{n} \sum_{j=1}^{n} x_{j}=\frac{1}{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right) \tag{1}
\end{equation*}
$$

We call n the sample size, the variance s^{2} in (6), Sec. 24.1, the sample variance

$$
\begin{equation*}
s^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}=\frac{1}{n-1}\left[\left(x_{1}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}\right] \tag{2}
\end{equation*}
$$

and its positive square root s the sample standard deviation. \bar{x}, s^{2}, and s are called parameters of a sample; they will be needed throughout this chapter.

25.2 Point Estimation of Parameters

Beginning in this section, we shall discuss the most basic practical tasks in statistics and corresponding statistical methods to accomplish them. The first of them is point estimation of parameters, that is, of quantities appearing in distributions, such as p in the binomial distribution and μ and σ in the normal distribution.

A point estimate of a parameter is a number (point on the real line), which is computed from a given sample and serves as an approximation of the unknown exact value of the parameter of the population. An interval estimate is an interval ("confidence interval") obtained from a sample; such estimates will be considered in the next section. Estimation of parameters is of great practical importance in many applications.

As an approximation of the mean μ of a population we may take the mean \bar{x} of a corresponding sample. This gives the estimate $\hat{\mu}=\bar{x}$ for μ, that is,

$$
\begin{equation*}
\hat{\mu}=\bar{x}=\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right) \tag{1}
\end{equation*}
$$

where n is the sample size. Similarly, an estimate $\hat{\sigma}^{2}$ for the variance of a population is the variance s^{2} of a corresponding sample, that is,

$$
\begin{equation*}
\hat{\sigma}^{2}=s^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2} . \tag{2}
\end{equation*}
$$

Clearly, (1) and (2) are estimates of parameters for distributions in which μ or σ^{2} appear explicity as parameters, such as the normal and Poisson distributions. For the binomial distribution, $p=\mu / n$ [see (3) in Sec. 24.7]. From (1) we thus obtain for p the estimate

$$
\begin{equation*}
\hat{p}=\frac{\bar{x}}{n} . \tag{3}
\end{equation*}
$$

We mention that (1) is a special case of the so-called method of moments. In this method the parameters to be estimated are expressed in terms of the moments of the distribution (see Sec. 24.6). In the resulting formulas, those moments of the distribution are replaced by the corresponding moments of the sample. This gives the estimates. Here the \boldsymbol{k} th moment of a sample x_{1}, \cdots, x_{n} is

$$
m_{k}=\frac{1}{n} \sum_{j=1}^{n} x_{j}^{k}
$$

Maximum Likelihood Method

Another method for obtaining estimates is the so-called maximum likelihood method of R. A. Fisher [Messenger Math. 41 (1912), 155-160]. To explain it, we consider a discrete (or continuous) random variable X whose probability function (or density) $f(x)$ depends on a single parameter θ. We take a corresponding sample of n independent values x_{1}, \cdots, x_{n}. Then in the discrete case the probability that a sample of size n consists precisely of those n values is

$$
\begin{equation*}
l=f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{n}\right) \tag{4}
\end{equation*}
$$

In the continuous case the probability that the sample consists of values in the small intervals $x_{j} \leqq x \leqq x_{j}+\Delta x(j=1,2, \cdots, n)$ is

$$
\begin{equation*}
f\left(x_{1}\right) \Delta x f\left(x_{2}\right) \Delta x \cdots f\left(x_{n}\right) \Delta x=l(\Delta x)^{n} \tag{5}
\end{equation*}
$$

Since $f\left(x_{j}\right)$ depends on θ, the function l in (5) given by (4) depends on x_{1}, \cdots, x_{n} and θ. We imagine x_{1}, \cdots, x_{n} to be given and fixed. Then l is a function of θ, which is called the likelihood function. The basic idea of the maximum likelihood method is quite simple, as follows. We choose that approximation for the unknown value of θ for which l is as large as possible. If l is a differentiable function of θ, a necessary condition for l to have a maximum in an interval (not at the boundary) is

$$
\begin{equation*}
\frac{\partial l}{\partial \theta}=0 \tag{6}
\end{equation*}
$$

(We write a partial derivative, because l depends also on x_{1}, \cdots, x_{n}.) A solution of (6) depending on x_{1}, \cdots, x_{n} is called a maximum likelihood estimate for θ. We may replace (6) by

$$
\begin{equation*}
\frac{\partial \ln l}{\partial \theta}=0 \tag{7}
\end{equation*}
$$

because $f\left(x_{j}\right)>0$, a maximum of l is in general positive, and $\ln l$ is a monotone increasing function of l. This often simplifies calculations.

Several Parameters. If the distribution of X involves r parameters $\theta_{1}, \cdots, \theta_{r}$, then instead of (6) we have the r conditions $\partial l / \partial \theta_{1}=0, \cdots, \partial l / \partial \theta_{r}=0$, and instead of (7) we have

$$
\begin{equation*}
\frac{\partial \ln l}{\partial \theta_{1}}=0, \quad \cdots, \quad \frac{\partial \ln l}{\partial \theta_{r}}=0 . \tag{8}
\end{equation*}
$$

EXAMPLE 1 Normal Distribution

Find maximum likelihood estimates for $\theta_{1}=\mu$ and $\theta_{2}=\sigma$ in the case of the normal distribution.
Solution. From (1), Sec. 24.8, and (4) we obtain the likelihood function

$$
l=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n}\left(\frac{1}{\sigma}\right)^{n} e^{-h} \quad \text { where } \quad h=\frac{1}{2 \sigma^{2}} \sum_{j=1}^{n}\left(x_{j}-\mu\right)^{2}
$$

Taking logarithms, we have

$$
\ln l=-n \ln \sqrt{2 \pi}-n \ln \sigma-h .
$$

The first equation in (8) is $\partial(\ln l) / \partial \mu=0$, written out

$$
\frac{\partial \ln l}{\partial \mu}=-\frac{\partial h}{\partial \mu}=\frac{1}{\sigma^{2}} \sum_{j=1}^{n}\left(x_{j}-\mu\right)=0 . \quad \text { hence } \quad \sum_{j=1}^{n} x_{j}-n \mu=0 .
$$

The solution is the desired estimate $\hat{\mu}$ for μ : we find

$$
\hat{\mu}=\frac{1}{n} \sum_{j=1}^{n} x_{j}=\bar{x} .
$$

The second equation in (8) is $\partial(\ln l) / \partial \sigma=0$, written out

$$
\frac{\partial \ln l}{\partial \sigma}=-\frac{n}{\sigma}-\frac{\partial h}{\partial \sigma}=-\frac{1}{\sigma}+\frac{1}{\sigma^{3}} \sum_{j=1}^{n}\left(x_{j}-\mu\right)^{2}=0 .
$$

Replacing μ by $\hat{\mu}$ and solving for σ^{2}, we obtain the estimate

$$
\widetilde{\sigma}^{2}=\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}
$$

which we shall use in Sec. 25.7. Note that this differs from (2). We cannot discuss criteria for the goodness of estimates but want to mention that for small n, formula (2) is preferable.

1. Normal distribution. Apply the maximum likelihood method to the normal distribution with $\mu=0$.
2. Find the maximum likelihood estimate for the parameter μ of a normal distribution with known variance $\sigma^{2}=\sigma_{0}^{2}=16$.
3. Poisson distribution. Derive the maximum likelihood estimator for μ. Apply it to the sample ($10,25,26,17$, $10,4)$, giving numbers of minutes with $0-10,11-20$, $21-30,31-40,41-50$, more than 50 fliers per minute, respectively, checking in at some airport check-in.
4. Uniform distribution. Show that, in the case of the parameters a and b of the uniform distribution (see Sec. 24.6), the maximum likelihood estimate cannot be obtained by equating the first derivative to zero. How can we obtain maximum likelihood estimates in this case, more or less by using common sense?
5. Binomial distribution. Derive a maximum likelihood estimate for p.
6. Extend Prob. 5 as follows. Suppose that m times n trials were made and in the first n trials A happened k_{1} times, in the second n trials A happened k_{2} times, \cdots, in the m th n trials A happened k_{m} times. Find a maximum likelihood estimate of p based on this information.
7. Suppose that in Prob. 6 we made 3 times 4 trials and A happened 2, 3, 2 times, respectively. Estimate p.
8. Geometric distribution. Let $X=$ Number of independent trials until an event A occurs. Show that X has a geometric distribution, defined by the probability function $f(x)=p q^{x-1}, x=1,2, \cdots$, where p is the probability of A in a single trial and $q=1-p$. Find the maximum likelihood estimate of p corresponding to a sample $x_{1}, x_{2}, \cdots, x_{n}$ of observed values of X.
9. In Prob. 8, show that $f(1)+f(2)+\cdots=1$ (as it should be!). Calculate independently of Prob. 8 the maximum likelihood of p in Prob. 8 corresponding to a single observed value of X.
10. In rolling a die, suppose that we get the first "Six" in the 7th trial and in doing it again we get it in the 6th trial. Estimate the probability p of getting a "Six" in rolling that die once.
11. Find the maximum likelihood estimate of θ in the density $f(x)=\theta e^{-\theta x}$ if $x \geqq 0$ and $f(x)=0$ if $x<0$.
12. In Prob. 11, find the mean μ, substitute it in $f(x)$, find the maximum likelihood estimate of μ, and show that it is identical with the estimate for μ which can be obtained from that for θ in Prob. 11.
13. Compute $\hat{\theta}$ in Prob. 11 from the sample 1.9, 0.4, 0.7, 0.6 , 1.4. Graph the sample distribution function $\hat{F}(x)$ and the distribution function $F(x)$ of the random variable, with $\theta=\hat{\theta}$, on the same axes. Do they agree reasonably well? (We consider goodness of fit systematically in Sec. 25.7.)
14. Do the same task as in Prob. 13 if the given sample is $0.4,0.7,0.2,1.1,0.1$.
15. CAS EXPERIMENT. Maximum Likelihood Estimates. (MLEs). Find experimentally how much MLEs can differ depending on the sample size. Hint. Generate many samples of the same size n, e.g., of the standardized normal distribution, and record \bar{x} and s^{2}. Then increase n.

25.3 Confidence Intervals

Confidence intervals ${ }^{1}$ for an unknown parameter θ of some distribution (e.g., $\theta=\mu$) are intervals $\theta_{1} \leqq \theta \leqq \theta_{2}$ that contain θ, not with certainty but with a high probability γ, which we can choose (95% and 99% are popular). Such an interval is calculated from a sample. $\gamma=95 \%$ means probability $1-\gamma=5 \%=\frac{1}{20}$ of being wrong-one of about 20 such intervals will not contain θ. Instead of writing $\theta_{1} \leqq \theta \leqq \theta_{2}$, we denote this more distinctly by writing

$$
\begin{equation*}
\operatorname{CONF}_{\gamma}\left\{\theta_{1} \leqq \theta \leqq \theta_{2}\right\} . \tag{1}
\end{equation*}
$$

Such a special symbol, CONF, seems worthwhile in order to avoid the misunderstanding that θ must lie between θ_{1} and θ_{2}.
γ is called the confidence level, and θ_{1} and θ_{2} are called the lower and upper confidence limits. They depend on γ. The larger we choose γ, the smaller is the error probability $1-\gamma$, but the longer is the confidence interval. If $\gamma \rightarrow 1$, then its length goes to infinity. The choice of γ depends on the kind of application. In taking no umbrella, a 5% chance of getting wet is not tragic. In a medical decision of life or death, a 5% chance of being wrong may be too large and a 1% chance of being wrong ($\gamma=99 \%$) may be more desirable.

Confidence intervals are more valuable than point estimates (Sec. 25.2). Indeed, we can take the midpoint of (1) as an approximation of θ and half the length of (1) as an "error bound" (not in the strict sense of numerics, but except for an error whose probability we know).
θ_{1} and θ_{2} in (1) are calculated from a sample x_{1}, \cdots, x_{n}. These are n observations of a random variable X. Now comes a standard trick. We regard x_{1}, \cdots, x_{n} as single observations of n random variables X_{1}, \cdots, X_{n} (with the same distribution, namely, that of X). Then $\theta_{1}=\theta_{1}\left(x_{1}, \cdots, x_{n}\right)$ and $\theta_{2}=\theta_{2}\left(x_{1}, \cdots, x_{n}\right)$ in (1) are observed values of two random variables $\Theta_{1}=\Theta_{1}\left(X_{1}, \cdots, X_{n}\right)$ and $\Theta_{2}=\Theta_{2}\left(X_{1}, \cdots, X_{n}\right)$. The condition (1) involving γ can now be written

$$
\begin{equation*}
P\left(\Theta_{1} \leqq \theta \leqq \Theta_{2}\right)=\gamma . \tag{2}
\end{equation*}
$$

Let us see what all this means in concrete practical cases.
In each case in this section we shall first state the steps of obtaining a confidence interval in the form of a table, then consider a typical example, and finally justify those steps theoretically.

[^26]
Confidence Interval for μ of the Normal Distribution with Known σ^{2}

Table 25.1 Determination of a Confidence Interval for the Mean $\boldsymbol{\mu}$ of a Normal Distribution with Known Variance $\boldsymbol{\sigma}^{\mathbf{2}}$

Step 1. Choose a confidence level $\gamma(95 \%, 99 \%$, or the like).
Step 2. Determine the corresponding c :

γ	0.90	0.95	0.99	0.999
c	1.645	1.960	2.576	3.291

Step 3. Compute the mean \bar{x} of the sample x_{1}, \cdots, x_{n}.
Step 4. Compute $k=c \sigma / \sqrt{n}$. The confidence interval for μ is

$$
\begin{equation*}
\mathrm{CONF}_{\gamma}\{\bar{x}-k \leqq \mu \leqq \bar{x}+k\} \tag{3}
\end{equation*}
$$

EXAMPLE 1 Confidence Interval for $\boldsymbol{\mu}$ of the Normal Distribution with Known $\boldsymbol{\sigma}^{2}$

Determine a 95% confidence interval for the mean of a normal distribution with variance $\sigma^{2}=9$, using a sample of $n=100$ values with mean $\bar{x}=5$.
Solution. Step 1. $\gamma=0.95$ is required. Step 2. The corresponding c equals 1.960 ; see Table 25.1. Step 3. $\bar{x}=5$ is given. Step 4. We need $k=1.960 \cdot 3 / \sqrt{100}=0.588$. Hence $\bar{x}-k=4.412, \bar{x}+k=5.588$ and the confidence interval is $\operatorname{CONF}_{0.95}\{4.412 \leqq \mu \leqq 5.588\}$.

This is sometimes written $\mu=5 \pm 0.588$, but we shall not use this notation, which can be misleading.
With your CAS you can determine this interval more directly. Similarly for the other examples in this section.

Theory for Table 25.1. The method in Table 25.1 follows from the basic

Sum of Independent Normal Random Variables

Let X_{1}, \cdots, X_{n} be independent normal random variables each of which has mean μ and variance σ^{2}. Then the following holds.
(a) The sum $X_{1}+\cdots+X_{n}$ is normal with mean $n \mu$ and variance $n \sigma^{2}$.
(b) The following random variable \bar{X} is normal with mean μ and variance σ^{2} / n.

$$
\begin{equation*}
\bar{X}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right) \tag{4}
\end{equation*}
$$

(c) The following random variable Z is normal with mean 0 and variance 1.

$$
\begin{equation*}
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \tag{5}
\end{equation*}
$$

PROOF The statements about the mean and variance in (a) follow from Theorems 1 and 3 in Sec. 24.9. From this, and Theorem 2 in Sec. 24.6, we see that \bar{X} has the mean $(1 / n) n \mu=\mu$ and the variance $(1 / n)^{2} n \sigma^{2}=\sigma^{2} / n$. This implies that Z has the mean 0 and variance 1 , by Theorem 2(b) in Sec. 24.6. The normality of $X_{1}+\cdots+X_{n}$ is proved in Ref. [G3] listed in App. 1. This implies the normality of (4) and (5).

Derivation of (3) in Table 25.1. Sampling from a normal distribution gives independent sample values (see Sec. 25.1), so that Theorem 1 applies. Hence we can choose γ and then determine c such that

$$
\begin{equation*}
P(-c \leqq Z \leqq c)=P\left(-c \leqq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leqq c\right)=\Phi(c)-\Phi(-c)=\gamma \tag{6}
\end{equation*}
$$

For the value $\gamma=0.95$ we obtain $z(D)=1.960$ from Table A8 in App. 5, as used in Example 1. For $\gamma=0.9,0.99,0.999$ we get the other values of c listed in Table 25.1. Finally, all we have to do is to convert the inequality in (6) into one for μ and insert observed values obtained from the sample. We multiply $-c \leqq Z \leqq c$ by -1 and then by σ / \sqrt{n}, writing $c \sigma / \sqrt{n}=k$ (as in Table 25.1),

$$
\begin{aligned}
P(-c \leqq Z \leqq c)=P(c \geqq-Z \geqq-c) & =P\left(c \geqq \frac{\mu-\bar{X}}{\sigma / \sqrt{n}} \geqq-c\right) \\
& =P(k \geqq \mu-\bar{X} \geqq-k)=\gamma
\end{aligned}
$$

Adding \bar{X} gives $P(\bar{X}+k \geqq \mu \geqq \bar{X}-k)=\gamma \quad$ or

$$
\begin{equation*}
P(\bar{X}-k \leqq \mu \leqq \bar{X}+k)=\gamma \tag{7}
\end{equation*}
$$

Inserting the observed value \bar{x} of \bar{X} gives (3). Here we have regarded x_{1}, \cdots, x_{n} as single observations of X_{1}, \cdots, X_{n} (the standard trick!), so that $x_{1}+\cdots+x_{n}$ is an observed value of $X_{1}+\cdots+X_{n}$ and \bar{x} is an observed value of \bar{X}. Note further that (7) is of the form (2) with $\Theta_{1}=\bar{X}-k$ and $\Theta_{2}=\bar{X}+k$.

EXAMPLE 2 Sample Size Needed for a Confidence Interval of Prescribed Length

How large must n be in Example 1 if we want to obtain a 95% confidence interval of length $L=0.4$?
Solution. The interval (3) has the length $L=2 k=2 c \sigma / \sqrt{n}$. Solving for n, we obtain

$$
n=(2 c \sigma / L)^{2} .
$$

In the present case the answer is $n=(2 \cdot 1.960 \cdot 3 / 0.4)^{2} \approx 870$.
Figure 526 shows how L decreases as n increases and that for $\gamma=99 \%$ the confidence interval is substantially longer than for $\gamma=95 \%$ (and the same sample size n).

Fig. 526. Length of the confidence interval (3) (measured in multiples of σ) as a function of the sample size n for $\gamma=95 \%$ and $\gamma=99 \%$

Confidence Interval for μ of the Normal Distribution with Unknown σ^{2}

In practice σ^{2} is frequently unknown. Then the method in Table 25.1 does not help and the whole theory changes, although the steps of determining a confidence interval for μ remain quite similar. They are shown in Table 25.2. We see that k differs from that in Table 25.1, namely, the sample standard deviation s has taken the place of the unknown standard deviation σ of the population. And c now depends on the sample size n and must be determined from Table A9 in App. 5 or from your CAS. That table lists values z for given values of the distribution function (Fig. 527)

$$
\begin{equation*}
F(z)=K_{m} \int_{-\infty}^{x}\left(1+\frac{u^{2}}{m}\right)^{-(m+1) / 2} d u \tag{8}
\end{equation*}
$$

of the \boldsymbol{t}-distribution. Here, $m(=1,2, \cdots)$ is a parameter, called the number of degrees of freedom of the distribution (abbreviated d.f.). In the present case, $m=n-1$; see Table 25.2. The constant K_{m} is such that $F(\infty)=1$. By integration it turns out that $K_{m}=\Gamma\left(\frac{1}{2} m+\frac{1}{2}\right) /\left[\sqrt{m \pi} \Gamma\left(\frac{1}{2} m\right)\right]$, where Γ is the gamma function (see (24) in App. A3.1).

Table 25.2 Determination of a Confidence Interval for the Mean μ of a Normal Distribution with Unknown Variance $\boldsymbol{\sigma}^{\mathbf{2}}$

Step 1. Choose a confidence level $\gamma(95 \%, 99 \%$, or the like).
Step 2. Determine the solution c of the equation

$$
\begin{equation*}
F(c)=\frac{1}{2}(1+\gamma) \tag{9}
\end{equation*}
$$

from the table of the t-distribution with $n-1$ degrees of freedom (Table A9 in App. 5; or use a CAS; $n=$ sample size).
Step 3. Compute the mean \bar{x} and the variance s^{2} of the sample x_{1}, \cdots, x_{n}.
Step 4. Compute $k=c s / \sqrt{n}$. The confidence interval is

$$
\begin{equation*}
\mathrm{CONF}_{\gamma}\{\bar{x}-k \leqq \mu \leqq \bar{x}+k\} . \tag{10}
\end{equation*}
$$

Figure 528 compares the curve of the density of the t-distribution with that of the normal distribution. The latter is steeper. This illustrates that Table 25.1 (which uses more information, namely, the known value of σ^{2}) yields shorter confidence intervals than Table 25.2. This is confirmed in Fig. 529, which also gives an idea of the gain by increasing the sample size.

Fig. 527. Distribution functions of the t-distribution with 1 and 3 d.f. and of the standardized normal distribution (steepest curve)

Fig. 528. Densities of the t-distribution with 1 and 3 d.f. and of the standardized normal distribution

Fig. 529. Ratio of the lengths L^{\prime} and L of the confidence intervals (10) and (3) with $\gamma=95 \%$ and $\gamma=99 \%$ as a function of the sample size n for equal s and σ

EXAMPLE 3 Confidence Interval for $\boldsymbol{\mu}$ of the Normal Distribution with Unknown $\boldsymbol{\sigma}^{\mathbf{2}}$

Five independent measurements of the point of inflammation (flash point) of Diesel oil (D-2) gave the values (in ${ }^{\circ} \mathrm{F}$) $144 \quad 147 \quad 146 \quad 142 \quad$ 144. Assuming normality, determine a 99% confidence interval for the mean.

Solution. Step 1. $\gamma=0.99$ is required.
Step 2. $F(c)=\frac{1}{2}(1+\gamma)=0.995$, and Table A9 in App. 5 with $n-1=4$ d.f. gives $c=4.60$.
Step 3. $\bar{x}=144.6, \quad s^{2}=3.8$.
Step 4. $k=\sqrt{3.8} \cdot 4.60 / \sqrt{5}=4.01$. The confidence interval is $\operatorname{CONF}_{0.99}\{140.5 \leqq \mu \leqq 148.7\}$.
If the variance σ^{2} were known and equal to the sample variance s^{2}, thus $\sigma^{2}=3.8$, then Table 25.1 would give $k=c \sigma / \sqrt{n}=2.576 \sqrt{3.8} / \sqrt{5}=2.25$ and $\operatorname{CONF}_{0.99}\{142.35 \leqq \mu \leqq 146.85\}$. We see that the present interval is almost twice as long as that obtained from Table 25.1 (with $\sigma^{2}=3.8$). Hence for small samples the difference is considerable! See also Fig. 529.

Theory for Table 25.2. For deriving (10) in Table 25.2 we need from Ref. [G3]

Student's \boldsymbol{t}-Distribution

Let X_{1}, \cdots, X_{n} be independent normal random variables with the same mean μ and the same variance σ^{2}. Then the random variable

$$
\begin{equation*}
T=\frac{\bar{X}-\mu}{S / \sqrt{n}} \tag{11}
\end{equation*}
$$

has a t-distribution [see (8)] with $n-1$ degrees of freedom (d.f.); here \bar{X} is given by (4) and

$$
\begin{equation*}
S^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2} . \tag{12}
\end{equation*}
$$

Derivation of (10). This is similar to the derivation of (3). We choose a number γ between 0 and 1 and determine a number c from Table A9 in App. 5 with $n-1$ d.f. (or from a CAS) such that

$$
\begin{equation*}
P(-c \leqq T \leqq c)=F(c)-F(-c)=\gamma \tag{13}
\end{equation*}
$$

Since the t-distribution is symmetric, we have

$$
F(-c)=1-F(c),
$$

and (13) assumes the form (9). Substituting (11) into (13) and transforming the result as before, we obtain

$$
\begin{equation*}
P(\bar{X}-K \leqq \mu \leqq \bar{X}+K)=\gamma \tag{14}
\end{equation*}
$$

where

$$
K=c S / \sqrt{n}
$$

By inserting the observed values \bar{x} of \bar{X} and s^{2} of S^{2} into (14) we finally obtain (10).

Confidence Interval for the Variance σ^{2} of the Normal Distribution

Table 25.3 shows the steps, which are similar to those in Tables 25.1 and 25.2.

Table 25.3 Determination of a Confidence Interval for the Variance $\boldsymbol{\sigma}^{\mathbf{2}}$ of a Normal Distribution, Whose Mean Need Not Be Known

Step 1. Choose a confidence level $\gamma(95 \%, 99 \%$, or the like).
Step 2. Determine solutions c_{1} and c_{2} of the equations

$$
\begin{equation*}
F\left(c_{1}\right)=\frac{1}{2}(1-\gamma), \quad F\left(c_{2}\right)=\frac{1}{2}(1+\gamma) \tag{15}
\end{equation*}
$$

from the table of the chi-square distribution with $n-1$ degrees of freedom (Table A10 in App. 5; or use a CAS; $n=$ sample size).
Step 3. Compute $(n-1) s^{2}$, where s^{2} is the variance of the sample x_{1}, \cdots, x_{n}.
Step 4. Compute $k_{1}=(n-1) s^{2} / c_{1}$ and $k_{2}=(n-1) s^{2} / c_{2}$. The confidence interval is

$$
\begin{equation*}
\operatorname{CONF}_{\gamma}\left\{k_{2} \leqq \sigma^{2} \leqq k_{1}\right\} . \tag{16}
\end{equation*}
$$

EXAMPLE 4 Confidence Interval for the Variance of the Normal Distribution

Determine a 95% confidence interval (16) for the variance, using Table 25.3 and a sample (tensile strength of sheet steel in $\mathrm{kg} / \mathrm{mm}^{2}$, rounded to integer values)

$$
\begin{array}{llllllllllllll}
89 & 84 & 87 & 81 & 89 & 86 & 91 & 90 & 78 & 89 & 87 & 99 & 83 & 89 .
\end{array}
$$

Solution. Step 1. $\gamma=0.95$ is required.
Step 2. For $n-1=13$ we find

$$
c_{1}=5.01 \quad \text { and } \quad c_{2}=24.74
$$

Step 3. $13 s^{2}=326.9$.
Step 4. $13 s^{2} / c_{1}=65.25,13 s^{2} / c_{2}=13.21$.
The confidence interval is

$$
\mathrm{CONF}_{0.95}\left\{13.21 \leqq \sigma^{2} \leqq 65.25\right\}
$$

This is rather large, and for obtaining a more precise result, one would need a much larger sample.

Theory for Table 25.3. In Table 25.1 we used the normal distribution, in Table 25.2 the t-distribution, and now we shall use the χ^{2}-distribution (chi-square distribution), whose distribution function is $F(z)=0$ if $z<0$ and

$$
F(z)=C_{m} \int_{0}^{z} e^{-u / 2} u^{(m-2) / 2} d u \quad \text { if } z \geqq 0
$$

(Fig. 530).

The parameter $m(=1,2, \cdots)$ is called the number of degrees of freedom (d.f.), and

$$
C_{m}=1 /\left[2^{m / 2} \Gamma\left(\frac{1}{2} m\right)\right] .
$$

Note that the distribution is not symmetric (see also Fig. 531).

For deriving (16) in Table 25.3 we need the following theorem.

Fig. 530. Distribution function of the chi-square distribution with $2,3,5$ d.f.

Chi-Square Distribution

Under the assumptions in Theorem 2 the random variable

$$
\begin{equation*}
Y=(n-1) \frac{S^{2}}{\sigma^{2}} \tag{17}
\end{equation*}
$$

with S^{2} given by (12) has a chi-square distribution with $n-1$ degrees of freedom.

Proof in Ref. [G3], listed in App. 1.

Fig. 531. Density of the chi-square distribution with $2,3,5$ d.f.
Derivation of (16). This is similar to the derivation of (3) and (10). We choose a number γ between 0 and 1 and determine c_{1} and c_{2} from Table A10, App. 5, such that [see (15)]

$$
P\left(Y \leqq c_{1}\right)=F\left(c_{1}\right)=\frac{1}{2}(1-\gamma), \quad P\left(Y \leqq c_{2}\right)=F\left(c_{2}\right)=\frac{1}{2}(1+\gamma)
$$

Subtraction yields

$$
P\left(c_{1} \leqq Y \leqq c_{2}\right)=P\left(Y \leqq c_{2}\right)-P\left(Y \leqq c_{1}\right)=F\left(c_{2}\right)-F\left(c_{1}\right)=\gamma
$$

Transforming $c_{1} \leqq Y \leqq c_{2}$ with Y given by (17) into an inequality for σ^{2}, we obtain

$$
\frac{n-1}{c_{2}} S^{2} \leqq \sigma^{2} \leqq \frac{n-1}{c_{1}} S^{2}
$$

By inserting the observed value s^{2} of S^{2} we obtain (16).

Confidence Intervals for Parameters of Other Distributions

The methods in Tables 25.1-25.3 for confidence intervals for μ and σ^{2} are designed for the normal distribution. We now show that they can also be applied to other distributions if we use large samples.

We know that if X_{1}, \cdots, X_{n} are independent random variables with the same mean μ and the same variance σ^{2}, then their sum $Y_{n}=X_{1}+\cdots+X_{n}$ has the following properties.
(A) Y_{n} has the mean $n \mu$ and the variance $n \sigma^{2}$ (by Theorems 1 and 3 in Sec. 24.9).
(B) If those variables are normal, then Y_{n} is normal (by Theorem 1).

If those random variables are not normal, then (\mathbf{B}) is not applicable. However, for large n the random variable Y_{n} is still approximately normal. This follows from the central limit theorem, which is one of the most fundamental results in probability theory.

Central Limit Theorem

Let $X_{1}, \cdots, X_{n}, \cdots$ be independent random variables that have the same distribution function and therefore the same mean μ and the same variance σ^{2}. Let $Y_{n}=X_{1}+\cdots+X_{n}$. Then the random variable

$$
\begin{equation*}
Z_{n}=\frac{Y_{n}-n \mu}{\sigma \sqrt{n}} \tag{18}
\end{equation*}
$$

is asymptotically normal with mean 0 and variance 1 ; that is, the distribution function $F_{n}(x)$ of Z_{n} satisfies

$$
\lim _{n \rightarrow \infty} F_{n}(x)=\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u
$$

A proof can be found in Ref. [G3] listed in App. 1.
Hence, when applying Tables 25.1-25.3 to a nonnormal distribution, we must use sufficiently large samples. As a rule of thumb, if the sample indicates that the skewness of the distribution (the asymmetry; see Team Project 20(d), Problem Set 24.6) is small, use at least $n=20$ for the mean and at least $n=50$ for the variance.

PROBEEMESET 25:3

1. Why are interval estimates generally more useful than point estimates?

2-6 MEAN (VARIANCE KNOWN)

2. Find a 95% confidence interval for the mean of a normal population with standard deviation 4.00 from the sample $39,51,49,43,57,59$. Does that interval get longer or shorter if we take $\gamma=0.99$ instead of 0.95 ? By what factor?
3. By what factor does the length of the interval in Prob. 2 change if we double the sample size?
4. Determine a 95% confidence interval for the mean μ of a normal population with variance $\sigma^{2}=16$, using a sample of size 200 with mean 74.81 .
5. What sample size would be needed for obtaining a 95% confidence interval (3) of length 2σ ? Of length σ ?
6. What sample size is needed to obtain a 99% confidence interval of length 2.0 for the mean of a normal population with variance 25 ? Use Fig. 526. Check by calculation.

MEAN (VARIANCE UNKNOWN)

7. Find a 95% confidence interval for the percentage of cars on a certain highway that have poorly adjusted brakes, using a random sample of 800 cars stopped at a roadblock on that highway, 126 of which had poorly adjusted brakes.
8. K. Pearson result. Find a 99% confidence interval for p in the binomial distribution from a classical result by K. Pearson, who in 24,000 trials of tossing a coin obtained 12,012 Heads. Do you think that the coin was fair?

9-11 Find a 99% confidence interval for the mean of a normal population from the sample:
9. Copper content (\%) of brass $66,66,65,64,66,67,64$, 65, 63, 64
10. Melting point $\left({ }^{\circ} \mathrm{C}\right)$ of aluminum $660,667,654,663,662$
11. Knoop hardness of diamond 9500, 9800, 9750, 9200 , 9400, 9550
12. CAS EXPERIMENT. Confidence Intervals. Obtain 100 samples of size 10 of the standardized normal distribution. Calculate from them and graph the corresponding 95% confidence intervals for the mean and count how many of them do not contain 0 . Does the result support the theory? Repeat the whole experiment, compare and comment.

13-17 VARIANCE

Find a 95% confidence interval for the variance of a normal population from the sample:
13. Length of 20 bolts with sample mean 20.2 cm and sample variance $0.04 \mathrm{~cm}^{2}$
14. Carbon monoxide emission (grams per mile) of a certain type of passenger car (cruising at 55 mph): 17.3, 17.8, 18.0, 17.7, 18.2, 17.4, 17.6, 18.1
15. Mean energy (keV) of delayed neutron group (Group 3, half-life 6.2 s) for uranium U^{235} fission: a sample of 100 values with mean 442.5 and variance 9.3
16. Ultimate tensile strength (k psi) of alloy steel (Maraging H) at room temperature: 251, 255, 258, 253, 253, 252, 250, 252, 255, 256
17. The sample in Prob. 9
18. If X_{1} and X_{2} are independent normal random variables with mean 14 and 8 and variance 2 and 5 , respectively, what distribution does $3 X_{1}-X_{2}$ have? Hint. Use Team Project $14(\mathrm{~g})$ in Sec. 24.8.
19. A machine fills boxes weighing $Y \mathrm{lb}$ with $X \mathrm{lb}$ of salt, where X and Y are normal with mean 100 lb and 5 lb and standard deviation 1 lb and 0.5 lb , respectively. What percent of filled boxes weighing between 104 lb and 106 lb are to be expected?
20. If the weight X of bags of cement is normally distributed with a mean of 40 kg and a standard deviation of 2 kg , how many bags can a delivery truck carry so that the probability of the total load exceeding 2000 kg will be 5% ?

25.4 Testing of Hypotheses. Decisions

The ideas of confidence intervals and of tests ${ }^{2}$ are the two most important ideas in modern statistics. In a statistical test we make inference from sample to population through testing a hypothesis, resulting from experience or observations, from a theory or a quality requirement, and so on. In many cases the result of a test is used as a basis for a decision, for instance, to

[^27]buy (or not to buy) a certain model of car, depending on a test of the fuel efficiency (miles/gal) (and other tests, of course), to apply some medication, depending on a test of its effect; to proceed with a marketing strategy, depending on a test of consumer reactions, etc.

Let us explain such a test in terms of a typical example and introduce the corresponding standard notions of statistical testing.

EXAMPLE 1 Test of a Hypothesis. Alternative. Significance Level $\boldsymbol{\alpha}$

We want to buy 100 coils of a certain kind of wire, provided we can verify the manufacturer's claim that the wire has a breaking limit $\mu=\mu_{0}=200 \mathrm{lb}$ (or more). This is a test of the hypothesis (also called null hypothesis) $\mu=\mu_{0}=200$. We shall not buy the wire if the (statistical) test shows that actually $\mu=\mu_{1}<\mu_{0}$, the wire is weaker, the claim does not hold. μ_{1} is called the alternative (or alternative hypothesis) of the test. We shall accept the hypothesis if the test suggests that it is true, except for a small error probability α, called the significance level of the test. Otherwise we reject the hypothesis. Hence α is the probability of rejecting a hypothesis although it is true. The choice of α is up to us. 5% and 1% are popular values.

For the test we need a sample. We randomly select 25 coils of the wire, cut a piece from each coil, and determine the breaking limit experimentally. Suppose that this sample of $n=25$ values of the breaking limit has the mean $\bar{x}=197 \mathrm{lb}$ (somewhat less than the claim!) and the standard deviation $s=6 \mathrm{lb}$.

At this point we could only speculate whether this difference $197-200=-3$ is due to randomness, is a chance effect, or whether it is significant, due to the actually inferior quality of the wire. To continue beyond speculation requires probability theory, as follows.

We assume that the breaking limit is normally distributed. (This assumption could be tested by the method in Sec. 25.7. Or we could remember the central limit theorem (Sec. 25.3) and take a still larger sample.) Then

$$
T=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}
$$

in (11), Sec. 25.3, with $\mu=\mu_{0}$ has a \boldsymbol{t}-distribution with $n-1$ degrees of freedom ($n-1=24$ for our sample). Also $\bar{x}=197$ and $s=6$ are observed values of \bar{X} and S to be used later. We can now choose a significance level, say, $\alpha=5 \%$. From Table A9 in App. 5 or from a CAS we then obtain a critical value c such that $P(T \leqq c)=\alpha=5 \%$. For $P(T \leqq \widetilde{c})=1-\alpha=95 \%$ the table gives $\widetilde{c}=1.71$, so that $c=-\widetilde{c}=-1.71$ because of the symmetry of the distribution (Fig. 532).

We now reason as follows-this is the crucial idea of the test. If the hypothesis is true, we have a chance of only $\alpha(=5 \%)$ that we observe a value t of T (calculated from a sample) that will fall between $-\infty$ and -1.71 . Hence, if we nevertheless do observe such a t, we assert that the hypothesis cannot be true and we reject it. Then we accept the alternative. If, however, $t \geqq c$, we accept the hypothesis.

A simple calculation finally gives $t=(197-200) /(6 / \sqrt{25})=-2.5$ as an observed value of T. Since $-2.5<-1.71$, we reject the hypothesis (the manufacturer's claim) and accept the alternative $\mu=\mu_{1}<200$, the wire seems to be weaker than claimed.

Fig. 532. t-distribution in Example 1

This example illustrates the steps of a test:

1. Formulate the hypothesis $\theta=\theta_{0}$ to be tested. ($\theta_{0}=\mu_{0}$ in the example.)
2. Formulate an alternative $\theta=\theta_{1}$. $\left(\theta_{1}=\mu_{1}\right.$ in the example.)
3. Choose a significance level $\alpha(5 \%, 1 \%, 0.1 \%)$.
4. Use a random variable $\hat{\Theta}=g\left(X_{1}, \cdots, X_{n}\right)$ whose distribution depends on the hypothesis and on the alternative, and this distribution is known in both cases. Determine
a critical value c from the distribution of $\hat{\theta}$, assuming the hypothesis to be true. (In the example, $\hat{\Theta}=T$, and c is, obtained from $P(T \leqq c)=\alpha$.)
5. Use a sample x_{1}, \cdots, x_{n} to determine an observed value $\hat{\theta}=g\left(x_{1}, \cdots, x_{n}\right)$ of $\hat{\theta}$. (t in the example.)
6. Accept or reject the hypothesis, depending on the size of $\hat{\theta}$ relative to c. $(t<c$ in the example, rejection of the hypothesis.)

Two important facts require further discussion and careful attention. The first is the choice of an alternative. In the example, $\mu_{1}<\mu_{0}$, but other applications may require $\mu_{1}>\mu_{0}$ or $\mu_{1} \neq \mu_{0}$. The second fact has to do with errors. We know that α (the significance level of the test) is the probability of rejecting a true hypothesis. And we shall discuss the probability β of accepting a false hypothesis.

One-Sided and Two-Sided Alternatives (Fig. 533)

Let θ be an unknown parameter in a distribution, and suppose that we want to test the hypothesis $\theta=\theta_{0}$. Then there are three main kinds of alternatives, namely,

$$
\begin{align*}
& \theta>\theta_{0} \tag{1}\\
& \theta<\theta_{0} \tag{2}\\
& \theta \neq \theta_{0} . \tag{3}
\end{align*}
$$

(1) and (2) are one-sided alternatives, and (3) is a two-sided alternative.

We call rejection region (or critical region) the region such that we reject the hypothesis if the observed value in the test falls in this region. In (1) the critical c lies to the right of θ_{0} because so does the alternative. Hence the rejection region extends to the right. This is called a right-sided test. In (2) the critical c lies to the left of θ_{0} (as in Example 1), the rejection region extends to the left, and we have a left-sided test (Fig. 533, middle part). These are one-sided tests. In (3) we have two rejection regions. This is called a two-sided test (Fig. 533, lower part).

Fig. 533. Test in the case of alternative (1) (upper part of the figure), alternative (2) (middle part), and alternative (3)

All three kinds of alternatives occur in practical problems. For example, (1) may arise if θ_{0} is the maximum tolerable inaccuracy of a voltmeter or some other instrument. Alternative (2) may occur in testing strength of material, as in Example 1. Finally, θ_{0} in (3) may be the diameter of axle-shafts, and shafts that are too thin or too thick are equally undesirable, so that we have to watch for deviations in both directions.

Errors in Tests

Tests always involve risks of making false decisions:

(I) Rejecting a true hypothesis (Type I error).
$\alpha=$ Probability of making a Type I error.
(II) Accepting a false hypothesis (Type II error). $\beta=$ Probability of making a Type II error.

Clearly, we cannot avoid these errors because no absolutely certain conclusions about populations can be drawn from samples. But we show that there are ways and means of choosing suitable levels of risks, that is, of values α and β. The choice of α depends on the nature of the problem (e.g., a small risk $\alpha=1 \%$ is used if it is a matter of life or death).

Let us discuss this systematically for a test of a hypothesis $\theta=\theta_{0}$ against an alternative that is a single number θ_{1}, for simplicity. We let $\theta_{1}>\theta_{0}$, so that we have a right-sided test. For a left-sided or a two-sided test the discussion is quite similar.

We choose a critical $c>\theta_{0}$ (as in the upper part of Fig. 533, by methods discussed below). From a given sample x_{1}, \cdots, x_{n} we then compute a value

$$
\hat{\theta}=g\left(x_{1}, \cdots, x_{n}\right)
$$

with a suitable g (whose choice will be a main point of our further discussion; for instance, take $g=\left(x_{1}+\cdots+x_{n}\right) / n$ in the case in which θ is the mean). If $\hat{\theta}>c$, we reject the hypothesis. If $\hat{\theta} \leqq c$, we accept it. Here, the value $\hat{\theta}$ can be regarded as an observed value of the random variable

$$
\begin{equation*}
\hat{\Theta}=g\left(X_{1}, \cdots, X_{n}\right) \tag{4}
\end{equation*}
$$

because x_{j} may be regarded as an observed value of $X_{j}, j=1, \cdots, n$. In this test there are two possibilities of making an error, as follows.

Type I Error (see Table 25.4). The hypothesis is true but is rejected (hence the alternative is accepted) because Θ assumes a value $\hat{\theta}>c$. Obviously, the probability of making such an error equals

$$
\begin{equation*}
P(\hat{\Theta}>c)_{\theta=\theta_{0}}=\alpha \tag{5}
\end{equation*}
$$

α is called the significance level of the test, as mentioned before.
Type II Error (see Table 25.4). The hypothesis is false but is accepted because $\hat{\theta}$ assumes a value $\hat{\theta} \leqq c$. The probability of making such an error is denoted by β; thus

$$
\begin{equation*}
P(\hat{\Theta} \leqq c)_{\theta=\theta_{1}}=\beta \tag{6}
\end{equation*}
$$

$\eta=1-\beta$ is called the power of the test. Obviously, the power η is the probability of avoiding a Type II error.

Table 25.4 Type I and Type II Errors in Testing a Hypothesis $\theta=\boldsymbol{\theta}_{\mathbf{0}}$ Against an Alternative $\boldsymbol{\theta}=\boldsymbol{\theta}_{\mathbf{1}}$

	Unknown Truth	
	$\theta=\theta_{0}$	$\theta=\theta_{1}$
$\begin{array}{r} \text { 苞 } \theta=\theta_{0} \\ \theta=\theta_{1} \end{array}$	True decision $P=1-\alpha$	Type II error $P=\beta$
	Type 1 error $P=\alpha$	True decision $P=1-\beta$

Formulas (5) and (6) show that both α and β depend on c, and we would like to choose c so that these probabilities of making errors are as small as possible. But the important Figure 534 shows that these are conflicting requirements because to let α decrease we must shift c to the right, but then β increases. In practice we first choose $\alpha(5 \%$, sometimes 1%), then determine c, and finally compute β. If β is large so that the power $\eta=1-\beta$ is small, we should repeat the test, choosing a larger sample, for reasons that will appear shortly.

Fig. 534. Illustration of Type I and II errors in testing a hypothesis $\theta=\theta_{0}$ against an alternative $\theta=\theta_{1}\left(>\theta_{0}\right.$, right-sided test)

If the alternative is not a single number but is of the form (1)-(3), then β becomes a function of θ. This function $\beta(\theta)$ is called the operating characteristic (OC) of the test and its curve the $\mathbf{O C}$ curve. Clearly, in this case $\eta=1-\beta$ also depends on θ. This function $\eta(\theta)$ is called the power function of the test. (Examples will follow.)

Of course, from a test that leads to the acceptance of a certain hypothesis θ_{0}, it does not follow that this is the only possible hypothesis or the best possible hypothesis. Hence the terms "not reject" or "fail to reject" are perhaps better than the term "accept."

Test for μ of the Normal Distribution with Known σ^{2}

The following example explains the three kinds of hypotheses.

EXAMPLE 2 Test for the Mean of the Normal Distribution with Known Variance

Let X be a normal random variable with variance $\sigma^{2}=9$. Using a sample of size $n=10$ with mean \bar{x}, test the hypothesis $\mu=\mu_{0}=24$ against the three kinds of alternatives, namely,
(a) $\mu>\mu_{0}$
(b) $\mu<\mu_{0}$
(c) $\mu \neq \mu_{0}$.

Solution. We choose the significance level $\alpha=0.05$. An estimate of the mean will be obtained from

$$
\bar{X}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right) .
$$

If the hypothesis is true, \bar{X} is normal with mean $\mu=24$ and variance $\sigma^{2} / n=0.9$, see Theorem 1 , Sec. 25.3. Hence we may obtain the critical value c from Table A8 in App. 5.

Case (a). Right-Sided Test. We determine c from $P(\bar{X}>c)_{\mu=24}=\alpha=0.05$, that is,

$$
P(\bar{X} \leqq c)_{\mu=24}=\Phi\left(\frac{c-24}{\sqrt{0.9}}\right)=1-\alpha=0.95 .
$$

Table A8 in App. 5 gives $(c-24) / \sqrt{0.9}=1.645$, and $c=25.56$, which is greater than μ_{0}, as in the upper part of Fig. 533. If $\bar{x} \leqq 25.56$, the hypothesis is accepted. If $\bar{x}>25.56$, it is rejected. The power function of the test is (Fig. 535)

Fig. 535. Power function $\eta(\mu)$ in Example 2, case (a) (dashed) and case (c)

$$
\begin{align*}
\eta(\mu) & =P(\bar{X}>25.56)_{\mu}=1-P(\bar{X} \leqq 25.56)_{\mu} \\
& =1-\Phi\left(\frac{25.56-\mu}{\sqrt{0.9}}\right)=1-\Phi(26.94-1.05 \mu) \tag{7}
\end{align*}
$$

Case (b). Left-Sided Test. The critical value c is obtained from the equation

$$
P(\bar{X} \leqq c)_{\mu=24}=\Phi\left(\frac{c-24}{\sqrt{0.9}}\right)=\alpha=0.05
$$

Table A8 in App. 5 yields $c=24-1.56=22.44$. If $\bar{x} \geqq 22.44$, we accept the hypothesis. If $\bar{x}<22.44$, we reject it. The power function of the test is

$$
\begin{equation*}
\eta(\mu)=P(\bar{X} \leqq 22.44)_{\mu}=\Phi\left(\frac{22.44-\mu}{\sqrt{0.9}}\right)=\Phi(23.65-1.05 \mu) \tag{8}
\end{equation*}
$$

Case (c). Two-Sided Test. Since the normal distribution is symmetric, we choose c_{1} and c_{2} equidistant from $\mu=24$, say, $c_{1}=24-k$ and $c_{2}=24+k$, and determine k from

$$
P(24-k \leqq \bar{X} \leqq 24+k)_{\mu=24}=\Phi\left(\frac{k}{\sqrt{0.9}}\right)-\Phi\left(-\frac{k}{\sqrt{0.9}}\right)=1-\alpha=0.95
$$

Table A8 in App. 5 gives $k / \sqrt{0.9}=1.960$, hence $k=1.86$. This gives the values $c_{1}=24-1.86=22.14$ and $c_{2}=24+1.86=25.86$. If \bar{x} is not smaller than c_{1} and not greater than c_{2}, we accept the hypothesis. Otherwise we reject it. The power function of the test is (Fig. 535)
(9)

$$
\eta(\mu)=P(\bar{X}<22.14)_{\mu}+P(\bar{X}>25.86)_{\mu}=P(\bar{X}<22.14)_{\mu}+1-P(\bar{X} \leqq 25.86)_{\mu}
$$

$$
\begin{aligned}
& =1+\Phi\left(\frac{22.14-\mu}{\sqrt{0.9}}\right)-\Phi\left(\frac{25.86-\mu}{\sqrt{0.9}}\right) \\
& =1+\Phi(23.34-1.05 \mu)-\Phi(27.26-1.05 \mu)
\end{aligned}
$$

Consequently, the operating characteristic $\beta(\mu)=1-\eta(\mu)$ (see before) is (Fig. 536)

$$
\beta(\mu)=\Phi(27.26-1.05 \mu)-\Phi(23.34-1.05 \mu)
$$

If we take a larger sample, say, of size $n=100$ (instead of 10), then $\sigma^{2} / n=0.09$ (instead of 0.9) and the critical values are $c_{1}=23.41$ and $c_{2}=24.59$, as can be readily verified. Then the operating characteristic of the test is

$$
\begin{aligned}
& \beta(\mu)=\Phi\left(\frac{24.59-\mu}{\sqrt{0.09}}\right)-\Phi\left(\frac{23.41-\mu}{\sqrt{0.09}}\right) \\
& \quad=\Phi(81.97-3.33 \mu)-\Phi(78.03-3.33 \mu)
\end{aligned}
$$

Figure 536 shows that the corresponding OC curve is steeper than that for $n=10$. This means that the increase of n has led to an improvement of the test. In any practical case, n is chosen as small as possible but so large that the test brings out deviations between μ and μ_{0} that are of practical interest. For instance, if deviations of ± 2 units are of interest, we see from Fig. 536 that $n=10$ is much too small because when $\mu=24-2=22$ or $\mu=24+2=26 \beta$ is almost 50%. On the other hand, we see that $n=100$ is sufficient for that purpose.

Fig. 536. Curves of the operating characteristic (OC curves) in Example 2, case (c), for two different sample sizes n

Test for μ When σ^{2} Is Unknown, and for σ^{2}

EXAMPLE 3 Test for the Mean of the Normal Distribution with Unknown Variance

The tensile strength of a sample of $n=16$ manila ropes (diameter 3 in .) was measured. The sample mean was $\bar{x}=4482 \mathrm{~kg}$, and the sample standard deviation was $s=115 \mathrm{~kg}$ (N. C. Wiley, 41st Annual Meeting of the American Society for Testing Materials). Assuming that the tensile strength is a normal random variable, test the hypothesis $\mu_{0}=4500 \mathrm{~kg}$ against the alternative $\mu_{1}=4400 \mathrm{~kg}$. Here μ_{0} may be a value given by the manufacturer, while μ_{1} may result from previous experience.

Solution. We choose the significance level $\alpha=5 \%$. If the hypothesis is true, it follows from Theorem 2 in Sec. 25.3, that the random variable

$$
T=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}=\frac{\bar{X}-4500}{S / 4}
$$

has a t-distribution with $n-1=15$ d.f. The test is left-sided. The critical value c is obtained from $P(T<c)_{\mu_{0}}=\alpha=0.05$. Table A9 in App. 5 gives $c=-1.75$. As an observed value of T we obtain from the sample $t=(4482-4500) /(115 / 4)=-0.626$. We see that $t>c$ and accept the hypothesis. For obtaining numeric values of the power of the test, we would need tables called noncentral Student t-tables; we shall not discuss this question here.

EXAMPLE 4 Test for the Variance of the Normal Distribution

Using a sample of size $n=15$ and sample variance $s^{2}=13$ from a normal population, test the hypothesis $\sigma^{2}=\sigma_{0}^{2}=10$ against the alternative $\sigma^{2}=\sigma_{1}^{2}=20$.

Solution. We choose the significance level $\alpha=5 \%$. If the hypothesis is true, then

$$
Y=(n-1) \frac{S^{2}}{\sigma_{0}^{2}}=14 \frac{S^{2}}{10}=1.4 S^{2}
$$

has a chi-square distribution with $n-1=14$ d.f. by Theorem 3, Sec. 25.3. From

$$
P(Y>c)=\alpha=0.05, \quad \text { that is, } \quad P(Y \leqq c)=0.95,
$$

and Table A10 in App. 5 with 14 degrees of freedom we obtain $c=23.68$. This is the critical value of Y. Hence to $S^{2}=\sigma_{0}^{2} Y /(n-1)=0.714 Y$ there corresponds the critical value $c^{*}=0.714 \cdot 23.68=16.91$. Since $s^{2}<c^{*}$, we accept the hypothesis.

If the alternative is true, the random variable $Y_{1}=14 S^{2} / \sigma_{1}^{2}=0.7 S^{2}$ has a chi-square distribution with 14 d.f. Hence our test has the power

$$
\eta=P\left(S^{2}>c^{*}\right)_{\sigma^{2}=20}=P\left(Y_{1}>0.7 c^{*}\right)_{\sigma^{2}=20}=1-P\left(Y_{1} \leqq 11.84\right)_{\sigma^{2}=20} .
$$

From a more extensive table of the chi-square distribution (e.g. in Ref. [G3] or [G8]) or from your CAS, you see that $\eta \approx 62 \%$. Hence the Type II risk is very large, namely, 38%. To make this risk smaller, we would have to increase the sample size.

Comparison of Means and Variances

EXAMPLE 5 Comparison of the Means of Two Normal Distributions

Using a sample $x_{1}, \cdots, x_{n_{1}}$ from a normal distribution with unknown mean μ_{x} and a sample $y_{1}, \cdots, y_{n_{2}}$ from another normal distribution with unknown mean μ_{y}, we want to test the hypothesis that the means are equal, $\mu_{x}=\mu_{y}$, against an alternative, say, $\mu_{x}>\mu_{y}$. The variances need not be known but are assumed to be equal. ${ }^{3}$

Two cases of comparing means are of practical importance:
Case A. The samples have the same size. Furthermore, each value of the first sample corresponds to precisely one value of the other, because corresponding values result from the same person or thing (paired comparison) for example, two measurements of the same thing by two different methods or two measurements from the two eyes of the same person. More generally, they may result from pairs of similar individuals or things, for example, identical twins, pairs of used front tires from the same car, etc. Then we should form the differences of corresponding values and test the hypothesis that the population corresponding to the differences has mean 0 , using the method in Example 3. If we have a choice, this method is better than the following.

[^28]Case B. The two samples are independent and not necessarily of the same size. Then we may proceed as follows. Suppose that the alternative is $\mu_{x}>\mu_{y}$. We choose a significance level α. Then we compute the sample means \bar{x} and \bar{y} as well as $\left(n_{1}-1\right) s_{x}^{2}$ and $\left(n_{2}-1\right) s_{y}^{2}$, where s_{x}^{2} and s_{y}^{2} are the sample variances. Using Table A9 in App. 5 with $n_{1}+n_{2}-2$ degrees of freedom, we now determine c from

$$
\begin{equation*}
P(T \leqq c)=1-\alpha . \tag{10}
\end{equation*}
$$

We finally compute

$$
\begin{equation*}
t_{0}=\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}-2\right)}{n_{1}+n_{2}}} \frac{\bar{x}-\bar{y}}{\sqrt{\left(n_{1}-1\right) s_{x}^{2}+\left(n_{2}-1\right) s_{y}^{2}}} . \tag{11}
\end{equation*}
$$

It can be shown that this is an observed value of a random variable that has a t-distribution with $n_{1}+n_{2}-2$ degrees of freedom, provided the hypothesis is true. If $t_{0} \leqq c$, the hypothesis is accepted. If $t_{0}>c$, it is rejected. If the alternative is $\mu_{x} \neq \mu_{y}$, then (10) must be replaced by

$$
\begin{equation*}
P\left(T \leqq c_{1}\right)=0.5 \alpha, \quad P\left(T \leqq c_{2}\right)=1-0.5 \alpha . \tag{10*}
\end{equation*}
$$

Note that for samples of equal size $n_{1}=n_{2}=n$, formula (11) reduces to

$$
\begin{equation*}
t_{0}=\sqrt{n} \frac{\bar{x}-\bar{y}}{\sqrt{s_{x}^{2}+s_{y}^{2}}} . \tag{12}
\end{equation*}
$$

To illustrate the computations, let us consider the two samples ($x_{1}, \cdots, x_{n_{1}}$) and ($y_{1}, \cdots, y_{n_{2}}$) given by

	105	108	86	103	103	107	124	105
and	89	92	84	97	103	107	111	97

showing the relative output of tin plate workers under two different working conditions [J. J. B. Worth, Journal of Industrial Engineering 9, 249-253). Assuming that the corresponding populations are normal and have the same variance, let us test the hypothesis $\mu_{x}=\mu_{y}$ against the alternative $\mu_{x} \neq \mu_{y}$. (Equality of variances will be tested in the next example.)

Solution. We find

$$
\bar{x}=105.125, \quad \bar{y}=97.500, \quad s_{x}^{2}=106.125 . \quad s_{y}^{2}=84.000 .
$$

We choose the significance level $\alpha=5 \%$. From (10^{*}) with $0.5 \alpha=2.5 \%, 1-0.5 \alpha=97.5 \%$ and Table A9 in App. 5 with 14 degrees of freedom we obtain $c_{1}=-2.14$ and $c_{2}=2.14$. Formula (12) with $n=8$ gives the value

$$
t_{0}=\sqrt{8} \cdot 7.625 / \sqrt{190.125}=1.56
$$

Since $c_{1} \leqq t_{0} \leqq c_{2}$, we accept the hypothesis $\mu_{x}=\mu_{y}$ that under both conditions the mean output is the same.
Case A applies to the example because the two first sample values correspond to a certain type of work, the next two were obtained in another kind of work, etc. So we may use the differences

$$
\begin{array}{llllllll}
16 & 16 & 2 & 6 & 0 & 0 & 13 & 8
\end{array}
$$

of corresponding sample values and the method in Example 3 to test the hypothesis $\mu=0$, where μ is the mean of the population corresponding to the differences. As a logical alternative we take $\mu \neq 0$. The sample mean is $\bar{d}=7.625$, and the sample variance is $s^{2}=45.696$. Hence

$$
t=\sqrt{8}(7.625-0) / \sqrt{45.696}=3.19
$$

From $P\left(T \leqq c_{1}\right)=2.5 \%, P\left(T \leqq c_{2}\right)=97.5 \%$ and Table A9 in App. 5 with $n-1=7$ degrees of freedom we obtain $c_{1}=-2.36, c_{2}=2.36$ and reject the hypothesis because $t=3.19$ does not lie between c_{1} and c_{2}. Hence our present test, in which we used more information (but the same samples), shows that the difference in output is significant.

EXAMPLE 6 Comparison of the Variance of Two Normal Distributions

Using the two samples in the last example, test the hypothesis $\sigma_{x}^{2}=\sigma_{y}^{2}$; assume that the corresponding populations are normal and the nature of the experiment suggests the alternative $\sigma_{x}^{2}>\sigma_{y}^{2}$.
Solution. We find $s_{x}^{2}=106.125, s_{y}^{2}=84.000$. We choose the significance level $\alpha=5 \%$. Using $P(V \leqq c)=1-\alpha=95 \%$ and Table A11 in App. 5, with $\left(n_{1}-1, n_{2}-1\right)=(7,7)$ degrees of freedom, we determine $c=3.79$. We finally compute $v_{0}=s_{x}^{2} / s_{y}^{2}=1.26$. Since $v_{0} \leqq c$, we accept the hypothesis. If $v_{0}<c$, we would reject it.

This test is justified by the fact that v_{0} is an observed value of a random variable that has a so-called \boldsymbol{F}-distribution with $\left(n_{1}-1, n_{2}-1\right)$ degrees of freedom, provided the hypothesis is true. (Proof in Ref. [G3] listed in App. 1.) The F-distribution with (m, n) degrees of freedom was introduced by R. A. Fisher ${ }^{4}$ and has the distribution function $F(z)=0$ if $z<0$ and

$$
\begin{equation*}
F(z)=K_{m n} \int_{0}^{z} t^{(m-2) / 2}(m t+n)^{-(m+n) / 2} d t \quad(z \geqq 0) \tag{13}
\end{equation*}
$$

where $K_{m n}=m^{m / 2} n^{n / 2} \Gamma\left(\frac{1}{2} m+\frac{1}{2} n\right) / \Gamma\left(\frac{1}{2} m\right) \Gamma\left(\frac{1}{2} n\right)$. (For Γ see App. A3.1.)
This long section contained the basic ideas and concepts of testing, along with typical applications and you may perhaps want to review it quickly before going on, because the next sections concern an adaptation of these ideas to tasks of great practical importance and resulting tests in connection with quality control, acceptance (or rejection) of goods produced, and so on.

1. From memory: Make a list of the three types of alternatives, each with a typical example of your own.
2. Make a list of methods in this section, each with the distribution needed in testing.
3. Test $\mu=0$ against $\mu>0$, assuming normality and using the sample $0,1,-1,3,-8,6,1$ (deviations of the azimuth [multiples of 0.01 radian] in some revolution of a satellite). Choose $\alpha=5 \%$.
4. In one of his classical experiments Buffon obtained 2048 heads in tossing a coin 4040 times. Was the coin fair?
5. Do the same test as in Prob. 4, using a result by K. Pearson, who obtained 6019 heads in 12,000 trials.
6. Assuming normality and known variance $\sigma^{2}=9$, test the hypothesis $\mu=60.0$ against the alternative $\mu=57.0$ using a sample of size 20 with mean $\bar{x}=58.50$ and choosing $\alpha=5 \%$.
7. How does the result in Prob. 6 change if we use a smaller sample, say, of size 5 , the other data ($\bar{x}=58.05$, $\alpha=5 \%$, etc.) remaining as before?
8. Determine the power of the test in Prob. 6.
9. What is the rejection region in Prob. 6 in the case of a two-sided test with $\alpha=5 \%$?
10. CAS EXPERIMENT. Tests of Means and Variances. (a) Obtain 100 samples of size 10 each from the normal distribution with mean 100 and variance 25 . For each sample, test the hypothesis $\mu_{0}=100$ against the alternative $\mu_{1}>100$ at the level of $\alpha=10 \%$. Record the number of rejections of the hypothesis. Do the whole experiment once more and compare.
(b) Set up a similar experiment for the variance of a normal distribution and perform it 100 times.
11. A firm sells oil in cans containing 5000 g oil per can and is interested to know whether the mean weight differs significantly from 5000 g at the 5% level, in which case the filling machine has to be adjusted. Set up a hypothesis and an alternative and perform the test, assuming normality and using a sample of 50 fillings with mean 4990 g and standard deviation 20 g .

[^29]12. If a sample of 25 tires of a certain kind has a mean life of 37,000 miles and a standard deviation of 5000 miles, can the manufacturer claim that the true mean life of such tires is greater than 35,000 miles? Set up and test a corresponding hypothesis at the 5% level, assuming normality.
13. If simultaneous measurements of electric voltage by two different types of voltmeter yield the differences (in volts) $0.4,-0.6,0.2,0.0,1.0,1.4,0.4,1.6$, can we assert at the 5% level that there is no significant difference in the calibration of the two types of instruments? Assume normality.
14. If a standard medication cures about 75% of patients with a certain disease and a new medication cured 310 of the first 400 patients on whom it was tried, can we conclude that the new medication is better? Choose $\alpha=5 \%$. First guess. Then calculate.
15. Suppose that in the past the standard deviation of weights of certain $100.0-\mathrm{oz}$ packages filled by a machine was 0.8 oz. Test the hypothesis $H_{0}: \sigma=0.8$ against the alternative $H_{1}: \sigma>0.8$ (an undesirable increase), using a sample of 20 packages with standard deviation 1.0 oz and assuming normality. Choose $\alpha=5 \%$.
16. Suppose that in operating battery-powered electrical equipment, it is less expensive to replace all batteries at fixed intervals than to replace each battery individually when it breaks down, provided the standard deviation of the lifetime is less than a certain
limit, say, less than 5 hours. Set up and apply a suitable test, using a sample of 28 values of lifetimes with standard deviation $s=3.5$ hours and assuming normality: choose $\alpha=5 \%$.
17. Brand A gasoline was used in 16 similar automobiles under identical conditions. The corresponding sample of 16 values (miles per gallon) had mean 19.6 and standard deviation 0.4. Under the same conditions, high-power brand B gasoline gave a sample of 16 values with mean 20.2 and standard deviation 0.6. Is the mileage of B significantly better than that of A ? Test at the 5% level; assume normality. First guess. Then calculate.
18. The two samples $70,80,30,70,60,80$ and 140,120 , $130,120,120,130,120$ are values of the differences of temperatures $\left({ }^{\circ} \mathrm{C}\right)$ of iron at two stages of casting, taken from two different crucibles. Is the variance of the first population larger than that of the second? Assume normality. Choose $\alpha=5 \%$.
19. Show that for a normal distribution the two types of errors in a test of a hypothesis $H_{0}: \mu=\mu_{0}$ against an alternative $H_{1}: \mu=\mu_{1}$ can be made as small as one pleases (not zero!) by taking the sample sufficiently large.
20. Test for equality of population means against the alternative that the means are different assuming normality, choosing $\alpha=5 \%$ and using two samples of sizes 12 and 18 , with mean 10 and 14 , respectively, and equal standard deviation 3 .

25.5 Quality Control

The ideas on testing can be adapted and extended in various ways to serve basic practical needs in engineering and other fields. We show this in the remaining sections for some of the most important tasks solvable by statistical methods. As a first such area of problems, we discuss industrial quality control, a highly successful method used in various industries.

No production process is so perfect that all the products are completely alike. There is always a small variation that is caused by a great number of small, uncontrollable factors and must therefore be regarded as a chance variation. It is important to make sure that the products have required values (for example, length, strength, or whatever property may be essential in a particular case). For this purpose one makes a test of the hypothesis that the products have the required property, say, $\mu=\mu_{0}$, where μ_{0} is a required value. If this is done after an entire lot has been produced (for example, a lot of 100,000 screws), the test will tell us how good or how bad the products are, but it it obviously too late to alter undesirable results. It is much better to test during the production run. This is done at regular intervals of time (for example, every hour or half-hour) and is called quality control. Each time a sample of the same size is taken, in practice 3 to 10 times. If the hypothesis is rejected, we stop the production and look for the cause of the trouble.

If we stop the production process even though it is progressing properly, we make a Type I error. If we do not stop the process even though something is not in order, we make a Type II error (see Sec. 25.4). The result of each test is marked in graphical form on what is called a control chart. This was proposed by W. A. Shewhart in 1924 and makes quality control particularly effective.

Control Chart for the Mean

An illustration and example of a control chart is given in the upper part of Fig. 537. This control chart for the mean shows the lower control limit LCL, the center control line CL, and the upper control limit UCL. The two control limits correspond to the critical values c_{1} and c_{2} in case (c) of Example 2 in Sec. 25.4. As soon as a sample mean falls outside the range between the control limits, we reject the hypothesis and assert that the

Fig. 537. Control charts for the mean (upper part of figure) and the standard deviation in the case of the samples on p .1089
production process is "out of control"; that is, we assert that there has been a shift in process level. Action is called for whenever a point exceeds the limits.

If we choose control limits that are too loose, we shall not detect process shifts. On the other hand, if we choose control limits that are too tight, we shall be unable to run the process because of frequent searches for nonexistent trouble. The usual significance level is $\alpha=1 \%$. From Theorem 1 in Sec. 25.3 and Table A8 in App. 5 we see that in the case of the normal distribution the corresponding control limits for the mean are

$$
\begin{equation*}
\mathrm{LCL}=\mu_{0}-2.58 \frac{\sigma}{\sqrt{n}}, \quad \mathrm{UCL}=\mu_{0}+2.58 \frac{\sigma}{\sqrt{n}} \tag{1}
\end{equation*}
$$

Here σ is assumed to be known. If σ is unknown, we may compute the standard deviations of the first 20 or 30 samples and take their arithmetic mean as an approximation of σ. The broken line connecting the means in Fig. 537 is merely to display the results.

Additional, more subtle controls are often used in industry. For instance, one observes the motions of the sample means above and below the centerline, which should happen frequently. Accordingly, long runs (conventionally of length 7 or more) of means all above (or all below) the centerline could indicate trouble.

Table 25.5 Twelve Samples of Five Values Each
(Diameter of Small Cylinders, Measured in Millimeters)

Sample Number	Sample Values					\bar{x}	s	R
1	4.06	4.08	4.08	4.08	4.10	4.080	0.014	0.04
2	4.10	4.10	4.12	4.12	4.12	4.112	0.011	0.02
3	4.06	4.06	4.08	4.10	4.12	4.084	0.026	0.06
4	4.06	4.08	4.08	4.10	4.12	4.088	0.023	0.06
5	4.08	4.10	4.12	4.12	4.12	4.108	0.018	0.04
6	4.08	4.10	4.10	4.10	4.12	4.100	0.014	0.04
7	4.06	4.08	4.08	4.10	4.12	4.088	0.023	0.06
8	4.08	4.08	4.10	4.10	4.12	4.096	0.017	0.04
9	4.06	4.08	4.10	4.12	4.14	4.100	0.032	0.08
10	4.06	4.08	4.10	4.12	4.16	4.104	0.038	0.10
11	4.12	4.14	4.14	4.14	4.16	4.140	0.014	0.04
12	4.14	4.14	4.16	4.16	4.16	4.152	0.011	0.02

Control Chart for the Variance

In addition to the mean, one often controls the variance, the standard deviation, or the range. To set up a control chart for the variance in the case of a normal distribution, we may employ the method in Example 4 of Sec. 25.4 for determining control limits. It is customary to use only one control limit, namely, an upper control limit. Now from Example 4 of Sec. 25.4 we have $S^{2}=\sigma_{0}^{2} Y /(n-1)$, where, because of our normality assumption, the random variable Y has a chi-square distribution with $n-1$ degrees of freedom. Hence the desired control limit is

$$
\mathrm{UCL}=\frac{\sigma^{2} c}{n-1}
$$

where c is obtained from the equation

$$
P(Y>c)=\alpha, \quad \text { that is, } \quad P(Y \leqq c)=1-\alpha
$$

and the table of the chi-square distribution (Table A10 in App. 5) with $n-1$ degrees of freedom (or from your CAS); here $\alpha(5 \%$ or 1%, say) is the probability that in a properly running process an observed value s^{2} of S^{2} is greater than the upper control limit.

If we wanted a control chart for the variance with both an upper control limit UCL and a lower control limit LCL, these limits would be

$$
\begin{equation*}
\mathrm{LCL}=\frac{\sigma^{2} c_{1}}{n-1} \quad \text { and } \quad \mathrm{UCL}=\frac{\sigma^{2} c_{2}}{n-1} \tag{3}
\end{equation*}
$$

where c_{1} and c_{2} are obtained from Table A10 with $n-1$ d.f. and the equations

$$
\begin{equation*}
P\left(Y \leqq c_{1}\right)=\frac{\alpha}{2} \quad \text { and } \quad P\left(Y \leqq c_{2}\right)=1-\frac{\alpha}{2} \tag{4}
\end{equation*}
$$

Control Chart for the Standard Deviation

To set up a control chart for the standard deviation, we need an upper control limit

$$
\begin{equation*}
\mathrm{UCL}=\frac{\sigma \sqrt{c}}{\sqrt{n-1}} \tag{5}
\end{equation*}
$$

obtained from (2). For example, in Table 25.5 we have $n=5$. Assuming that the corresponding population is normal with standard deviation $\sigma=0.02$ and choosing $\alpha=1 \%$, we obtain from the equation

$$
P(Y \leqq c)=1-\alpha=99 \%
$$

and Table A10 in App. 5 with 4 degrees of freedom the critical value $c=13.28$ and from (5) the corresponding value

$$
\mathrm{UCL}=\frac{0.02 \sqrt{13.28}}{\sqrt{4}}=0.0365
$$

which is shown in the lower part of Fig. 537.
A control chart for the standard deviation with both an upper and a lower control limit is obtained from (3).

Control Chart for the Range

Instead of the variance or standard deviation, one often controls the range R ($=$ largest sample value minus smallest sample value). It can be shown that in the case of the normal distribution, the standard deviation σ is proportional to the expectation of the random
variable R^{*} for which R is an observed value, say, $\sigma=\lambda_{n} E\left(R^{*}\right)$ where the factor of proportionality λ_{n} depends on the sample size n and has the values

n	2	3	4	5	6	7	8	9	10
$\lambda_{n}=\sigma / E\left(R^{*}\right)$	0.89	0.59	0.49	0.43	0.40	0.37	0.35	0.34	0.32
n	12	14	16	18	20	30	40	50	
$\lambda_{n}=\sigma / E\left(R^{*}\right)$	0.31	0.29	0.28	0.28	0.27	0.25	0.23	0.22	

Since R depends on two sample values only, it gives less information about a sample than s does. Clearly, the larger the sample size n is, the more information we lose in using R instead of s. A practical rule is to use s when n is larger than 10 .

1. Suppose a machine for filling cans with lubricating oil is set so that it will generate fillings which form a normal population with mean 1 gal and standard deviation 0.02 gal. Set up a control chart of the type shown in Fig. 537 for controlling the mean, that is, find LCL and UCL, assuming that the sample size is 4 .
2. Three-sigma control chart. Show that in Prob. 1, the requirement of the significance level $\alpha=0.3 \%$ leads to LCL $=\mu-3 \sigma / \sqrt{n}$ and UCL $=\mu+3 \sigma / \sqrt{n}$, and find the corresponding numeric values.
3. What sample size should we choose in Prob. 1 if we want LCL and UCL somewhat closer together, say, $\mathrm{UCL}-\mathrm{LCL}=0.02$, without changing the significance level?
4. What effect on UCL - LCL does it have if we double the sample size? If we switch from $\alpha=1 \%$ to $\alpha=5 \%$?
5. How should we change the sample size in controlling the mean of a normal population if we want UCL - LCL to decrease to half its original value?
6. Graph the means of the following 10 samples (thickness of gaskets, coded values) on a control chart for means, assuming that the population is normal with mean 5 and standard deviation 1.16.
7. Graph the ranges of the samples in Prob. 6 on a control chart for ranges.
8. Graph $\lambda_{n}=\sigma / E\left(R^{*}\right)$ as a function of n. Why is λ_{n} a monotone decreasing function of n ?
9. Eight samples of size 2 were taken from a lot of screws. The values (length in inches) are

Sample No.	1	2	3	4	5	6	7	8
Length	3.50	3.51	3.49	3.52	3.53	3.49	3.48	3.52
	3.51	3.48	3.50	3.50	3.49	3.50	3.47	3.49

Assuming that the population is normal with mean 3.500 and variance 0.0004 and using (1), set up a control chart for the mean and graph the sample means on the chart.
10. Attribute control charts. Fifteen samples of size 100 were taken from a production of containers. The numbers of defectives (leaking containers) in those samples (in the order observed) were
$\begin{array}{lllllllllllllll}1 & 4 & 5 & 4 & 9 & 7 & 0 & 5 & 6 & 13 & 0 & 2 & 1 & 12 & 8\end{array}$
From previous experience it was known that the average fraction defective is $p=4 \%$ provided that the process of production is running properly. Using the binomial distribution, set up a fraction defective chart (also called a p-chart), that is, choose the

Time	$10: 00$	$11: 00$	$12: 00$	$13: 00$	$14: 00$	$15: 00$	$16: 00$	$17: 00$	$18: 00$	$19: 00$
	5	7	7	4	5	6	5	5	3	3
Sample	2	5	3	4	6	4	5	2	4	6
values	5	4	6	3	4	6	6	5	8	6
	6	4	5	6	6	4	4	3	4	8

$\mathrm{LCL}=0$ and determine the UCL for the fraction defective (in percent) by the use of 3 -sigma limits, where σ^{2} is the variance of the random variable
$\bar{X}=$ Fraction defective in a sample of size 100. Is the process under control?
11. Number of defectives. Find formulas for the UCL, CL, and LCL (corresponding to 3σ-limits) in the case of a control chart for the number of defectives, assuming that, in a state of statistical control, the fraction of defectives is p.
12. CAS PROJECT. Control Charts. (a) Obtain 100 samples of 4 values each from the normal distribution with mean 8.0 and variance 0.16 and their means, variances, and ranges.
(b) Use these samples for making up a control chart for the mean.
(c) Use them on a control chart for the standard deviation.
(d) Make up a control chart for the range.
(e) Describe quantitative properties of the samples that you can see from those charts (e.g., whether the
corresponding process is under control, whether the quantities observed vary randomly, etc.).
13. Since the presence of a point outside control limits for the mean indicates trouble, how often would we be making the mistake of looking for nonexistent trouble if we used (a) 1-sigma limits, (b) 2-sigma limits? Assume normality.
14. What LCL and UCL should we use instead of (1) if, instead of \bar{x}, we use the sum $x_{1}+\cdots+x_{n}$ of the sample values? Determine these limits in the case of Fig. 537.
15. Number of defects per unit. A so-called c-chart or defects-per-unit chart is used for the control of the number X of defects per unit (for instance, the number of defects per 100 meters of paper, the number of missing rivets in an airplane wing, etc.). (a) Set up formulas for CL and LCL, UCL corresponding to $\mu \pm 3 \sigma$, assuming that X has a Poisson distribution. (b) Compute CL, LCL, and UCL in a control process of the number of imperfections in sheet glass; assume that this number is 3.6 per sheet on the average when the process is in control.

25.6 Acceptance Sampling

Acceptance sampling is usually done when products leave the factory (or in some cases even within the factory). The standard situation in acceptance sampling is that a producer supplies to a consumer (a buyer or wholesaler) a lot of N items (a carton of screws, for instance). The decision to accept or reject the lot is made by determining the number x of defectives ($=$ defective items) in a sample of size n from the lot. The lot is accepted if $x \leqq c$, where c is called the acceptance number, giving the allowable number of defectives. If $x>c$, the consumer rejects the lot. Clearly, producer and consumer must agree on a certain sampling plan giving n and c.

From the hypergeometric distribution we see that the event A: "Accept the lot" has probability (see Sec. 24.7)

$$
\begin{equation*}
P(A)=P(X \leqq c)=\sum_{x=0}^{c}\binom{M}{x}\binom{N-M}{n-x} /\binom{N}{n} \tag{1}
\end{equation*}
$$

where M is the number of defectives in a lot of N items. In terms of the fraction defective $\theta=M / N$ we can write (1) as

$$
\begin{equation*}
P(A ; \theta)=\sum_{x=0}^{c}\binom{N \theta}{x}\binom{N-N \theta}{n-x} /\binom{N}{n} . \tag{2}
\end{equation*}
$$

$P(A ; \theta)$ can assume $n+1$ values corresponding to $\theta=0,1 / N, 2 / N, \cdots, N / N$; here, n and c are fixed. A monotone smooth curve through these points is called the operating characteristic curve (OC curve) of the sampling plan considered.

EXAMPLE 1 Sampling Plan

Suppose that certain tool bits are packaged 20 to a box, and the following sampling plan is used. A sample of two tool bits is drawn, and the corresponding box is accepted if and only if both bits in the sample are good. In this case, $N=20, n=2, c=0$, and (2) takes the form (a factor 2 drops out)

$$
\begin{aligned}
P(A ; \theta) & =\binom{20 \theta}{0}\binom{20-20 \theta}{2} /\binom{20}{2} \\
& =\frac{(20-20 \theta)(19-20 \theta)}{380}
\end{aligned}
$$

The values of $P(A, \theta)$ for $\theta=0,1 / 20,2 / 20, \cdots, 20 / 20$ and the resulting OC curve are shown in Fig. 538. (Verify!)

Fig. 538. OC curve of the sampling plan with $n=2$ and $c=0$ for lots of size $N=20$

Fig. 539. OC curve in Example 2

In most practical cases θ will be small (less than 10%). Then if we take small samples compared to N, we can approximate (2) by the Poisson distribution (Sec. 24.7); thus

$$
\begin{equation*}
P(A ; \theta) \sim e^{-\mu} \sum_{x=0}^{c} \frac{\mu^{x}}{x!} \tag{3}
\end{equation*}
$$

$$
(\mu=n \theta)
$$

EXAMPLE 2 Sampling Plan. Poisson Distribution

Suppose that for large lots the following sampling plan is used. A sample of size $n=20$ is taken. If it contains not more than one defective, the lot is accepted. If the sample contains two or more defectives, the lot is rejected. In this plan, we obtain from (3)

$$
P(A ; \theta) \sim e^{-20 \theta}(1+20 \theta)
$$

The corresponding OC curve is shown in Fig. 539.

Errors in Acceptance Sampling

We show how acceptance sampling fits into general test theory (Sec. 25.4) and what this means from a practical point of view. The producer wants the probability α of rejecting

Fig. 540. OC curve, producer's and consumer's risks
an acceptable lot (a lot for which θ does not exceed a certain number θ_{0} on which the two parties agree) to be small. θ_{0} is called the acceptable quality level (AQL). Similarly, the consumer (the buyer) wants the probability β of accepting an unacceptable lot (a lot for which θ is greater than or equal to some θ_{1}) to be small. θ_{1} is called the lot tolerance percent defective (LTPD) or the rejectable quality level (RQL). α is called producer's risk. It corresponds to a Type I error in Sec. 25.4. β is called consumer's risk and corresponds to a Type II error. Figure 540 shows an example. We see that the points $\left(\theta_{0}, 1-\alpha\right)$ and $\left(\theta_{1}, \beta\right)$ lie on the OC curve. It can be shown that for large lots we can choose $\theta_{0}, \theta_{1}\left(>\theta_{0}\right), \alpha, \beta$ and then determine n and c such that the OC curve runs very close to those prescribed points. Table 25.6 shows the analogy between acceptance sampling and hypothesis testing in Sec. 25.4.

Table 25.6 Acceptance Sampling and Hypothesis Testing

Acceptance Sampling	Hypothesis Testing
Acceptable quality level (AQL) $\theta=\theta_{0}$	Hypothesis $\theta=\theta_{0}$
Lot tolerance percent defectives (LTPD)	Alternative $\theta=\theta_{1}$
$\theta=\theta_{1}$	Critical value c
Allowable number of defectives c	Probability α of making a Type I error Producer's risk α of rejecting a lot (significance level) with $\theta \leqq \theta_{0}$ Consumer's risk β of accepting a lot with $\theta \geqq \theta_{1}$

Rectification

Rectification of a rejected lot means that the lot is inspected item by item and all defectives are removed and replaced by nondefective items. (This may be too expensive if the lot is cheap; in this case the lot may be sold at a cut-rate price or scrapped.) If a production turns out $100 \theta \%$ defectives, then in K lots of size N each, $K N \theta$ of the $K N$ items are
defectives. Now $K P(A ; \theta)$ of these lots are accepted. These contain $K P N \theta$ defectives, whereas the rejected and rectified lots contain no defectives, because of the rectification. Hence after the rectification the fraction defective in all K lots equals $K P N \theta / K N$. This is called the average outgoing quality (AOQ); thus

$$
\begin{equation*}
\mathrm{AOQ}(\theta)=\theta P(A ; \theta) \tag{4}
\end{equation*}
$$

Figure 541 shows an example. Since $\mathrm{AOQ}(0)=0$ and $P(A ; 1)=0$, the AOQ curve has a maximum at some $\theta=\theta^{*}$, giving the average outgoing quality limit (AOQL). This is the worst average quality that may be expected to be accepted under rectification.

Fig. 541. $O C$ curve and $A O Q$ curve for the sampling plan in Fig. 538

1. Lots of kitchen knives are inspected by a sampling plan that uses a sample of size 20 and the acceptance number $c=1$. What is the probability of accepting a lot with $1 \%, 2 \%, 10 \%$ defectives (knives with dull blades)? Use Table A6 of the Poisson distribution in App. 5. Graph the OC curve.
2. What happens in Prob. 1 if the sample size is increased to 50 ? First guess. Then calculate. Graph the OC curve and compare.
3. How will the probabilities in Prob. 1 with $n=20$ change (up or down) if we decrease c to zero? First guess.
4. What are the producer's and consumer's risks in Prob. 1 if the AQL is 2% and the RQL is 15% ?
5. Lots of copper pipes are inspected according to a sample plan that uses sample size 25 and acceptance number 1. Graph the OC curve of the plan, using the

Poisson approximation. Find the producer's risk if the AQL is 1.5%.
6. Graph the AOQ curve in Prob. 5. Determine the AOQL, assuming that rectification is applied.
7. In Example 1 in the text, what are the producer's and consumer's risks if the AQL is 0.1 and the RQL is 0.6 ?
8. What happens in Example 1 in the text if we increase the sample size to $n=3$, leaving the other data as before? Compute $P(A ; 0.1)$ and $P(A ; 0.2)$ and compare with Example 1.
9. Graph and compare sampling plans with $c=1$ and increasing values of n, say, $n=2,3,4$. (Use the binomial distribution.)
10. Find the binomial approximation of the hypergeometric distribution in Example 1 in the text and compare the approximate and the accurate values.
11. Samples of 3 fuses are drawn from lots and a lot is accepted if in the corresponding sample we find no more than 1 defective fuse. Criticize this sampling plan. In particular, find the probability of accepting a lot that is 50% defective. (Use the binomial distribution (7), Sec. 24.7.)
12. If in a sampling plan for large lots of spark plugs, the sample size is 100 and we want the AQL to be 5% and the producer's risk 2%, what acceptance number c should we choose? (Use the normal approximation of the binomial distribution in Sec. 24.8.)
13. What is the consumer's risk in Prob. 12 if we want the RQL to be 12% ? Use $c=9$ from the answer of Prob. 12.
14. A lot of batteries for wrist watches is accepted if and only if a sample of 20 contains at most 1 defective. Graph the OC and AOQ curves. Find AOQL. [Use (3).]
15. Graph the OC curve and the AOQ curve for the single sampling plan for large lots with $n=5$ and $c=0$, and find the AOQL.

25.7 Goodness of Fit. χ^{2}-Test

To test for goodness of fit means that we wish to test that a certain function $F(x)$ is the distribution function of a distribution from which we have a sample x_{1}, \cdots, x_{n}. Then we test whether the sample distribution function $\widetilde{F}(x)$ defined by

$$
\widetilde{F}(x)=\text { Sum of the relative frequencies of all sample values } x_{j} \text { not exceeding } x
$$

fits $F(x)$ "sufficiently well." If this is so, we shall accept the hypothesis that $F(x)$ is the distribution function of the population; if not, we shall reject the hypothesis.

This test is of considerable practical importance, and it differs in character from the tests for parameters (μ, σ^{2}, etc.) considered so far.

To test in that fashion, we have to know how much $\widetilde{F}(x)$ can differ from $F(x)$ if the hypothesis is true. Hence we must first introduce a quantity that measures the deviation of $\widetilde{F}(x)$ from $F(x)$, and we must know the probability distribution of this quantity under the assumption that the hypothesis is true. Then we proceed as follows. We determine a number c such that, if the hypothesis is true, a deviation greater than c has a small preassigned probability. If, nevertheless, a deviation greater than c occurs, we have reason to doubt that the hypothesis is true and we reject it. On the other hand, if the deviation does not exceed c, so that $\widetilde{F}(x)$ approximates $F(x)$ sufficiently well, we accept the hypothesis. Of course, if we accept the hypothesis, this means that we have insufficient evidence to reject it, and this does not exclude the possibility that there are other functions that would not be rejected in the test. In this respect the situation is quite similar to that in Sec. 25.4.

Table 25.7 shows a test of that type, which was introduced by R. A. Fisher. This test is justified by the fact that if the hypothesis is true, then χ_{0}^{2} is an observed value of a random variable whose distribution function approaches that of the chi-square distribution with $K-1$ degrees of freedom (or $K-r-1$ degrees of freedom if r parameters are estimated) as n approaches infinity. The requirement that at least five sample values lie in each interval in Table 25.7 results from the fact that for finite n that random variable has only approximately a chi-square distribution. A proof can be found in Ref. [G3] listed in App. 1. If the sample is so small that the requirement cannot be satisfied, one may continue with the test, but then use the result with caution.

Table 25.7 Chi-square Test for the Hypothesis That $\boldsymbol{F}(\boldsymbol{x})$ is the Distribution Function of a Population from Which a Sample x_{1}, \cdots, x_{n} is Taken

Step 1. Subdivide the x-axis into K intervals $I_{1}, I_{2}, \cdots, I_{K}$ such that each interval contains at least 5 values of the given sample x_{1}, \cdots, x_{n}. Determine the number b_{j} of sample values in the interval I_{j}, where $j=1, \cdots, K$. If a sample value lies at a common boundary point of two intervals, add 0.5 to each of the two corresponding b_{j}.
Step 2. Using $F(x)$, compute the probability p_{j} that the random variable X under consideration assumes any value in the interval I_{j}, where $j=1, \cdots, K$. Compute

$$
e_{j}=n p_{j}
$$

(This is the number of sample values theoretically expected in I_{j} if the hypothesis is true.)
Step 3. Compute the deviation

$$
\begin{equation*}
\chi_{0}^{2}=\sum_{j=1}^{K} \frac{\left(b_{j}-e_{j}\right)^{2}}{e_{j}} . \tag{1}
\end{equation*}
$$

Step 4. Choose a significance level (5\%, 1%, or the like).
Step 5. Determine the solution c of the equation

$$
P\left(\chi^{2} \leqq c\right)=1-\alpha
$$

from the table of the chi-sqare distribution with $K-1$ degrees of freedom (Table A10 in App. 5). If r parameters of $F(x)$ are unknown and their maximum likelihood estimates (Sec. 25.2) are used, then use $K-r-1$ degrees of freedom (instead of $K-1$). If $\chi_{0}^{2} \leqq c$, accept the hypothesis. If $\chi_{0}^{2}>c$, reject the hypothesis.

Table 25.8 Sample of $\mathbf{1 0 0}$ Values of the Splitting Tensile Strength (lb/in. ${ }^{2}$) of Concrete Cylinders

320	380	340	410	380	340	360	350	320	370
350	340	350	360	370	350	380	370	300	420
370	390	390	440	330	390	330	360	400	370
320	350	360	340	340	350	350	390	380	340
400	360	350	390	400	350	360	340	370	420
420	400	350	370	330	320	390	380	400	370
390	330	360	380	350	330	360	300	360	360
360	390	350	370	370	350	390	370	370	340
370	400	360	350	380	380	360	340	330	370
340	360	390	400	370	410	360	400	340	360

D. L. IVEY, Splitting tensile tests on structural lightweight aggregate concrete. Texas Transportation Institute, College Station, Texas.

EXAMPLE 1 Test of Normality

Test whether the population from which the sample in Table 25.8 was taken is normal.
Solution. Table 25.8 shows the values (column by column) in the order obtained in the experiment. Table 25.9 gives the frequency distribution and Fig. 542 the histogram. It is hard to guess the outcome of the testdoes the histogram resemble a normal density curve sufficiently well or not?

The maximum likelihood estimates for μ and σ^{2} are $\hat{\mu}=\bar{x}=364.7$ and $\widetilde{\sigma}^{2}=712.9$. The computation in Table 25.10 yields $\chi_{0}^{2}=2.688$. It is very interesting that the interval $375 \cdots 385$ contributes over 50% of χ_{0}^{2}. From the histogram we see that the corresponding frequency looks much too small. The second largest contribution comes from $395 \cdots 405$, and the histogram shows that the frequency seems somewhat too large, which is perhaps not obvious from inspection.

Table 25.9 Frequency Table of the Sample in Table $\mathbf{2 5 . 8}$

1 Tensile Strength [lb/in. ${ }^{2}$]	2 Absolute Frequency	Relative Frequency $\tilde{f}(x)$	4 Cumulative Absolute Frequency	5 Cumulative Relative Frequency $\stackrel{\rightharpoonup}{F}(x)$
300	2	0.02	2	0.02
310	0	0.00	2	0.02
320	4	0.04	6	0.06
330	6	0.06	12	0.12
340	11	0.11	23	0.23
350	14	0.14	37	0.37
360	16	0.16	53	0.53
370	15	0.15	68	0.68
380	8	0.08	76	0.76
390	10	0.10	86	0.86
400	8	0.08	94	0.94
410	2	0.02	96	0.96
420	3	0.03	99	0.99
430	0	0.00	99	0.99
440	1	0.01	100	1.00

We choose $\alpha=5 \%$. Since $K=10$ and we estimated $r=2$ parameters we have to use Table A10 in App. 5 with $K-r-1=7$ degrees of freedom. We find $c=14.07$ as the solution of $P\left(\chi^{2} \leqq c\right)=95 \%$. Since $\chi_{0}^{2}<c$, we accept the hypothesis that the population is normal.

Fig. 542. Frequency histogram of the sample in Table 25.8

Table 25.10 Computations in Example 1

x_{j}	$x_{j}-364.7$					
	26.7		$\Phi\left(\frac{x_{j}-364.7}{26.7}\right)$	e_{j}	b_{j}	Term in (1)
$-\infty \cdots 325$	$-\infty$	\cdots	-1.49	$0.0000 \cdots 0.0681$	6.81	6
$325 \cdots 335$	$-1.49 \cdots-1.11$	$0.0681 \cdots 0.1335$	6.54	6	0.096	
$335 \cdots 345$	$-1.11 \cdots-0.74$	$0.1335 \cdots 0.2296$	9.61	11	0.201	
$345 \cdots 355$	$-0.74 \cdots$	-0.36	$0.2296 \cdots 0.3594$	12.98	14	0.080
$355 \cdots 365$	$-0.36 \cdots$	0.01	$0.3594 \cdots 0.5040$	14.46	16	0.164
$365 \cdots 375$	$0.01 \cdots$	0.39	$0.5040 \cdots 0.6517$	14.77	15	0.0004
$375 \cdots 385$	$0.39 \cdots$	0.76	$0.6517 \cdots 0.7764$	12.47	8	1.602
$385 \cdots 395$	$0.76 \cdots$	1.13	$0.7764 \cdots 0.8708$	9.44	10	0.033
$395 \cdots 405$	$1.13 \cdots$	1.51	$0.8708 \cdots 0.9345$	6.37	8	0.417
$405 \cdots \infty$	$1.51 \cdots$	∞	$0.9345 \cdots 1.0000$	6.55	6	0.046

$$
\chi_{0}^{2}=2.688
$$

1. Verify the calculations in Example 1 of the text.
2. If it is known that 25% of certain steel rods produced by a standard process will break when subjected to a load of 5000 lb , can we claim that a new, less expensive process yields the same breakage rate if we find that in a sample of 80 rods produced by the new process, 27 rods broke when subjected to that load? (Use $\alpha=5 \%$.)
3. If 100 flips of a coin result in 40 heads and 60 tails, can we assert on the 5% level that the coin is fair?
4. If in 10 flips of a coin we get the same ratio as in Prob. 3 (4 heads and 6 tails), is the conclusion the same as in Prob. 3? First conjecture, then compute.
5. Can you claim, on a 5% level, that a die is fair if 60 trials give $1, \cdots, 6$ with absolute frequencies $10,13,9$, $11,9,8$?
6. Solve Prob. 5 if rolling a die 180 times gives 33,27 , $29,35,25,31$.
7. If a service station had served $60,49,56,46,68,39$ cars from Monday through Friday between 1 P.M. and 2 P.M., can one claim on a 5% level that the differences are due to randomness? First guess. Then calculate.
8. A manufacturer claims that in a process of producing drill bits, only 2.5% of the bits are dull. Test the claim against the alternative that more than 2.5% of the bits are dull, using a sample of 400 bits containing 17 dull ones. Use $\alpha=5 \%$.
9. In a table of properly rounded function values, even and odd last decimals should appear about equally often. Test this for the 90 values of $J_{1}(x)$ in Table A1 in App. 5.
10. TEAM PROJECT. Difficulty with Random Selection. 77 students were asked to choose 3 of the integers $11,12,13, \cdots, 30$ completely arbitrarily. The amazing result was as follows.

Number	11	12	13	14	15	16	17	18	19	20
Frequ.	11	10	20	8	13	9	21	9	16	8
Number	21	22	23	24	25	26	27	28	29	30
Frequ.	12	8	15	10	10	9	12	8	13	9

If the selection were completely random, the following hypotheses should be true.
(a) The 20 numbers are equally likely.
(b) The 10 even numbers together are as likely as the 10 odd numbers together.
(c) The 6 prime numbers together have probability 0.3 and the 14 other numbers together have probability 0.7 . Test these hypotheses, using $\alpha=5 \%$. Design further experiments that illustrate the difficulties of random selection.
11. CAS EXPERIMENT. Random Number Generator. Check your generator experimentally by imitating results of n trials of rolling a fair die, with a convenient n (e.g., 60 or 300 or the like). Do this many times and see whether you can notice any "nonrandomness" features, for example, too few Sixes, too many even numbers, etc., or whether your generator seems to work properly. Design and perform other kinds of checks.
12. Test for normality at the 1% level using a sample of $n=79$ (rounded) values x (tensile strength $\left[\mathrm{kg} / \mathrm{mm}^{2}\right]$
of steel sheets of 0.3 mm thickness). $a=a(x)=$ absolute frequency. (Take the first two values together, also the last three, to get $K=5$.)

x	57	58	59	60	61	62	63	64
a	4	10	17	27	8	9	3	1

13. Mendel's pathbreaking experiments. In a famous plant-crossing experiment, the Austrian Augustinian father Gregor Mendel (1822-1884) obtained 355 yellow and 123 green peas. Test whether this agrees with Mendel's theory according to which the ratio should be 3:1.
14. Accidents in a foundry. Does the random variable $X=$ Number of accidents per week have a Poisson distribution if, within 50 weeks, 33 were accident-free, 1 accident occurred in 11 of the 50 weeks, 2 in 6 of
the weeks, and more than 2 accidents in no week? Choose $\alpha=5 \%$.
15. Radioactivity. Rutherford-Geiger experiments. Using the given sample, test that the corresponding population has a Poisson distribution. x is the number of alpha particles per 7.5 -s intervals observed by E. Rutherford and H. Geiger in one of their classical experiments in 1910, and $a(x)$ is the absolute frequency (= number of time periods during which exactly x particles were observed). Use $\alpha=5 \%$.

x	0	1	2	3	4	5	6
a	57	203	383	525	532	408	273
x	7	8	9	10	11	12	$\geqq 13$
a	139	45	27	10	4	2	0

25.8 Nonparametric Tests

Nonparametric tests, also called distribution-free tests, are valid for any distribution. Hence they are used in cases when the kind of distribution is unknown, or is known but such that no tests specifically designed for it are available. In this section we shall explain the basic idea of these tests, which are based on "order statistics" and are rather simple. If there is a choice, then tests designed for a specific distribution generally give better results than do nonparametric tests. For instance, this applies to the tests in Sec. 25.4 for the normal distribution.

We shall discuss two tests in terms of typical examples. In deriving the distributions used in the test, it is essential that the distributions, from which we sample, are continuous. (Nonparametric tests can also be derived for discrete distributions, but this is slightly more complicated.)

EXAMPLE 1 Sign Test for the Median

A median of the population is a solution $x=\tilde{\mu}$ of the equation $F(x)=0.5$, where F is the distribution function of the population.

Suppose that eight radio operators were tested, first in rooms without air-conditioning and then in air-conditioned rooms over the same period of time, and the difference of errors (unconditioned minus conditioned) were

$$
\begin{array}{llllllll}
9 & 4 & 0 & 6 & 4 & 0 & 7 & 11 .
\end{array}
$$

Test the hypothesis $\tilde{\mu}=0$ (that is, air-conditioning has no effect) against the alternative $\bar{\mu}>0$ (that is, inferior performance in unconditioned rooms).

Solution. We choose the significance level $\alpha=5 \%$. If the hypothesis is true, the probability p of a positive difference is the same as that of a negative difference. Hence in this case, $p=0.5$, and the random variable

$$
X=\text { Number of positive values among } n \text { values }
$$

has a binomial distribution with $p=0.5$. Our sample has eight values. We omit the values 0 , which do not contribute to the decision. Then six values are left, all of which are positive. Since

$$
\begin{aligned}
P(X=6) & =\binom{6}{6}(0.5)^{6}(0.5)^{0} \\
& =0.0156 \\
& =1.56 \%
\end{aligned}
$$

we have observed an event whose probability is very small if the hypothesis is true; in fact $1.56 \%<\alpha=5 \%$. Hence we assert that the alternative $\tilde{\mu}>0$ is true. That is, the number of errors made in unconditioned rooms is significantly higher, so that installation of air conditioning should be considered.

EXAMPLE 2 Test for Arbitrary Trend

A certain machine is used for cutting lengths of wire. Five successive pieces had the lengths

$$
\begin{array}{lllll}
29 & 31 & 28 & 30 & 32 .
\end{array}
$$

Using this sample, test the hypothesis that there is no trend, that is, the machine does not have the tendency to produce longer and longer pieces or shorter and shorter pieces. Assume that the type of machine suggests the alternative that there is positive trend, that is, there is the tendency of successive pieces to get longer.

Solution. We count the number of transpositions in the sample, that is, the number of times a larger value precedes a smaller value:

29 precedes 28	(1 transposition),
31 precedes 28 and 30	(2 transpositions).

The remaining three sample values follow in ascending order. Hence in the sample there are $1+2=3$ transpositions. We now consider the random variable

$$
T=\text { Number of transpositions. }
$$

If the hypothesis is true (no trend), then each of the $5!=120$ permutations of five elements 12345 has the same probability $(1 / 120)$. We arrange these permutations according to their number of transpositions:

From this we obtain

$$
P(T \leqq 3)=\frac{1}{120}+\frac{4}{120}+\frac{9}{120}+\frac{15}{120}=\frac{29}{120}=24 \% .
$$

We accept the hypothesis because we have observed an event that has a relatively large probability (certainly much more than 5%) if the hypothesis is true.

Values of the distribution function of T in the case of no trend are shown in Table A12, App. 5. For instance, if $n=3$, then $F(0)=0.167, F(1)=0.500, F(2)=1-0.167$. If $n=4$, then $F(0)=0.042, F(1)=0.167$, $F(2)=0.375, F(3)=1-0.375, F(4)=1-0.167$, and so on.

Abstract

Our method and those values refer to continuous distributions. Theoretically, we may then expect that all the values of a sample are different. Practically, some sample values may still be equal, because of rounding: If m values are equal, add $m(m-1) / 4(=$ mean value of the transpositions in the case of the permutations of m elements), that is, $\frac{1}{2}$ for each pair of equal values, $\frac{3}{2}$ for each triple, etc.

1. What would change in Example 1 had we observed only 5 positive values? Only 4 ?
2. Test $\tilde{\mu}=0$ against $\tilde{\mu}>0$, using $1,-1,1,3,-8,6,0$ (deviations of the azimuth [multiples of 0.01 radian] in some revolution of a satellite).
3. Are oil filters of type A better than type B filters if in 11 trials, A gave cleaner oil than B in 7 cases, B gave cleaner oil than A in 1 case, whereas in 3 of the trials the results for A and B were practically the same?
4. Does a process of producing stainless steel pipes of length 20 ft for nuclear reactors need adjustment if, in a sample, 4 pipes have the exact length and 15 are shorter and 3 longer than 20 ft ? Use the normal approximation of the binomial distribution.
5. Do the computations in Prob. 4 without the use of the DeMoivre-Laplace limit theorem in Sec. 24.8.
6. Thirty new employees were grouped into 15 pairs of similar intelligence and experience and were then instructed in data processing by an old method (A) applied to one (randomly selected) person of each pair, and by a new presumably better method (B) applied to the other person of each pair. Test for equality of methods against the alternative that (B) is better than (A), using the following scores obtained after the end of the training period.
```
A [\begin{array}{lllllllllllllllllllll}{60}&{70}&{80}&{85}&{75}&{40}&{70}&{45}&{95}&{80}&{90}&{60}&{80}&{75}&{65}\end{array}]
B
```

7. Assuming normality, solve Prob. 6 by a suitable test from Sec. 25.4.
8. In a clinical experiment, each of 10 patients were given two different sedatives A and B. The following table shows the effect (increase of sleeping time, measured in hours). Using the sign test, find out whether the difference is significant.

A	1.9	0.8	1.1	0.1	-0.1	4.4	5.5	1.6	4.6	3.4
B	0.7	-1.6	-0.2	-1.2	-0.1	3.4	3.7	0.8	0.0	2.0

$\begin{array}{lllllllllll}B & 0.7 & -1.6 & -0.2 & -1.2 & -0.1 & 3.4 & 3.7 & 0.8 & 0.0 & 2.0\end{array}$
9. Assuming that the populations corresponding to the samples in Prob. 8 are normal, apply a suitable test for the normal distribution.
10. Test whether a thermostatic switch is properly set to $50^{\circ} \mathrm{C}$ against the alternative that its setting is too low. Use a sample of 9 values, 8 of which are less than $50^{\circ} \mathrm{C}$ and 1 is greater
11. How would you proceed in the sign test if the hypothesis is $\tilde{\mu}=\widetilde{\mu}_{0}$ (any number) instead of $\tilde{\mu}=0$?
12. Test the hypothesis that, for a certain type of voltmeter, readings are independent of temperature $T\left[{ }^{\circ} \mathrm{C}\right]$ against the alternative that they tend to increase with T. Use a sample of values obtained by applying a constant voltage:

Temperature $T\left[{ }^{\circ} \mathrm{C}\right]$	10	20	30	40	50
Reading V [volts]	99.5	101.1	100.4	100.8	101.6

13. Does the amount of fertilizer increase the yield of wheat $X[\mathrm{~kg} /$ plot $]$? Use a sample of values ordered according to increasing amounts of fertilizer:

$$
\begin{array}{llllllll}
33.4 & 35.3 & 31.6 & 35.0 & 36.1 & 37.6 & 36.5 & 38.7 .
\end{array}
$$

14. Apply the test explained in Example 2 to the following data $(x=$ diastolic blood pressure $[\mathrm{mm} \mathrm{Hg}], y=$ weight of heart [in grams] of 10 patients who died of cerebral hemorrhage).

x	121	120	95	123	140	112	92	100	102	91
y	521	465	352	455	490	388	301	395	375	418

15. Does an increase in temperature cause an increase of the yield of a chemical reaction from which the following sample was taken?

Temperature $\left[{ }^{\circ} \mathrm{C}\right]$	10	20	30	40	60	80
Yield $[\mathrm{kg} / \mathrm{min}]$	0.6	1.1	0.9	1.6	1.2	2.0

25.9 Regression. Fitting Straight Lines. Correlation

So far we were concerned with random experiments in which we observed a single quantity (random variable) and got samples whose values were single numbers. In this section we discuss experiments in which we observe or measure two quantities simultaneously, so that we get samples of pairs of values $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$. Most applications involve one of two kinds of experiments, as follows.

1. In regression analysis one of the two variables, call it x, can be regarded as an ordinary variable because we can measure it without substantial error or we can even give it values we want. x is called the independent variable, or sometimes the controlled variable because we can control it (set it at values we choose). The other variable, Y, is a random variable, and we are interested in the dependence of Y on x. Typical examples are the dependence of the blood pressure Y on the age x of a person or, as we shall now say, the regression of Y on x, the regression of the gain of weight Y of certain animals on the daily ration of food x, the regression of the heat conductivity Y of cork on the specific weight x of the cork, etc.
2. In correlation analysis both quantities are random variables and we are interested in relations between them. Examples are the relation (one says "correlation") between wear X and wear Y of the front tires of cars, between grades X and Y of students in mathematics and in physics, respectively, between the hardness X of steel plates in the center and the hardness Y near the edges of the plates, etc.

Regression Analysis

In regression analysis the dependence of Y on x is a dependence of the mean μ of Y on x, so that $\mu=\mu(x)$ is a function in the ordinary sense. The curve of $\mu(x)$ is called the regression curve of Y on x.

In this section we discuss the simplest case, namely, that of a straight regression line

$$
\begin{equation*}
\mu(x)=\kappa_{0}+\kappa_{1} x . \tag{1}
\end{equation*}
$$

Then we may want to graph the sample values as n points in the $x Y$-plane, fit a straight line through them, and use it for estimating $\mu(x)$ at values of x that interest us, so that we know what values of Y we can expect for those x. Fitting that line by eye would not be good because it would be subjective; that is, different persons' results would come out differently, particularly if the points are scattered. So we need a mathematical method that gives a unique result depending only on the n points. A widely used procedure is the method of least squares by Gauss and Legendre. For our task we may formulate it as follows.

Least Squares Principle

The straight line should be fitted through the given points so that the sum of the squares of the distances of those points from the straight line is minimum, where the distance is measured in the vertical direction (the y-direction). (Formulas below.)

To get uniqueness of the straight line, we need some extra condition. To see this, take the sample $(0,1),(0,-1)$. Then all the lines $y=k_{1} x$ with any k_{1} satisfy the principle. (Can you see it?) The following assumption will imply uniqueness, as we shall find out.

General Assumption (A1)

The x-values x_{1}, \cdots, x_{n} in our sample $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$ are $n o t$ all equal.

From a given sample $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$ we shall now determine a straight line by least squares. We write the line as

$$
\begin{equation*}
y=k_{0}+k_{1} x \tag{2}
\end{equation*}
$$

and call it the sample regression line because it will be the counterpart of the population regression line (1).

Now a sample point $\left(x_{j}, y_{j}\right)$ has the vertical distance (distance measured in the y-direction) from (2) given by

$$
\left|y_{j}-\left(k_{0}+k_{1} x_{j}\right)\right|
$$

(see Fig. 543).

Fig. 543. Vertical distance of a point $\left(x_{j}, y_{j}\right)$ from a straight line $y=k_{0}+k_{1} x$

Hence the sum of the squares of these distances is

$$
\begin{equation*}
q=\sum_{j=1}^{n}\left(y_{j}-k_{0}-k_{1} x_{j}\right)^{2} \tag{3}
\end{equation*}
$$

In the method of least squares we now have to determine k_{0} and k_{1} such that q is minimum. From calculus we know that a necessary condition for this is

$$
\begin{equation*}
\frac{\partial q}{\partial k_{0}}=0 \quad \text { and } \quad \frac{\partial q}{\partial k_{1}}=0 \tag{4}
\end{equation*}
$$

We shall see that from this condition we obtain for the sample regression line the formula

$$
\begin{equation*}
y-\bar{y}=k_{1}(x-\bar{x}) \tag{5}
\end{equation*}
$$

Here \bar{x} and \bar{y} are the means of the x - and the y-values in our sample, that is,

$$
\begin{equation*}
\text { (a) } \bar{x}=\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right) \tag{6}
\end{equation*}
$$

$$
\text { (b) } \bar{y}=\frac{1}{n}\left(y_{1}+\cdots+y_{n}\right) \text {. }
$$

The slope k_{1} in (5) is called the regression coefficient of the sample and is given by

$$
\begin{equation*}
k_{1}=\frac{s_{x y}}{s_{x}^{2}} \tag{7}
\end{equation*}
$$

Here the "sample covariance" $s_{x y}$ is
(8) $s_{x y}=\frac{1}{n-1} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)\left(y_{j}-\bar{y}\right)=\frac{1}{n-1}\left[\sum_{j=1}^{n} x_{j} y_{j}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{j=1}^{n} y_{j}\right)\right]$
and s_{x}^{2} is given by

$$
\begin{equation*}
s_{x}^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}=\frac{1}{n-1}\left[\sum_{j=1}^{n} x_{j}^{2}-\frac{1}{n}\left(\sum_{j=1}^{n} x_{j}\right)^{2}\right] . \tag{9a}
\end{equation*}
$$

From (5) we see that the sample regression line passes through the point (\bar{x}, \bar{y}), by which it is determined, together with the regression coefficient (7). We may call s_{x}^{2} the variance of the x-values, but we should keep in mind that x is an ordinary variable, not a random variable.

We shall soon also need

$$
\begin{equation*}
s_{y}^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(y_{j}-\bar{y}\right)^{2}=\frac{1}{n-1}\left[\sum_{j=1}^{n} y_{j}^{2}-\frac{1}{n}\left(\sum_{j=1}^{n} y_{j}\right)^{2}\right] \tag{9b}
\end{equation*}
$$

Derivation of (5) and (7). Differentiating (3) and using (4), we first obtain

$$
\begin{aligned}
& \frac{\partial q}{\partial k_{0}}=-2 \sum\left(y_{j}-k_{0}-k_{1} x_{j}\right)=0 \\
& \frac{\partial q}{\partial k_{1}}=-2 \sum x_{j}\left(y_{j}-k_{0}-k_{1} x_{j}\right)=0
\end{aligned}
$$

where we sum over j from 1 to n. We now divide by 2 , write each of the two sums as three sums, and take the sums containing y_{j} and $x_{j} y_{j}$ over to the right. Then we get the "normal equations"

$$
\begin{align*}
k_{0} n+k_{1} \sum x_{j} & =\sum y_{j} \\
k_{0} \sum x_{j}+k_{1} \sum x_{j}^{2} & =\sum x_{j} y_{j} . \tag{10}
\end{align*}
$$

This is a linear system of two equations in the two unknowns k_{0} and k_{1}. Its coefficient determinant is [see (9)]

$$
\left|\begin{array}{cc}
n & \sum x_{j} \\
\sum x_{j} & \sum x_{j}^{2}
\end{array}\right|=n \sum x_{j}^{2}-\left(\sum x_{j}\right)^{2}=n(n-1) s_{x}^{2}=n \sum\left(x_{j}-\bar{x}\right)^{2}
$$

and is not zero because of Assumption (A1). Hence the system has a unique solution. Dividing the first equation of (10) by n and using (6), we get $k_{0}=\bar{y}-k_{1} \bar{x}$. Together with $y=k_{0}+k_{1} x$ in (2) this gives (5). To get (7), we solve the system (10) by Cramer's rule (Sec. 7.6) or elimination, finding

$$
\begin{equation*}
k_{1}=\frac{n \sum x_{j} y_{j}-\sum x_{i} \sum y_{j}}{n(n-1) s_{x}^{2}} . \tag{11}
\end{equation*}
$$

This gives (7)-(9) and completes the derivation. [The equality of the two expressions in (8) and in (9) may be shown by the student].

EXAMPLE 1 Regression Line

The decrease of volume y [\%] of leather for certain fixed values of high pressure x [atmospheres] was measured. The results are shown in the first two columns of Table 25.11. Find the regression line of y on x.
Solution. We see that $n=4$ and obtain the values $\bar{x}=28000 / 4=7000, \bar{y}=19.0 / 4=4.75$, and from (9) and (8)

Table 25.11 Regression of the Decrease of Volume \boldsymbol{y} [\%] of Leather on the Pressure x [Atmospheres]

Given Values		Auxiliary Values	
x_{j}	y_{j}		x_{j}^{2}
4000	2.3	$16,000,000$	$x_{j} y_{j}$
6000	4.1	$36,000,000$	24,600
8000	5.7	$64,000,000$	45,600
10,000	6.9	$100,000,000$	69,000
28,000	19.0	$216,000,000$	148,400

$$
\begin{aligned}
& s_{x}^{2}=\frac{1}{3}\left(216,000,000-\frac{28,000^{2}}{4}\right)=\frac{20,000,000}{3} \\
& s_{x y}=\frac{1}{3}\left(148,400-\frac{28,000 \cdot 19}{4}\right)=\frac{15,400}{3}
\end{aligned}
$$

Hence $k_{1}=15,400 / 20,000,000=0.00077$ from (7), and the regression line is

$$
y-4.75=0.00077(x-7000) \quad \text { or } \quad y=0.00077 x-0.64 .
$$

Note that $y(0)=-0.64$, which is physically meaningless, but typically indicates that a linear relation is merely an approximation valid on some restricted interval.

Confidence Intervals in Regression Analysis

If we want to get confidence intervals, we have to make assumptions about the distribution of Y (which we have not made so far; least squares is a "geometric principle," nowhere involving probabilities!). We assume normality and independence in sampling:

Assumption (A2)

For each fixed x the random variable Y is normal with mean (1), that is,

$$
\begin{equation*}
\mu(x)=\kappa_{0}+\kappa_{1} x \tag{12}
\end{equation*}
$$

and variance σ^{2} independent of x.

Assumption (A3)

The n performances of the experiment by which we obtain a sample

$$
\left(x_{1}, y_{1}\right), \quad\left(x_{2}, y_{2}\right), \quad \cdots, \quad\left(x_{n}, y_{n}\right)
$$

are independent.
κ_{1} in (12) is called the regression coefficient of the population because it can be shown that, under Assumptions (A1)-(A3), the maximum likelihood estimate of κ_{1} is the sample regression coefficient k_{1} given by (11).

Under Assumptions (A1)-(A3), we may now obtain a confidence interval for κ_{1}, as shown in Table 25.12.

Table 25.12 Determination of a Confidence Interval for $\boldsymbol{\kappa}_{\mathbf{1}}$ in (1) under Assumptions (A1)-(A3)
Step 1. Choose a confidence level $\gamma(95 \%, 99 \%$, or the like $)$.
Step 2. Determine the solution c of the equation

$$
\begin{equation*}
F(c)=\frac{1}{2}(1+\gamma) \tag{13}
\end{equation*}
$$

from the table of the t-distribution with $n-2$ degrees of freedom (Table A9 in App. 5; $n=$ sample size).
Step 3. Using a sample $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$, compute $(n-1) s_{x}^{2}$ from $(9 a),(n-1) s_{x y}$ from (8), k_{1} from (7),

$$
\begin{equation*}
(n-1) s_{y}^{2}=\sum_{j=1}^{n} y_{j}^{2}-\frac{1}{n}\left(\sum_{j=1}^{n} y_{j}\right)^{2} \tag{14}
\end{equation*}
$$

[as in (9b)], and

$$
\begin{equation*}
q_{0}=(n-1)\left(s_{y}^{2}-k_{1}^{2} s_{x}^{2}\right) . \tag{15}
\end{equation*}
$$

Step 4. Compute

$$
K=c \sqrt{\frac{q_{0}}{(n-2)(n-1) s_{x}^{2}}} .
$$

The confidence interval is

$$
\begin{equation*}
\operatorname{CONF}_{\gamma}\left\{k_{1}-K \leqq \kappa_{1} \leqq k_{1}+K\right\} . \tag{16}
\end{equation*}
$$

EXAMPLE 2 Confidence Interval for the Regression Coefficient

Using the sample in Table 25.11, determine a confidence interval for κ_{1} by the method in Table 25.12.
Solution. Step 1. We choose $\gamma=0.95$.
Step 2. Equation (13) takes the form $F(c)=0.975$, and Table A9 in App. 5 with $n-2=2$ degrees of freedom gives $c=4.30$.

Step 3. From Example 1 we have $3 s_{x}^{2}=20,000,000$ and $k_{1}=0.00077$. From Table 25.11 we compute

$$
\begin{aligned}
3 s_{y}^{2} & =102.0-\frac{19^{2}}{4} \\
& =11.95 \\
q_{0} & =11.95-20,000,000 \cdot 0.00077^{2} \\
& =0.092
\end{aligned}
$$

Step 4. We thus obtain

$$
\begin{aligned}
K & =4.30 \sqrt{0.092 /(2 \cdot 20,000,000)} \\
& =0.000206
\end{aligned}
$$

and

$$
\text { CONF }_{0.95}\left\{0.00056 \leqq \kappa_{1} \leqq 0.00098\right\}
$$

Correlation Analysis

We shall now give an introduction to the basic facts in correlation analysis; for proofs see Ref. [G2] or [G8] in App. 1.

Correlation analysis is concerned with the relation between X and Y in a twodimensional random variable (X, Y) (Sec. 24.9). A sample consists of n ordered pairs of values $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$, as before. The interrelation between the x and y values in the sample is measured by the sample covariance $s_{x y}$ in (8) or by the sample correlation coefficient

$$
\begin{equation*}
r=\frac{s_{x y}}{s_{x} s_{y}} \tag{17}
\end{equation*}
$$

with s_{x} and s_{y} given in (9). Here r has the advantage that it does not change under a multiplication of the x and y values by a factor (in going from feet to inches, etc.).

Sample Correlation Coefficient

The sample correlation coefficient r satisfies $-1 \leqq r \leqq 1$. In particular, $r= \pm 1$ if and only if the sample values lie on a straight line. (See Fig. 544.)

The theoretical counterpart of r is the correlation coefficient ρ of X and Y,

$$
\begin{equation*}
\rho=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}} \tag{18}
\end{equation*}
$$

Fig. 544. Samples with various values of the correlation coefficient r
where $\mu_{X}=E(X), \mu_{Y}=E(Y), \sigma_{X}^{2}=E\left(\left[X-\mu_{X}\right]^{2}\right), \sigma_{Y}^{2}=E\left(\left[Y-\mu_{Y}\right]^{2}\right)$ (the means and variances of the marginal distributions of X and Y; see Sec. 24.9), and $\sigma_{X Y}$ is the covariance of X and Y given by (see Sec. 24.9)

$$
\begin{equation*}
\sigma_{X Y}=E\left(\left[X-\mu_{X}\right]\left[Y-\mu_{Y}\right]\right)=E(X Y)-E(X) E(Y) \tag{19}
\end{equation*}
$$

The analog of Theorem 1 is

Correlation Coefficient

The correlation coefficient ρ satisfies $-1 \leqq \rho \leqq 1$. In particular, $\rho= \pm 1$ if and only if X and Y are linearly related, that is, $Y=\gamma X+\delta, X=\gamma^{*} Y+\delta^{*}$.
X and Y are called uncorrelated if $\rho=0$.

Independence. Normal Distribution

(a) Independent X and Y (see Sec. 24.9) are uncorrelated.
(b) If (X, Y) is normal (see below), then uncorrelated X and Y are independent.

Here the two-dimensional normal distribution can be introduced by taking two independent standardized normal random variables X^{*}, Y^{*}, whose joint distribution thus has the density

$$
\begin{equation*}
f^{*}\left(x^{*}, y^{*}\right)=\frac{1}{2 \pi} e^{-\left(x^{\left.*^{2}+y^{* 2}\right) / 2}\right.} \tag{20}
\end{equation*}
$$

(representing a surface of revolution over the $x^{*} y^{*}$-plane with a bell-shaped curve as cross section) and setting

$$
\begin{aligned}
X & =\mu_{X}+\sigma_{X} X^{*} \\
Y & =\mu_{Y}+\rho \sigma_{Y} X^{*}+\sqrt{1-\rho^{2}} \sigma_{Y} Y^{*} .
\end{aligned}
$$

This gives the general two-dimensional normal distribution with the density

$$
\begin{equation*}
f(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} e^{-h(x, y) / 2} \tag{21a}
\end{equation*}
$$

where
(21b) $h(x, y)=\frac{1}{1-\rho^{2}}\left[\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}-2 \rho\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}\right]$.
In Theorem 3(b), normality is important, as we can see from the following example.

EXAMPLE 3 Uncorrelated But Dependent Random Variables

If X assumes $-1,0,1$ with probability $\frac{1}{3}$ and $Y=X^{2}$, then $E(X)=0$ and in (3)

$$
\sigma_{X Y}=E(X Y)=E\left(X^{3}\right)=(-1)^{3} \cdot \frac{1}{3}+0^{3} \cdot \frac{1}{3}+1^{3} \cdot \frac{1}{3}=0,
$$

so that $\rho=0$ and X and Y are uncorrelated. But they are certainly not independent since they are even functionally related.

Test for the Correlation Coefficient ρ

Table 25.13 shows a test for ρ in the case of the two-dimensional normal distribution. t is an observed value of a random variable that has a t-distribution with $n-2$ degrees of freedom. This was shown by R. A. Fisher (Biometrika 10 (1915), 507-521).

Table 25.13 Test of the Hypothesis $\rho=0$ Against the Alternative $\rho>0$ in the Case of the Two-Dimensional Normal Distribution

Step 1. Choose a significance level $\alpha(5 \%, 1 \%$, or the like).
Step 2. Determine the solution c of the equation

$$
P(T \leqq c)=1-\alpha
$$

from the t-distribution (Table A9 in App. 5) with $n-2$ degrees of freedom.
Step 3. Compute r from (17), using a sample $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$.
Step 4. Compute

$$
t=r\left(\sqrt{\frac{n-2}{1-r^{2}}}\right)
$$

If $t \leqq c$, accept the hypothesis. If $t>c$, reject the hypothesis.

EXAMPLE 4 Test for the Correlation Coefficient ρ

Test the hypothesis $\rho=0$ (independence of X and Y, because of Theorem 3) against the alternative $\rho>0$, using the data in the lower left corner of Fig. 544, where $r=0.6$ (manual soldering errors on 10 two-sided circuit boards done by 10 workers; $x=$ front, $y=$ back of the boards).
Solution. We choose $\alpha=5 \%$; thus $1-\alpha=95 \%$. Since $n=10, n-2=8$, the table gives $c=1.86$. Also, $t=0.6 \sqrt{8 / 0.64}=2.12>c$. We reject the hypothesis and assert that there is a positive correlation. A worker making few (many) errors on the front side also tends to make few (many) errors on the reverse side of the board.

1-10 SAMPLE REGRESSION LINE

Find and graph the sample regression line of y on x and the given data as points on the same axes. Show the details of your work.

1. $(0,1.0),(2,2.1),(4,2.9),(6,3.6),(8,5.2)$
2. $(-2,3.5),(1,2.6),(3,1.3),(5,0.4)$
3. $x=$ Revolutions per minute, $y=$ Power of a Diesel engine [hp]

x	400	500	600	700	750
y	5800	10,300	14,200	18,800	21,000

4. $x=$ Deformation of a certain steel $[\mathrm{mm}], y=$ Brinell hardness $\left[\mathrm{kg} / \mathrm{mm}^{2}\right]$

x	6	9	11	13	22	26	28	33	35
y	68	67	65	53	44	40	37	34	32

5. $x=$ Brinell hardness, $y=$ Tensile strength [in 1000 psi (pounds per square inch)] of steel with $0.45 \% \mathrm{C}$ tempered for 1 hour

x	200	300	400	500
y	110	150	190	280

6. Abrasion of quenched and tempered steel S620. $x=$ Sliding distance $[\mathrm{km}], y=$ Wear volume $\left[\mathrm{mm}^{3}\right]$

x	1.1	3.2	3.4	4.5	5.6
y	40	65	120	150	190

7. Ohm's law (Sec. 2.9). $x=$ Voltage [V], $y=$ Current $[\mathrm{A}]$. Also find the resistance $\mathrm{R}[\Omega]$.

x	40	40	80	80	110	110
y	5.1	4.8	0.0	10.3	13.0	12.7

8. Hooke's law (Sec. 2.4). $x=$ Force [lb], $y=$ Extension [in] of a spring. Also find the spring modulus.

x	2	4	6	8
y	4.1	7.8	12.3	15.8

9. Thermal conductivity of water. $x=$ Temperature $\left[{ }^{\circ} \mathrm{F}\right], y=$ Conductivity $\left[\mathrm{Btu} /\left(\mathrm{hr} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}\right)\right]$. Also find y at room temperature $66^{\circ} \mathrm{F}$.

x	32	50	100	150	212
y	0.337	0.345	0.365	0.380	0.395

10. Stopping distance of a car. $x=$ Speed [mph]. $y=$ Stopping distance [ft]. Also find y at 35 mph .

x	30	40	50	60
y	160	240	330	435

11. CAS EXPERIMENT. Moving Data. Take a sample, for instance, that in Prob. 4, and investigate and graph the effect of changing y-values (a) for small x, (b) for large x, (c) in the middle of the sample.

12-15 CONFIDENCE INTERVALS

Find a 95% confidence interval for the regression coefficient κ_{1}, assuming (A2) and (A3) hold and using the sample.
12. In Prob. 2
13. In Prob. 3
14. In Prob. 4
15. $x=$ Humidity of air [\%], $y=$ Expansion of gelatin [\%],

x	10	20	30	40
y	0.8	1.6	2.3	2.8

CHAPMER2马 REvEN OBESTIONS AND PROBLEMS

1. What is a sample? A population? Why do we sample in statistics?
2. If we have several samples from the same population, do they have the same sample distribution function? The same mean and variance?
3. Can we develop statistical methods without using probability theory? Apply the methods without using a sample?
4. What is the idea of the maximum likelihood method? Why do we say "likelihood" rather than "probability"?
5. Couldn't we make the error of interval estimation zero simply by choosing the confidence level 1 ?
6. What is testing? Why do we test? What are the errors involved?
7. When did we use the t-distribution? The F-distribution?
8. What is the chi-square $\left(\chi^{2}\right)$ test? Give a sample example from memory.
9. What are one-sided and two-sided tests? Give typical examples.
10. How do we test in quality control? In acceptance sampling?
11. What is the power of a test? What could you perhaps do when it is low?
12. What is Gauss's least squares principle (which he found at age 18)?
13. What is the difference between regression and correlation?
14. Find the mean, variance, and standard derivation of the $\begin{array}{llllllll}\text { sample } 21.0 & 21.6 & 19.9 & 19.6 & 15.6 & 20.6 & 22.1 & 22.2\end{array}$
15. Assuming normality, find the maximum likelihood estimates of mean and variance from the sample in Prob. 14.
16. Determine a 95% confidence interval for the mean μ of a normal population with variance $\sigma^{2}=25$, using a sample of size 500 with mean 22 .
17. Determine a 99% confidence interval for the mean of a normal population, using the sample 32, 33, 32, 34, 35, 29, 29, 27.
18. Assuming normality, find a 95% confidence interval for the variance from the sample 145.3, 145.1, 145.4, 146.2.
19. Using a sample of 10 values with mean 14.5 from a normal population with variance $\sigma^{2}=0.25$, test the hypothesis $\mu_{0}=15.0$ against the alternative $\mu_{1}=14.5$ on the 5% level. Find the power.
20. Three specimens of high-quality concrete had compressive strength $357,359,413\left[\mathrm{~kg} / \mathrm{cm}^{2}\right]$, and for three specimens of ordinary concrete the values were $346,358,302$. Test for equality of the population means, $\mu_{1}=\mu_{2}$, against the alternative $\mu_{1}>\mu_{2}$. Assume normality and equality of variance. Choose $\alpha=5 \%$.
21. Assume the thickness X of washers to be normal with mean 2.75 mm and variance $0.00024 \mathrm{~mm}^{2}$. Set up a control chart for μ and graph the means of the five samples $(2.74,2.76),(2.74,2.74),(2.79,2.81),(2.78$, $2.76),(2.71,2.75)$ on the chart.
22. The OC curve in acceptance sampling cannot have a strictly vertical portion. Why?
23. Find the risks in the sampling plan with $n=6$ and $c=0$, assuming that the AQL is $\theta_{0}=1 \%$ and the RQL is $\theta_{1}=15 \%$. How do the risks change if we increase n ?
24. Does a process of producing plastic rods of length $\tilde{\mu}=2$ meters need adjustment if in a sample, 2 rods have the exact length and 15 are shorter and 3 longer than 2 meters? (Use the sign test.)
25. Find the regression line of y on x for the data $(x, y)=(0,4),(2,0),(4,-5),(6,-9),(8,-10)$.

SUMMARY OF GHAPIER= $\mathbf{5}$

Mathematical Statistics

We recall from Chap. 24 that, with an experiment in which we observe some quantity (number of defectives, height of persons, etc.), there is associated a random variable X whose probability distribution is given by a distribution function

$$
\begin{equation*}
F(x)=P(X \leqq x) \tag{1}
\end{equation*}
$$

which for each x gives the probability that X assumes any value not exceeding x.
In statistics we take random samples x_{1}, \cdots, x_{n} of size n by performing that experiment n times (Sec. 25.1) and draw conclusions from properties of samples about properties of the distribution of the corresponding X. We do this by calculating point estimates or confidence intervals or by performing a test for parameters (μ and σ^{2} in the normal distribution, p in the binomial distribution, etc.) or by a test for distribution functions.

A point estimate (Sec. 25.2) is an approximate value for a parameter in the distribution of X obtained from a sample. Notably, the sample mean (Sec. 25.1)

$$
\begin{equation*}
\bar{x}=\frac{1}{n} \sum_{j=1}^{n} x_{j}=\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right) \tag{2}
\end{equation*}
$$

is an estimate of the mean μ of X, and the sample variance (Sec. 25.1)

$$
\begin{equation*}
s^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}=\frac{1}{n-1}\left[\left(x_{1}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}\right] \tag{3}
\end{equation*}
$$

is an estimate of the variance σ^{2} of X. Point estimation can be done by the basic maximum likelihood method (Sec. 25.2).

Confidence intervals (Sec. 25.3) are intervals $\theta_{1} \leqq \theta \leqq \theta_{2}$ with endpoints calculated from a sample such that, with a high probability γ, we obtain an interval that contains the unknown true value of the parameter θ in the distribution of X. Here, γ is chosen at the beginning, usually 95% or 99%. We denote such an interval by $\operatorname{CONF}_{\gamma}\left\{\theta_{1} \leqq \theta \leqq \theta_{2}\right\}$.

In a test for a parameter we test a hypothesis $\theta=\theta_{0}$ against an alternative $\theta=\theta_{1}$ and then, on the basis of a sample, accept the hypothesis, or we reject it in favor of the alternative (Sec. 25.4). Like any conclusion about X from samples, this may involve errors leading to a false decision. There is a small probability α (which we can choose, 5% or 1%, for instance) that we reject a true hypothesis, and there is a probability β (which we can compute and decrease by taking larger samples) that we accept a false hypothesis. α is called the significance level and $1-\beta$ the power of the test. Among many other engineering applications, testing is used in quality control (Sec. 25.5) and acceptance sampling (Sec. 25.6).

If not merely a parameter but the kind of distribution of X is unknown, we can use the chi-square test (Sec. 25.7) for testing the hypothesis that some function $F(x)$ is the unknown distribution function of X. This is done by determining the discrepancy between $F(x)$ and the distribution function $\widetilde{F}(x)$ of a given sample.
"Distribution-free" or nonparametric tests are tests that apply to any distribution, since they are based on combinatorial ideas. These tests are usually very simple. Two of them are discussed in Sec. 25.8.

The last section deals with samples of pairs of values, which arise in an experiment when we simultaneously observe two quantities. In regression analysis, one of the quantities, x, is an ordinary variable and the other, Y, is a random variable whose mean μ depends on x, say, $\mu(x)=\kappa_{0}+\kappa_{1} x$. In correlation analysis the relation between X and Y in a two-dimensional random variable (X, Y) is investigated, notably in terms of the correlation coefficient ρ.

References

Software see at the beginning of Chaps. 19 and 24.

General References

[GenRef1] Abramowitz, M. and I. A. Stegun (eds.), Handbook of Mathematical Functions. 10th printing, with corrections. Washington, DC: National Bureau of Standards. 1972 (also New York: Dover, 1965). See also [W1]
[GenRef2] Cajori, F., History of Mathematics. 5th ed. Reprinted. Providence, RI: American Mathematical Society, 2002.
[GenRef3] Courant, R. and D. Hilbert, Methods of Mathematical Physics. 2 vols. Hoboken, NJ: Wiley, 1989.
[GenRef4] Courant, R., Differential and Integral Calculus. 2 vols. Hoboken, NJ: Wiley, 1988.
[GenRef5] Graham, R. L. et al., Concrete Mathematics. 2nd ed. Reading, MA: Addison-Wesley, 1994.
[GenRef6] Ito, K. (ed.), Encyclopedic Dictionary of Mathematics. 4 vols. 2nd ed. Cambridge, MA: MIT Press, 1993.
[GenRef7] Kreyszig, E., Introductory Functional Analysis with Applications. New York: Wiley, 1989.
[GenRef8] Kreyszig, E., Differential Geometry. Mineola, NY: Dover, 1991.
[GenRef9] Kreyszig, E. Introduction to Differential Geometry and Riemannian Geometry. Toronto: University of Toronto Press, 1975.
[GenRef10] Szegö, G., Orthogonal Polynomials. 4th ed. Reprinted. New York: American Mathematical Society, 2003.
[GenRef11] Thomas, G. et al., Thomas' Calculus, Early Transcendentals Update. 10th ed. Reading, MA: Addison-Wesley, 2003.

Part A. Ordinary Differential Equations (ODEs) (Chaps. 1-6)
 See also Part E: Numeric Analysis

[A1] Arnold, V. I., Ordinary Differential Equations. 3rd ed. New York: Springer, 2006.
[A2] Bhatia, N. P. and G. P. Szego, Stability Theory of Dynamical Systems. New York: Springer, 2002.
[A3] Birkhoff, G. and G.-C. Rota, Ordinary Differential Equations. 4th ed. New York: Wiley, 1989.
[A4] Brauer, F. and J. A. Nohel, Qualitative Theory of Ordinary Differential Equations. Mineola, NY: Dover, 1994.
[A5] Churchill, R. V., Operational Mathematics. 3rd ed. New York: McGraw-Hill, 1972.
[A6] Coddington, E. A. and R. Carlson, Linear Ordinary Differential Equations. Philadelphia: SIAM, 1997.
[A7] Coddington, E. A. and N. Levinson, Theory of Ordinary Differential Equations. Malabar, FL: Krieger, 1984.
[A8] Dong, T.-R. et al., Qualitative Theory of Differential Equations. Providence, RI: American Mathematical Society, 1992.
[A9] Erdélyi, A. et al., Tables of Integral Transforms. 2 vols. New York: McGraw-Hill, 1954.
[A10] Hartman, P., Ordinary Differential Equations. 2nd ed. Philadelphia: SIAM, 2002.
[A11] Ince, E. L., Ordinary Differential Equations. New York: Dover, 1956.
[A12] Schiff, J. L., The Laplace Transform: Theory and Applications. New York: Springer, 1999.
[A13] Watson, G. N., A Treatise on the Theory of Bessel Functions. 2nd ed. Reprinted. New York: Cambridge University Press, 1995.
[A14] Widder, D. V., The Laplace Transform. Princeton, NJ: Princeton University Press, 1941.
[A15] Zwillinger, D., Handbook of Differential Equations. 3rd ed. New York: Academic Press, 1998.

Part B. Linear Algebra, Vector Calculus

(Chaps. 7-10)
For books on numeric linear algebra, see also Part E: Numeric Analysis.
[B1] Bellman, R., Introduction to Matrix Analysis. 2nd ed. Philadelphia: SIAM, 1997.
[B2] Chatelin, F., Eigenvalues of Matrices. New York: Wiley-Interscience, 1993.
[B3] Gantmacher, F. R., The Theory of Matrices. 2 vols. Providence, RI: American Mathematical Society, 2000.
[B4] Gohberg, I. P. et al., Invariant Subspaces of Matrices with Applications. New York: Wiley, 2006.
[B5] Greub, W. H., Linear Algebra. 4th ed. New York: Springer, 1975.
[B6] Herstein, I. N., Abstract Algebra. 3rd ed. New York: Wiley, 1996.
[B7] Joshi, A. W., Matrices and Tensors in Physics. 3rd ed. New York: Wiley, 1995.
[B8] Lang, S., Linear Algebra. 3rd ed. New York: Springer, 1996.
[B9] Nef, W., Linear Algebra. 2nd ed. New York: Dover, 1988.
[B10] Parlett, B., The Symmetric Eigenvalue Problem. Philadelphia: SIAM, 1998.

Part C. Fourier Analysis and PDEs (Chaps. 11-12)
 For books on numerics for PDEs see also Part E: Numeric Analysis.

[C1] Antimirov, M. Ya., Applied Integral Transforms. Providence, RI: American Mathematical Society, 1993.
[C2] Bracewell, R., The Fourier Transform and Its Applications. 3rd ed. New York: McGraw-Hill, 2000.
[C3] Carslaw, H. S. and J. C. Jaeger, Conduction of Heat in Solids. 2nd ed. Reprinted. Oxford: Clarendon, 2000.
[C4] Churchill, R. V. and J. W. Brown, Fourier Series and Boundary Value Problems. 6th ed. New York: McGraw-Hill, 2006.
[C5] DuChateau, P. and D. Zachmann, Applied Partial Differential Equations. Mineola, NY: Dover, 2002.
[C6] Hanna, J. R. and J. H. Rowland, Fourier Series, Transforms, and Boundary Value Problems. 2nd ed. New York: Wiley, 2008.
[C7] Jerri, A. J., The Gibbs Phenomenon in Fourier Analysis, Splines, and Wavelet Approximations. Boston: Kluwer, 1998.
[C8] John, F., Partial Differential Equations. 4th edition New York: Springer, 1982.
[C9] Tolstov, G. P., Fourier Series. New York: Dover, 1976.
[C10] Widder, D. V., The Heat Equation. New York: Academic Press, 1975.
[C11] Zauderer, E., Partial Differential Equations of Applied Mathematics. 3rd ed. New York: Wiley, 2006.
[C12] Zygmund, A. and R. Fefferman, Trigonometric Series. 3rd ed. New York: Cambridge University Press, 2002.

Part D. Complex Analysis (Chaps. 13-18)

[D1] Ahlfors, L. V., Complex Analysis. 3rd ed. New York: McGraw-Hill, 1979.
[D2] Bieberbach, L., Conformal Mapping. Providence, RI: American Mathematical Society, 2000.
[D3] Henrici, P., Applied and Computational Complex Analysis. 3 vols. New York: Wiley, 1993.
[D4] Hille, E., Analytic Function Theory. 2 vols. 2nd ed. Providence, RI: American Mathematical Society, Reprint V1 1983, V2 2005.
[D5] Knopp, K., Elements of the Theory of Functions. New York: Dover, 1952.
[D6] Knopp, K., Theory of Functions. 2 parts. New York: Dover, Reprinted 1996.
[D7] Krantz, S. G., Complex Analysis: The Geometric Viewpoint. Washington, DC: The Mathematical Association of America, 1990.
[D8] Lang, S., Complex Analysis. 4th ed. New York: Springer, 1999.
[D9] Narasimhan, R., Compact Riemann Surfaces. New York: Springer, 1996.
[D10] Nehari, Z., Conformal Mapping. Mineola, NY: Dover, 1975.
[D11] Springer, G., Introduction to Riemann Surfaces. Providence, RI: American Mathematical Society, 2001.

Part E. Numeric Analysis (Chaps. 19-21)
[E1] Ames, W. F., Numerical Methods for Partial Differential Equations. 3rd ed. New York: Academic Press, 1992.
[E2] Anderson, E., et al., LAPACK User's Guide. 3rd ed. Philadelphia: SIAM, 1999.
[E3] Bank, R. E., PLTMG. A Software Package for Solving Elliptic Partial Differential Equations: Users' Guide 8.0. Philadelphia: SIAM, 1998.
[E4] Constanda, C., Solution Techniques for Elementary Partial Differential Equations. Boca Raton, FL: CRC Press, 2002.
[E5] Dahlquist, G. and A. Björck, Numerical Methods. Mineola, NY: Dover, 2003.
[E6] DeBoor, C., A Practical Guide to Splines. Reprinted. New York: Springer, 2001.
[E7] Dongarra, J. J. et al., LINPACK Users Guide. Philadelphia: SIAM, 1979. (See also at the beginning of Chap. 19.)
[E8] Garbow, B. S. et al., Matrix Eigensystem Routines: EISPACK Guide Extension. Reprinted. New York: Springer, 1990.
[E9] Golub, G. H. and C. F. Van Loan, Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.
[E10] Higham, N. J., Accuracy and Stability of Numerical Algorithms. 2nd ed. Philadelphia: SIAM, 2002.
[E11] IMSL (International Mathematical and Statistical Libraries), FORTRAN Numerical Library. Houston, TX: Visual Numerics, 2002. (See also at the beginning of Chap. 19.)
[E12] IMSL, IMSL for Java. Houston, TX: Visual Numerics, 2002.
[E13] IMSL, C Library. Houston, TX: Visual Numerics, 2002.
[E14] Kelley, C. T., Iterative Methods for Linear and Nonlinear Equations. Philadelphia: SIAM, 1995.
[E15] Knabner, P. and L. Angerman, Numerical Methods for Partial Differential Equations. New York: Springer, 2003.
[E16] Knuth, D. E., The Art of Computer Programming. 3 vols. 3rd ed. Reading, MA: Addison-Wesley, 19972009.
[E17] Kreyszig, E., Introductory Functional Analysis with Applications. New York: Wiley, 1989.
[E18] Kreyszig, E., On methods of Fourier analysis in multigrid theory. Lecture Notes in Pure and Applied Mathematics 157. New York: Dekker, 1994, pp. 225-242.
[E19] Kreyszig, E., Basic ideas in modern numerical analysis and their origins. Proceedings of the Annual Conference of the Canadian Society for the History and Philosophy of Mathematics. 1997, pp. 34-45.
[E20] Kreyszig, E., and J. Todd, $Q R$ in two dimensions. Elemente der Mathematik 31 (1976), pp. 109-114.
[E21] Mortensen, M. E., Geometric Modeling. 2nd ed. New York: Wiley, 1997.
[E22] Morton, K. W., and D. F. Mayers, Numerical Solution of Partial Differential Equations: An Introduction. New York: Cambridge University Press, 1994.
[E23] Ortega, J. M., Introduction to Parallel and Vector Solution of Linear Systems. New York: Plenum Press, 1988.
[E24] Overton, M. L., Numerical Computing with IEEE Floating Point Arithmetic. Philadelphia: SIAM, 2004.
[E25] Press, W. H. et al., Numerical Recipes in C: The Art of Scientific Computing. 2nd ed. New York: Cambridge University Press, 1992.
[E26] Shampine, L. F., Numerical Solutions of Ordinary Differential Equations. New York: Chapman and Hall, 1994.
[E27] Varga, R. S., Matrix Iterative Analysis. 2nd ed. New York: Springer, 2000.
[E28] Varga, R. S., Geršgorin and His Circles. New York: Springer, 2004.
[E29] Wilkinson, J. H., The Algebraic Eigenvalue Problem. Oxford: Oxford University Press, 1988.

Part F. Optimization, Graphs (Chaps. 22-23)
[F1] Bondy, J. A. and U.S.R. Murty, Graph Theory with Applications. Hoboken, NJ: Wiley-Interscience, 1991.
[F2] Cook, W. J. et al., Combinatorial Optimization. New York: Wiley, 1997.
[F3] Diestel, R., Graph Theory. 4th ed. New York: Springer, 2006.
[F4] Diwekar, U. M., Introduction to Applied Optimization. 2nd ed. New York: Springer, 2008.
[F5] Gass, S. L., Linear Programming. Method and Applications. 3rd ed. New York: McGraw-Hill, 1969.
[F6] Gross, J. T. and J.Yellen (eds.), Handbook of Graph Theory and Applications. 2nd ed. Boca Raton, FL: CRC Press, 2006.
[F7] Goodrich, M. T., and R. Tamassia, Algorithm Design: Foundations, Analysis, and Internet Examples. Hoboken, NJ: Wiley, 2002.
[F8] Harary, F., Graph Theory. Reprinted. Reading, MA: Addison-Wesley, 2000.
[F9] Merris, R., Graph Theory. Hoboken, NJ: WileyInterscience, 2000.
[F10] Ralston, A., and P. Rabinowitz, A First Course in Numerical Analysis. 2nd ed. Mineola, NY: Dover, 2001.
[F11] Thulasiraman, K., and M. N. S. Swamy, Graph Theory and Algorithms. New York: Wiley-Interscience, 1992.
[F12] Tucker, A., Applied Combinatorics. 5th ed. Hoboken, NJ: Wiley, 2007.

Part G. Probability and Statistics

(Chaps. 24-25)
[G1] American Society for Testing Materials, Manual on Presentation of Data and Control Chart Analysis. 7th ed. Philadelphia: ASTM, 2002.
[G2] Anderson, T. W., An Introduction to Multivariate Statistical Analysis. 3rd ed. Hoboken, NJ: Wiley, 2003.
[G3] Cramér, H., Mathematical Methods of Statistics. Reprinted. Princeton, NJ: Princeton University Press, 1999.
[G4] Dodge, Y., The Oxford Dictionary of Statistical Terms. 6th ed. Oxford: Oxford University Press, 2006.
[G5] Gibbons, J. D. and S. Chakraborti, Nonparametric Statistical Inference. 4th ed. New York: Dekker, 2003.
[G6] Grant, E. L. and R. S. Leavenworth, Statistical Quality Control. 7th ed. New York: McGraw-Hill, 1996.
[G7] IMSL, Fortran Numerical Library. Houston, TX: Visual Numerics, 2002.
[G8] Kreyszig, E., Introductory Mathematical Statistics. Principles and Methods. New York: Wiley, 1970.
[G9] O'Hagan, T. et al., Kendall's Advanced Theory of Statistics 3-Volume Set. Kent, U.K.: Hodder Arnold, 2004.
[G10] Rohatgi, V. K. and A. K. MD. E. Saleh, An Introduction to Probability and Statistics. 2nd ed. Hoboken, NJ: Wiley-Interscience, 2001.

Web References

[W1] upgraded version of [GenRef1] online at http://dlmf.nist.gov/. Hardcopy and CD-Rom: Oliver, W. J. et al. (eds.), NIST Handbook of Mathematical Functions. Cambridge; New York: Cambridge University Press, 2010.
[W2] O'Connor, J. and E. Robertson, MacTutor History of Mathematics Archive. St. Andrews, Scotland: University of St. Andrews, School of Mathematics and Statistics. Online at http://www-history.mes.st-andrews. ac.uk. (Biographies of mathematicians, etc.).

APPENDIX2

Answers to Odd-Numbered Problems

Problem Set 1.1, page 8
$\begin{array}{ll}\text { 1. } y=\frac{1}{\pi} \cos 2 \pi x+c & \text { 3. } y=c e^{x}\end{array}$
5. $y=2 e^{-x}(\sin x-\cos x)+c$
7. $y=\frac{1}{5.13} \sinh 5.13 x+c$
9. $y=1.65 e^{-4 x}+0.35$
11. $y=\left(x+\frac{1}{2}\right) e^{x}$
13. $y=1 /\left(1+3 e^{-x}\right)$
15. $y=0$ and $y=1$ because $y^{\prime}=0$ for these y
17. $\exp \left(-1.4 \cdot 10^{-11} t\right)=\frac{1}{2}, \quad t=10^{11}(\ln 2) / 1.4[\mathrm{sec}]$
19. Integrate $y^{\prime \prime}=g$ twice $, \quad y^{\prime}(t)=g t+v_{0}, \quad y^{\prime}(0)=v_{0}=0$ (start from rest), then $y(t)=\frac{1}{2} g t^{2}+y_{0}$, where $y(0)=y_{0}=0$

Problem Set 1.2, page 11

11. Straight lines parallel to the x-axis
12. $y=x$
13. $m v^{\prime}=m g-b v^{2}, \quad v^{\prime}=9.8-v^{2}, \quad v(0)=10, \quad v^{\prime}=0$ gives the limit $/ 9.8=3.1$ [meter/sec]
14. Errors of steps $1,5,10: 0.0052,0.0382,0.1245$, approximately
15. $x_{5}=0.0286$ (error 0.0093), $x_{10}=0.2196$ (error 0.0189)

Problem Set 1.3, page 18

1. If you add a constant later, you may not get a solution.

Example: $y^{\prime}=y, \quad \ln |y|=x+c, \quad y=e^{x+c}=\tilde{c} e^{x}$ but not $e^{x}+c($ with $c \neq 0)$
3. $\cos ^{2} y d y=d x, \quad \frac{1}{2} y+\frac{1}{4} \sin 2 y+c=x$
5. $y^{2}+36 x^{2}=c$, ellipses
7. $y=x \arctan \left(x^{2}+c\right)$
9. $y=x /(c-x)$
11. $y=24 / x$, hyperbola
13. $d y / \sin ^{2} y=d x / \cosh ^{2} x, \quad-\cot y=\tanh x+c, \quad c=0, \quad y=-\operatorname{arccot}(\tanh x)$
15. $y^{2}+4 x^{2}=c=25$
17. $y=x \arctan \left(x^{3}-1\right)$
19. $y_{0} e^{k t}=2 y_{0}, e^{k}=2$ (1 week), $e^{2 k}=2^{2}$ (2 weeks), $e^{4 k}=2^{4}$
21. 69.6% of y_{0}
23. $P V=c=$ const
25. $T=22-17 e^{-0.5306 t}=21.9\left[{ }^{\circ} \mathrm{C}\right]$ when $t=9.68 \mathrm{~min}$
27. $e^{-k \cdot 10}=\frac{1}{2}, \quad k=\frac{1}{10}, \quad \ln \frac{1}{2}, \quad e^{-k t_{0}}=0.01, \quad t=(\ln 100) / k=66[\mathrm{~min}]$
29. No. Use Newton's law of cooling.
31. $y=a x, \quad y^{\prime}=g(y / x)=a=$ const, independent of the point (x, y)
33. $\Delta S=0.15 S \Delta \phi, \quad d S / d \phi=0.15 S, \quad S=S_{0} e^{0.15 \phi}=1000 S_{0}$, $\phi=(1 / 0.15) \ln 1000=7.3 \cdot 2 \pi$. Eight times.

Problem Set 1.4, page 26

1. Exact, $2 x=2 x, \quad x^{2} y=c, y=c / x^{2} \quad$ 3. Exact, $y=\arccos (c / \cos x)$
2. Not exact, $y=\sqrt{x^{2}+c x} \quad$ 7. $F=e^{x^{2}}, \quad e^{x^{2}} \tan y=c$
3. Exact, $u=e^{2 x} \cos y+k(y), \quad u_{y}=-e^{2 x} \sin y+k^{\prime}, \quad k^{\prime}=0$. Ans. $e^{2 x} \cos y=1$
4. $F=\sinh x, \quad \sinh ^{2} x \cos y=c$
5. $u=e^{x}+k(y), \quad u_{y}=k^{\prime}=-1+e^{y}, \quad k=-y+e^{y}$. Ans. $e^{x}-y+e^{y}=c$
6. $b=k, \quad a x^{2}+2 k x y+l y^{2}=c$

Problem Set 1.5, page 34

3. $y=c e^{x}-5.2$
4. $y=(x+c) e^{-k x}$
5. $y=x^{2}\left(c+e^{x}\right)$
6. $y=(x-2.5 / e) e^{\cos x}$
7. $y=2+c \sin x$
8. Separate. $y-2.5=c \cosh ^{4} 1.5 x$
9. $\left(y_{1}+y_{2}\right)^{\prime}+p\left(y_{1}+y_{2}\right)=\left(y_{1}^{\prime}+p y_{1}\right)+\left(y_{2}^{\prime}+p y_{2}\right)=0+0=0$
10. $\left(y_{1}+y_{2}\right)^{\prime}+p\left(y_{1}+y_{2}\right)=\left(y_{1}^{\prime}+p y_{1}\right)+\left(y_{2}^{\prime}+p y_{2}\right)=r+0=r$
11. Solution of $c y_{1}^{\prime}+p c y_{1}=c\left(y_{1}^{\prime}+p y_{1}\right)=c r$
12. $y=u y^{*}, \quad y^{\prime}+p y=u^{\prime} y^{*}+u y^{*^{\prime}}+p u y^{*}=u^{\prime} y^{*}+u\left(y^{*^{\prime}}+p y^{*}\right)=u^{\prime} y^{*}+u \cdot 0$ $=r, u^{\prime}=r / y^{*}=r e^{\int p d x}, \quad u=\int e^{\int p d x} r d x+c$. Thus, $y=u y_{h}$ gives (4). We shall see that this method extends to higher-order ODEs (Secs. 2.10 and 3.3).
13. $y^{2}=1+8 e^{-x^{2}}$
14. $y=1 / u, \quad u=c e^{-3.2 x}+10 / 3.2$
15. $d x / d y=6 e^{y}-2 x, \quad x=c e^{-2 y}+2 e^{y}$
16. $T=240 e^{k t}+60, \quad T(10)=200, \quad k=-0.0539, \quad t=102 \mathrm{~min}$
17. $y^{\prime}=A-k y, \quad y(0)=0, \quad y=A\left(1-e^{-k t}\right) / k$
18. $y^{\prime}=175(0.0001-y / 450), \quad y(0)=450 \cdot 0.0004=0.18$, $y=0.135 e^{-0.3889 t}+0.045=0.18 / 2$,
$e^{-0.3889 t}=(0.09-0.045) / 0.135=1 / 3$, $t=(\ln 3) / 0.3889=2.82$. Ans. About 3 years
19. $y^{\prime}=y-y^{2}-0.2 y, \quad y=1 /\left(1.25-0.75 e^{-0.8 t}\right)$, limit 0.8 , limit 1
20. $y^{\prime}=B y^{2}-A y=B y(y-A / B), A>0, B>0$. Constant solutions $y=0$, $y=A / B, \quad y^{\prime}>0$ if $y>A / B$ (unlimited growth), $\quad y^{\prime}<0$ if $0<y<A / B$ (extinction). $y=A /\left(c e^{A t}+B\right), \quad y(0)>A / B$ if $c<0, \quad y(0)<A / B$ if $c>0$.

Problem Set 1.6, page 38

1. $x^{2} /\left(c^{2}+9\right)+y^{2} / c^{2}-1=0 \quad$ 3. $y-\cosh (x-c)-c=0$
2. $y / x=c, y^{\prime} / x=y / x^{2}, y^{\prime}=y / x, \tilde{y}^{\prime}=-x / \tilde{y}, \tilde{y}^{2}+x^{2}=\tilde{c}$, circles
3. $2 \widetilde{y}^{2}-x^{2}=\widetilde{c}$
4. $y^{\prime}=-2 x y, \tilde{y}^{\prime}=1 /(2 x \tilde{y}), x=\tilde{c} e^{\widetilde{y}^{2}}$
5. $\tilde{y}=\tilde{c} x$
6. $y^{\prime}=-4 x / 9 y$. Trajectories $\tilde{y}^{\prime}=9 \widetilde{y} / 4 x, \tilde{y}=\tilde{c} x^{9 / 4}(\tilde{c}>0)$.

Sketch or graph these curves.
15. $u=c, u_{x} d x+u_{y} d y=0, \quad y^{\prime}=-u_{x} / u_{y}$. Trajectories $\tilde{y}^{\prime}=u_{\tilde{y}} / u_{x}$. Now $v=\tilde{c}, v_{x} d x+v_{y} d y=0, \quad y^{\prime}=-v_{x} / v_{y}$. This agrees with the trajectory ODE in u if $u_{x}=v_{y}$ (equal denominators) and $u_{y}=-v_{x}$ (equal numerators). But these are just the Cauchy-Riemann equations.

Problem Set 1.7, page 42

1. $y^{\prime}=f(x, y)=r(x)-p(x) y$; hence $\partial f / \partial y=-p(x)$ is continuous and is thus bounded in the closed interval $\left|x-x_{0}\right| \leqq a$.
2. In $\left|x-x_{0}\right|<a$; just take b in $\alpha=b / K$ large, namely, $b=\alpha K$.
3. R has sides $2 a$ and $2 b$ and center $(1,1)$ since $y(1)=1$. In R, $f=2 y^{2} \leqq 2(b+1)^{2}=K, \quad \alpha=b / K=b /\left(2(b+1)^{2}\right), \quad d \alpha / d b=0$ gives $b=1$, and $\alpha_{\mathrm{opt}}=b / K=\frac{1}{8}$. Solution by $d y / y^{2}=2 d x$, etc., $y=1 /(3-2 x)$.
4. $\left|1+y^{2}\right| \leqq K=1+b^{2}, \quad \alpha=b / K, \quad d \alpha / d b=0, \quad b=1, \quad \alpha=\frac{1}{2}$.
5. No. At a common point $\left(x_{1}, y_{1}\right)$ they would both satisfy the "initial condition" $y\left(x_{1}\right)=y_{1}$, violating uniqueness.

Chapter 1 Review Questions and Problems, page 43

11. $y=c e^{-2 x}$
12. $y=1 /\left(c e^{-4 x}+4\right)$
13. $y=c e^{-x}+0.01 \cos 10 x+0.1 \sin 10 x$
14. $y=c e^{-2.5 x}+0.640 x-0.256$
15. $25 y^{2}-4 x^{2}=c$
16. $F=x, x^{3} e^{y}+x^{2} y=c$
17. $y=\sin \left(x+\frac{1}{4} \pi\right)$
18. $3 \sin x+\frac{1}{3} \sin y=0$
19. $e^{k}=1.25, \quad(\ln 2) / \ln 1.25=3.1, \quad(\ln 3) / \ln 1.25=4.9$ [days]
20. $e^{k}=0.9,6.6$ days. 43.7 days from $e^{k t}=0.5, e^{k t}=0.01$

Problem Set 2.1, page 53

1. $F\left(x, z, z^{\prime}\right)=0$
2. $y=c_{1} e^{-x}+c_{2}$
3. $y=\left(c_{1} x+c_{2}\right)^{-1 / 2}$
4. $(d z / d y) z=-z^{3} \sin y,-1 / z=-d x / d y=\cos y+\tilde{c}_{1}, x=-\sin y+c_{1} y+c_{2}$
5. $y_{2}=x^{3} \ln x$
6. $y=c_{1} e^{2 x}+c_{2}$
7. $y(t)=c_{1} e^{-t}+k t+c_{2}$
8. $y=3 \cos 2.5 x-\sin 2.5 x$
9. $y=-0.75 x^{3 / 2}-2.25 x^{-1 / 2}$
10. $y=15 e^{-x}-\sin x$

Problem Set 2.2, page 59

1. $y=c_{1} e^{-2.5 x}+c_{2} e^{2.5 x}$
2. $y=c_{1} e^{-2.8 x}+c_{2} e^{-3.2 x}$
3. $y=\left(c_{1}+c_{2} x\right) e^{-\pi x}$
4. $y=c_{1}+c_{2} e^{-4.5 x}$
5. $y=c_{1} e^{-2.6 x}+c_{2} e^{0.8 x}$
6. $y=c_{1} e^{-x / 2}+c_{2} e^{3 x / 2}$
7. $y=\left(c_{1}+c_{2} x\right) e^{5 x / 3}$
8. $y=e^{-0.27 x}(A \cos (\sqrt{\pi} \mathrm{x})+B \sin (\sqrt{\pi} x))$
9. $y^{\prime \prime}+2 \sqrt{5} y^{\prime}+5 y=0$
10. $y^{\prime \prime}+4 y^{\prime}+5 y=0$
11. $y=4.6 \cos 5 x-0.24 \sin 5 x$
12. $y=6 e^{2 x}+4 e^{-3 x}$
13. $y=2 e^{-x}$
14. $y=(4.5-x) e^{-\pi x}$
15. $y=\frac{1}{\sqrt{\pi}} e^{-0.27 x} \sin (\sqrt{\pi} x)$
16. Independent
17. $c_{1} x^{2}+c_{2} x^{2} \ln x=0$ with $x=1$ gives $c_{1}=0$; then $c_{2}=0$ for $x=2$, say.
Hence independent
18. Dependent since $\sin 2 x=2 \sin x \cos x$
19. $y_{1}=e^{-x}, \quad y_{2}=0.001 e^{x}+e^{-x}$

Problem Set 2.3, page 61

1. $4 e^{2 x},-e^{-x}+8 e^{2 x},-\cos x-2 \sin x$
2. $0, \quad 0, \quad(D-2 I)\left(-4 e^{-2 x}\right)=8 e^{-2 x}+8 e^{-2 x}$
3. $0,5 e^{2 x}, 0$
4. $(2 D-I)(2 D+I), \quad y=c_{1} e^{0.5 x}+c_{2} e^{-0.5 x}$
5. $(D-2.1 I)^{2}, \quad y=\left(c_{1}+c_{2} x\right) e^{2.1 x}$
6. $(D-1.6 I)(D-2.4 I), \quad y=c_{1} e^{1.6 x}+c_{2} e^{2.4 x}$
7. Combine the two conditions to get $L(c y+k w)=L(c y)+L(k w)=c L y+k L w$.

The converse is simple.

Problem Set 2.4, page 69

1. $y^{\prime}=y_{0} \cos \omega_{0} t+\left(v_{0} / \omega_{0}\right) \sin \omega_{0} t$. At integer t (if $\omega_{0}=\pi$), because of periodicity.
2. (i) Lower by a factor $\sqrt{2}$, (ii) higher by $\sqrt{2}$
3. $0.3183, \quad 0.4775, \quad \sqrt{\left(k_{1}+k_{2}\right) / m} /(2 \pi)=0.5738$
4. $m L \theta^{\prime \prime}=-m g \sin \theta \approx-m g \theta$ (tangential component of $W=m g$), $\theta^{\prime \prime}+\omega_{0^{2}} \theta=0, \quad \omega_{0} /(2 \pi)=\sqrt{g / L} /(2 \pi)$
5. $m y^{\prime \prime}=-\tilde{a} \gamma y$, where $m=1 \mathrm{~kg}, a y=\pi \cdot 0.01^{2} \cdot 2 y$ meter 3 is the volume of the water that causes the restoring force $a \gamma y$ with $\gamma=9800 \mathrm{nt}\left(=\right.$ weight $/$ meter 3).
$y^{\prime \prime}+\omega_{0^{2}} y=0, \omega_{0^{2}}=a \gamma / m=a \gamma=0.000628 \gamma$. Frequency $\omega_{0} / 2 \pi=0.4\left[\mathrm{sec}^{-1}\right]$.
6. $y=\left[y_{0}+\left(v_{0}+\alpha y_{0}\right) t\right] e^{-\alpha t}, \quad y=\left[1+\left(v_{0}+1\right) t\right] e^{-t}$;
(ii) $v_{0}=-2,-\frac{3}{2},-\frac{4}{3},-\frac{5}{4},-\frac{6}{5}$
7. $\omega^{*}=\left[\omega_{0^{2}}-c^{2} /\left(4 m^{2}\right)\right]^{1 / 2}=\omega_{0}\left[1-c^{2} /(4 m k)\right]^{1 / 2} \approx \omega_{0}\left(1-c^{2} / 8 m k\right)=2.9583$
8. The positive solutions of $\tan t=1$, that is, $\pi / 4(\max), 5 \pi / 4(\mathrm{~min})$. etc
9. $0.0231=(\ln 2) / 30[\mathrm{~kg} / \mathrm{sec}]$ from $\exp (-10 \cdot 3 c / 2 m)=\frac{1}{2}$.

Problem Set 2.5, page 73
3. $y=\left(c_{1}+c_{2} \ln x\right) x^{-1.8}$
5. $\sqrt{x}\left(c_{1} \cos (\ln x)+c_{2} \sin (\ln x)\right)$
7. $y=c_{1} x^{2}+c_{2} x^{3}$
9. $y=\left(c_{1}+c_{2} \ln x\right) x^{0.6}$
11. $y=x^{2}\left(c_{1} \cos (\sqrt{6} \ln x)+c_{2} \sin (\sqrt{6} \ln x)\right)$
13. $y=x^{-3 / 2}$
15. $y=(3.6+4.0 \ln x) / x$
17. $y=\cos (\ln x)+\sin (\ln x)$
19. $y=-0.525 x^{5}+0.625 x^{-3}$

Problem Set 2.6, page 79
$\begin{array}{ll}\text { 3. } W=-2.2 e^{-3 x} & \text { 5. } W=-x^{4}\end{array} \quad$ 7. $W=a$
9. $y^{\prime \prime}+25 y=0, \quad W=5, \quad y=3 \cos 5 x-\sin 5 x$
11. $y^{\prime \prime}+5 y+6.34=0, \quad W=0.3 e^{-5 x}, \quad 3 e^{-2.5} \cos 0.3 x$
13. $y^{\prime \prime}+2 y^{\prime}=0, \quad W=-2 e^{-2 x}, \quad y=0.5\left(1+e^{-2 x}\right)$
15. $y^{\prime \prime}-3.24 y=0, \quad W=1.8, \quad y=14.2 \cosh 1.8 x+9.1 \sinh 1.8 x$

Problem Set 2.7, page 84

1. $y=c_{1} e^{-x}+c_{2} e^{-4 x}-5 e^{-3 x}$
2. $y=c_{1} e^{-2 x}+c_{2} e^{-x}+6 x^{2}-18 x+21$
3. $y=\left(c_{1}+c_{2} x\right) e^{-2 x}+\frac{1}{2} e^{-x} \sin x$
4. $y=c_{1} e^{-x / 2}+c_{2} e^{-3 x / 2}+\frac{4}{5} e^{x}+6 x-16$
5. $y=c_{1} e^{4 x}+c_{2} e^{-4 x}+1.2 x e^{4 x}-2 e^{x}$
6. $y=\cos (\sqrt{3} x)+6 x^{2}-4$
7. $y=e^{x / 4}-2 e^{x / 2}+\frac{1}{5} e^{-x}+e^{x}$
8. $y=\ln x$
9. $y=e^{-0.1 x}(1.5 \cos 0.5 x-\sin 0.5 x)+2 e^{0.5 x}$

Problem Set 2.8, page 91

3. $y_{p}=1.0625 \cos 2 t+3.1875 \sin 2 t$
4. $y_{p}=-1.28 \cos 4.5 t+0.36 \sin 4.5 t$
5. $y_{p}=25+\frac{4}{3} \cos 3 t+\sin 3 t$
6. $y=e^{-1.5 t}(A \cos t+B \sin t)+0.8 \cos t+0.4 \sin t$
7. $y=A \cos \sqrt{2} t+B \sin \sqrt{2} t+t(\sin \sqrt{2} t-\cos \sqrt{2} t) /(2 \sqrt{2})$
8. $y=A \cos t+B \sin t-(\cos \omega t) /\left(\omega^{2}-1\right)$
9. $y=e^{-2 t}(A \cos 2 t+B \sin 2 t)+\frac{1}{4} \sin 2 t$
10. $y=\frac{1}{3} \sin t-\frac{1}{15} \sin 3 t-\frac{1}{105} \sin 5 t$
11. $y=e^{-t}(0.4 \cos t+0.8 \sin t)+e^{-t / 2}\left(-0.4 \cos \frac{1}{2} t+0.8 \sin \frac{1}{2} t\right)$
12. CAS Experiment. The choice of ω needs experimentation, inspection of the curves obtained, and then changes on a trail-and-error basis. It is interesting to see how in the case of beats the period gets increasingly longer and the maximum amplitude gets increasingly larger as $\omega /(2 \pi)$ approaches the resonance frequency.

Problem Set 2.9, page 98

1. $R I^{\prime}+I / C=0, \quad I=c e^{-t /(R C)}$
2. $L I^{\prime}+R I=E, \quad I=(E / R)+c e^{-R t / L}=4.8+c e^{-40 t}$
3. $I=2(\cos t-\cos 20 t) / 399$
4. I_{0} is maximum when $S=0$; thus, $C=1 /\left(\omega^{2} L\right)$.
5. $I=0 \quad$ 11. $I=5.5 \cos 10 t+16.5 \sin 10 t \mathrm{~A}$
6. $I=e^{-5 t}(A \cos 10 t+B \sin 10 t)-400 \cos 25 t+200 \sin 25 t \mathrm{~A}$
7. $R>R_{\text {crit }}=2 \sqrt{L / C}$ is Case I, etc.
8. $E(0)=600, I^{\prime}(0)=600, I=e^{-3 t}(-100 \cos 4 t+75 \sin 4 t)+100 \cos t$
9. $R=2 \Omega, \quad L=1 \mathrm{H}, \quad C=\frac{1}{12} \mathrm{~F}, \quad E=4.4 \sin 10 t \mathrm{~V}$

Problem Set 2.10, page 102

1. $y=A \cos 3 x+B \sin 3 x+\frac{1}{9}(\cos 3 x) \ln |\cos 3 x|+\frac{1}{3} x \sin 3 x$
2. $y=c_{1} x+c_{2} x^{2}-x \sin x$
3. $y=A \cos x+B \sin x+\frac{1}{2} x(\cos x+\sin x)$
4. $y=\left(c_{1}+c_{2} x\right) e^{2 x}+x^{-2} e^{2 x}$
5. $y=\left(c_{1}+c_{2} x\right) e^{x}+4 x^{7 / 2} e^{x}$
6. $y=c_{1} x^{2}+c_{2} x^{3}+1 /\left(2 x^{4}\right)$
7. $y=c_{1} x^{-3}+c_{2} x^{3}+3 x^{5}$

Chapter 2 Review Questions and Problems, page 102
7. $y=c_{1} e^{-4.5 x}+c_{2} e^{-3.5 x}$
9. $y=e^{-3 x}(A \cos 5 x+B \sin 5 x)$
11. $y=\left(c_{1}+c_{2} x\right) e^{0.8 x}$
13. $y=c_{1} x^{-4}+c_{2} x^{3}$
15. $y=c_{1} e^{2 x}+c_{2} e^{-x / 2}-3 x+x^{2}$
17. $y=\left(c_{1}+c_{2} x\right) e^{1.5 x}+0.25 x^{2} e^{1.5 x}$
19. $y=5 \cos 4 x-\frac{3}{4} \sin 4 x+e^{x}$
21. $y=-4 x+2 x^{3}+1 / x$
23. $I=-0.01093 \cos 415 t+0.05273 \sin 415 t \mathrm{~A}$
25. $I=\frac{1}{73}(50 \sin 4 t-110 \cos 4 t) \mathrm{A}$
27. $R L C$-circuit with $R=20 \Omega, L=4 \mathrm{H}, C=0.1 \mathrm{~F}, E=-25 \cos 4 t \mathrm{~V}$
29. $\omega=3.1$ is close to $\omega_{0}=\sqrt{k / m}=3, y=25(\cos 3 t-\cos 3.1 t)$.

Problem Set 3.1, page 111
9. Linearly independent
11. Linearly independent
13. Linearly independent
15. Linearly dependent

Problem Set 3.2, page 116

1. $y=c_{1}+c_{2} \cos 5 x+c_{3} \sin 5 x \quad$ 3. $y=c_{1}+c_{2} x+c_{3} \cos 2 x+c_{4} \sin 2 x$
2. $y=A_{1} \cos x+B_{1} \sin x+A_{2} \cos 3 x+B_{2} \sin 3 x$
3. $y=2.398+e^{-1.6 x}(1.002 \cos 1.5 x-1.998 \sin 1.5 x)$
4. $y=4 e^{-x}+5 e^{-x / 2} \cos 3 x$
5. $y=\cosh 5 x-\cos 4 x$
6. $y=e^{0.25 x}+4.3 e^{-0.7 x}+12.1 \cos 0.1 x-0.6 \sin 0.1 x$

Problem Set 3.3, page 122

1. $y=\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{-x}+\frac{1}{8} e^{x}-x+2$
2. $y=c_{1} \cos x+c_{2} \sin x+c_{3} \cos 3 x+c_{4} \sin 3 x+0.1 \sinh 2 x$
3. $y=c_{1} x^{2}+c_{2} x+c_{3} x^{-1}-\frac{1}{12} x^{-2}$
4. $y=\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{3 x}-\frac{1}{4}(\cos 3 x-\sin 3 x)$
5. $y=\cos x+\frac{1}{2} \sin 4 x$
6. $y=e^{-3 x}(-1.4 \cos x-\sin x)$
7. $y=2-2 \sin x+\cos x$

Chapter 3 Review Questions and Problems, page 122

7. $y=c_{1}+e^{-2 x}(A \cos 3 x+B \sin 3 x)$
8. $y=c_{1} \cosh 2 x+c_{2} \sinh 2 x+c_{3} \cos 2 x+c_{4} \sin 2 x+\cosh x$
9. $y=\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{-1.5 x} \quad$ 13. $y=\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{-2 x}+x^{2}-3 x+3$
10. $y=c_{1} x+c_{2} x^{1 / 2}+c_{3} x^{3 / 2}-\frac{10}{3}$
11. $y=2 e^{-2 x} \cos 4 x+0.05 x-0.06$
12. $y=4 e^{-4 x}+5 e^{-5 x}$

Problem Set 4.1, page 136

1. Yes
2. $y_{1}^{\prime}=0.02\left(-y_{1}+y_{2}\right), \quad y_{2}^{\prime}=0.02\left(y_{1}-2 y_{2}+y_{3}\right), \quad y_{3}^{\prime}=0.02\left(y_{2}-y_{3}\right)$
3. $c_{1}=1, \quad c_{2}=-5 \quad$ 9. $c_{1}=10, \quad c_{2}=5$
4. $y_{1}^{\prime}=y_{2}, \quad y_{2}^{\prime}=y_{1}++\frac{15}{4} y_{2}, \quad \mathbf{y}=c_{1}\left[\begin{array}{ll}1 & 4\end{array}\right]^{\top} e^{4 t}+c_{2}\left[\begin{array}{ll}1 & -\frac{1}{4}\end{array}\right]^{\top} e^{-t / 4}$
5. $y_{1}^{\prime}=y_{2}, \quad y_{2}^{\prime}=24 y_{1}-2 y_{2}, \quad y_{1}=c_{1} e^{4 t}+c_{2} e^{-6 t}=y, \quad y_{2}=y^{\prime}$
6. (a) For example, $C=1000$ gives $-2.39993,-0.000167$. (b) $-2.4,0$.
(d) $a_{22}=-4+2 \sqrt{6.4}=1.05964$ gives the critical case. C about 0.18506 .

Problem Set 4.3, page 147

1. $y_{1}=c_{1} e^{-2 t}+c_{2} e^{2 t}, \quad y_{2}=-3 c_{1} e^{-2 t}+c_{2} e^{2 t}$
2. $y_{1}=2 c_{1} e^{2 t}+2 c_{2}, \quad y_{2}=c_{1} e^{2 t}-c_{2}$
3. $y_{1}=5 c_{1}+2 c_{2} e^{14.5 t}$
$y_{2}=-2 c_{1}+5 c_{2} e^{14.5 t}$
4. $y_{1}=-c_{2} \cos \sqrt{2} t+c_{3} \sin \sqrt{2} t+c_{1}$
$y_{2}=c_{2} \sqrt{2} \sin \sqrt{2} t+c_{3} \sqrt{2} \cos \sqrt{2} t$
$y_{3}=c_{2} \cos \sqrt{2} t-c_{3} \sin \sqrt{2} t+c_{1}$
5. $y_{1}=\frac{1}{2} c_{1} e^{-18 t}+2 c_{2} e^{9 t}-c_{3} e^{18 t}$
$y_{2}=c_{1} e^{-18 t}+c_{2} e^{9 t}+c_{3} e^{18 t}$
$y_{3}=c_{1} e^{-18 t}-2 c_{2} e^{9 t}-\frac{1}{2} c_{3} e^{18 t}$
6. $y_{1}=-20 e^{t}+8 e^{-t / 2}$
$y_{2}=4 e^{t}-4 e^{-t / 2}$
7. $y_{1}=2 \sinh t, \quad y_{2}=2 \cosh t$
8. $y_{1}=\frac{1}{2} e^{t}$
$y_{2}=\frac{1}{2} e^{t}$
9. $y_{2}=y_{1}^{\prime}+y_{1}, \quad y_{2}^{\prime}=y_{1}^{\prime \prime}+y_{1}^{\prime}=-y_{1}-y_{2}=-y_{1}-\left(y_{1}^{\prime}+y_{1}\right)$,
$y_{1}^{\prime \prime}+2 y_{1}^{\prime}+2 y_{1}=0, \quad y_{1}=e^{-t}(A \cos t+B \sin t)$,
$y_{2}=y_{1}^{\prime}+y_{1}=e^{-t}(B \cos t-A \sin t)$. Note that $r^{2}=y_{1}^{2}+y_{2}^{2}=e^{-2 t}\left(A^{2}+B^{2}\right)$.
10. $I_{1}=c_{1} e^{-t}+3 c_{2} e^{-3 t}, I_{2}=-3 c_{1} e^{-t}-c_{2} e^{-3 t}$

Problem Set 4.4, page 151

1. Unstable improper node, $y_{1}=c_{1} e^{t}, \quad y_{2}=c_{2} e^{2 t}$
2. Center, always stable, $y_{1}=A \cos 3 t+B \sin 3 t, \quad y_{2}=3 B \cos 3 t-3 A \sin 3 t$
3. Stable spiral, $y_{1}=e^{-2 t}(A \cos 2 t+B \sin 2 t), \quad y_{2}=e^{-2 t}(B \cos 2 t-A \sin 2 t)$
4. Saddle point, always unstable, $y_{1}=c_{1} e^{-t}+c_{2} e^{3 t}, \quad y_{2}=-c_{1} e^{-t}+c_{2} e^{3 t}$
5. Unstable node, $y_{1}=c_{1} e^{6 t}+c_{2} e^{2 t}, \quad y_{2}=2 c_{1} e^{6 t}-2 c_{2} e^{2 t}$
6. $y=e^{-t}(A \cos t+B \sin t)$. Stable and attractive spirals
7. $p=0.2 \neq 0$ (was 0), $\quad \Delta<0$, spiral point, unstable.
8. For instance, (a) -2 , (b) -1 , (c) $=-\frac{1}{2}$, (d) $=1$, (e) 4 .

Problem Set 4.5, page 159
5. Center at $(0,0)$. At $(2,0)$ set $y_{1}=2+\tilde{y}_{1}$. Then $\tilde{y}_{2}^{\prime}=\tilde{y}_{1}$. Saddle point at $(2,0)$.
7. $(0,0), y_{1}^{\prime}=-y_{1}+y_{2}, \quad y_{2}^{\prime}=-y_{1}-y_{2}$, stable and attractive spiral point; $(-2,2)$, $y_{1}=-2+\tilde{y}_{1}, \quad y_{2}=2+\tilde{y}_{2}, \quad \tilde{y}_{1}^{\prime}=-\tilde{y}_{1}-3 \tilde{y}_{2}, \quad \tilde{y}_{2}^{\prime}=-\tilde{y}_{1}-\tilde{y}_{2}$, saddle point
9. $(0,0)$ saddle point, $(-3,0)$ and $(3,0)$ centers
11. $\left(\frac{1}{2} \pi \pm 2 n \pi, 0\right)$ saddle points; $\left(-\frac{1}{2} \pi \pm 2 n \pi, 0\right)$ centers. Use $-\cos \left(\pm \frac{1}{2} \pi+\tilde{y}_{1}\right)=\sin \left(\pm \tilde{y}_{1}\right) \approx \pm \tilde{y}_{1}$.
13. $(\pm 2 n \pi, 0)$ centers; $y_{1}=(2 n+1) \pi+\tilde{y}_{1}^{\prime}, \quad(\pi \pm 2 n \pi, 0)$ saddle points
15. By multiplication, $y_{2} y_{2}^{\prime}=\left(4 y_{1}-y_{1}^{3}\right) y_{1}^{\prime}$. By integration, $y_{2}^{2}=4 y_{1}^{2}-\frac{1}{2} y_{1}^{4}+c^{*}=\frac{1}{2}\left(c+4-y_{1}^{2}\right)\left(c-4+y_{1}^{2}\right)$, where $c^{*}=\frac{1}{2} c^{2}-8$.

Problem Set 4.6, page 163
3. $y_{1}=c_{1} e^{-t}+c_{2} e^{t}, \quad y_{2}=-c_{1} e^{-t}+c_{2} e^{t}-e^{3 t}$
5. $y_{1}=c_{1} e^{5 t}+c_{2} e^{2 t}-0.43 t-0.24, \quad y_{2}=c_{1} e^{5 t}-2 c_{2} e^{2 t}+1.12 t+0.53$
7. $y_{1}=c_{1} e^{t}+4 c_{2} e^{2 t}-3 t-4-2 e^{-t}, \quad y_{2}=-c_{1} e^{t}-5 c_{2} e^{2 t}+5 t+7.5+e^{-t}$
9. The formula for \mathbf{v} shows that these various choices differ by multiples of the eigenvector for $\lambda=-2$, which can be absorbed into, or taken out of, c_{1} in the general solution $y^{(h)}$.
11. $y_{1}=-\frac{8}{3} \cosh t-\frac{4}{3} \sinh t+\frac{11}{3} e^{2 t}, \quad y_{2}=-\frac{8}{3} \sinh t-\frac{4}{3} \cosh t+\frac{4}{3} e^{2 t}$
13. $y_{1}=\cos 2 t+\sin 2 t+4 \cos t, y_{2}=2 \cos 2 t-2 \sin 2 t+\sin t$
15. $y_{1}=4 e^{-t}-4 e^{t}+e^{2 t}, \quad y_{2}=-4 e^{-t}+t$
17. $I_{1}=2 c_{1} e^{\lambda_{1} t}+2 c_{2} e^{\lambda_{2} t}+100$,
$I_{2}=(1.1+\sqrt{0.41}) c_{1} e^{\lambda_{1} t}+(1.1-\sqrt{0.41}) c_{2} e^{\lambda_{2} t}$,
$\lambda_{1}=-0.9+\sqrt{0.41}, \quad \lambda_{2}=-0.9-\sqrt{0.41}$
19. $c_{1}=17.948, \quad c_{2}=-67.948$

Chapter 4 Review Questions and Problems, page 164

11. $y_{1}=c_{1} e^{4 t}+c_{2} e^{-4 t}, \quad y_{2}=2 c_{1} e^{4 t}-2 c_{2} e^{-4 t}$. Saddle point
12. $y_{1}=e^{-4 t}(A \cos t+B \sin t), \quad y_{2}=\frac{1}{5} e^{-4 t}[(B-2 A) \cos t-(A+2 B) \sin t]$;
asymptotically stable spiral point
13. $y_{1}=c_{1} e^{-5 t}+c_{2} e^{-t}, \quad y_{2}=c_{1} e^{-5 t}-c_{2} e^{-t}$. Stable node
14. $y_{1}=e^{-t}(A \cos 2 t+B \sin 2 t), \quad y_{2}=e^{-t}(B \cos 2 t-A \sin 2 t)$. Stable and attractive spiral point
15. Unstable spiral point
16. $y_{1}=c_{1} e^{-4 t}+c_{2} e^{4 t}-1-8 t^{2}, \quad y_{2}=-c_{1} e^{-4 t}+c_{2} e^{4 t}-4 t$
17. $y_{1}=2 c_{1} e^{-t}+2 c_{2} e^{3 t}+\cos t-\sin t, \quad y_{2}=-c_{1} e^{-t}+c_{2} e^{3 t}$
18. $I_{1}^{\prime}+2.5\left(I_{1}-I_{2}\right)=169 \sin t, \quad 2.5\left(I_{2}^{\prime}-I_{1}^{\prime}\right)+25 I_{2}=0$,
$I_{1}=(19+32.5 t) e^{-5 t}-19 \cos t+62.5 \sin t$,
$I_{2}=(-6-32.5 t) e^{-5 t}+6 \cos t+2.5 \sin t$
19. $(0,0)$ saddle point; $(-1,0),(1,0)$ centers
20. $(n \pi, 0)$ center when n is even and saddle point when n is odd

Problem Set 5.1, page 174

3. $\sqrt{|k|}$
4. $\sqrt{3 / 2}$
5. $y=a_{0}\left(1-x^{2}+x^{4} / 2!-x^{6} / 3!+-\cdots\right)=a_{0} e^{-x^{2}}$
6. $y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{1}{6} a_{1} x^{3}+\cdots=a_{0} \cos x+a_{1} \sin x$
7. $a_{0}\left(1-\frac{1}{12} x^{4}-\frac{1}{60} x^{5}-\cdots\right)+a_{1}\left(x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{24} x^{5}-\cdots\right)$
8. $a_{0}\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}+\frac{13}{720} x^{6}+\cdots\right)+a_{1}\left(x-\frac{1}{6} x^{3}-\frac{1}{24} x^{5}+\frac{5}{1008} x^{7}+\cdots\right)$
9. $\sum_{m=1}^{\infty} \frac{(m+1)(m+2)}{(m+1)^{2}+1} x^{m}, \quad \sum_{m=5}^{\infty} \frac{(m-4)^{2}}{(m-3)!} x^{m}$
10. $s=1+x-x^{2}-\frac{5}{6} x^{3}+\frac{2}{3} x^{4}+\frac{11}{24} x^{5}, \quad s\left(\frac{1}{2}\right)=\frac{923}{768}$
11. $s=4-x^{2}-\frac{1}{3} x^{3}+\frac{1}{30} x^{5}, \quad s(2)=-\frac{8}{5}$; but $x=2$ is too large to give good values. Exact: $y=(x-2)^{2} e^{x}$

Problem Set 5.2, page 179
5. $\begin{aligned} P_{6}(x) & =\frac{1}{16}\left(231 x^{6}-315 x^{4}+105 x^{2}-5\right), \\ P_{7}(x) & =\frac{1}{16}\left(429 x^{7}-693 x^{5}+315 x^{3}-35 x\right)\end{aligned}$
11. Set $x=a z . \quad y=c_{1} P_{n}(x / a)+c_{2} Q_{n}(x / a)$
15. $P_{1}^{1}=\sqrt{1-x^{2}}, \quad P_{2}^{1}=3 x \sqrt{1-x^{2}}, \quad P_{2}^{2}=3\left(1-x^{2}\right)$, $P_{4}^{2}=\left(1-x^{2}\right)\left(105 x^{2}-15\right) / 2$

Problem Set 5.3, page 186
3. $y_{1}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-+\cdots=\frac{\sin x}{x}, \quad y_{2}=\frac{1}{x}-\frac{x}{2!}+\frac{x^{3}}{4!}-+\cdots=\frac{\cos x}{x}$
5. $b_{0}=1, \quad c_{0}=0, \quad r^{2}=0, \quad y_{1}=e^{-x}, \quad y_{2}=e^{-x} \ln x$
7. $y_{1}=1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{30} x^{5}+\frac{1}{144} x^{6}-\cdots$,
$y_{2}=x+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}-\frac{1}{120} x^{6}+\cdots$
9. $y_{1} \sqrt{x}, \quad y_{2}=1+x$
11. $y_{1}=e^{x}, \quad y_{2}=e^{x} / x$
13. $y_{1}=e^{x}, \quad y_{2}=e^{x} \ln x$
15. $y=A F\left(1,1,-\frac{1}{2} ; x\right)+B x^{3 / 2} F\left(\frac{5}{2}, \frac{5}{2}, \frac{5}{2} ; x\right)$
17. $y=A\left(1-8 x+\frac{32}{5} x^{2}\right)+B x^{3 / 4} F\left(\frac{7}{4},-\frac{5}{4}, \frac{7}{4} ; x\right)$
19. $y=c_{1} F\left(2,-2,-\frac{1}{2} ; t-2\right)+c_{2}(t-2)^{3 / 2} F\left(\frac{7}{2},-\frac{1}{2}, \frac{5}{2} ; t-2\right)$

Problem Set 5.4, page 195

3. $c_{1} J_{0}(\sqrt{x})$
4. $c_{1} J_{v}(\lambda x)+c_{2} J_{-v}(\lambda x), \quad v \neq 0, \pm 1, \pm 2, \cdots$
5. $c_{1} J_{1 / 2}\left(\frac{1}{2} x\right)+c_{2} J_{-1 / 2}\left(\frac{1}{2} x\right)=x^{-1 / 2}\left(\tilde{c}_{1} \sin \frac{1}{2} x+\tilde{c}_{2} \cos \frac{1}{2} x\right)$
6. $x^{-v}\left(c_{1} J_{v}(x)+c_{2} J_{-v}(x)\right), \quad v \neq 0, \pm 1, \pm 2, \cdots$
7. $J_{n}\left(x_{1}\right)=J_{n}\left(x_{2}\right)=0$ implies $x_{1}^{-n} J_{n}\left(x_{1}\right)=x_{2}^{-n} J_{n}\left(x_{2}\right)=0$ and $\left.{ }^{x^{-n}} J_{n}(x)\right]^{\prime}=0$ somewhere between x_{1} and x_{2} by Rolle's theorem.
Now use (21b) to get $J_{n+1}(x)=0$ there. Conversely, $J_{n+1}\left(x_{3}\right)=J_{n+1}\left(x_{4}\right)=0$, thus $x_{3}^{n+1} J_{n+1}\left(x_{3}\right)=x_{4}^{n+1} J_{n+1}\left(x_{4}\right)=0$ implies $J_{n}(x)=0$ in between by Rolle's theorem and (21a) with $v=n+1$.
8. By Rolle, $J_{0}^{\prime}=0$ at least once between two zeros of J_{0}. Use $J_{0}^{\prime}=-J_{1}$ by (21b) with $v=0$. Together $J_{1}=0$ at least once between two zeros of J_{0}. Also use $\left(x J_{1}\right)^{\prime}=x J_{0}$ by (21a) with $v=1$ and Rolle.
9. Use (21b) with $v=0$, (21a) with $v=1$, (21d) with $v=2$, respectively.
10. Integrate (21a).
11. Use (21a) with $v=1$, partial integration, (21b) with $v=0$, partial integration.
12. Use (21d) to get

$$
\begin{aligned}
\int J_{5}(x) d x & =-2 J_{4}(x)+\int J_{3}(x) d x=-2 J_{4}(x)-2 J_{2}(x)+\int J_{1}(x) d x \\
& =-2 J_{4}(x)-2 J_{2}(x)-J_{0}(x)+c
\end{aligned}
$$

Problem Set 5.5, page 200

1. $c_{1} J_{4}(x)+c_{2} Y_{4}(x)$
2. $c_{1} J_{2 / 3}\left(x^{2}\right)+c_{2} Y_{2 / 3}\left(x^{2}\right)$
3. $c_{1} J_{0}(\sqrt{x})+c_{2} Y_{0}(\sqrt{x})$
4. $\sqrt{x}\left(c_{1} J_{1 / 4}\left(\frac{1}{2} k x^{2}\right)+c_{2} Y_{1 / 4}\left(\frac{1}{2} k x^{2}\right)\right)$
5. $x^{3}\left(c_{1} J_{3}(x)+c_{2} Y_{3}(x)\right)$
6. Set $H^{(1)}=k H^{(2)}$ and use (10).
7. Use (20) in Sec. 5.4.

Chapter 5 Review Questions and Problems, page 200
11. $\cos 2 x, \sin 2 x$
13. $(x-1)^{-5},(x-1)^{7}$; Euler-Cauchy with $x-1$ instead of x
15. $J_{\sqrt{5}}(x), J_{-\sqrt{5}}(x)$
17. $e^{x}, 1+x$
19. $\sqrt{x} J_{1}(\sqrt{x}), \sqrt{x} Y_{1}(\sqrt{x})$

Problem Set 6.1, page 210

1. $3 / s^{2}+12 / s$
2. $s /\left(s^{2}+\pi^{2}\right)$
3. $1 /\left((s-2)^{2}-1\right)$
4. $(\omega \cos \theta+s \sin \theta) /\left(s^{2}+\omega^{2}\right)$
5. $\frac{1}{s}+\frac{e^{-s}-1}{s^{2}}$
6. $\frac{1-e^{-b s}}{s^{2}}-\frac{b e^{-b s}}{s}$
7. $\frac{\left(1-e^{-s}\right)^{2}}{s}$
8. $\frac{e^{-s}-1}{2 s^{2}}-\frac{e^{-s}}{2 s}+\frac{1}{s}$
9. Use $e^{a t}=\cosh a t+\sinh a t$.
10. Set $c t=p$. Then $\mathscr{L}(f(c t))=\int_{0}^{\infty} e^{-s t} f(c t) d t=\int_{0}^{\infty} e^{-(s / c) p} f(p) d p / c=F(s / c) / c$.
11. $0.2 \cos 1.8 t+\sin 1.8 t$
12. $\frac{1}{L^{2}} \cos \frac{n \pi t}{L}$
13. $2 t^{3}-1.9 t^{5}$
14. $\mathscr{L}^{-1}\left(\frac{4}{s-2}-\frac{3}{s+1}\right)=4 e^{2 t}-3 e^{-t}$
15. $\frac{2}{(s+3)^{3}}$
16. $\frac{0.5 \cdot 2 \pi}{(s+4.5)^{2}+4 \pi^{2}}$
17. $\pi t e^{-\pi t}$
18. $\frac{7}{2} t^{3} e^{-t \sqrt{2}}$
19. $e^{-5 \pi t} \sinh \pi t$
20. $e^{3 t}\left(2 \cos 3 t+\frac{5}{3} \sin 3 t\right)$
21. $\left(k_{0}+k_{1} t\right) e^{-a t}$

Problem Set 6.2, page 216

1. $y=1.25 e^{-5.2 t}-1.25 \cos 2 t+3.25 \sin 2 t$
2. $(s-3)(s+2)=11 s+28-11=11 s+17, \quad Y=10 /(s-3)+1 /(s+2)$, $y=10 e^{3 t}+e^{-2 t}$
3. $\left(s^{2}-\frac{1}{4}\right) Y=12 s, \quad y=12 \cosh \frac{1}{2} t$
4. $y=\frac{1}{2} e^{3 t}+\frac{5}{2} e^{-4 t}+\frac{1}{2} e^{-3 t} \quad$ 9. $y=e^{t}-e^{3 t}+2 t$
5. $(s+1.5)^{2} Y=s+31.5+3+54 / s^{4}+64 / s$,
$Y=1 /(s+1.5)+1 /(s+1.5)^{2}+24 / s^{4}-32 / s^{3}+32 / s^{2}$, $y=(1+t) e^{-1.5 t}+4 t^{3}-16 t^{2}+32 t$
6. $t=\tilde{t}-1, \quad \tilde{Y}=4 /(s-6), \quad \tilde{y}=4 e^{6 t}, \quad y=4 e^{6(t+1)}$
7. $t=\tilde{t}+1.5, \quad(s-1)(s+4) \widetilde{Y}=4 s+17+6 /(s-2), \quad y=3 e^{t-1.5}+e^{2(t-1.5)}$
8. $\frac{1}{(s+a)^{2}}$
9. $\frac{2 \omega^{2}}{s\left(s^{2}+4 \omega^{2}\right)}$
10. $\mathscr{L}\left(f^{\prime}\right)=\mathscr{L}(\sinh 2 t)=s \mathscr{L}(f)-1$. Answer: $\left(s^{2}-2\right) /\left(s^{3}-4 s\right)$
11. $12\left(1-e^{-t / 4}\right)$
12. $(1-\cos \omega t) / \omega^{2}$
13. $\frac{1}{9}\left(1+t-\cos 3 t-\frac{1}{3} \sin 3 t\right)$
14. $\frac{1}{a^{2}}\left(e^{-a t}-1\right)+\frac{t}{a}$

Problem Set 6.3, page 223
3. $\mathscr{L}((t-2) u(t-2))=e^{-2 s} / s^{2}$
5. $\left(e^{t}\left(1-u\left(t-\frac{1}{2} \pi\right)\right)\right)=\frac{1}{s-1}\left(1-e^{-\pi s / 2+\pi / 2}\right)$
7. $\frac{1}{s+\pi}\left(e^{-2(s+\pi)}-e^{-4(s+\pi)}\right)$
9. $e^{-3 s / 2}\left(\frac{2}{s^{3}}+\frac{3}{s^{2}}+\frac{\frac{9}{4}}{s}\right)$
11. $\left(s e^{-\pi s / 2}+e^{-\pi s}\right) /\left(s^{2}+1\right)$
13. $2[1+u(t-\pi)] \sin 3 t$
15. $(t-3)^{3} u(t-3) / 6$
17. $e^{-t} \cos t(0<t<2 \pi)$
19. $\frac{1}{3}\left(e^{t}-1\right)^{3} e^{-5 t}$
21. $\sin 3 t+\sin t(0<t<\pi) ; \frac{4}{3} \sin 3 t(t>\pi)$
23. $e^{t}-\sin t(0<t<2 \pi), \quad e^{t}-\frac{1}{2} \sin 2 t(t>2 \pi)$
25. $t-\sin t(0<t<1), \quad \cos (t-1)+\sin (t-1)-\sin t(t>1)$
27. $t=1+\tilde{t}, \quad \tilde{y}^{\prime \prime}+4 \tilde{y}=8(1+\tilde{t})^{2}(1-u(\tilde{t}-4)), \quad \cos 2 t+2 t^{2}-1$ if $t<5$, $\cos 2 t+49 \cos (2 t-10)+10 \sin (2 t-10)$ if $t>5$
29. $0.1 i^{\prime}+25 i=490 e^{-5 t}[1-u(t-1)]$, $i=20\left(e^{-5 t}-e^{-250 t}\right)+20 u(t-1)\left[-e^{-5 t}+e^{-250 t+245}\right]$
31. $R q^{\prime}+q / C=0, \quad Q=\mathscr{L}(q), \quad q(0)=C V_{0}, \quad i=q^{\prime}(t)$, $R\left(s Q-C V_{0}\right)+Q / C=0, \quad q=C V_{0} e^{-t /(R C)}$
33. $10 I+\frac{100}{s} I=\frac{100}{s^{2}} e^{-2 s}, \quad I=e^{-2 s}\left(\frac{1}{s}-\frac{1}{s+10}\right), \quad i=0$ if $t<2$ and $1-e^{-10(t-2)}$ if $t>2$
35. $i=(10 \sin 10 t+100 \sin t)(u(t-\pi)-u(t-3 \pi))$
37. $\left(0.5 s^{2}+20\right) I=78 s\left(1+e^{-\pi s}\right) /\left(s^{2}+1\right)$, $i=4 \cos t-4 \cos \sqrt{40 t}-4 u(t-\pi)[\cos t+\cos (\sqrt{40}(t-\pi))]$
39. $i^{\prime}+2 i+2 \int_{0}^{t} i(\tau) d \tau=1000(1-u(t-2)), \quad I=1000\left(1-e^{-2 s}\right) /\left(s^{2}+2 s+2\right)$,
$i=1000 e^{-t} \sin t-1000 u(t-2) e^{-t+2} \sin (t-2)$

Problem Set 6.4, page 230
3. $y=8 \cos 2 t+\frac{1}{2} u(t-\pi) \sin 2 t$
5. $\sin t(0<t<\pi) ; \quad 0(\pi<t<2 \pi) ; \quad-\sin t(t>2 \pi)$
7. $y=e^{-t}+4 e^{-3 t} \sin \frac{1}{2} t+\frac{1}{2} u\left(t-\frac{1}{2}\right) e^{-3(t-1 / 2)} \sin \left(\frac{1}{2} t-\frac{1}{4}\right)$
9. $y=0.1\left[e^{t}+e^{-2 t}(-\cos t+7 \sin t)\right]+0.1 u(t-10)\left[-e^{-t}+\right.$ $\left.e^{-2 t+30}(\cos (t-10)-7 \sin (t-10))\right]$
11. $y=-e^{-3 t}+e^{-2 t}+\frac{1}{6} u(t-1)\left(1-3 e^{-2(t-1)}+2 e^{-3(t-1)}\right)+$ $u(t-2)\left(e^{-2(t-2)}-e^{-3(t-2)}\right)$
15. $k e^{-p s} /\left(s-s e^{-p s}\right)(s>0)$

Problem Set 6.5, page 237

1. t
2. $\left(e^{t}-e^{-t}\right) / 2=\sinh t$
3. $\frac{1}{2} t \sin \omega t$
4. $e^{t}-t-1$
5. $y-1 * y=1, \quad y=e^{t}$
6. $y=\cos t$
7. $y(t)+2 \int_{0}^{t} e^{t-\tau} y(\tau) d \tau=t e^{t}, \quad y=\sinh t$
8. $e^{4 t}-e^{-1.5 t}$
9. $t \sin \pi t$
10. $(\omega t-\sin \omega t) / \omega^{2}$
11. $4.5(\cosh 3 t-1)$
12. $1.5 t \sin 6 t$

Problem Set 6.6, page 241
3. $\frac{\frac{1}{2}}{(s+3)^{2}}$
5. $\frac{s^{2}-\omega^{2}}{\left(s^{2}+\omega^{2}\right)^{2}}$
7. $\frac{2 s^{3}+24 s}{\left(s^{2}-4\right)^{3}}$
9. $\frac{\pi\left(3 s^{2}-\pi^{2}\right)}{\left(s^{2}+\pi^{2}\right)^{3}}$
11. $\frac{4 s^{2}-\pi^{2}}{\left(s^{2}+\frac{1}{4} \pi^{2}\right)^{2}}$
15. $F(s)=-\frac{1}{2}\left(\frac{1}{s^{2}-9}\right)^{\prime}, \quad f(t)=\frac{1}{6} t \sinh 3 t$
17. $\ln s-\ln (s-1) ; \quad\left(-1+e^{t}\right) / t$
19. $\left[\ln \left(s^{2}+1\right)-2 \ln (s-1)\right]^{\prime}=2 s /\left(s^{2}+1\right)-2 /(s-1) ; \quad 2\left(-\cos t+e^{t}\right) / t$

Problem Set 6.7, page 246

3. $y_{1}=-e^{-5 t}+4 e^{2 t}, \quad y_{2}=e^{-5 t}+3 e^{2 t}$
4. $y_{1}=-\cos t+\sin t+1+u(t-1)[-1+\cos (t-1)-\sin (t-1)]$ $y_{2}=\cos t+\sin t-1+u(t-1)[1-\cos (t-1)-\sin (t-1)]$
5. $y_{1}=-e^{-2 t}+4 e^{t}+\frac{1}{3} u(t-1)\left(-e^{3-2 t}+e^{t}\right)$, $y_{2}=-e^{-2 t}+e^{t}+\frac{1}{3} u(t-1)\left(-e^{3-2 t}+e^{t}\right)$
6. $y_{1}=(3+4 t) e^{3 t}, \quad y_{2}=(1-4 t) e^{3 t}$
7. $y_{1}=e^{t}+e^{2 t}, \quad y_{2}=e^{2 t}$
8. $y_{1}=-4 e^{t}+\sin 10 t+4 \cos t, \quad y_{2}=4 e^{t}-\sin 10 t+4 \cos t$
9. $y_{1}=e^{t}, \quad y_{2}=e^{-t}, \quad y_{3}=e^{t}-e^{-t}$
10. $4 i_{1}+8\left(i_{1}-i_{2}\right)+2 i_{1}^{\prime}=390 \cos t, \quad 8 i_{2}+8\left(i_{2}-i_{1}\right)+4 i_{2}^{\prime}=0$,
$i_{1}=-26 e^{-2 t}-16 e^{-8 t}+42 \cos t+15 \sin t$,
$i_{2}=-26 e^{-2 t}+8 e^{-8 t}+18 \cos t+12 \sin t$
Chapter 6 Review Questions and Problems, page 251
11. $\frac{5 s}{s^{2}-4}-\frac{3}{s^{2}-1}$
12. $\frac{1}{2}(1-\cos \pi t), \quad \pi^{2} /\left(2 s^{3}+2 \pi^{2} s\right)$
13. $e^{-3 s+3 / 2} /\left(s-\frac{1}{2}\right)$
14. Sec. $6.6 ; 2 s^{2} /\left(s^{2}+1\right)^{2}$
15. $12 /\left(s^{2}(s+3)\right)$
16. $t u(t-1)$
17. $\sin (\omega t+\theta)$
18. $3 t^{2}+t^{3}$
19. $e^{-2 t}(3 \cos t-2 \sin t)$
20. $y=e^{-2 t}(13 \cos t+11 \sin t)+10 t-8$
21. $e^{-t}+u(t-\pi)\left[1.2 \cos t-3.6 \sin t+2 e^{-t+\pi}-0.8 e^{2 t-2 \pi}\right]$
22. $0(0 \leqq t \leqq 2), \quad 1-2 e^{-(t-2)}+e^{-2(t-2)} \quad(t>2)$
23. $y_{1}=4 e^{t}-e^{-2 t}, \quad y_{2}=e^{t}-e^{-2 t}$
24. $y_{1}=\cos t-u(t-\pi) \sin t+2 u(t-2 \pi) \sin ^{2} \frac{1}{2} t$,
$y_{2}=-\sin t-2 u(t-\pi) \cos ^{2} \frac{1}{2} t+u(t-2 \pi) \sin t$
25. $y_{1}=(1 / \sqrt{10}) \sin \sqrt{10} t, \quad y_{2}=-(1 / \sqrt{10}) \sin \sqrt{10} t$
26. $1-e^{-t}(0<t<4), \quad\left(e^{4}-1\right) e^{-t}(t>4)$
27. $i(t)=e^{-4 t}\left(\frac{3}{26} \cos 3 t-\frac{10}{39} \sin 3 t\right)-\frac{3}{26} \cos 10 t+\frac{8}{65} \sin 10 t$
28. $5 i_{1}^{\prime}+20\left(i_{1}-i_{2}\right)=60, \quad 30 i_{2}^{\prime}+20\left(i_{2}^{\prime}-i_{1}^{\prime}\right)+20 i_{2}=0$, $i_{1}=-8 e^{-2 t}+5 e^{-0.8 t}+3, \quad i_{2}=-4 e^{-2 t}+4 e^{-0.8 t}$

Problem Set 7.1, page 261

3. $3 \times 3, \quad 3 \times 4, \quad 3 \times 6, \quad 2 \times 2, \quad 2 \times 3, \quad 3 \times 2$
4. $\mathbf{B}=\frac{1}{5} \mathbf{A}, \quad \frac{1}{10} \mathbf{A}$
5. No, no, yes, no, no
6. $\left[\begin{array}{rrr}0 & 6 & 12 \\ 18 & 15 & 15 \\ 3 & 0 & -9\end{array}\right],\left[\begin{array}{ccc}0 & 2.5 & 1 \\ 2.5 & 1.5 & 2 \\ -1 & 2 & -1\end{array}\right],\left[\begin{array}{ccc}0 & 8.5 & 13 \\ 20.5 & 16.5 & 17 \\ 2 & 2 & -10\end{array}\right], \quad$ undefined
7. $\left[\begin{array}{rr}0 & 26 \\ 34 & 32 \\ 28 & -10\end{array}\right]$, same, $\left[\begin{array}{rr}5.4 & 0.6 \\ -4.2 & 2.4 \\ -0.6 & 0.6\end{array}\right], \quad$ same
8. $\left[\begin{array}{rr}70 & 28 \\ -28 & 56 \\ 14 & 0\end{array}\right]$, same, $-\mathbf{D}, \quad$ undefined
9. $\left[\begin{array}{r}5.5 \\ 33.0 \\ -11.0\end{array}\right]$, same, undefined, undefined 17. $\left[\begin{array}{r}-4.5 \\ -27.0 \\ 9.0\end{array}\right]$

Problem Set 7.2, page 270
5. $10, n(n+1) / 2$
7. $\mathbf{0}, \mathbf{I},\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
11. $\left[\begin{array}{rrr}10 & -14 & -6 \\ -5 & 7 & -12 \\ -5 & -1 & -4\end{array}\right]$, same, $\left[\begin{array}{rrr}10 & -5 & -15 \\ -14 & 7 & -33 \\ -2 & -4 & -4\end{array}\right], \quad$ same
13. $\left[\begin{array}{rrr}1 & 2 & 0 \\ 2 & 13 & -6 \\ 0 & -6 & 4\end{array}\right],\left[\begin{array}{rr}-9 & -5 \\ 3 & -1 \\ 4 & 0\end{array}\right]$, undefined, $\left[\begin{array}{rrr}-9 & 3 & 4 \\ -5 & -1 & 0\end{array}\right]$
15. Undefined, $\left[\begin{array}{r}8 \\ -4 \\ -3\end{array}\right], \quad\left[\begin{array}{lll}7 & -1 & 3\end{array}\right], \quad$ same
17. $\left[\begin{array}{rr}-30 & -18 \\ 45 & 9 \\ 5 & -7\end{array}\right], \quad$ undefined, $\left[\begin{array}{r}22 \\ 4 \\ -12\end{array}\right], \quad$ undefined
19. Undefined, $\left[\begin{array}{c}10.5 \\ 0 \\ -3\end{array}\right],\left[\begin{array}{r}7 \\ -3 \\ 1\end{array}\right], \quad$ same
25. (d) $\mathbf{A B}=(\mathbf{A B})^{\top}=\mathbf{B}^{\top} \mathbf{A}^{\top}=\mathbf{B} \mathbf{A}$; etc.
(e) Answer. If $\mathbf{A B}=-\mathbf{B} \mathbf{A}$.
29. $\mathbf{p}=\left[\begin{array}{lll}85 & 62 & 30\end{array}\right]^{\top}, \quad \mathbf{v}=\left[\begin{array}{ll}44,920 & 30,940\end{array}\right]^{\top}$

Problem Set 7.3, page 280

1. $x=-2, \quad y=0.5$
2. $x=1, \quad y=3, \quad z=-5$
3. $x=6, \quad y=-7$
4. $x=-3 t, \quad y=t$ arb., $\quad z=2 t$
5. $x=3 t-1, \quad y=-t+4, \quad z=t$ arb.
6. $w=1, \quad x=t_{1}$ arb., $\quad y=2 t_{2}-t_{1}, \quad z=t_{2}$ arb.
7. $w=4, \quad x=0, \quad y=2, \quad z=6 \quad$ 17. $I_{1}=2, \quad I_{2}=6, \quad I_{3}=8$
8. $I_{1}=\left(R_{1}+R_{2}\right) E_{0} /\left(R_{1} R_{2}\right) \mathrm{A}, \quad I_{2}=E_{0} / R_{1} \mathrm{~A}, \quad I_{3}=E_{0} / R_{2} \mathrm{~A}$
9. $x_{2}=1600-x_{1}, \quad x_{3}=600+x_{1}, \quad x_{4}=1000-x_{1}$. No
10. $\mathrm{C}: 3 x_{1}-x_{3}=0, \quad \mathrm{H}: 8 x_{1}-2 x_{4}=0, \quad \mathrm{O}: 2 x_{2}-2 x_{3}-x_{4}=0$, thus $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

Problem Set 7.4, page 287

1. 1; $\left[\begin{array}{lll}2 & -1 & 3\end{array}\right] ;\left[\begin{array}{ll}2 & -1\end{array}\right]^{\top}$
2. 3 ; $\left\{\left[\begin{array}{lll}3 & 5 & 0\end{array}\right], \quad\left[\begin{array}{lll}0 & 3 & 5\end{array}\right], \quad\left[\begin{array}{ll}0 & 0\end{array}\right.\right.$
1]\}
3. 3; $\left\{\left[\begin{array}{lll}2 & -1 & 4\end{array}\right], \quad\left[\begin{array}{lll}0 & 1 & -46\end{array}\right], \quad\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\right\} ; \quad\left\{\left[\begin{array}{lll}2 & 0 & 1\end{array}\right], \quad\left[\begin{array}{lll}0 & 3 & 23\end{array}\right]\right.$, $\left.\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\right\}$
4. 2; $\left[\begin{array}{llll}8 & 0 & 4 & 0\end{array}\right], \quad\left[\begin{array}{llll}0 & 2 & 0 & 4\end{array}\right] ; \quad\left[\begin{array}{ll}8 & 0\end{array}\right.$
4], $\left[\begin{array}{lll}0 & 2 & 0\end{array}\right]$
5. 3; $\left[\begin{array}{llll}9 & 0 & 1 & 0\end{array}\right],\left[\begin{array}{llll}0 & 9 & 8 & 9\end{array}\right],\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]$
6. (c) 1
7. No
8. Yes
9. No
10. Yes
11. Yes
12. 2, $\quad\left[\begin{array}{lll}-2 & 0 & 1\end{array}\right], \quad\left[\begin{array}{lll}0 & 2 & 1\end{array}\right]$
13. No
14. No
15. 1, solution of the given system $c\left[\begin{array}{lll}1 & \frac{10}{3} & 3\end{array}\right]$, basis $\left[\begin{array}{lll}1 & \frac{10}{3} & 3\end{array}\right]$
16. 1, $\left[\begin{array}{llll}4 & 2 & \frac{4}{3} & 1\end{array}\right]$

Problem Set 7.7, page 300
7. $\cos (\alpha+\beta)$
9. 1
11. 40
13. 289
15. -64
17. 2
19. 2
21. $x=3.5, \quad y=-1.0$
23. $x=0, \quad y=4, \quad z=-1$
25. $w=3, \quad x=0, \quad y=2, \quad z=-2$

Problem Set 7.8, page 308

1. $\left[\begin{array}{ll}1.20 & 4.64 \\ 0.50 & 3.60\end{array}\right]$
2. $\left[\begin{array}{rrc}54 & 0.9 & -3.4 \\ 2 & 0.2 & -0.2 \\ -30 & -0.5 & 2\end{array}\right]$
3. $\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -4 & 1\end{array}\right]$
4. $\mathbf{A}^{-1}=\mathbf{A}$
5. $\left[\begin{array}{lll}0 & 0 & \frac{1}{2} \\ \frac{1}{8} & 0 & 0 \\ 0 & \frac{1}{4} & 0\end{array}\right]$
6. $\left(\mathbf{A}^{2}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{2}=\left[\begin{array}{ll}3.760 & 22.272 \\ 2.400 & 15.280\end{array}\right]$
7. $\mathbf{A A}^{-1}=\mathbf{I}, \quad\left(\mathbf{A A}^{-1}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{-1} \mathbf{A}^{-1}=\mathbf{I}$. Multiply by \mathbf{A} from the right.

Problem Set 7.9, page 318

1. $\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}, \quad\left[\begin{array}{ll}0 & 1\end{array}\right]^{\top} ; \quad\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}, \quad\left[\begin{array}{ll}0 & -1\end{array}\right]^{\top} ; \quad\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top}, \quad\left[\begin{array}{ll}-1 & 1\end{array}\right]^{\top}$
2. 1, $\left[\begin{array}{lll}1 & 11 & -7\end{array}\right]^{\top} \quad$ 5. No
3. Dimension 2, basis $x e^{-x}, e^{-x}$
4. 3 ; basis $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$
5. $x_{1}=5 y_{1}-y_{2}, \quad x_{2}=3 y_{1}-y_{2}$
6. $x_{1}=2 y_{1}-3 y_{2}, \quad x_{2}=-10 y_{1}+16 y_{2}+y_{3}, \quad x_{3}=-7 y_{1}+11 y_{2}+y_{3}$
7. $\sqrt{26}$
8. $\sqrt{5}$
9. 1
10. $k=-20$
11. $\mathbf{a}=[3$
$\left.\begin{array}{ll}1 & -4\end{array}\right]^{\top}, \quad \mathbf{b}=\left[\begin{array}{l}-4\end{array}\right.$
$8-1]^{\top}, \quad\|\mathbf{a}+\mathbf{b}\|=\sqrt{107} \leqq 5.099+9$
12. $\mathbf{a}=[5$
$3 \quad 2]^{\top}, \quad \mathbf{b}=[3$
$2-1]^{\top}, \quad 90+14=2(38+14)$

Chapter 7 Review Questions and Problems, page 318

11. $\left[\begin{array}{rrr}-1 & 6 & 1 \\ -18 & 8 & -7 \\ -13 & -2 & -7\end{array}\right],\left[\begin{array}{rrr}1 & 18 & 13 \\ -6 & -8 & 2 \\ -1 & 7 & 7\end{array}\right]$
12. $\left[\begin{array}{lll}21 & -8 & -31\end{array}\right]^{\top},\left[\begin{array}{lll}21 & -8 & 31\end{array}\right]$
13. 197, 0
14. $-5, \quad \operatorname{det} \mathbf{A}^{2}=(\operatorname{det} \mathbf{A})^{2}=25, \quad 0$
15. $\left[\begin{array}{rrr}-2 & -12 & -12 \\ -12 & 16 & -9 \\ -12 & -9 & -14\end{array}\right]$
16. $x=4, \quad y=-2, \quad z=8$
17. $x=6, \quad y=2 t+2, \quad z=t$ arb.
18. $x=0.4, \quad y=-1.3, \quad z=1.7$
19. $x=10, \quad y=-2$
20. Ranks 2, 2, ∞
21. Ranks $2, \quad 2, \quad 1$
22. $I_{1}=16.5 \mathrm{~A}, \quad I_{2}=11 \mathrm{~A}, \quad I_{3}=5.5 \mathrm{~A}$
23. $I_{1}=4 \mathrm{~A}, \quad I_{2}=5 \mathrm{~A}, \quad I_{3}=1 \mathrm{~A}$

Problem Set 8.1, page 329

1. 3, $\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top} ; \quad-0.6,\left[\begin{array}{ll}0 & 1\end{array}\right]^{\top} \quad$ 3. $-4,\left[\begin{array}{ll}2 & 9\end{array}\right]^{\top} ; \quad 3,\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top}$
2. $-3 i,\left[\begin{array}{ll}1 & -i\end{array}\right] ; \quad 3 i,\left[\begin{array}{ll}1 & i\end{array}\right], i=\sqrt{-1}$
3. $\lambda^{2}=0, \quad\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}$
4. $0.8+0.6 i,\left[\begin{array}{ll}1 & -i\end{array}\right]^{\top} ; \quad 0.8-0.6 i,\left[\begin{array}{ll}1 & i\end{array}\right]^{\top}$
5. $-\left(\lambda^{3}-18 \lambda^{2}+99 \lambda-162\right) /(\lambda-3)=-\left(\lambda^{2}-15 \lambda+54\right) ; \quad 3,\left[\begin{array}{lll}2 & -2 & 1\end{array}\right]^{\top}$; $6,\left[\begin{array}{lll}1 & 2 & 2\end{array}\right]^{\top} ; \quad 9,\left[\begin{array}{lll}2 & 1 & -2\end{array}\right]^{\top}$
6. $-(\lambda-9)^{3} ; \quad 9,\left[\begin{array}{lll}2 & -2 & 1\end{array}\right]^{\top}$, defect 2
7. $(\lambda+1)^{2}\left(\lambda^{2}+2 \lambda-15\right) ;-1,\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{\top},\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]^{\top}$; $-5,\left[\begin{array}{llll}-3 & -3 & 1 & 1\end{array}\right]^{\top}, 3,\left[\begin{array}{llll}3 & -3 & 1 & -1\end{array}\right]^{\top}$
8. $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$. Eigenvalues $i,-i$. Corresponding eigenvectors are complex, indicating that no direction is preserved under a rotation.
9. $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] ; \quad 1,\left[\begin{array}{l}0 \\ 1\end{array}\right] ; \quad 0,\left[\begin{array}{l}1 \\ 0\end{array}\right]$. A point onto the x_{2}-axis goes onto itself, a point on the x_{1}-axis onto the origin.
10. Use that real entries imply real coefficients of the characteristic polynomial.

Problem Set 8.2, page 333

1. $1.5,\left[\begin{array}{ll}1 & -1\end{array}\right]^{\top},-45^{\circ} ; 4.5,\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top}, 45^{\circ}$
2. $1,\left[\begin{array}{ll}-1 / \sqrt{6} & 1\end{array}\right]^{\top}, 112.2^{\circ} ; \quad 8,\left[\begin{array}{ll}1 & 1 / \sqrt{6}\end{array}\right]^{\top}, 22.2^{\circ}$
3. $0.5,\left[\begin{array}{ll}1 & -1\end{array}\right]^{\top} ; \quad 1.5,\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top} ;$ directions -45° and 45°
4. $\left[\begin{array}{ll}5 & 8\end{array}\right]^{\top}$
5. $\left[\begin{array}{lll}11 & 12 & 16\end{array}\right]^{\top}$
6. 1.8
7. $c\left[\begin{array}{lll}10 & 18 & 25\end{array}\right]^{\top}$
8. $\mathbf{x}=(\mathbf{I}-\mathbf{A})^{-1} \mathbf{y}=\left[\begin{array}{lll}0.6747 & 0.7128 & 0.7543\end{array}\right]^{\top}$
9. $\mathbf{A} \mathbf{x}_{j}=\lambda_{j} \mathbf{x}_{j}\left(\mathbf{x}_{j} \neq 0\right), \quad(\mathbf{A}-k \mathbf{I}) \mathbf{x}_{j}=\lambda_{j} \mathbf{x}_{j}-k \mathbf{x}_{j}=\left(\lambda_{j}-k\right) \mathbf{x}_{j}$.
10. From $\mathbf{A} \mathbf{x}_{j}=\lambda_{j} \mathbf{x}_{j}\left(\mathbf{x}_{j} \neq \mathbf{0}\right)$ and Prob. 18 follows $k_{p} \mathbf{A}^{p} \mathbf{x}_{j}=k_{p} \lambda_{j}^{p} \mathbf{x}_{j}$ and $k_{q} \mathbf{A}^{q} \mathbf{x}_{j}=k_{q} \lambda_{j}^{q} \mathbf{x}_{j}(p \geqq 0, q \geqq 0$, integer). Adding on both sides, we see that $k_{p} \mathbf{A}^{p}+k_{q} \mathbf{A}^{q}$ has the eigenvalue $k_{p} \lambda_{j}^{p}+k_{q} \lambda_{j}^{q}$. From this the statement follows.

Problem Set 8.3, page 338

1. $0.8 \pm 0.6 i,[1 \pm i]^{\top}$; orthogonal
2. $2 \pm 0.8 i,\left[\begin{array}{cc}1 & \pm i\end{array}\right]$. Not skew-symmetric!
3. 1, $\left[\begin{array}{lll}0 & 2 & 1\end{array}\right]^{\top} ; \quad 6,\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\top}, \quad\left[\begin{array}{lll}0 & 1 & -2\end{array}\right]^{\top} ;$ symmetric
4. $0, \pm 25 i$, skew-symmetric
5. 1, $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]^{\top} ; \quad i,\left[\begin{array}{lll}1 & 0 & i\end{array}\right]^{\top} ; \quad-i,\left[\begin{array}{lll}1 & 0 & -i\end{array}\right]^{\top}$, orthogonal
6. No
7. $\mathbf{A}^{-1}=\left(-\mathbf{A}^{\top}\right)^{-1}=-\left(\mathbf{A}^{-1}\right)^{\top}$
8. No since $\operatorname{det} \mathbf{A}=\operatorname{det}\left(\mathbf{A}^{\top}\right)=\operatorname{det}(-\mathbf{A})=(-1)^{3} \operatorname{det}(\mathbf{A})=-\operatorname{det}(\mathbf{A})=0$.

Problem Set 8.4, page 345

$$
\begin{aligned}
& \text { 1. }\left[\begin{array}{rr}
-25 & 12 \\
-50 & 25
\end{array}\right], \quad-5,\left[\begin{array}{l}
3 \\
5
\end{array}\right] ; \quad 5,\left[\begin{array}{l}
2 \\
5
\end{array}\right] ; \quad \mathbf{x}=\left[\begin{array}{r}
-2 \\
4
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& \text { 3. }\left[\begin{array}{rr}
3.008 & -0.544 \\
5.456 & 6.992
\end{array}\right], 4,\left[\begin{array}{r}
-17 \\
31
\end{array}\right] ; \quad 6,\left[\begin{array}{r}
-2 \\
11
\end{array}\right] ; \quad \mathbf{x}=\left[\begin{array}{l}
25 \\
25
\end{array}\right],\left[\begin{array}{r}
10 \\
5
\end{array}\right] \\
& \text { 5. }\left[\begin{array}{rrr}
4 & 3 & -9 \\
0 & -5 & 15 \\
0 & -5 & 15
\end{array}\right], \quad 0,\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right] ; \quad 4,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] ; \quad 10,\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right] ; \quad \mathbf{x}=\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] \\
& \text { 9. }\left[\begin{array}{rr}
\frac{1}{5} & \frac{2}{5} \\
-\frac{2}{5} & \frac{1}{5}
\end{array}\right] \mathbf{A}\left[\begin{array}{rr}
1 & -2 \\
2 & 1
\end{array}\right]=\left[\begin{array}{rr}
5 & 0 \\
0 & 0
\end{array}\right] \\
& \text { 11. }\left[\begin{array}{rr}
-2 & 1 \\
3 & -1
\end{array}\right] \mathbf{A}\left[\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right]=\left[\begin{array}{rr}
2 & 0 \\
0 & -5
\end{array}\right]
\end{aligned}
$$

13. $\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1\end{array}\right] \mathbf{A}\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]=\left[\begin{array}{rrr}4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1\end{array}\right]$
14. $\left[\begin{array}{rrr}\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{1}{6} & \frac{1}{6} \\ 0 & -\frac{1}{2} & \frac{1}{2}\end{array}\right] \mathbf{A}\left[\begin{array}{rrr}1 & -2 & 0 \\ 1 & 1 & -1 \\ 1 & 1 & 1\end{array}\right]=\left[\begin{array}{rrr}10 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5\end{array}\right]$
15. $\mathbf{C}=\left[\begin{array}{ll}7 & 3 \\ 3 & 7\end{array}\right], \quad 4 y_{1}^{2}+10 y_{2}^{2}=200, \quad \mathbf{x}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right] \mathbf{y}, \quad$ ellipse
16. $\mathbf{C}=\left[\begin{array}{rr}3 & 11 \\ 11 & 3\end{array}\right], \quad 14 y_{1}^{2}-8 y_{2}^{2}=0, \quad \mathbf{x}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] \mathbf{y} ; \quad$ pair of straight lines
17. $\mathbf{C}=\left[\begin{array}{rr}1 & -6 \\ -6 & 1\end{array}\right], \quad 7 y_{1}^{2}-5 y_{2}^{2}=70, \quad \mathbf{x}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}-1 & 1 \\ 1 & 1\end{array}\right] \mathbf{y}, \quad$ hyperbola
18. $\mathbf{C}=\left[\begin{array}{rr}-11 & 42 \\ 42 & 24\end{array}\right], \quad 52 y_{1}^{2}-39 y_{2}^{2}=156, \quad \mathbf{x}=\frac{1}{\sqrt{13}}\left[\begin{array}{rr}2 & 3 \\ 3 & -2\end{array}\right] \mathbf{y}, \quad$ hyperbola

Problem Set 8.5, page 351

1. Hermitian, 5, $\left[\begin{array}{ll}-i & 1\end{array}\right]^{\top}, \quad 7, \quad\left[\begin{array}{ll}i & 1\end{array}\right]^{\top}$
2. Unitary, $\quad(1-i \sqrt{3}) / 2, \quad\left[\begin{array}{ll}-1 & 1\end{array}\right]^{\top} ; \quad(1+i \sqrt{3}) / 2, \quad\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top}$
3. Skew-Hermitian, unitary, $-i$, $\left[\begin{array}{lll}0 & -1 & 1\end{array}\right]^{\top}, \quad i,\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\top}, \quad\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\top}$
4. Eigenvalues $-1,1 ;$ eigenvectors $\left[\begin{array}{ll}1 & -1\end{array}\right]^{\top},\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top} ; \quad\left[\begin{array}{ll}1 & -i\end{array}\right]^{\top},\left[\begin{array}{ll}1 & i\end{array}\right]^{\top}$; $\left[\begin{array}{ll}0 & 1\end{array}\right]^{\top}, \quad\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}$, resp.
5. Hermitian, 16
6. Skew-Hermitian, $-6 i$
7. $\overline{(\mathbf{A B C})}^{\top}=\overline{\mathbf{C}}^{\top} \overline{\mathbf{B}}^{\top} \overline{\mathbf{A}}^{\top}=\mathbf{C}^{-1}(-\mathbf{B}) \mathbf{A}$
8. $\mathbf{A}=\mathbf{H}+\mathbf{S}, \quad \mathbf{H}=\frac{1}{2}\left(\mathbf{A}+\overline{\mathbf{A}}^{\top}\right), \quad \mathbf{S}=\frac{1}{2}\left(\mathbf{A}-\overline{\mathbf{A}}^{\top}\right)(\mathbf{H}$ Hermitian, \mathbf{S} skew-Hermitian)
9. $\mathbf{A} \overline{\mathbf{A}}^{\top}-\overline{\mathbf{A}}^{\top} \mathbf{A}=(\mathbf{H}+\mathbf{S})(\mathbf{H}-\mathbf{S})-(\mathbf{H}-\mathbf{S})(\mathbf{H}+\mathbf{S})=\mathbf{2}(-\mathbf{H} \mathbf{S}+\mathbf{S H})=\mathbf{0}$ if and only if $\mathbf{H S}=\mathbf{S H}$.

Chapter 8 Review Questions and Problems, page 352

$$
\begin{aligned}
& \text { 11. 3, }\left[\begin{array}{ll}
1 & 1
\end{array}\right]^{\top} ; \quad 2,\left[\begin{array}{ll}
1 & -1
\end{array}\right]^{\top} \\
& \text { 13. 3, }\left[\begin{array}{ll}
1 & 5
\end{array}\right]^{\top} ; \quad 7,\left[\begin{array}{ll}
1 & 1
\end{array}\right]^{\top} \\
& \text { 15. } 0,\left[\begin{array}{lll}
2 & -2 & 1
\end{array}\right]^{\top} ; \quad 9 i,\left[\begin{array}{lllll}
-1+3 i & 1+3 i & 4
\end{array}\right]^{\top} ; \quad-9 i,\left[\begin{array}{lll}
-1-3 i & 1-3 i & 4
\end{array}\right]^{\top} \\
& \text { 17. }-1,1 ; \quad \mathbf{A}=\frac{1}{16}\left[\begin{array}{rr}
5 & -3 \\
-3 & 5
\end{array}\right]\left[\begin{array}{ll}
23 & 2 \\
39 & 1
\end{array}\right]=\frac{1}{8}\left[\begin{array}{rr}
-1 & 1 \\
63 & 1
\end{array}\right]
\end{aligned}
$$

19. $\frac{1}{3}\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right] \mathbf{A}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}-0.9 & 0 \\ 0 & 0.6\end{array}\right]$
20. $\frac{1}{3}\left[\begin{array}{rrr}1 & 1 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & 1\end{array}\right] \mathbf{A}\left[\begin{array}{rrr}1 & 2 & 1 \\ 1 & -1 & 1 \\ -1 & 1 & 2\end{array}\right]=\left[\begin{array}{rrr}4 & 0 & 0 \\ 0 & -20 & 0 \\ 0 & 0 & 22\end{array}\right]$
21. $\mathbf{C}=\left[\begin{array}{rr}4 & 12 \\ 12 & -14\end{array}\right], \quad 10 y_{1}^{2}-20 y_{2}^{2}=20, \quad \mathbf{x}=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}2 & 1 \\ 1 & -2\end{array}\right] \mathbf{y}, \quad$ hyperbola
22. $\mathbf{C}=\left[\begin{array}{ll}3.7 & 1.6 \\ 1.6 & 1.3\end{array}\right], \quad 4.5 y_{1}^{2}+0.5 y_{2}^{2}=4.5, \quad \mathbf{x}=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}2 & 1 \\ 1 & -2\end{array}\right] \mathbf{y}, \quad$ ellipse

Problem Set 9.1, page 360

1. $5,1,0 ; \quad \sqrt{26} ; \quad[5 / \sqrt{26}, 1 / \sqrt{26}, 0]$
2. $8.5,-4.0,1.7 ; \quad \sqrt{91.14}, \quad[0.890,-0.419,0.178]$
3. $2,1,-2 ; \quad \mathbf{u}=\left[\frac{2}{3}, \frac{1}{3},-\frac{2}{3}\right]$, position vector of Q
4. $Q:\left(4,0, \frac{1}{2}\right), \quad|\mathbf{v}|=\sqrt{16.25} \quad$ 9. $Q:(0,0,-8), \quad|\mathbf{v}|=8$
5. $[6,4,0], \quad\left[\frac{3}{2}, 1,0\right],[-3,-2,0]$
6. $[1,5,8]$
7. $7[9,-7,8]=[63,-49,56]$
8. $[12,8,0]$
9. $[4,9,-3], \sqrt{106}$
10. $[0,0,5], 5$
11. $[6,2,-14]=2 \mathbf{u}, \sqrt{236}$
12. $\mathbf{p}=[0,0,-5]$
13. $\mathbf{v}=\left[v_{1}, v_{2}, 3\right], v_{1}, v_{2}$ arbitrary
14. $k=10$
15. $|\mathbf{p}+\mathbf{q}+\mathbf{u}| \leqq 18$. Nothing
16. $v_{B}-v_{A}=[-19,0]-[22 / \sqrt{2}, 22 / \sqrt{2}]=[-19-22 / \sqrt{2},-22 / \sqrt{2}]$
17. $\mathbf{u}+\mathbf{v}+\mathbf{p}=[-k, 0]+[l, l]+[0,-1000]=\mathbf{0}, \quad-k+l+0=0$, $0+l-1000=0, \quad l=1000, k=1000$

Problem Set 9.2, page 367

1. $44,44,0$
2. $\sqrt{35}, \quad \sqrt{320}, \quad \sqrt{86}$
3. $|[2,9,9]|=\sqrt{166}=12.88<\sqrt{80}+\sqrt{86}=18.22$
4. $|-24|=24, \quad|a||c|=\sqrt{35} \sqrt{86}=\sqrt{3010}=54.86$; cf. (6)
5. 300 ; cf. (5a) and (5b)
6. Use (1) and $|\cos \gamma| \leqq 1$.
7. $|\mathbf{a}+\mathbf{b}|^{2}+|\mathbf{a}-\mathbf{b}|^{2}=\mathbf{a} \cdot \mathbf{a}+2 \mathbf{a} \cdot \mathbf{b}+\mathbf{b} \cdot \mathbf{b}+(\mathbf{a} \cdot \mathbf{a}-2 \mathbf{a} \cdot \mathbf{b}+\mathbf{b} \cdot \mathbf{b})$ $=2|\mathbf{a}|^{2}+2|\mathbf{b}|^{2}$
8. $[2,5,0] \cdot[2,2,2]=14$
9. $[0,4,3] \cdot[-3,-2,1]=-5$ is negative! Why?
10. Yes, because $W=(\mathbf{p}+\mathbf{q}) \cdot \mathbf{d}=\mathbf{p} \cdot \mathbf{d}+\mathbf{q} \cdot \mathbf{d}$.
11. $\arccos 0.5976=53.3^{\circ}$
12. $\beta-\alpha$ is the angle between the unit vectors \mathbf{a} and \mathbf{b}. Use (2).
13. $\gamma=\arccos (12 /(6 \sqrt{13}))=0.9828=56.3^{\circ}$ and 123.7°
14. $a_{1}=-\frac{28}{3}$
15. $\pm\left[\frac{3}{5},-\frac{4}{5}\right]$
16. $(\mathbf{a}+\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})=|\mathbf{a}|^{2}-|\mathbf{b}|^{2}=0, \quad|\mathbf{a}|=|\mathbf{b}|$. A square.
17. 0. Why?
1. If $|\mathbf{a}|=|\mathbf{b}|$ or if \mathbf{a} and \mathbf{b} are orthogonal.

Problem Set 9.3, page 374

5. $-\mathbf{m}$ instead of \mathbf{m}, tendency to rotate in the opposite sense.
6. $|\mathbf{v}|=|[0,20,0] \times[8,6,0]|=|[0,0,-160]|=160$
7. Zero volume in Fig. 191, which can happen in several ways.
8. $[0,0,7], \quad[0,0,-7],-4$
9. $[6,2,7], \quad[-6,-2,-7]$
10. 0
11. $[-32,-58,34], \quad[-42,-63,19]$
12. $1,-1$
13. $[-48,-72,-168], \quad 12 \sqrt{248}=189.0,189.0$
14. $0, \quad 0,13$
15. $\mathbf{m}=[-2,-2,0] \times[2,3,0]=[0,0,-10], m=10$ clockwise
16. $[6,2,0] \times[1,2,0]=[0,0,10]$
17. $\frac{1}{2}|[-12,2,6]|=\sqrt{46}$
18. $3 x+2 y-z=5$
19. $474 / 6=79$

Problem Set 9.4, page 380

1. Hyperbolas
2. Parallel straight lines (planes in space) $y=\frac{3}{4} x+c$
3. Circles, centers on the y-axis
4. Ellipses
5. Parallel planes
6. Elliptic cylinders
7. Paraboloids

Problem Set 9.5, page 390

1. Circle, center (3,0), radius 2
2. Ellipse
3. A "Lissajous curve"
4. $\mathbf{r}=[2+t, 1+2 t, 3]$
5. $\mathbf{r}=[\sqrt{2} \cos t, \sin t, \sin t]$
6. Use $\sin (-\alpha)=-\sin \alpha$.
7. $\mathbf{u}=[-\sin t, 0, \cos t]$. At $P, \mathbf{r}^{\prime}=[-8,0,6] . \mathbf{q}(w)=[6-8 w, i, 8+6 w]$.
8. $\mathbf{q}(w)=\left[2+w, \frac{1}{2}-\frac{1}{4} w, 0\right]$
9. $\sqrt{\mathbf{r}^{\prime} \cdot \mathbf{r}^{\prime}}=\cosh t, l=\sinh l=1.175$
10. $\sqrt{\mathbf{r}^{\prime} \cdot \mathbf{r}^{\prime}}=a, l=a \pi / 2$
11. Start from $\mathbf{r}(t)=[t, f(t)]$.
12. $\mathbf{v}=\mathbf{r}^{\prime}=[1,2 t, 0], \quad|\mathbf{v}|=\sqrt{1+4 t^{2}}, \quad \mathbf{a}=[0,2,0]$
13. $\mathbf{v}(0)=(\omega+1) R \mathbf{i}, \mathbf{a}(0)=-\omega^{2} R \mathbf{j}$
14. $\mathbf{v}=[-\sin t-2 \sin 2 t, \cos t-2 \cos 2 t], \quad|\mathbf{v}|^{2}=5-4 \cos 3 t$, $\mathbf{a}=[-\cos t-4 \cos 2 t,-\sin t+4 \sin 2 t]$, and $\mathbf{a}_{\tan }=\frac{6 \sin 3 t}{5-4 \cos 3 t} \mathbf{v}$.
15. $\mathbf{v}=[-\sin t, 2 \cos 2 t,-2 \sin 2 t], \quad|\mathbf{v}|^{2}=4+\sin ^{2} t$, $\mathbf{a}=[-\cos t,-4 \sin 2 t,-4 \cos 2 t]$, and $\mathbf{a}_{\mathrm{tan}}=\frac{\frac{1}{2} \sin 2 t}{4+\sin ^{2} t} \mathbf{v}$.
16. 1 year $=365 \cdot 86,400 \mathrm{sec}, \quad R=30 \cdot 365 \cdot 86,400 / 2 \pi=151 \cdot 10^{6}[\mathrm{~km}]$, $|\mathbf{a}|=\omega^{2} R=|\mathbf{v}|^{2} / R=5.98 \cdot 10^{-6}\left[\mathrm{~km} / \mathrm{sec}^{2}\right]$
17. $R=3960+80 \mathrm{mi}=2.133 \cdot 10^{7} \mathrm{ft}, \quad g=|\mathbf{a}|=\omega^{2} R=|\mathbf{v}|^{2} / R, \quad|\mathbf{v}|=\sqrt{g R}=$ $\sqrt{6.61 \cdot 10^{8}}=25,700[\mathrm{ft} / \mathrm{sec}]=17,500[\mathrm{mph}]$
18. $\mathbf{r}(t)=[t, y(t), 0], \quad \mathbf{r}^{\prime}=\left[1, y^{\prime}, 0\right] \mathbf{r} \cdot \mathbf{r}^{\prime}=1+y^{\prime 2}$, etc.
19. $\frac{d \mathbf{r}}{d s}=\frac{d \mathbf{r}}{d t} / \frac{d s}{d t}, \quad \frac{d^{2} \mathbf{r}}{d s^{2}}=\frac{d^{2} \mathbf{r}}{d t^{2}} /\left(\frac{d s}{d t}\right)^{2}+\cdots, \quad \frac{d^{3} \mathbf{r}}{d s^{3}}=\frac{d^{3} \mathbf{r}}{d t^{3}} /\left(\frac{d s}{d t}\right)^{3}+\cdots$
20. $3 /\left(1+9 t^{2}+9 t^{4}\right)$

Problem Set 9.7, page 402

1. $[2 y-1,2 x+2]$
2. $\left[-y / x^{2}, 1 / x\right]$
3. $\left[4 x^{3}, 4 y^{3}\right]$
4. Use the chain rule.
5. Apply the quotient rule to each component and collect terms.
6. $[y, x], \quad[5,-4]$
7. $\left[2 x /\left(x^{2}+y^{2}\right), 2 y /\left(x^{2}+y^{2}\right)\right], \quad[0.16,0.12]$
8. $[8 x, 18 y, 2 z], \quad[40,-18,-22]$
9. For P on the x - and y-axes.
10. $[-1.25,0]$
11. $[0,-e]$
12. Points with $y=0, \pm \pi, \pm 2 \pi, \cdots$.
13. $-\nabla T(P)=[0,4,-1]$
14. $\nabla f=[32 x,-2 y], \quad \nabla f(P)=[160,-2]$
15. $[12 x, 4 y, 2 z], \quad[60,20,10]$
16. $[-2 x,-2 y, 1], \quad[-6,-8,1]$
17. $[2,1] \cdot[1,-1] / \sqrt{5}=1 / \sqrt{5}$
18. $[1,1,1] \cdot[-3 / 125,0,-4 / 125] / \sqrt{3}=-7 /(125 \sqrt{3})$
19. $\sqrt{8 / 3}$
20. $f=x y z$
21. $f=\int v_{1} d x+\int v_{2} d y+\int v_{3} d z$

Problem Set 9.8, page 405

1. $2 x+8 y+18 z ; \quad 7$
2. 0 , after simplification; solenoidal
3. $9 x^{2} y^{2} z^{2} ; 1296$
4. $-2 e^{x}(\cos y) z$
5. (b) $\left(f v_{1}\right)_{x}+\left(f v_{2}\right)_{y}+\left(f v_{3}\right)_{z}=f\left[\left(v_{1}\right)_{x}+\left(v_{2}\right)_{y}+\left(v_{3}\right)_{z}\right]+f_{x} v_{1}+f_{y} v_{2}+f_{z} v_{3}$, etc.
6. $\left[v_{1}, v_{2}, v_{3}\right]=\mathbf{r}^{\prime}=\left[x^{\prime}, y^{\prime}, z^{\prime}\right]=[y, 0,0], \quad z^{\prime}=0, z=c_{3}, \quad y^{\prime}=0, y=c_{2}$, and $x^{\prime}=y=c_{2}, x=c_{2} t+c_{1}$. Hence as t increases from 0 to 1 , this "shear flow" transforms the cube into a parallelepiped of volume 1 .
7. $\operatorname{div}(\mathbf{w} \times \mathbf{r})=0$ because v_{1}, v_{2}, v_{3} do not depend on x, y, z, respectively.
8. $-2 \cos 2 x+2 \cos 2 y$
9. 0
10. $2 /\left(x^{2}+y^{2}+z^{2}\right)^{2}$

Problem Set 9.9, page 408

3. Use the definitions and direct calculation.
4. $\left[x\left(z^{2}-y^{2}\right), y\left(x^{2}-z^{2}\right), z\left(y^{2}-x^{2}\right)\right] \quad$ 7. $e^{-x}[\cos y, \sin y, 0]$
5. curl $\mathbf{v}=[-6 z, 0,0]$ incompressible, $\mathbf{v}=\mathbf{r}^{\prime}=\left[x^{\prime}, y^{\prime}, z^{\prime}\right]=\left[0,3 z^{2}, 0\right], \quad x=c_{1}$, $z=c_{3}, \quad y^{\prime}=3 z^{2}=3 c_{3}^{2}, \quad y=3 c_{3}^{2} t+c_{2}$
6. curl $\mathbf{v}=[0,0,-3]$, incompressible, $x^{\prime}=y, \quad y^{\prime}=-2 x, \quad 2 x x^{\prime}+y y^{\prime}=0$, $x^{2}+\frac{1}{2} y^{2}=c, z=c_{3}$
7. curl $\mathbf{v}=0$, irrotational, $\operatorname{div} \mathbf{v}=1$, compressible, $\mathbf{r}=\left[c_{1} e^{t}, c_{2} e^{t}, c_{3} e^{-t}\right]$. Sketch it.
8. $[-1,-1,-1]$, same (why?)
9. $-y z-z x-x y, 0$ (why?), $-y-z-x$
10. $[-2 z-y,-2 x-z,-2 y-x]$, same (why?)

Chapter 9 Review Questions and Problems, page 409

11. $-10,1080,1080,65$
12. $[-10,-30,0], \quad[10,30,0], \quad \mathbf{0}, 40$
13. $[-1260,-1830,-300], \quad[-210,120,-540]$, undefined
14. $-125, \quad 125,-125$
15. $[70,-40,-50], \quad 0, \quad \sqrt{35^{2}+20^{2}+25^{2}}=\sqrt{2250}$
16. $[-2,-6,-13]$
17. $\gamma_{1}=\arccos (-10 / \sqrt{65 \cdot 40})=1.7682=-101.3^{\circ}, \gamma_{2}=23.7^{\circ}$
18. $[5,2,0] \cdot[4-1,3-1,0]=19$
19. $\mathbf{v} \cdot \mathbf{w} /|\mathbf{w}|=22 / \sqrt{8}=7.78$
20. $[0,0,-14]$, tendency of clockwise rotation
21. 4
22. $1,-2 y$
23. 0 , same (why?), $\quad 2\left(y^{2}+x^{2}-x z\right)$
24. $[0,-2,0]$
25. $9 / \sqrt{225}=\frac{3}{5}$

Problem Set 10.1, page 418
3. 4
5. $\mathbf{r}=\left[\begin{array}{ll}2 \cos t, & 2 \sin t\end{array}\right], \quad 0 \leqq t \leqq \pi / 2 ; \quad \frac{8}{5}$
7. "Exponential helix," $\left(e^{6 \pi}-1\right) / 3$
9. $23.5, \quad 0$
11. $2 e^{-t}+2 t e^{-t^{2}}, \quad-2 e^{-2}-e^{-4}+3$
15. $18 \pi, \quad \frac{4}{3}(4 \pi)^{3}, \quad 18 \pi$
17. $\left[\begin{array}{lll}4 \cos t, & +\sin t, & \sin t,\end{array} 4 \cos t\right]$,
$[2,2,0]$
19. $144 t^{4}, \quad 1843.2$

Problem Set 10.2, page 425
3. $\sin \frac{1}{2} x \cos 2 y, \quad 1-1 / \sqrt{2}=0.293$
5. $e^{x y} \sin z, \quad e-0$
7. $\cosh 1-2=-0.457$
9. $e^{x} \cosh y+e^{z} \sinh y, \quad e-(\cosh 1+\sinh 1)=0$
13. $e^{a^{2}} \cos 2 b$
15. Dependent, $x^{2} \neq-4 y^{2}$, etc.
17. Dependent, $4 \neq 0$, etc.
19. $\sin \left(a^{2}+2 b^{2}+c^{2}\right)$

Problem Set 10.3, page 432
3. $8 y^{3} / 3, \quad 54$
5. $\int_{0}^{1}\left[x-x^{3}-\left(x^{2}-x^{5}\right)\right] d x=\frac{1}{12}$
7. $\cosh 2 x-\cosh x, \quad \frac{1}{2} \sinh 4-\sinh 2$
9. $36+27 y^{2}, \quad 144$
11. $z=1-r^{2}, \quad d x d y=r d r d \theta, \quad$ Answer: $\pi / 2$
13. $\bar{x}=2 b / 3, \quad \bar{y}=h / 3$
15. $\bar{x}=0, \quad \bar{y}=4 r / 3 \pi$
17. $I_{x}=b h^{3} / 12, \quad I_{y}=b^{3} h / 4$
19. $I_{x}=(a+b) h^{3} / 24, \quad I_{y}=h\left(a^{4}-b^{4}\right) /(48(a-b))$

Problem Set 10.4, page 438

1. $(-1-1) \cdot \pi / 4=-\pi / 2$
2. $9\left(e^{2}-1\right)-\frac{8}{3}\left(e^{3}-1\right)$
3. $2 x-2 y, \quad 2 x\left(1-x^{2}\right)-\left(2-x^{2}\right)^{2}+1, \quad x=-1 \cdots 1, \quad-\frac{56}{15}$
4. 0 . Why?
5. $\frac{16}{5}$
6. $\nabla^{2} w=\cosh x, \quad y=x / 2 \cdots 2, \quad \frac{1}{2} \cosh 4-\frac{1}{2}$
7. $\nabla^{2} w=6 x y, \quad 3 x\left(10-x^{2}\right)^{2}-3 x, \quad 486$
8. $\nabla^{2} w=6 x-6 y,-38.4$
9. $|\operatorname{grad} w|^{2}=e^{2 x}, \quad \frac{5}{2}\left(e^{4}-1\right)$

Problem Set 10.5, page 442

1. Straight lines, \mathbf{k}
2. $z=c \sqrt{x^{2}+y^{2}}$, circles, straight lines, $[-c u \cos v, \quad-c u \sin v, \quad u]$
3. $z=x^{2}+y^{2}$, circles, parabolas, $\left[-2 u^{2} \cos v, \quad-2 u^{2} \sin v, \quad u\right]$
4. $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1, \quad\left[b c \cos ^{2} v \cos u, \quad a c \cos ^{2} v \sin u, \quad a b \sin v \cos v\right]$, ellipses
5. $\left[\begin{array}{lll}\tilde{u}, & \tilde{v}, & \tilde{u}^{2},+\tilde{v}^{2}\end{array}\right], \quad \tilde{\mathbf{N}}=\left[\begin{array}{lll}-2 \tilde{u}, & -2 \tilde{v}, & 1\end{array}\right]$
6. Set $x=u$ and $y=v$.
7. $[2+5 \cos u,-1+5 \sin u, \quad v], \quad\left[\begin{array}{lll}5 \cos u, & 5 \sin u, & 0\end{array}\right]$
8. $\left[\begin{array}{lll}a \cos v \cos u, & -2.8+a \cos v \sin u, & 3.2+a \sin v\end{array}\right], \quad a=1.5$; $\left[\begin{array}{lll}a^{2} \cos ^{2} v \cos u, & a^{2} \cos ^{2} v \sin u, & a^{2} \cos v \sin v\end{array}\right]$
9. $\left[\begin{array}{lll}\cosh u, & \sinh u, & v\end{array}\right], \quad\left[\begin{array}{lll}\cosh u, & -\sinh u, & 0\end{array}\right]$

Problem Set 10.6, page 450

1. $\mathbf{F}(\mathbf{r}) \cdot \mathbf{N}=\left[\begin{array}{lll}-u^{2}, & v^{2}, & 0\end{array}\right] \cdot\left[\begin{array}{ll}-3, & 2, \\ 1\end{array}\right]=3 u^{2}+2 v^{2}, \quad 29.5$
2. $\mathbf{F}(\mathbf{r}) \cdot \mathbf{N}=\cos ^{3} v \cos u \sin u$ from (3), Sec. 10.5. Answer: $\frac{1}{3}$
3. $\mathbf{F}(\mathbf{r}) \cdot \mathbf{N}=-u^{3},-128 \pi$
4. $\mathbf{F} \cdot \mathbf{N}=\left[\begin{array}{lll}0, & \sin u, & \cos v\end{array}\right] \cdot[1,-2 u, 0], \quad 4+\left(-2+\pi^{2} / 16-\pi / 2\right) \sqrt{2}=-0.1775$
5. $\mathbf{r}=\left[\begin{array}{lll}2 \cos u, & 2 \sin u, \quad v\end{array}\right], \quad 0 \leqq u \leqq \pi / 4, \quad 0 \leqq v \leqq 5$. Integrate $2 \sinh v \sin u$ to get $2(1-1 / \sqrt{2})(\cosh 5-1)=42.885$.
6. $7 \pi^{3} / \sqrt{6}=88.6$
7. $G(\mathbf{r})=\left(1+9 u^{4}\right)^{3 / 2}, \quad|\mathbf{N}|=\left(1+9 u^{4}\right)^{1 / 2}$. Answer: 54.4
8. $I_{x=y}=\iint_{S}\left[\frac{1}{2}(x-y)^{2}+z^{2}\right] \sigma d A$
9. $\left[\begin{array}{lll}u \cos v, & u \sin v, & u\end{array}\right], \int_{0}^{2 \pi} \int_{0}^{h} u^{2} \cdot u \sqrt{2} d u d v=\frac{\pi}{\sqrt{2}} h^{4}$
10. $[\cos u \cos v, \quad \cos u \sin v, \quad \sin u], \quad d A=(\cos u) d u d v, B$ the z-axis, $\quad I_{B}=8 \pi / 3$, $I_{K}=I_{B}+1^{2} \cdot 4 \pi=20.9$.

Problem Set 10.7, page 457

1. 224
2. $-e^{-1-z}+e^{-y-z}, \quad-2 e^{-1-z}+e^{-z}, \quad 2 e^{-3}-e^{-2}-2 e^{-1}+1$
3. $\frac{1}{2}(\sin 2 x)(1-\cos 2 x), \quad \frac{1}{8}, \quad \frac{3}{4}$
4. $[r \cos u \cos v, \quad \cos u \sin v, \quad r \sin u], \quad d V=r^{2} \cos u d r d u d v, \quad \sigma=v, \quad 2 \pi^{2} a^{3} / 3$
5. $\operatorname{div} \mathbf{F}=2 x+2 z, 48$
6. $12(e-1 / e)=24 \sinh 1$
7. $\operatorname{div} \mathbf{F}=-\sin z, 0$
8. $1 / \pi+\frac{5}{24}=0.5266$
9. $h^{4} \pi / 2$
10. $8 a b c\left(b^{2}+c^{2}\right) / 3$
11. $\left(a^{4} / 4\right) \cdot 2 \pi \cdot h=h a^{4} \pi / 2$
12. $h^{5} \pi / 10$
13. Do Prob. 20 as the last one.

Problem Set 10.8, page 462

1. $x=0, y=0, z=0$, no contributions. $\quad x=a: \quad \partial f / \partial n=\partial f / \partial x=-2 x=-2 a$, etc. Integrals $x=a: \quad(-2 a) b c, \quad y=b: \quad(-2 b) a c, \quad z=c: \quad(4 c) a b$. Sum 0
2. The volume integral of $8 y^{2}+[0,8 y] \cdot[2 x, 0]=8 y^{2}$ is $8 y^{3} / 3=\frac{8}{3}$. The surface integral of $f \partial g / \partial n=f \cdot 2 x=2 f=8 y^{2}$ over $x=1$ is $8 y^{3} / 3=\frac{8}{3}$. Others 0 .
3. The volume integral of $6 y^{2} \cdot 4-2 x^{2} \cdot 12$ is $0 ; 8(x=1),-8(y=1)$, others 0 .
4. $\mathbf{F}=\left[\begin{array}{lll}x, & 0, & 0\end{array}\right], \quad \operatorname{div} \mathbf{F}=1$, use (2*), Sec. 10.7, etc.
5. $z=0$ and $z=\sqrt{a^{2}-x^{2}-y^{2}}=\sqrt{a^{2}-r^{2}}, \quad d x d y=r d r d \theta$, $-\left.2 \pi \cdot \frac{1}{2}\left(a^{2}-r^{2}\right)^{3 / 2} \cdot \frac{2}{3}\right|_{0} ^{a}=\frac{2}{3} \pi a^{3}$
6. $r=a, \quad \phi=0, \quad \cos \phi=1, \quad v=\frac{1}{3} a \cdot\left(4 \pi a^{2}\right)$

Problem Set 10.9, page 468

1. $S: z=y(0 \leqq x \leqq 1,0 \leqq y \leqq 4), \quad[0,2 z,-2 z] \cdot[0,-1,1], \quad \pm 20$
2. $\left[\begin{array}{lll}2 e^{-z} \cos y, & -e^{-z}, & 0\end{array}\right] \cdot\left[\begin{array}{lll}0, & -y, & 1\end{array}\right]=y e^{-z}, \quad \pm(2-2 / \sqrt{e})$
3. $\left[0,2 z, \frac{3}{2}\right] \cdot[0,0,1]=\frac{3}{2}, \quad \pm \frac{3}{2} a^{2}$
4. $\left[\begin{array}{lll}-e^{z}, & -e^{x}, & -e^{y}\end{array}\right] \cdot\left[\begin{array}{lll}-2 x, & 0, & 1\end{array}\right], \quad \pm\left(e^{4}-2 e+1\right)$
5. The sides contribute $a, 3 a^{2} / 2, \quad-a, 0$.
6. $-2 \pi ; \operatorname{curl} \mathbf{F}=\mathbf{0}$
7. $5 \mathbf{k}, 80 \pi$
8. $[0,-1,2 x-2 y] \cdot[0,0,1], \frac{1}{3}$
9. $\mathbf{r}=\left[\begin{array}{lll}\cos u, & \sin u, & v\end{array}\right], \quad\left[\begin{array}{lll}-3 v^{2}, & 0, & 0\end{array}\right] \cdot\left[\begin{array}{lll}\cos u, & \sin u, & 0\end{array}\right], \quad-1$
10. $\mathbf{r}=[u \cos v, \quad u \sin v, \quad u], \quad 0 \leqq u \leqq 1, \quad 0 \leqq v \leqq \pi / 2$,
$\left[\begin{array}{lll}-e^{z}, & 1, & 0\end{array}\right] \cdot[-u \cos v, \quad-u \sin v, \quad u]$. Answer: $1 / 2$

Chapter 10 Review Questions and Problems, page 469

11. $\mathbf{r}=\left[\begin{array}{ll}4-10 t, & 2+8 t\end{array}, \quad \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}=\left[\begin{array}{ll}2(4-10 t)^{2}, & -4(2 t+8 t)^{2}\end{array}\right] \cdot\left[\begin{array}{ll}-10, & 8\end{array}\right] d t ;\right.$ $-4528 / 3$. Or using exactness.
12. Not exact, $\operatorname{curl} \mathbf{F}=(5 \cos x) \mathbf{k}, \quad \pm 10 \quad$ 15. 0 since $\operatorname{curl} \mathbf{F}=\mathbf{0}$
13. By Stokes, $\pm 18 \pi$
14. $\mathbf{F}=\operatorname{grad}\left(y^{2}+x z\right), \quad 2 \pi$
15. $M=8, \quad \bar{x}=\frac{8}{5}, \quad \bar{y}=\frac{16}{5}$
16. $M=\frac{63}{20}, \quad \bar{x}=\frac{8}{7}=1.14, \quad \bar{y}=\frac{118}{49}=2.41$
17. $M=4 k / 15, \quad \bar{x}=\frac{5}{16}, \quad \bar{y}=\frac{4}{7}$
18. $288(a+b+c) \pi$
19. $\operatorname{div} \mathbf{F}=20+6 z^{2}$. Answer: 21
20. $24 \sinh 1=28.205$
21. Direct integration, $\frac{224}{3}$
22. 72π

Problem Set 11.1, page 482

1. $2 \pi, 2 \pi, \pi, \pi, 1,1, \frac{1}{2}, \frac{1}{2} \quad$ 5. There is no smallest $p>0$.
2. $\frac{4}{\pi}\left(\cos x+\frac{1}{9} \cos 3 x+\frac{1}{25} \cos 5 x+\cdots\right)+2\left(\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\cdots\right)$
3. $\frac{4}{3} \pi^{2}+4\left(\cos x+\frac{1}{4} \cos 2 x+\frac{1}{9} \cos 3 x+\cdots\right)-4 \pi\left(\sin x+\frac{1}{2} \sin 2 x+\right.$ $\left.\frac{1}{3} \sin 3 x+\cdots\right)$
4. $\frac{\pi}{2}+\frac{4}{\pi}\left(\cos x+\frac{1}{9} \cos 3 x+\frac{1}{25} \cos 5 x+\cdots\right)$
5. $\frac{\pi}{4}-\frac{2}{\pi}\left(\cos x+\frac{1}{9} \cos 3 x+\frac{1}{25} \cos 5 x+\cdots\right)+\sin x-\frac{1}{2} \sin 2 x+$ $\frac{1}{3} \sin 3 x-+\cdots$
6. $2\left(\sin x+\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x+\frac{1}{4} \sin 4 x+\frac{1}{5} \sin 5 x+\cdots\right)$

Problem Set 11.2, page 490

1. Neither, even, odd, odd, neither
2. Even
3. Even
4. Odd, $L=2, \quad \frac{4}{\pi}\left(\sin \frac{\pi x}{2}+\frac{1}{3} \sin \frac{3 \pi x}{2}+\frac{1}{5} \sin \frac{5 \pi x}{2}+\cdots\right)$
5. Even, $L=1, \quad \frac{1}{3}-\frac{4}{\pi^{2}}\left(\cos \pi x-\frac{1}{4} \cos 2 \pi x+\frac{1}{9} \cos 3 \pi x-+\cdots\right)$
6. Rectifier, $L=\frac{1}{2}, \frac{1}{8}-\frac{1}{\pi^{2}}\left(\cos 2 \pi x+\frac{1}{9} \cos 6 \pi x+\frac{1}{25} \cos 10 \pi x+\cdots\right)+$ $\frac{1}{\pi}\left(\frac{1}{2} \sin 2 \pi x-\frac{1}{4} \sin 4 \pi x+\frac{1}{6} \sin 6 \pi x-\frac{1}{8} \sin 8 \pi x+\cdots\right)$
7. Odd, $L=\pi, \frac{4}{\pi}\left(\sin x-\frac{1}{9} \sin 3 x+\frac{1}{25} \sin 5 x-+\cdots\right)$
8. Even, $L=1, \quad \frac{1}{2}+\frac{4}{\pi^{2}}\left(\cos \pi x+\frac{1}{9} \cos 3 \pi x+\frac{1}{25} \cos 5 \pi x+\cdots\right)$
9. $\frac{3}{8}+\frac{1}{2} \cos 2 x+\frac{1}{8} \cos 4 x$
10. $L=4$,
(a) 1 ,
(b) $\frac{4}{\pi}\left(\sin \frac{\pi x}{4}+\frac{1}{3} \sin \frac{3 \pi x}{4}+\frac{1}{5} \sin \frac{5 \pi x}{4}+\cdots\right)$
11. $L=\pi, \quad$ (a) $\frac{\pi}{2}+\frac{4}{\pi}\left(\cos x+\frac{1}{9} \cos 3 x+\frac{1}{25} \cos 5 x+\cdots\right)$,
(b) $2\left(\sin x+\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x+\frac{1}{4} \sin 4 x+\cdots\right)$
12. $L=\pi, \quad$ (a) $\frac{3 \pi}{8}+\frac{2}{\pi}\left(\cos x-\frac{1}{2} \cos 2 x+\frac{1}{9} \cos 3 x+\frac{1}{25} \cos 5 x-\right.$ $\left.\frac{1}{18} \cos 6 x+\frac{1}{49} \cos 7 x+\frac{1}{81} \cos 9 x-\frac{1}{50} \cos 10 x+\frac{1}{121} \cos 11 x+\cdots\right)$
(b) $\left(1+\frac{2}{\pi}\right) \sin x+\frac{1}{2} \sin 2 x+\left(\frac{1}{3}-\frac{2}{9 \pi}\right) \sin 3 x+\frac{1}{4} \sin 4 x+$ $\left(\frac{1}{5}+\frac{2}{25 \pi}\right) \sin 5 x+\frac{1}{6} \sin 6 x+\cdots$
13. Rectifier, $L=\pi$,
(a) $\frac{2}{\pi}-\frac{4}{\pi}\left(\frac{1}{1 \cdot 3} \cos x+\frac{1}{3 \cdot 5} \cos 3 x+\frac{1}{5 \cdot 7} \cos 5 x+\cdots\right), \quad$ (b) $\sin x$

Problem Set 11.3, page 494

3. The output becomes a pure cosine series.
4. For A_{n} this is similar to Fig. 54 in Sec. 2.8, whereas for the phase shift B_{n} the sense is the same for all n.
5. $y=C_{1} \cos \omega t+C_{2} \sin \omega t+a(\omega) \sin t, \quad a(\omega)=1 /\left(\omega^{2}-1\right)=-1.33$, $-5.26,4.76,0.8,0.01$. Note the change of sign.
6. $y=C_{1} \cos \omega t+C_{2} \sin \omega t+\frac{4}{\pi}\left(\frac{1}{\omega^{2}-9} \sin t+\frac{1}{\omega^{2}-49} \sin 3 t+\right.$ $\left.\frac{1}{\omega^{2}-121} \sin 5 t+\cdots\right)$
7. $y=\sum_{n=1}^{N}\left(A_{n} \cos n t+B_{n} \sin n t\right), \quad A_{n}=\left[\left(1-n^{2}\right) a_{n}-n b_{n} c\right] / D_{n}$, $B_{n}=\left[\left(1-n^{2}\right) b_{n}+n c a_{n}\right] / D_{n}, \quad D_{n}=\left(1-n^{2}\right)^{2}+n^{2} c^{2}$
8. $b_{n}=(-1)^{n+1} \cdot 12 / n^{3}(n$ odd $), \quad y=\sum_{n=1}^{\infty}\left(A_{n} \cos n t+B_{n} \sin n t\right)$, $A_{n}=(-1)^{n} \cdot 12 n c / n^{3} D_{n}, \quad B_{n}=(-1)^{n+1} \cdot 12\left(1-n^{2}\right) /\left(n^{3} D_{n}\right)$ with D_{n} as in Prob. 13.
9. $I=50+A_{1} \cos t+B_{1} \sin t+A_{3} \cos 3 t+B_{3} \sin 3 t+\cdots, A_{n}=\left(10-n^{2}\right) a_{n} / D_{n}$, $B_{n}=10 n a_{n} / D_{n}, \quad a_{n}=-400 /\left(n^{2} \pi\right), D_{n}=\left(n^{2}-10\right)^{2}+100 n^{2}$
10. $I(t)=\sum_{n=1}^{\infty}\left(A_{n} \cos n t+B_{n} \sin n t\right), \quad A_{n}=(-1)^{n+1} \frac{2400\left(10-n^{2}\right)}{n^{2} D_{n}}$, $B_{n}=(-1)^{n+1} \frac{24,000}{n D_{n}}, \quad D_{n}=\left(10-n^{2}\right)^{2}+100 n^{2}$

Section 11.4, page 498

3. $F=\frac{\pi}{2}-\frac{4}{\pi}\left(\cos x+\frac{1}{9} \cos 3 x+\frac{1}{25} \cos 5 x+\cdots\right), E^{*}=0.0748$, $0.0748,0.0119,0.0119,0.0037$
4. $F=\frac{4}{\pi}\left(\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\cdots\right), E^{*}=1.1902,1.1902,0.6243,0.6243$, $0.4206 \quad(0.1272$ when $N=20)$
5. $F=2\left[\left(\pi^{2}-6\right) \sin x-\frac{1}{8}\left(4 \pi^{2}-6\right) \sin 2 x+\frac{1}{27}\left(9 \pi^{2}-6\right) \sin 3 x-+\cdots\right]$; $E^{*}=674.8,454.7,336.4,265.6,219.0$. Why is E^{*} so large?

Section 11.5, page 503

3. Set $x=c t+k . \quad$ 5. $x=\cos \theta, d x=-\sin \theta d \theta$, etc.
4. $\lambda_{m}=(m \pi / 10)^{2}, m=1,2, \cdots ; y_{m}=\sin (m \pi x / 10)$
5. $\lambda=[(2 m+1) \pi /(2 L)]^{2}, m=0,1, \cdots, y_{m}=\sin ((2 m+1) \pi x /(2 L))$
6. $\lambda_{m}=m^{2}, m=1,2, \cdots, y_{m}=x \sin (m \ln |x|)$
7. $p=e^{8 x}, q=0, r=e^{8 x}, \lambda_{m}=m^{2}, y_{m}=e^{-4 x} \sin m x, m=1,2, \cdots$

Section 11.6, page 509

1. $8\left(P_{1}(x)-P_{3}(x)+P_{5}(x)\right)$
2. $\frac{4}{5} P_{0}(x)-\frac{4}{7} P_{2}(x)-\frac{8}{35} P_{4}(x)$
3. $-0.4775 P_{1}(x)-0.6908 P_{3}(x)+1.844 P_{5}(x)-0.8236 P_{7}(x)+0.1658 P_{9}(x)+\cdots$, $m_{0}=9$. Rounding seems to have considerable influence in Probs. 8-13.
4. $0.7854 P_{0}(x)-0.3540 P_{2}(x)+0.0830 P_{4}(x)-\cdots, m_{0}=4$
5. $0.1212 P_{0}(x)-0.7955 P_{2}(x)+0.9600 P_{4}(x)-0.3360 P_{6}(x)+\cdots, m_{0}=8$
6. (c) $a_{m}=\left(2 / J_{1}^{2}\left(\alpha_{0, m}\right)\right)\left(J_{1}\left(\alpha_{0, m}\right) / \alpha_{0, m}\right)=2 /\left(\alpha_{0, m} J_{1}\left(\alpha_{0, m}\right)\right)$

Section 11.7, page 517

1. $f(x)=\pi e^{-x}(x>0)$ gives $A=\int_{0}^{\infty} e^{-v} \cos w v d v=\frac{1}{1+w^{2}}, B=\frac{w}{1+w^{2}}$ (see Example 3), etc.
2. Use $(11) ; B=\frac{2}{\pi} \int_{0}^{\infty} \frac{\pi}{2} \sin w v d v=\frac{1-\cos \pi w}{w}$
3. $B(w)=\frac{2}{\pi} \int_{0}^{1} \frac{1}{2} \pi v \sin w v d v=\frac{\sin w-w \cos w}{w^{2}}$
4. $\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin w \cos x w}{w} d w$
5. $A(w)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\cos w v}{1+v^{2}} d v=e^{-w}(w>0)$
6. $\frac{2}{\pi} \int_{0}^{\infty} \frac{\cos \pi w+1}{1-w^{2}} \cos x w d w$
7. For $n=1,2,11,12,31,32,49,50$ the value of $\operatorname{Si}(n \pi)-\pi / 2$ equals $0.28,-0.15$, $0.029,-0.026,0.0103,-0.0099,0.0065,-0.0064$ (rounded).
8. $\frac{2}{\pi} \int_{0}^{\infty} \frac{1-\cos w}{w} \sin x w d w$
9. $\frac{2}{\pi} \int_{0}^{\infty} \frac{w-e(w \cos w-\sin w)}{1+w^{2}} \sin x w d w$

Section 11.8, page 522

1. $\hat{f}_{c}(w)=\sqrt{(2 / \pi)}(2 \sin w-\sin 2 w) / w$
2. $\hat{f}_{c}(w)=\sqrt{(2 / \pi)}(\cos 2 w+2 w \sin 2 w-1) / w^{2}$
3. $\hat{f}_{c}(w)=\sqrt{\frac{2}{\pi}} \frac{\left(w^{2}-2\right) \sin w+2 w \cos w}{w^{3}}$
4. Yes. No
5. $\sqrt{2 / \pi} w /\left(a^{2}+w^{2}\right)$
6. $\sqrt{2 / \pi}\left(\left(2-w^{2}\right) \cos w+2 w \sin w-2\right) / w^{3}$
7. $\mathscr{F}_{s}\left(e^{-x}\right)=\frac{1}{w}\left(-\mathscr{F}_{c}\left(e^{-x}\right)+\sqrt{\frac{2}{\pi}} \cdot 1\right)=\frac{1}{w}\left(\sqrt{\frac{2}{\pi}} \cdot \frac{1}{w^{2}+1}+\sqrt{\frac{2}{\pi}}\right)=\sqrt{\frac{2}{\pi}} \frac{w}{w^{2}+1}$

Problem Set 11.9, page 533
3. $i\left(e^{-i b w}-e^{-i a w}\right) /(w \sqrt{2 \pi})$ if $a<b ; 0$ otherwise
5. $\left[e^{(1-i w) a}-e^{-(1-i w) a}\right] /(\sqrt{2 \pi}(1-i w))$
7. $\left(e^{-i a w}(1+i a w)-1\right) /\left(\sqrt{2 \pi} w^{2}\right) \quad$ 9. $\sqrt{2 / \pi}(\cos w+w \sin w-1) / w^{2}$
11. $i \sqrt{2 / \pi}(\cos w-1) / w$
13. $e^{-w^{2} / 2}$ by formula 9
17. No, the assumptions in Theorem 3 are not satisfied.
19. $\left[f_{1}+f_{2}+f_{3}+f_{4}, \quad f_{1}-i f_{2}-f_{3}+i f_{4}, \quad f_{1}-f_{2}+f_{3}-f_{4}, \quad f_{1}+i f_{2}-f_{3}-i f_{4}\right]$
21. $\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}f_{1} \\ f_{2}\end{array}\right]=\left[\begin{array}{l}f_{1}+f_{2} \\ f_{1}-f_{2}\end{array}\right]$

Chapter 11 Review Questions and Problems, page 537

11. $1+\frac{4}{\pi}\left(\sin \frac{\pi x}{2}+\frac{1}{3} \sin \frac{3 \pi x}{2}+\frac{1}{5} \sin \frac{5 \pi x}{2}+\cdots\right)$
12. $\frac{1}{4}-\frac{2}{\pi^{2}}\left(\cos \pi x+\frac{1}{9} \cos 3 \pi x+\frac{1}{25} \cos 5 \pi x+\cdots\right)+$ $\frac{1}{\pi}\left(\sin \pi x-\frac{1}{2} \sin 2 \pi x+\frac{1}{3} \sin 3 \pi x-+\cdots\right)$
13. $\cosh x, \sinh x(-5<x<5)$, respectively 17. Cf. Sec. 11.1.
14. $\frac{1}{2}-\frac{4}{\pi^{2}}\left(\cos \pi x+\frac{1}{9} \cos 3 \pi x+\cdots\right), \frac{2}{\pi}\left(\sin \pi x-\frac{1}{2} \sin 2 \pi x+\cdots\right)$
15. $y=C_{1} \cos \omega t+C_{2} \sin \omega t+\frac{\pi^{2}}{\omega^{2}}-12\left(\frac{\cos t}{\omega^{2}-1}-\frac{1}{4} \cdot \frac{\cos 2 t}{\omega^{2}-4}+\frac{1}{9} \cdot \frac{\cos 3 t}{\omega^{2}-9}\right.$

$$
\left.-\frac{1}{16} \cdot \frac{\cos 4 t}{\omega^{2}-16}+-\cdots\right)
$$

23. $0.82,0.50,0.36,0.28,0.23$
24. $0.0076,0.0076,0.0012,0.0012,0.0004$
25. $\frac{1}{\pi} \int_{0}^{\infty} \frac{(\cos w+w \sin w-1) \cos w x+(\sin w-w \cos w) \sin w x}{w^{2}} d w$
26. $\sqrt{2 / \pi}(\cos a w-\cos w+a w \sin a w-w \sin w) / w^{2}$

Problem Set 12.1, page 542

1. $L\left(c_{1} u_{1}+c_{2} u_{2}\right)=c_{1} L\left(u_{1}\right)+c_{2} L\left(u_{2}\right)=c_{1} \cdot 0+c_{2} \cdot 0=0$
2. $c=2$
3. $c=a / b$
4. Any c and ω
5. $c=\pi / 25$
6. $u=110-(110 / \ln 100) \ln \left(x^{2}+y^{2}\right)$
7. $u=a(y) \cos 4 \pi x+b(y) \sin 4 \pi x$
8. $u=c(x) e^{-y^{3} / 3}$
9. $u=e^{-3 y}(a(x) \cos 2 y+b(x) \sin 2 y)+0.1 e^{3 y}$
10. $u=c_{1}(y) x+c_{2}(y) / x^{2}$ (Euler-Cauchy)
11. $u(x, y)=a x y+b x+c y+k ; a, b, c, k$ arbitrary constants

Problem Set 12.3, page 551
5. $k \cos 3 \pi t \sin 3 \pi x$
7. $\frac{8 k}{\pi^{3}}\left(\cos \pi t \sin \pi x+\frac{1}{27} \cos 3 \pi t \sin 3 \pi x+\frac{1}{125} \cos 5 \pi t \sin 5 \pi x+\cdots\right)$
9. $\frac{0.8}{\pi^{2}}\left(\cos \pi t \sin \pi x-\frac{1}{9} \cos 3 \pi t \sin 3 \pi x+\frac{1}{25} \cos 5 \pi t \sin 5 \pi x-+\cdots\right)$
11. $\frac{2}{\pi^{2}}\left((2-\sqrt{2}) \cos \pi t \sin \pi x-\frac{1}{9}(2+\sqrt{2}) \cos 3 \pi t \sin 3 \pi x\right.$
$\left.+\frac{1}{25}(2+\sqrt{2}) \cos 5 \pi t \sin 5 \pi x-+\cdots\right)$
13. $\frac{4}{\pi^{3}}\left((4-\pi) \cos \pi t \sin \pi x+\cos 2 \pi t \sin 2 \pi x+\frac{4+3 \pi}{27} \cos 3 \pi t \sin 3 \pi x\right.$
$\left.+\frac{4-5 \pi}{125} \cos 5 \pi t \sin 5 \pi x+\cdots\right)$. No terms with $n=4,8,12, \cdots$.
17. $u=\frac{8 L^{2}}{\pi^{3}}\left(\cos \left[c\left(\frac{\pi}{L}\right)^{2} t\right] \sin \frac{\pi x}{L}+\frac{1}{3^{3}} \cos \left[c\left(\frac{3 \pi}{L}\right)^{2} t\right] \sin \frac{3 \pi x}{L}+\cdots\right)$
19. (a) $u(0, t)=0$, (b) $u(L, t)=0$, (c) $u_{x}(0, t)=0$, (d) $u_{x}(L, t)=0$. $C=-A, D=-B$ from (a), (c). Insert this. The coefficient determinant resulting from (b), (d) must be zero to have a nontrivial solution. This gives (22).

Problem Set 12.4, page 556

3. $c^{2}=300 /[0.9 /(2 \cdot 9.80)]=80.83^{2}\left[\mathrm{~m}^{2} / \mathrm{sec}^{2}\right]$
4. Elliptic, $\quad u=f_{1}(y+2 i x)+f_{2}(y-2 i x)$
5. Parabolic, $\quad u=x f_{1}(x-y)+f_{2}(x-y)$
6. Hyperbolic, $u=f_{1}(y-4 x)+f_{2}(y-x)$
7. Hyperbolic, $\quad x y^{\prime 2}+y y^{\prime}=0, y=v, x y=w, u_{w}=z, u=\frac{1}{y} f_{1}(x y)+f_{2}(y)$
8. Elliptic, $\quad u=f_{1}(y-(2-i) x)+f_{2}(y-(2+i) x)$. Real or imaginary parts of any function u of this form are solutions. Why?

Problem Set 12.6, page 566

3. $u_{1}=\sin x e^{-t}, \quad u_{2}=\sin 2 x e^{-4 t}, \quad u_{3}=\sin 3 x e^{-9 t}$ differ in rapidity of decay.
4. $u=\sin 0.1 \pi x e^{-1.752 \pi^{2} t / 100}$
5. $u=\frac{800}{\pi^{3}}\left(\sin 0.1 \pi x e^{-0.01752 \pi^{2} t}+\frac{1}{3^{3}} \sin 0.3 \pi x e^{-0.01752(3 \pi)^{2} t}+\cdots\right)$
6. $u=u_{\mathrm{I}}+u_{\mathrm{II}}$, where $u_{\mathrm{II}}=u-u_{\mathrm{I}}$ satisfies the boundary conditions of the text,
so that $u_{\mathrm{II}}=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} e^{-(c n \pi / L)^{2} t}, B_{n}=\frac{2}{L} \int_{0}^{L}\left[f(x)-u_{\mathrm{I}}(x)\right] \sin \frac{n \pi x}{L} d x$.
7. $F=A \cos p x+B \sin p x, \quad F^{\prime}(0)=B p=0, \quad B=0, \quad F^{\prime}(L)=-A p \sin p L=0$, $p=n \pi / L$, etc.
8. $u=1$
9. $\frac{1}{2}+\frac{4}{\pi^{2}}\left(\cos x e^{-t}+\frac{1}{9} \cos 3 x e^{-9 t}+\frac{1}{25} \cos 5 x e^{-25 t}+\cdots\right)$
10. $-\frac{K \pi}{L} \sum_{n=1}^{\infty} n B_{n} e^{-\lambda_{n}^{2} t}$
11. $u=1000\left(\sin \frac{1}{2} \pi x \sinh \frac{1}{2} \pi y\right) / \sinh \pi$
12. $u=\frac{100}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1) \sinh (2 n-1) \pi} \sin \frac{(2 n-1) \pi x}{24} \sinh \frac{(2 n-1) \pi y}{24}$
13. $u=A_{0} x+\sum_{n=1}^{\infty} A_{n} \frac{\sinh (n \pi x / 24)}{\sinh n \pi} \cos \frac{n \pi y}{24}$,

$$
A_{0}=\frac{1}{24^{2}} \int_{0}^{24} f(y) d y, \quad A_{n}=\frac{1}{12} \int_{0}^{24} f(y) \cos \frac{n \pi y}{24} d y
$$

25. $\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{a} \sinh \frac{n \pi(b-y)}{a}, A_{n}=\frac{2}{a \sinh (n \pi b / a)} \int_{0}^{a} f(x) \sin \frac{n \pi x}{a} d x$

Problem Set 12.7, page 574
3. $A=\frac{2}{\pi} \int_{0}^{\infty} \frac{\cos p v}{1+v^{2}} d v=\frac{2}{\pi} \cdot \frac{\pi}{2} e^{-p}, u=\int_{0}^{\infty} e^{-p-c^{2} p^{2} t} \cos p x d p$
5. $A=\frac{2}{\pi} \int_{0}^{1} v \cos p v d v=\frac{2}{\pi} \cdot \frac{\cos p+p \sin p-1}{p^{2}}$, etc.
7. $A=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin v}{v} \cos p v d v=\frac{2}{\pi} \cdot \frac{\pi}{2}=1$ if $0<p<1$ and 0 if $p>1$, $u=\int_{0}^{1} \cos p x e^{-c^{2} p^{2} t} d p$
9. Set $w=-v$ in (21) to get erf $(-x)=-\operatorname{erf} x$.
13. In (12) the argument $x+2 c z \sqrt{t}$ is 0 (the point where f jumps) when $z=-x /(2 c \sqrt{t})$. This gives the lower limit of integration.
15. Set $w=s / \sqrt{2}$ in (21).

Problem Set 12.9, page 584

1. (a), (b) It is multiplied by $\sqrt{2}$. (c) Half
2. $B_{m n}=(-1)^{n+1} 8 /\left(m n \pi^{2}\right) \quad$ if m odd, $0 \quad$ if m even
3. $B_{m n}=(-1)^{m+n} 4 a b /\left(m n \pi^{2}\right)$
4. $u=0.1 \cos \sqrt{20} t \sin 2 x \sin 4 y$
5. $\frac{6.4}{\pi^{2}} \sum_{\substack{m=1 \\ m, n}}^{\infty} \sum_{\substack{n=1 \\ \text { odd }}}^{\infty} \frac{1}{m^{3} n^{3}} \cos \left(t \sqrt{m^{2}+n^{2}}\right) \sin m x \sin n y$
6. $c \pi \sqrt{260}$ (corresponding eigenfunctions $F_{4,16}$ and $F_{16,14}$), etc.
7. $\cos \left(\pi t \sqrt{\frac{36}{a^{2}}+\frac{4}{b^{2}}}\right) \sin \frac{6 \pi x}{a} \sin \frac{4 \pi y}{b}$

Problem Set 12.10, page 591
5. $110+\frac{440}{\pi}\left(r \cos \theta-\frac{1}{3} r^{3} \cos 3 \theta+\frac{1}{5} r^{5} \cos 5 \theta-+\cdots\right)$
7. $55 \pi-\frac{440}{\pi}\left(r \cos \theta+\frac{1}{9} r^{3} \cos 3 \theta+\frac{1}{25} r^{5} \cos 5 \theta+\cdots\right)$
11. Solve the problem in the disk $r<a$ subject to u_{0} (given) on the upper semicircle and $-u_{0}$ on the lower semicircle.
$u=\frac{4 u_{0}}{\pi}\left(\frac{r}{a} \sin \theta+\frac{1}{3 a^{3}} r^{3} \sin 3 \theta+\frac{1}{5 a^{5}} r^{5} \sin 5 \theta+\cdots\right)$
13. Increase by a factor $\sqrt{2}$
15. $T=6.826 \rho R^{2} f_{1}^{2}$
17. No
25. $\alpha_{11} /(2 \pi)=0.6098$; See Table A1 in App. 5 .

Problem Set 12.11, page 598
5. $A_{4}=A_{6}=A_{8}=A_{10}=0, \quad A_{5}=605 / 16, \quad A_{7}=-4125 / 128, \quad A_{9}=7315 / 256$
9. $\nabla^{2} u=u^{\prime \prime}+2 u^{\prime} / r=0, \quad u^{\prime \prime} / u^{\prime}=-2 / r, \quad \ln \left|u^{\prime}\right|=-2 \ln |r|+c_{1}$, $u^{\prime}=\tilde{c} / r^{2}, u=c / r+k$
13. $u=320 / r+60$ is smaller than the potential in Prob. 12 for $2<r<4$.
17. $u=1$
19. $\cos 2 \phi=2 \cos ^{2} \phi-1,2 w^{2}-1=\frac{4}{3} P_{2}(w)-\frac{1}{3}, u=\frac{4}{3} r^{2} P_{2}(\cos \phi)-\frac{1}{3}$
25. Set $1 / r=\rho$. Then $u(\rho, \theta, \phi)=r v(r, \theta, \phi), u_{\rho}=\left(v+r v_{r}\right)\left(-1 / \rho^{2}\right)$,
$u_{\rho \rho}=\left(2 v_{r}+r v_{r r}\right)\left(1 / \rho^{4}\right)+\left(v+r v_{r}\right)\left(2 / \rho^{3}\right), u_{\rho \rho}+(2 / \rho) u_{\rho}=r^{5}\left(v_{r r}+(2 / r) v_{r}\right)$.
Substitute this and $u_{\phi \phi}=r v_{\phi \phi}$ etc. into (7) [written in terms of ρ] and divide by r^{5}.

Problem Set 12.12, page 602
5. $W=\frac{c(s)}{x^{s}}+\frac{x}{s^{2}(s+1)}, W(0, s)=0, c(s)=0, w(x, t)=x\left(t-1+e^{-t}\right)$
7. $w=f(x) g(t), x f^{\prime} g+f \dot{g}=x t$, take $f(x)=x$ to get $g=c e^{-t}+t-1$ and $c=1$ from $w(x, 0)=x(c-1)=0$.
11. Set $x^{2} /\left(4 c^{2} \tau\right)=z^{2}$. Use z as a new variable of integration. Use $\operatorname{erf}(\infty)=1$.

Chapter 12 Review Questions and Problems, page 603

17. $u=c_{1}(x) e^{-3 y}+c_{2}(x) e^{2 y}-3$
18. Hyperbolic, $f_{1}(x)+f_{2}(y+x)$
19. Hyperbolic, $f_{1}(y+2 x)+f_{2}(y-2 x)$
20. $\frac{3}{4} \cos 2 t \sin x-\frac{1}{4} \cos 6 t \sin 3 x$
21. $\sin 0.01 \pi x e^{-0.001143 t}$
22. $\frac{3}{4} \sin 0.01 \pi x e^{-0.001143 t}-\frac{1}{4} \sin 0.03 \pi x e^{-0.01029 t}$
23. $100 \cos 2 x e^{-4 t}$
24. $u=\left(u_{1}-u_{0}\right)(\ln r) / \ln \left(r_{1} / r_{0}\right)+\left(u_{0} \ln r_{1}-u_{1} \ln r_{0}\right) / \ln \left(r_{1} / r_{0}\right)$

Problem Set 13.1, page 612

1. $1 / i=i / i^{2}=-i, \quad 1 / i^{3}=i / i^{4}=i$
2. $4.8-1.4 i$
3. $x-i y=-(x+i y), \quad x=0$
4. $-117,4$
5. $-8-6 i$
6. $-120-40 i$
7. $3-i$
8. $-4 x^{2} y^{2}$
9. $\left(x^{2}-y^{2}\right) /\left(x^{2}+y^{2}\right), \quad 2 x y /\left(x^{2}+y^{2}\right)$

Problem Set 13.2, page 618

1. $\sqrt{2}\left(\cos \frac{1}{4} \pi+i \sin \frac{1}{4} \pi\right)$
2. $2\left(\cos \frac{1}{2} \pi+i \sin \frac{1}{2} \pi\right), \quad 2\left(\cos \frac{1}{2} \pi-i \sin \frac{1}{2} \pi\right)$
3. $\frac{1}{2}(\cos \pi+i \sin \pi)$
4. $\sqrt{1+\frac{1}{4} \pi^{2}}\left(\cos \arctan \frac{1}{2} \pi+i \sin \arctan \frac{1}{2} \pi\right)$
5. $3 \pi / 4$
6. $\pm \arctan \left(\frac{4}{3}\right)= \pm 0.9273$
7. -1024 . Answer: π
8. $2+2 i$
9. $6,-3 \pm 3 \sqrt{3} i$
10. $\cos \left(\frac{1}{8} \pi+\frac{1}{2} k \pi\right)+i \sin \left(\frac{1}{8} \pi+\frac{1}{2} k \pi\right), \quad k=0,1,2,3$
11. $\cos \frac{1}{5} \pi \pm i \sin \frac{1}{5} \pi, \quad \cos \frac{3}{5} \pi \pm i \sin \frac{3}{5} \pi, \quad-1$
12. $i,-1-i$
13. $\pm(1-i), \quad \pm(2+2 i)$
14. $\left|z_{1}+z_{2}\right|^{2}=\left(z_{1}+z_{2}\right)\left(\overline{z_{1}+z_{2}}\right)=\left(z_{1}+z_{2}\right)\left(\bar{z}_{1}+\bar{z}_{2}\right)$. Multiply out and use $\operatorname{Re} z_{1} \bar{z}_{2} \leqq\left|z_{1} \bar{z}_{2}\right|$ (Prob. 34). $z_{1} \bar{z}_{1}+z_{1} \bar{z}_{2}+z_{2} \bar{z}_{1}+z_{2} \bar{z}_{2}=\left|z_{1}\right|^{2}+2 \operatorname{Re} z_{1} \bar{z}_{2}+\left|z_{2}\right|^{2} \leqq\left|z_{1}\right|^{2}$ $+2\left|z_{1}\right|\left|z_{2}\right|+\left|z_{2}\right|^{2}=\left(\left|z_{1}\right|+\left|z_{2}\right|\right)^{2}$. Hence $\left|z_{1}+z_{1}\right|^{2} \leqq\left(\left|z_{1}\right|+\left|z_{2}\right|\right)^{2}$. Taking square roots gives (6).
15. $\left[\left(x_{1}+x_{2}\right)^{2}+\left(y_{1}+y_{2}\right)^{2}\right]+\left[\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right]=2\left(x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}\right)$

Problem Set 13.3, page 624

1. Closed disk, center $-1+5 i$, radius $\frac{3}{2}$
2. Annulus (circular ring), center $4-2 i$, radii π and 3π
3. Domain between the bisecting straight lines of the first quadrant and the fourth quadrant.
4. Half-plane extending from the vertical straight line $x=-1$ to the right.
5. $u(x, y)=(1-x) /\left((1-x)^{2}+y^{2}\right), \quad u(1,-1)=0$, $v(x, y)=y\left((1-x)^{2}+y^{2}\right), \quad v(1,-1)=-1$
6. Yes, since $\operatorname{Im}\left(|z|^{2} / z\right)=\operatorname{Im}\left(|z|^{2} \bar{z} /(z \bar{z})\right)=\operatorname{Im} \bar{z}=-r \sin \theta \rightarrow 0$.
7. Yes, because $\operatorname{Re} z=r \cos \theta \rightarrow 0$ and $1-|z| \rightarrow 1$ as $r \rightarrow 0$.
8. $f^{\prime}(z)=8(z-4 i)^{7}$. Now $z-4 i=3$, hence $f^{\prime}(3+4 i)=8 \cdot 3^{7}=17,496$.
9. $n(1-z)^{-n-1} i$, $n i$
10. $3 i z^{2} /(z+i)^{4}, \quad-3 i / 16$

Problem Set 13.4, page 629

1. $r_{x}=x / r=\cos \theta, \quad r_{y}=\sin \theta, \quad \theta_{x}=-(\sin \theta) / r, \quad \theta_{y}=(\cos \theta) / r$
(a) $0=u_{x}-v_{y}=u_{r} \cos \theta+u_{\theta}(-\sin \theta) / r-v_{r} \sin \theta-v_{\theta}(\cos \theta) / r$
(b) $0=u_{y}+v_{x}=u_{r} \sin \theta+u_{\theta}(\cos \theta) / r+v_{r} \cos \theta+v_{\theta}(-\sin \theta) / r$

Multiply (a) by $\cos \theta$, (b) by $\sin \theta$, and add. Etc.
3. Yes
5. No, $f(z)=\left(z^{2}\right)$
7. Yes, when $z \neq 0$. Use (7).
9. Yes, when $z \neq 0, \quad-2 \pi i, \quad 2 \pi i$
11. Yes
13. $f(z)=-\frac{1}{2} i\left(z^{2}+c\right), c$ real
15. $f(z)=1 / z+c(c$ real $)$
17. $f(z)=z^{2}+z+c(c$ real $)$
19. No
21. $a=\pi, \quad v=e^{\pi x} \sin \pi y$
23. $a=0, \quad v=\frac{1}{2} b\left(y^{2}-x^{2}\right)+c$
27. $f=u+i v$ implies $i f=-v+i u$.
29. Use (4), (5), and (1).

Problem Set 13.5, page 632
3. $e^{2 \pi i} e^{-2 \pi}=e^{-2 \pi}=0.001867$
5. $e^{2}(-1)=-7.389$
7. $e^{\sqrt{2}} i=4.113 i$
9. $5 e^{i \arctan (3 / 4)}=5 e^{0.644 i}$
11. $6.3 e^{\pi i}$
13. $\sqrt{2} e^{\pi i / 4}$
15. $\exp \left(x^{2}-y^{2}\right) \cos 2 x y, \quad \exp \left(x^{2}-y^{2}\right) \sin 2 x y$
17. $\operatorname{Re}\left(\exp \left(z^{3}\right)\right)=\exp \left(x^{3}-3 x y^{2}\right) \cos \left(3 x^{2} y-y^{3}\right)$
19. $z=2 n \pi i, \quad n=0,1, \cdots$

Problem Set 13.6, page 636

1. Use (11), then (5) for $e^{i y}$, and simplify. 7. $\cosh 1=1.543, i \sinh 1=1.175 i$
2. Both $-0.642-1.069 i$. Why?
3. $i \sinh \pi=11.55 i$, both
4. Insert the definitions on the left, multiply out, and simplify.
5. $z= \pm(2 n+1) i / 2$
6. $z= \pm n \pi i$

Problem Set 13.7, page 640
5. $\ln 11+\pi i$
7. $\frac{1}{2} \ln 32-\pi i / 4=1.733-0.785 i$
9. $i \arctan (0.8 / 0.6)=0.927 i$
11. $\ln e+\pi i / 2=1+\pi i / 2$
13. $\pm 2 n \pi i, \quad n=0,1, \cdots$
15. $\ln \left|e^{i}\right|+i \arctan \frac{\sin 1}{\cos 1} \pm 2 n \pi i=0+i+2 n \pi i, \quad n=0,1, \cdots$
17. $\ln \left(i^{2}\right)=\ln (-1)=(1 \pm 2 n) \pi i, \quad 2 \ln i=(1 \pm 4 n) \pi i, n=0,1, \cdots$
19. $e^{4-3 i}=e^{4}(\cos 3-i \sin 3)=-54.05-7.70 i$
21. $e^{0.6} e^{0.4 i}=e^{0.6}(\cos 0.4+i \sin 0.4)=1.678+0.710 i$
23. $e^{(1-i) \operatorname{Ln}(1+i)}=e^{\ln \sqrt{2}+\pi i / 4-i \ln \sqrt{2}+\pi / 4}=2.8079+1.3179 i$
25. $e^{(3-i)(\ln 3+\pi i)}=27 e^{\pi}(\cos (3 \pi-\ln 3)+i \sin (3 \pi-\ln 3))=-284.2+556.4 i$
27. $e^{(2-i) \operatorname{Ln}(-1)}=e^{(2-i) \pi i}=e^{\pi}=23.14$

Chapter 13 Review Questions and Problems, page 641

1. $2-3 i$
2. $27.46 e^{0.9929 i}, \quad 7.616 e^{1.976 i}$
3. $-5+12 i$
4. $0.16-0.12 i$
5. i
6. $4 \sqrt{2} e^{-3 \pi i / 4}$
7. $15 e^{-\pi i / 2}$
8. $\pm 3, \pm 3 i$
9. $(\pm 1 \pm i) / \sqrt{2}$
10. $f(z)=-i z^{2} / 2$
11. $f(z)=e^{-2 z}$
12. $f(z)=e^{-z^{2} / 2}$
13. $\cos 3 \cosh 1+i \sin 3 \sinh 1=-1.528+0.166 i$
14. $i \tanh 1=0.7616 i$
15. $\cosh \pi \cos \pi+i \sinh \pi \sin \pi=-11.592$

Problem Set 14.1, page 651

1. Straight segment from $(2,1)$ to $(5,2.5)$.
2. Parabola $y=x^{2}$ from $(1,2)$ to $(2,8)$.
3. Circle through $(0,0)$, center $(3,-1)$, radius $\sqrt{10}$, oriented clockwise.
4. Semicircle, center 2 , radius 4.
5. Cubic parabola $y=x^{3} \quad(-2 \leqq x \leqq 2)$
6. $z(t)=t+(2+t) i \quad(-1 \leqq t \leqq 1)$
7. $z(t)=2-i+2 e^{i t} \quad(0 \leqq t \leqq \pi)$
8. $z(t)=2 \cosh t+i \sinh t(-\infty<t<\infty)$
9. Circle $z(t)=-a-i b+r e^{-i t} \quad(0 \leqq t \leqq 2 \pi)$
10. $z(t)=t+\left(1-\frac{1}{4} t^{2}\right) i \quad(-2 \leqq t \leqq 2)$
11. $z(t)=(1+i) t \quad(1 \leqq t \leqq 3), \quad \operatorname{Re} z=t, \quad z^{\prime}(t)=1+i$. Answer: $4+4 i$
12. $e^{2 \pi i}-e^{\pi i}=1-(-1)=2$
13. $\left.\frac{1}{2} \exp z^{2}\right|_{1} ^{i}=\frac{1}{2}\left(e^{-1}-e^{1}\right)=-\sinh 1$
14. $\tan \frac{1}{4} \pi i-\tan \frac{1}{4}=i \tanh \frac{1}{4}-1$
15. $\operatorname{Im} z^{2}=2 x y=0$ on the axes. $z=1+(-1+i) t \quad(0 \leqq t \leqq 1)$,
$\left(\operatorname{Im} z^{2}\right) \dot{z}=2(1-t) y(-1+i)$ integrated: $(-1+i) / 3$.
16. $|\operatorname{Re} z|=|x| \leqq 3=M$ on $C, L=\sqrt{8}$

Problem Set 14.2, page 659

1. Use (12), Sec. 14.1, with $m=2$. 3. Yes 5. 5
2. (a) Yes. (b) No, we would have to move the contour across $\pm 2 i$.
3. 0 , yes
4. πi, no
5. 0 , yes
6. $-\pi$, no
7. 0 , no
8. 0 , yes
9. $2 \pi i$
10. $1 / z+1 /(z-1)$, hence $2 \pi i+2 \pi i=4 \pi i$.
11. 0 (Why?)
12. 0 (Why?)
13. 0

Problem Set 14.3, page 663

1. $2 \pi i z^{2} /\left.(z-1)\right|_{z=-1}=-\pi i$
2. 0
3. $2 \pi i(\cos 3 z) /\left.6\right|_{z=0}=\pi i / 3$
4. $2 \pi i(i / 2)^{3} / 2=\pi / 8$
5. $\left.2 \pi i \cdot \frac{1}{z+2 i}\right|_{z=2 i}=\frac{\pi}{2}$
6. $\left.2 \pi i(z+2)\right|_{z=2}=8 \pi i$
7. $2 \pi i \cosh \left(-\pi^{2}-\pi i\right)=-2 \pi i \cosh \pi^{2}=-60,739 i$ since $\cosh \pi i=\cos \pi=-1$ and $\sinh \pi i=i \sin \pi=0$.
8. $\left.2 \pi i \frac{\operatorname{Ln}(z+1)}{z+i}\right|_{z=i}=2 \pi i \frac{\operatorname{Ln}(1+i)}{2 i}=\pi(\ln \sqrt{2}+i \pi / 4)=1.089+2.467 i$
9. $2 \pi i e^{2 i} /(2 i)=\pi e^{2 i}$

Problem Set 14.4, page 667

1. $(2 \pi i / 3!)(-\cos 0)=-\pi i / 3$
2. $(2 \pi i /(n-1)!) e^{0}$
3. $\frac{2 \pi i}{3!}(\cosh 2 z)^{\prime \prime \prime}=\frac{\pi i}{3} \cdot 8 \sinh 1=9.845 i$
4. $\left.(2 \pi i /(2 n)!)(\cos z)^{(2 n)}\right|_{z=0}=(2 \pi i /(2 n)!)(-1)^{n} \cos 0=(-1)^{n} 2 \pi i /(2 n)!$
5. $-\left.2 \pi i(\tan \pi z)^{\prime}\right|_{z=0}=\left.\frac{-2 \pi i \cdot \pi}{\cos ^{2} \pi z}\right|_{z=0}=-2 \pi^{2} i$
6. $\left.\frac{2 \pi i}{4}((1+z) \sin z)^{\prime}\right|_{z=1 / 2}=\left.\frac{1}{2} \pi i(\sin z+(1+z) \cos z)\right|_{z=1 / 2}$
$=\frac{1}{2} \pi i\left(\sin \frac{1}{2}+\frac{3}{2} \cos \frac{1}{2}\right)$
$=2.821 i$
7. $\left.2 \pi i \cdot \frac{1}{z}\right|_{z=2}=\pi i$
8. 0 . Why?
9. 0 by Cauchy's integral theorem for a doubly connected domain; see (6) in Sec. 14.2.
10. $\left.(2 \pi i / 2!) 4^{-3}\left(e^{3 z}\right)\right|_{z=\pi i / 4}=-9 \pi(1+i) /(64 \sqrt{2})$

Chapter 14 Review Questions and Problems, page 668
21. $\frac{1}{2} \cosh \left(-\frac{1}{4} \pi^{2}\right)-\frac{1}{2}=2.469$
23. $\left.2 \pi i\left(e^{z}\right)^{(4)}\right|_{z=0}=i e^{z} /\left.12\right|_{z=0}=\pi i / 12$ by Cauchy's integral formula.
25. $-\left.2 \pi i(\tan \pi z)^{\prime}\right|_{z=1}=-2 \pi^{2} i /\left.\cos ^{2} \pi z\right|_{z=1}=-2 \pi^{2} i$
27. 0 since $z^{2}+\bar{z}-2=2\left(x^{2}-y^{2}\right)$ and $y=x$
29. $-4 \pi i$

Problem Set 15.1, page 679

1. $z_{n}=(2 i / 2)^{n}$; bounded, divergent, $\pm 1, \pm i$
2. $z_{n}=-\frac{1}{2} \pi i /(1+2 /(n i))$ by algebra; convergent to $-\pi i / 2$
3. Bounded, divergent, $\pm 1+10 i$
4. Unbounded, hence divergent
5. Convergent to 0 , hence bounded
6. Divergent; use $1 / \ln n>1 / n$.
7. Convergent; use $\Sigma 1 / n^{2}$.
8. Convergent
9. Convergent
10. Divergent
11. By absolute convergence and Cauchy's convergence principle, for given $\epsilon>0$ we have for every $n>N(\epsilon)$ and $p=1,2, \cdots$

$$
\left|z_{n+1}\right|+\cdots+\left|z_{n+p}\right|<\epsilon,
$$

hence $\left|z_{n+1}+\cdots+z_{n+p}\right|<\epsilon$ by (6*), Sec. 13.2, hence convergence by Cauchy's principle.

Problem Set 15.2, page 684

1. No! Nonnegative integer powers of z (or $z-z_{0}$) only!
2. At the center, in a disk, in the whole plane
3. $\Sigma a_{n} z^{2 n}=\Sigma a_{n}\left(z^{2}\right)^{n}, \quad\left|z^{2}\right|<R=\lim \left|a_{n} / a_{n+1}\right|$; hence $|z|<\sqrt{R}$.
4. $\pi / 2, \infty$
5. $i, \sqrt{3}$
6. $0, \sqrt{\frac{26}{5}}$
7. $-i, \frac{1}{2}$
8. $2 i, 1$
9. $1 / \sqrt{2}$

Problem Set 15.3, page 689
3. $f=\sqrt[n]{n}$. Apply l'Hôpital's rule to $\ln f=(\ln n) / n$.
5. 2
7. $\sqrt{3}$
9. $1 / \sqrt{2}$
11. $\sqrt{\frac{7}{3}}$
13. 1
15. $\frac{3}{4}$

Problem Set 15.4, page 697
3. $2 z^{2}-\frac{\left(2 z^{2}\right)^{3}}{3!}+\cdots=2 z^{2}-\frac{4}{3} z^{6}+\frac{4}{15} z^{10}-+\cdots, \quad R=\infty$
5. $\frac{1}{2}-\frac{1}{4} z^{4}+\frac{1}{8} z^{8}-\frac{1}{16} z^{12}+\frac{1}{32} z^{16}-+\cdots, \quad R=\sqrt[4]{2}$
7. $\frac{1}{2}+\frac{1}{2} \cos z=1-\frac{1}{2 \cdot 2!} z^{2}+\frac{1}{2 \cdot 4!} z^{4}-\frac{1}{2 \cdot 6!} z^{6}+-\cdots, \quad R=\infty$
9. $\int_{0}^{z}\left(1-\frac{1}{2} t^{2}+\frac{1}{8} t^{4}-+\cdots\right) d t=z-\frac{1}{6} z^{3}+\frac{1}{40} z^{5}-+\cdots, \quad R=\infty$
11. $z^{3} /(1!3)-z^{7} /(3!7)+z^{11} /(5!11)-+\cdots, \quad R=\infty$
13. $(2 / \sqrt{\pi})\left(z-z^{3} / 3+z^{5} /(2!5)-z^{7} /(3!7)+\cdots\right), \quad R=\infty$
17. Team Project. (a) $(\operatorname{Ln}(1+z))^{\prime}=1-z+z^{2}-+\cdots=1 /(1+z)$.
(c) Use that the terms of $(\sin i y) /(i y)$ are all positive, so that the sum cannot be zero.
19. $\frac{1}{2}+\frac{1}{2} i+\frac{1}{2} i(z-i)+\left(-\frac{1}{4}+\frac{1}{4} i\right)(z-i)^{2}-\frac{1}{4}(z-i)^{3}+\cdots, \quad R=\sqrt{2}$
21. $1-\frac{1}{2!}\left(z-\frac{1}{2} \pi\right)^{2}+\frac{1}{4!}\left(z-\frac{1}{2} \pi\right)^{4}-\frac{1}{6!}\left(z-\frac{1}{2} \pi\right)^{6}+-\cdots, \quad R=\infty$
23. $-\frac{1}{4}-\frac{2}{8} i(z-i)+\frac{3}{16}(z-i)^{2}+\frac{4}{32} i(z-i)^{3}-\frac{5}{64}(z-i)^{4}+\cdots, \quad R=2$
25. $2\left(z-\frac{1}{2} i\right)+\frac{2^{3}}{3!}\left(z-\frac{1}{2} i\right)^{3}+\frac{2^{5}}{5!}\left(z-\frac{1}{2} i\right)^{5}+\cdots, \quad R=\infty$

Problem Set 15.5, page 704
3. $|z+i| \leqq \sqrt{3}-\delta, \quad \delta>0$
5. $\left|z+\frac{1}{2} i\right| \leqq \frac{1}{4}-\delta, \quad \delta>0$
7. Nowhere
9. $|z-2 i| \leqq 2-\delta, \quad \delta>0$
11. $\left|z^{n}\right| \leqq 1$ and $\Sigma 1 / n^{2}$ converges. Use Theorem 5 .
13. $\left|\sin ^{n}\right| z\left|\mid \leqq 1\right.$ for all z, and $\Sigma 1 / n^{2}$ converges. Use Theorem 5.
15. $R=4$ by Theorem 2 in Sec. 15.2; use Theorem 1 .
17. $R=1 / \sqrt{\pi}>0.56$; use Theorem 1 .

Chapter 15 Review Questions and Problems, page 706

11. 1
12. 3
13. $\frac{1}{2}$
14. $\infty, e^{2 z}$
15. $\infty, \quad \cosh \sqrt{z}$
16. $\sum_{n=0}^{\infty} \frac{z^{4 n}}{(2 n+1)!}, \quad R=\infty$
17. $\frac{1}{2}+\frac{1}{2} \cos 2 z=1+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n)!}(2 z)^{2 n}, \quad R=\infty$
18. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!} z^{2 n-2}, \quad R=\infty$
19. $\cos \left[\left(z-\frac{1}{2} \pi\right)+\frac{1}{2} \pi\right]=-\left(z-\frac{1}{2} \pi\right)+\frac{1}{6}\left(z-\frac{1}{2} \pi\right)^{3}-+\cdots=-\sin \left(z-\frac{1}{2} \pi\right)$
20. $\ln 3+\frac{1}{3}(z-3)-\frac{1}{2 \cdot 9}(z-3)^{2}+\frac{1}{3 \cdot 27}(z-3)^{3}-+\cdots, \quad R=3$

Problem Set 16.1, page 714

1. $z^{-4}-\frac{1}{2} z^{-2}+\frac{1}{24}-\frac{1}{720} z^{2}+-\cdots, \quad 0<|z|<\infty$
2. $z^{-3}+z^{-1}+\frac{1}{2} z+\frac{1}{6} z^{3}+\frac{1}{24} z^{5}+\cdots, \quad 0<|z|<\infty$
3. $z^{-2}+z^{-1}+1+z+z^{2}+\cdots, \quad 0<|z|<1$
4. $z^{3}+\frac{1}{2} z+\frac{1}{24} z^{-1}+\frac{1}{720} z^{3}+\cdots, \quad 0<|z|<\infty$
5. $\exp [1+(z-1)](z-1)^{-2}=\mathrm{e} \cdot\left[(z-1)^{-2}+(z-1)^{-1}+\frac{1}{2}+\frac{1}{6}(z-1)+\cdots\right]$, $0<|z-1|<\infty$
6. $\frac{[\pi i+(z-\pi i)]^{2}}{(z-\pi i)^{4}}=\frac{(\pi i)^{2}}{(z-\pi i)^{4}}+\frac{2 \pi i}{(z-\pi i)^{3}}+\frac{1}{(z-\pi i)^{2}}$
7. $i^{-3}\left(1+\frac{z-i}{i}\right)^{-3}(z-i)^{-2}=\sum_{n=0}^{\infty}\binom{-3}{n} i^{-3-n}(z-i)^{n-2}=i(z-i)^{-2}$ $-3(z-i)^{-1}-6 i+10(z-i)+\cdots, \quad 0<|z-i|<1$
8. $(-\cos (z-\pi))(z-\pi)^{-2}=-(z-\pi)^{-2}+\frac{1}{2}-\frac{1}{24}(z-\pi)^{2}+-\cdots$, $0<|z-\pi|<\infty$
9. $\sum_{n=0}^{\infty} z^{2 n}, \quad|z|<1, \quad-\sum_{n=0}^{\infty} \frac{1}{z^{2 n+2}}, \quad|z|>1$
10. $-\left(z+\frac{1}{2} \pi\right)^{-1} \cos \left(z+\frac{1}{2} \pi\right)=-\left(z+\frac{1}{2} \pi\right)^{-1}+\frac{1}{2}\left(z+\frac{1}{2} \pi\right)-\frac{1}{24}\left(z+\frac{1}{2} \pi\right)^{3}+-\cdots$, $\left|z+\frac{1}{2} \pi\right|>0$
11. $z^{8}+z^{12}+z^{16}+\cdots, \quad|z|<1, \quad-z^{4}-1-z^{-4}-z^{-8}-\cdots, \quad|z|>1$
12. $\frac{i}{(z-i)^{2}}+\frac{1}{z-i}+i+(z-i)$

Section 16.2, page 719

1. $0 \pm 2 \pi, \pm 4 \pi, \cdots$, fourth order \quad 3. $-81 i$, fourth order
2. $\pm 1, \pm 2, \cdots$, second order 7. $\pm(2+2 i), \pm i$, simple
3. $\frac{1}{2} \sin 4 z, z=0, \pm \pi / 4, \pm \pi / 2, \cdots$, simple
4. $f(z)=\left(z-z_{0}\right)^{n} g(z), g\left(z_{0}\right) \neq 0$, hence $f^{2}(z)=\left(z-z_{0}\right)^{2 n} g^{2}(z)$.
5. Second-order poles at i and $-2 i$
6. Simple pole at ∞, essential singularity at $1+i$
7. Fourth-order poles at $\pm n \pi i, n=0,1, \cdots$, essential singularity at ∞
8. $e^{z}\left(1-e^{z}\right)=0, e^{z}=1, z= \pm 2 n \pi i$ simple zeros. Answer: simple poles at $\pm 2 n \pi i$, essential singularity at ∞
9. $1, \infty$ essential singularities, $\pm 2 n \pi i, n=0,1, \cdots$, simple poles

Section 16.3, page 725
3. $\frac{4}{15}$ at 0
5. $\pm 4 i$ at $\mp i$
7. $1 / \pi$ at $0, \pm 1, \cdots$
9. -1 at $\pm 2 n \pi i$
11. $\left(e^{z}\right)^{\prime \prime} /\left.2!\right|_{z=\pi i}=-\frac{1}{2}$ at $z=\pi i$
15. Simple pole at $\frac{1}{4}$ inside C, residue $-1 /(2 \pi)$. Answer: $-i$
17. Simple poles at $\pi / 2$, residue $e^{\pi / 2} /(-\sin \pi / 2)$, and at $-\pi / 2$, residue $e^{-\pi / 2} / \sin \pi / 2=e^{-\pi / 2}$. Answer: $-4 \pi i \sinh \pi / 2$
19. $2 \pi i\left(\sinh \frac{1}{2} i\right) / 2=-\pi \sin \frac{1}{2}$
21. $z^{-5} \cos \pi z=\cdots+\pi^{4} /(4!z)-+\cdots$. Answer: $2 \pi^{5} i / 24$
23. Residues $\frac{1}{2}$ at $z=\frac{1}{2}, 2$ at $z=\frac{1}{3}$. Answer: $5 \pi i$
25. Simple poles inside C at $2 i,-2 i, 3 i,-3 i$, residues $(2 i \cosh 2 i) /\left.\left(4 z^{3}+26 z\right)\right|_{z=2 i}=$ $\frac{1}{10}, \frac{1}{10}, \frac{1}{10}, \frac{1}{10}$, respectively. Answer: $2 \pi i \cdot \frac{4}{10}$

Problem Set 16.4, page 733

1. $2 \pi / \sqrt{k^{2}-1}$
2. $\pi / \sqrt{2}$
3. $5 \pi / 12$
4. $2 a \pi / \sqrt{a^{2}-1}$
5. 0. Why? (Make a sketch.)
1. $\pi / 2$
2. 0. Why?
1. $\pi / 3$
2. 0. Why?
1. Simple poles at $\pm 1, i$ (and $-i$); $2 \pi i \cdot \frac{1}{4} i+\pi i\left(-\frac{1}{4}+\frac{1}{4}\right)=-\frac{1}{2} \pi$
2. Simple poles at 1 and $\pm 2 \pi i$, residues i and $-i$. Answer: $\frac{\pi}{5}\left(\cos 1-e^{-2}\right)$
3. $-\pi / 2$
4. 0
5. Let $q(z)=\left(z-a_{1}\right)\left(z-a_{2}\right) \cdots\left(z-a_{k}\right)$. Use (4) in Sec. 16.3 to form the sum of the residues $1 / q^{\prime}\left(a_{1}\right)+\cdots+1 / q^{\prime}\left(a_{k}\right)$ and show that this sum is 0 ; here $k>1$.

Chapter 16 Review Questions and Problems, page 733

11. $6 \pi i$
12. $2 \pi i(-10-10)$
13. $\left.2 \pi i\left(25 z^{2}\right)^{\prime}\right|_{z=5}=500 \pi i$
14. 0 (n even), $(-1)^{(n-1) / 2} 2 \pi i /(n-1)$! (n odd $)$
15. $\pi / 6$
16. $\pi / 60$
17. 0. Why?
1. $\operatorname{Res}_{z=i} e^{i z} /\left(z^{2}+1\right)=1 /(2 i e)$. Answer: π / e.

Problem Set 17.1, page 741

5. Only in size
6. $x=c, w=-y+i c ; \quad y=k, w=-k+i x$
7. Parallel displacement; each point is moved 2 to the right and 1 up.
8. $|w| \leqq \frac{1}{4}, \quad-\pi / 4<\operatorname{Arg} w<\pi / 4$ 13. $-5 \leqq \operatorname{Re} z \leqq-2$
9. $u \geqq 1$
10. Annulus $\frac{1}{2} \leqq|w| \leqq 4$
11. $0<u<\ln 4, \quad \pi / 4<v \leqq 3 \pi / 4$
12. $z^{3}+a z^{2}+b z+c, \quad z=-\frac{1}{3}\left(a \pm \sqrt{a^{2}-3 b}\right)$
13. $z=(-1 \pm \sqrt{3}) / 2$
14. $\sinh z=0$ at $z=0, \quad \pm \pi i, \pm 2 \pi i, \cdots$
15. $M=|z|=1$ on the unit circle, $J=|z|^{2}$
16. $\left|w^{\prime}\right|=1 /|z|^{2}=1$ on the unit circle, $J=1 /|z|^{4}$
17. $M=e^{x}=1$ for $x=0$, the y-axis, $J=e^{2 x}$
18. $M=1 /|z|=1$ on the unit circle, $J=1 /|z|^{2}$

Problem Set 17.2, page 745
7. $z=\frac{w+i}{2 w}$
9. $z=\frac{4 w+i}{-3 i w+1}$
11. $z=0, \quad 1 /(a+i b)$
13. $z=0, \quad \pm \frac{1}{2}, \pm= \pm i / 2$
15. $z=i, 2 i$
17. $w=\frac{a z}{c z+a}$
19. $w=\frac{a z+b}{-b z+a}$

Problem Set 17.3, page 750
3. Apply the inverse g of f on both sides of $z_{1}=f\left(z_{1}\right)$ to get $g\left(z_{1}\right)=g\left(f\left(z_{1}\right)\right)=z_{1}$.
9. $w=i z$, a rotation. Sketch to see.
11. $w=(z+i) /(z-i)$
13. $w=1 / z$, almost by inspection
15. $w=1 / z-1$
17. $w=(2 z-i) /(-i z-2)$
19. $w=\left(z^{4}-i\right)\left(-i z^{4}+1\right)$

Problem Set 17.4, page 754

1. Circle $|w|=e^{c}$
2. Annulus $1 / \sqrt{e} \leqq|w| \leqq \sqrt{e}$
3. w-plane without $w=0$
4. $1<|w|<e, v>0$
5. $\pm(2 n+1) \pi / 2, \quad n=0,1, \cdots$
6. $u^{2} / \cosh ^{2} 2+v^{2} / \sinh ^{2} 2<1, \quad u>0, v>0$
7. Elliptic annulus bounded by $u^{2} / \cosh ^{2} 1+v^{2} / \sinh ^{2} 1=1$ and $u^{2} / \cosh ^{2} 3+v^{2} / \sinh ^{2} 3=1$
8. $\cosh z=\cos i z=\sin \left(i z+\frac{1}{2} \pi\right)$
9. $0<\operatorname{Im} t<\pi$ is the image of R under $t=z^{2} / 2$. Answer: $e^{t}=e^{z^{2} / 2}$.
10. Hyperbolas $u^{2} / \cos ^{2} c-v^{2} / \sin ^{2} c=\cosh ^{2} c-\sinh ^{2} c=1$ when $c \neq 0, \pi$, and $u= \pm \cosh y$ (thus $|u| \geqq 1$), $v=0$ when $c=0, \pi$.
11. Interior of $u^{2} / \cosh ^{2} 2+v^{2} / \sinh ^{2} 2=1$ in the fourth quadrant, or map $\pi / 2<x<\pi, 0<y<2$ by $w=\sin z$ (why?).
12. $v<0$
13. The images of the five points in the figure can be obtained directly from the function w.

Problem Set 17.5, page 756

1. w moves once around the circle $|w|=\frac{1}{2}$.
2. Four sheets, branch point at $z=-1$
3. $-i / 4$, three sheets
4. z_{0}, n sheets
5. $\sqrt{z(z-i)(z+i)}, 0, \pm i$, two sheets

Chapter 17 Review Questions and Problems, page 756

11. $1<|w|<4,|\arg w|<\pi / 4$
12. Horizontal strip $-8<v<8$
13. $u=1-\frac{1}{4} v^{2}$, same (why?)
14. $|w|>1$
15. $\frac{1}{3}<|w|<\frac{1}{2}, \quad v<0$
16. $w=1+i v, \quad v<0$
17. $w=\frac{10 z+5 i}{z+2 i}$
18. Rotation $w=i z$
19. $w=1 / z$
20. $z=0$
21. $z=2 \pm \sqrt{6}$
22. $z=0, \pm i, \pm 3 i$
23. $w=e^{4 z}$
24. $w=i z^{2}+1$
25. $w=z^{2} /(2 c)$

Problem Set 18.1, page 762

1. $2.5 \mathrm{~mm}=0.25 \mathrm{~cm} ; \quad \Phi=\operatorname{Re} 110(1+(\operatorname{Ln} z) / \ln 4)$
2. $\Phi=\operatorname{Re}\left(30-\frac{20}{\ln 10} \operatorname{Ln} z\right)$
3. $\Phi(x)=\operatorname{Re}(375+25 z)$
4. $\Phi(r)=\operatorname{Re}(32-z)$
5. Use Fig. 391 in Sec. 17.4 with the z - and w-planes interchanged and $\cos z=\sin \left(z+\frac{1}{2} \pi\right)$.
6. $\Phi=220\left(x^{3}-3 x y^{2}\right)=\operatorname{Re}\left(220 z^{3}\right)$

Problem Set 18.2, page 766

3. $w=i z^{2}$ maps R onto the strip $-2 \leqq u \leqq 0$; and $\Phi^{*}=U_{2}+\left(U_{1}-U_{2}\right)\left(1+\frac{1}{2} u\right)=$ $U_{2}+\left(U_{1}-U_{2}\right)(1-x y)$.
4. (a) $\frac{(x-2)(2 x-1)+2 y^{2}}{(x-2)^{2}+y^{2}}=c, \quad$ (b) $x^{2}-y^{2}=c, \quad x y=c, \quad e^{x} \cos y=c$
5. See Fig. 392 in Sec. 17.4. $\Phi=\operatorname{Re}\left(\sin ^{2} z\right), \quad \sin ^{2} x(y=0), \quad \sin ^{2} x \cosh ^{2} 1-\cos ^{2} x$ $\sinh ^{2} 1(y=1), \quad-\sinh ^{2} y(x=0, \pi)$.
6. $\Phi(x, y)=\cos ^{2} x \cosh ^{2} y-\sin ^{2} x \sinh ^{2} y ; \cosh ^{2} y(x=0),-\sinh y\left(x=\frac{\pi}{2}\right)$, $\cos ^{2} x(y=0), \cos ^{2} x \cosh ^{2} 1-\sin ^{2} x \sinh ^{2} 1(y=1)$
7. Corresponding rays in the w-plane make equal angles, and the mapping is conformal.
8. Apply $w=z^{2}$.
9. $z=(2 Z-i) /(-i Z-2)$ by (3) in Sec. 17.3.
10. $\Phi=\frac{5}{\pi} \operatorname{Arg}(z-2), \quad F=-\frac{5 i}{\pi} \operatorname{Ln}(z-2)$

Problem Set 18.3, page 769

1. $(80 / d) y+20$. Rotate through $\pi / 2$.
2. $\frac{80}{\pi} \arctan \frac{y}{x}=\operatorname{Re}\left(-\frac{80 i}{\pi} \operatorname{Ln} z\right)$
3. $T_{1}+\frac{2}{\pi}\left(T_{2}-T_{1}\right) \arctan \frac{y}{x}=\operatorname{Re}\left(T_{1}-\frac{2 i}{\pi}\left(T_{2}-T_{1}\right) \operatorname{Ln} z\right)$
4. $\frac{T_{1}}{\pi}\left(\arctan \frac{y}{x-b}-\arctan \frac{y}{x-a}\right)=\operatorname{Re}\left(\frac{i T_{1}}{\pi} \operatorname{Ln} \frac{z-a}{z-b}\right)$
5. $\frac{100}{\pi}(\operatorname{Arg}(z-1)-\operatorname{Arg}(z+1))=\operatorname{Re}\left(\frac{100 i}{\pi} \operatorname{Ln} \frac{z+1}{z-1}\right)$
6. $\frac{100}{\pi}\left[\operatorname{Arg}\left(z^{2}-1\right)-\operatorname{Arg}\left(z^{2}+1\right)\right]$ from $w=z^{2}$ and Prob. 11 .
7. $-20+(320 / \pi) \operatorname{Arg} z=\operatorname{Re}\left(-20-\frac{320 i}{\pi} \operatorname{Ln} z\right)$
8. $\operatorname{Re} F(z)=100+(200 / \pi) \operatorname{Re}(\arcsin z)$

Problem Set 18.4, page 776

1. $V(z)$ continuously differentiable.
2. $\left|F^{\prime}(i y)\right|=1+1 / y^{2}, \quad|y| \geqq 1$, is maximum at $y= \pm 1$, namely, 2 .
3. Calculate or note that $\nabla^{2}=$ div grad and curl grad is the zero vector; see Sec. 9.8 and Problem Set 9.7.
4. Horizontal parallel flow to the right.
5. $F(z)=z^{4}$
6. Uniform parallel flow upward, $V=\overline{F^{\prime}}=i K, V_{1}=0, V_{2}=K$
7. $F(z)=z^{3}$
8. $F(z)=z / r_{0}+r_{0} / z$
9. Use that $w=\arccos z$ gives $z=\cos w$ and interchanging the roles of the z - and w-planes.
10. $y /\left(x^{2}+y^{2}\right)=c$ or $x^{2}+(y-k)^{2}=k^{2}$

Problem Set 18.5, page 781

5. $\Phi=\frac{3}{2} r^{3} \sin 3 \theta$
6. $\Phi=\frac{1}{2} a+\frac{1}{2} a r^{8} \cos 8 \theta$
7. $\Phi=3-4 r^{2} \cos 2 \theta+r^{4} \cos 4 \theta$
8. $\Phi=\frac{2}{\pi}\left(r \sin \theta-\frac{1}{2} r^{2} \sin 2 \theta+\frac{1}{3} r^{3} \sin 3 \theta-+\cdots\right)$
9. $\Phi=\frac{2}{\pi} r \sin \theta+\frac{1}{2} r^{2} \sin 2 \theta-\frac{2}{9 \pi} r^{3} \sin 3 \theta-\frac{1}{4} r^{4} \sin 4 \theta++-\cdots$
10. $\Phi=\frac{1}{2}+\frac{2}{\pi}\left(r \cos \theta-\frac{1}{3} r^{3} \cos 3 \theta+\frac{1}{5} r^{5} \cos 5 \theta-+\cdots\right)$
11. $\Phi=\frac{1}{3}-\frac{4}{\pi^{2}}\left(r \cos \theta-\frac{1}{4} r^{2} \cos 2 \theta+\frac{1}{9} r^{3} \cos 3 \theta-+\cdots\right)$

Problem Set 18.6, page 784

1. Use (2). $F\left(z_{0}+e^{i \alpha}\right)=\left(\frac{7}{2}+e^{i \alpha}\right)^{3}$, etc. $F\left(\frac{5}{2}\right)=\frac{343}{8}$
2. Use (2). $F\left(z_{0}+e^{i \alpha}\right)=\left(2+3 e^{i \alpha}\right)^{2}$, etc. $F(4)=100$
3. No, because $|z|$ is not analytic.
4. $\Phi(2,-2)=-3=\frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}(1+r \cos \alpha)(-3+r \sin \alpha) r d r d \alpha$

$$
=\frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}(-3 r+\cdots) d r d \alpha=\frac{1}{\pi}\left(-\frac{3}{2}\right) \cdot 2 \pi
$$

9. $\Phi(1,1)=3=\frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}\left(3+r \cos \alpha+r \sin \alpha+r^{2} \cos \alpha \sin \alpha\right) r d r d \alpha$

$$
=\frac{1}{\pi} \cdot \frac{3}{2} \cdot 2 \pi
$$

13. $|F(z)|=\left[\cos ^{2} x+\sinh ^{2} y\right]^{1 / 2}, \quad z= \pm i, \quad$ Max $=\left[1+\sinh ^{2} 1\right]^{1 / 2}=1.543$
14. $|F(z)|^{2}=\sinh ^{2} 2 x \cos ^{2} 2 y+\cosh ^{2} 2 x \sin ^{2} 2 y=\sinh ^{2} 2 x+1 \cdot \sin ^{2} 2 y, \quad z=1$, $\operatorname{Max}=\sinh 2=3.627$
15. $|F(z)|^{2}=4(2-2 \cos 2 \theta), \quad z=\pi / 2, \quad 3 \pi / 2, \quad$ Max $=4$
16. No. Make up a counterexample.

Chapter 18 Review Questions and Problems, page 785

11. $\Phi=10(1-x+y), \quad F=10-10(1+i) z$
12. $\Phi=\operatorname{Re}(220-95.54 \operatorname{Ln} z)=220-\frac{220}{\ln 10} \ln r=220-95.54 \ln r$.
13. $2(1-(2 / \pi) \operatorname{Arg} z)$
14. $30(1-(2 / \pi) \operatorname{Arg}(z-1))$
15. $\Phi=x+y=\mathrm{const}, \quad V=\overline{F^{\prime}(z)}=1-i$, parallel flow
16. $T(x, y)=x(2 y+1)=$ const
17. $\overline{F^{\prime}(z)}=\bar{z}+1=x+1-i y$

Problem Set 19.1, page 796

1. $0.84175 \cdot 10^{2}, \quad-0.52868 \cdot 10^{3}, \quad 0.92414 \cdot 10^{-3}, \quad-0.36201 \cdot 10^{6}$
2. $6.3698,6.794,8.15$, impossible
3. Add first, then round.
4. 29.9667, 0.0335; 29.9667, 0.0333704 (6 S -exact)
5. $29.97,0.035 ; \quad 29.97,0.03337 ; \quad 30,0.0 ; 30,0.033$
6. $|\boldsymbol{\epsilon}|=|x+y-(\tilde{x}+\tilde{y})|=|(x-\tilde{x})+(y-\tilde{y})|=\left|\epsilon_{x}+\epsilon_{y}\right|$ $\leqq\left|\epsilon_{x}\right|+\left|\epsilon_{y}\right|=\beta_{x}+\beta_{y}$
7. $\frac{a_{1}}{a_{2}}=\frac{\widetilde{a}_{1}+\epsilon_{1}}{\widetilde{a}_{2}+\epsilon_{2}}=\frac{\widetilde{a}_{1}+\epsilon_{1}}{\widetilde{a}_{2}}\left(1-\frac{\epsilon_{2}}{\widetilde{a}_{2}}+\frac{\epsilon_{2}^{2}}{\widetilde{a}_{2}^{2}}-+\cdots\right) \approx \frac{\widetilde{a}_{1}}{\widetilde{a}_{2}}+\frac{\epsilon_{1}}{\widetilde{a}_{2}}-\frac{\epsilon_{2}}{\widetilde{a}_{2}} \cdot \frac{\widetilde{a}_{1}}{\widetilde{a}_{2}}$, hence $\left|\left(\frac{a_{1}}{a_{2}}-\frac{\widetilde{a}_{1}}{\widetilde{a}_{2}}\right) /\left|\frac{a_{1}}{a_{2}}\right| \approx\right| \frac{\epsilon_{1}}{a_{1}}-\frac{\epsilon_{2}}{a_{2}}\left|\leqq\left|\epsilon_{r 1}\right|+\left|\epsilon_{r 2}\right| \leqq \beta_{r 1}+\beta_{r 2}\right.$
8. (a) $1.38629-1.38604=0.00025$, (b) $\ln 1.00025=0.000249969$ is $6 S$-exact.
9. In the present case, (b) is slightly more accurate than (a) (which may produce nonsensical results; cf. Prob. 20).
10. $c_{4} \cdot 2^{4}+\cdots+c_{0} \cdot 2^{0}=\left(\begin{array}{llll}1 & 0 & 1 & 1\end{array} 1 \text {.) }\right)_{2}$, NOT $\left(\begin{array}{lllll}1 & 1 & 1 & 0 & 1 .\end{array}\right)_{2}$
11. The algorithm in Prob. 22 repeats 0011 infinitely often.
12. $n=26$. The beginning is $0.09375(n=1)$.
13. $I_{14}=0.1812(0.17054$ S-exact $), \quad I_{13}=0.1812(0.1820), \quad I_{12}=0.1951(0.1951)$, $I_{11}=0.2102(0.2103)$, etc.
14. $-0.126 \cdot 10^{-2},-0.402 \cdot 10^{-3} ;-0.266 \cdot 10^{-6},-0.847 \cdot 10^{-7}$

Problem Set 19.2, page 807

3. $g=0.5 \cos x, \quad x=0.450184\left(=x_{10}\right.$, exact to $\left.6 S\right)$
4. Convergence to 4.7 for all these starting values.
5. $x=x /\left(e^{x} \sin x\right) ; 0.5,0.63256, \cdots$ converges to 0.58853 (5 S-exact) in 14 steps.
6. $x=x^{4}-0.12 ; \quad x_{0}=0, x_{3}=-0.119794$ (6S-exact)
7. $g=4 / x+x^{3} / 16-x^{5} / 576 ; \quad x_{0}=2, x_{n}=2.39165(n \geqq 6), 2.4054$ S-exact
8. This follows from the intermediate value theorem of calculus.
9. $x_{3}=0.450184$
10. Convergence to $x=4.7,4.7,0.8,-0.5$, respectively. Reason seen easily from the graph of f.
11. $0.5, \quad 0.375, \quad 0.377968, \quad 0.377964$; (b) $1 / \sqrt{7}$
12. $1.834243\left(=x_{4}\right), \quad 0.656620\left(=x_{4}\right), \quad-2.49086\left(=x_{4}\right)$
13. $x_{0}=4.5, \quad x_{4}=4.73004$ (6 S -exact)
14. (a) ALGORITHM BISECT ($f, a_{0}, b_{0}, \epsilon, N$) Bisection Method

This algorithm computes the solution c of $f(x)=0$ (f continuous) within the tolerance ϵ, given an initial interval $\left[a_{0}, b_{0}\right]$ such that $f\left(a_{0}\right) f\left(b_{0}\right)<0$.

INPUT: Continuous function f, initial interval $\left[a_{0}, b_{0}\right]$, tolerance ϵ, maximum number of iterations N.
OUTPUT: A solution c (within the tolerance ϵ), or a message of failure.
For $n=0,1, \cdots, N-1$ do:
$c=\frac{1}{2}\left(a_{n}+b_{n}\right)$
If $f(c)=0$ then OUTPUT c Stop. [Procedure completed]
Else if $f\left(a_{n}\right) f\left(b_{n}\right)<0$ then set $a_{n+1}=a_{n}$ and $b_{n+1}=c$.
Else set $a_{n+1}=c$, and $b_{n+1}=b_{n}$.
If $\left|a_{n+1}-b_{n+1}\right|<\epsilon|c|$ then OUTPUT c. Stop. [Procedure completed]
End
OUTPUT $\left[a_{N}, b_{N}\right]$ and a message "Failure". Stop.
[Unsuccessful completion; N iterations did not give an interval of length not exceeding the tolerance.]
End BISECT
Note that $\left[a_{N}, b_{N}\right]$ gives $\left(a_{N}+b_{N}\right) / 2$ as an approximation of the zero and $\left(b_{N}-a_{N}\right) / 2$ as a corresponding error bound.
(b) 0.739085 ; (c) $1.30980,0.429494$
27. $x_{2}=1.5, \quad x_{3}=1.76471, \cdots, \quad x_{7}=1.83424$ (6 S-exact)
29. 0.904557 (6 S -exact)

Problem Set 19.3, page 819

1. $L_{0}(x)=-2 x+19, \quad L_{1}(x)=2 x-18, \quad p_{1}(9.3)=L_{0}(9.3) \cdot f_{0}+L_{1}(9.3) \cdot f_{1}$ $=0.1086 \cdot 9.3+1.230=2.2297$
2. $p_{2}(x)=\frac{(x-1.02)(x-1.04)}{(-0.02)(-0.04)} \cdot 1.0000+\frac{(x-1)(x-1.04)}{0.02(-0.02)} \cdot 0.9888$ $+\frac{(x-1)(x-1.02)}{0.04 \cdot 0.02} \cdot 0.9784=x^{2}-2.580 x+2.580 ; \quad 0.9943,0.9835$
3. 0.8033 (error -0.0245), 0.4872 (error -0.0148); quadratic: $0.7839(-0.0051)$, 0.4678 (0.0046)
4. $p_{2}(x)=1.1640 x-0.3357 x^{2} ; \quad-0.5089$ (error 0.1262$), 0.4053(-0.0226)$, 0.9053 (0.0186), $0.9911(-0.0672)$
5. $p_{2}(x)=-0.44304 x^{2}+1.30896 x-0.023220, \quad p_{2}(0.75)=0.70929$ (5S-exact 0.71116)
6. $L_{0}=-\frac{1}{6}(x-1)(x-2)(x-3), L_{1}=\frac{1}{2} x(x-2)(x-3), L_{2}=-\frac{1}{2} x(x-1)(x-3)$, $L_{3}=\frac{1}{6} x(x-1)(x-2) ; \quad p_{3}(x)=1+0.039740 x-0.335187 x^{2}+0.060645 x^{3} ;$ $p_{2}(0.5)=0.943654, p_{3}(1.5)=0.510116, p_{3}(2.5)=-0.047991$
7. $2 x^{2}-4 x+2$
8. $p_{3}(x)=2.1972+(x-9) \cdot 0.1082+(x-9)(x-9.5) \cdot 0.005235$
9. $r=-1.5, p_{2}(0.3)=0.6039+(-1.5) \cdot 0.1755+\frac{1}{2}(-1.5)(-0.5) \cdot(-0.0302)$ $=0.3293$

Problem Set 19.4, page 826

9. $\left[-1.39(x-5)^{2}+0.58(x-5)^{3}\right]^{\prime \prime}=0.004$ at $x=5.8$ (due to roundoff; should be 0).
10. $1-\frac{5}{4} x^{2}+\frac{1}{4} x^{4}$
11. $1-x^{2},-2(x-1)-(x-1)^{2}+2(x-1)^{3},-1+2(x-2)+5(x-2)^{2}$ $-6(x-2)^{3}$
12. $4+x^{2}-x^{3}, \quad-8(x-2)-5(x-2)^{2}+5(x-2)^{3}$, $4+32(x-4)+25(x-4)^{2}-11(x-4)^{3}$
13. Use the fact that the third derivative of a cubic polynomial is constant, so that $g^{\prime \prime \prime}$ is piecewise constant, hence constant throughout under the present assumption. Now integrate three times.
14. Curvature $f^{\prime \prime} /\left(1+f^{\prime 2}\right)^{3 / 2} \approx f^{\prime \prime}$ if $\left|f^{\prime}\right|$ is small.

Problem Set 19.5, page 839

1. 0.747131 , which is larger than 0.746824 . Why?
2. $0.5,0.375,0.34375,0.335$ (exact)
3. $\epsilon_{0.5} \approx 0.03452\left(\epsilon_{0.5}=0.03307\right), \quad \epsilon_{0.25} \approx 0.00829\left(\epsilon_{0.25}=0.00820\right)$
4. 0.693254 (6 S -exact 0.693147)
5. 0.073930 (6 S-exact 0.073928)
6. 0.785392 (6 S -exact 0.785398)
7. $(0.785398126-0.785392156) / 15=0.39792 \cdot 10^{-6}$
8. (a) $M_{2}=2,\left|K M_{2}\right|=2 /\left(12 n^{2}\right)=10^{-5} / 2, n=183$. (b) $f^{\text {iv }}=24 / x^{5}, M_{4}=24$, $\left|C M_{4}\right|=24 /\left(180 \cdot(2 m)^{4}\right)=10^{-5} / 2,2 m=12.8$, hence 14 .
9. $0.94614588,0.94608693$ (8 S-exact 0.94608307)
10. 0.9460831 (7S-exact)
11. 0.9774586 (7 S -exact 0.9774377)
12. Set $x=\frac{1}{2}(t+1), \quad 0.2642411177$ (10S-exact), $\quad 1-2 / e$
13. $x=\frac{1}{2}(t+1), \quad d x=\frac{1}{2} d t, \quad 0.746824127 \quad$ (9S-exact 0.746824133)
14. $0.08, \quad 0.32, \quad 0.176,0.256$ (exact)
15. $5\left(0.1040-\frac{1}{2} \cdot 0.1760+\frac{1}{3} \cdot 0.1344-\frac{1}{4} \cdot 0.0384\right)=0.256$

Chapter 19 Review Questions and Problems, page 841

17. 4.375, 4.50, 6.0, impossible
18. $44.885 \leqq s \leqq 44.995$
19. The same as that of \widetilde{a}.
20. $x=20 \pm \sqrt{398}=20.00 \pm 19.95, \quad x_{1}=39.95, \quad x_{2}=0.05, \quad x_{2}=2 / 39.95$
$=0.05006$ (error less than 1 unit of the last digit)
21. $x=x^{4}-0.1, \quad-0.1, \quad-0.999, \quad-0.99900399$
22. 0.824
23. $-x+x^{3}, \quad 2(x-1)+3(x-1)^{2}-(x-1)^{3}$
24. $0.26, \quad M_{2}=6, \quad M_{2}^{*}=0, \quad-0.02 \leqq \epsilon \leqq 0, \quad 0.01$
25. $0.90443, \quad 0.90452$ (5S-exact 0.90452)
26. (a) $\left(0.4^{3}-2 \cdot 0.2^{3}+0\right) / 0.04=1.2$, (b) $\left(0.3^{3}-2 \cdot 0.2^{3}+0.1^{3}\right) / 0.01=1.2$ (exact)

Problem Set 20.1, page 851

1. $x_{1}=7.3, \quad x_{2}=-3.2$
2. No solution
3. $x_{1}=2, \quad x_{2}=1$
4. $\left[\begin{array}{rrll}-3 & 6 & -9 & -46.725 \\ 0 & 9 & -13 & -51.223 \\ 0 & 0 & -2.88889 & -7.38689\end{array}\right]$
$x_{1}=3.908, \quad x_{2}=-1.998, \quad x_{3}=2.557$
5. $\left[\begin{array}{rrrr}13 & -8 & 0 & 178.54 \\ 0 & 6 & 13 & 137.86 \\ 0 & 0 & -16 & -253.12\end{array}\right]$
$x_{1}=6.78, \quad x_{2}=-11.3, \quad x_{3}=15.82$
6. $\left[\begin{array}{cccc}3.4 & -6.12 & -2.72 & 0 \\ 0 & 0 & 4.32 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
$x_{1}=t_{1}$ arbitrary, $\quad x_{2}=(3.4 / 6.12) t_{1}, \quad x_{3}=0$
7. $\left[\begin{array}{rrcl}5 & 0 & 6 & -0.329193 \\ 0 & -4 & -3.6 & -2.143144 \\ 0 & 0 & 2.3 & -0.4\end{array}\right]$
$x_{1}=0.142856, \quad x_{2}=0.692307, \quad x_{3}=-0.173912$
8. $\left[\begin{array}{rrlll}-1 & -3.1 & 2.5 & 0 & -8.7 \\ 0 & 2.2 & 1.5 & -3.3 & -9.3 \\ 0 & 0 & -1.493182 & -0.825 & 1.03773 \\ 0 & 0 & 0 & 6.13826 & 12.2765\end{array}\right]$
$x_{1}=4.2, \quad x_{2}=0, \quad x_{3}=-1.8, \quad x_{4}=2.0$
Problem Set 20.2, page 857
9. $\left[\begin{array}{rr}1 & 0 \\ 3 & 1\end{array}\right]\left[\begin{array}{rr}4 & 5 \\ 0 & -1\end{array}\right], \begin{aligned} & x_{1}=-4 \\ & x_{2}=6\end{aligned}$
10. $\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 5 & 1\end{array}\right]\left[\begin{array}{lll}5 & 4 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3\end{array}\right], \begin{aligned} & x_{1}=0.4 \\ & x_{2}=0.8 \\ & x_{3}=1.6\end{aligned}$
11. $\left[\begin{array}{lll}1 & 0 & 0 \\ 6 & 1 & 0 \\ 3 & 9 & 1\end{array}\right]\left[\begin{array}{rrr}3 & 9 & 6 \\ 0 & -6 & 3 \\ 0 & 0 & -3\end{array}\right], \begin{aligned} & x_{1}=-\frac{1}{15} \\ & x_{2}=\frac{4}{15} \\ & x_{3}=\frac{2}{5}\end{aligned}$
12. $\left[\begin{array}{lll}3 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 1 & 3\end{array}\right]\left[\begin{array}{lll}3 & 2 & 4 \\ 0 & 3 & 1 \\ 0 & 0 & 3\end{array}\right], \begin{aligned} & x_{1}=0.6 \\ & x_{2}=1.2 \\ & x_{3}=0.4\end{aligned}$
13. $\left[\begin{array}{ccc}0.1 & 0 & 0 \\ 0 & 0.4 & 0 \\ 0.3 & 0.2 & 0.1\end{array}\right]\left[\begin{array}{ccc}0.1 & 0 & 0.3 \\ 0 & 0.4 & 0.2 \\ 0 & 0 & 0.1\end{array}\right], \begin{aligned} & x_{1}=2 \\ & x_{2}=-11 \\ & x_{3}=4\end{aligned}$
14. $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 3 & -1 & 3 & 0 \\ 2 & 0 & -1 & 4\end{array}\right]\left[\begin{array}{rrrr}1 & -1 & 3 & 2 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 4\end{array}\right], \begin{aligned} & x_{1}=2 \\ & x_{2}=-3 \\ & x_{3}=4 \\ & x_{4}=-1\end{aligned}$
15. No, since $\mathbf{x}^{\top}(-\mathbf{A}) \mathbf{x}=-\mathbf{x}^{\top} \mathbf{A x}<0$; yes; yes; no
16. $\left[\begin{array}{cc}-3.5 & 1.25 \\ 3.0 & -1.0\end{array}\right]$
17. $\frac{1}{36}\left[\begin{array}{rrr}584 & 104 & -66 \\ 104 & 20 & -12 \\ -66 & -12 & 9\end{array}\right]$
18. $\frac{1}{16}\left[\begin{array}{rrrr}21 & -6 & -14 & 6 \\ -6 & 36 & -12 & -4 \\ -14 & -12 & 20 & -4 \\ 6 & -4 & -4 & 4\end{array}\right]$

Problem Set 20.3, page 863
5. Exact $0.5, \quad 0.5, \quad 0.5$
7. $x_{1}=2, \quad x_{2}=-4, \quad x_{3}=8$
9. Exact 2, 1, 4
11. (a) $\mathbf{x}^{(3) T}=\left[\begin{array}{lll}0.49983 & 0.50001 & 0.500017\end{array}\right]$,
(b) $\mathbf{x}^{(3) T}=\left[\begin{array}{lll}0.50333 & 0.49985 & 0.49968\end{array}\right]$
13. $8,-16,43,86$ steps; spectral radius $0.09,0.35,0.72, \quad 0.85$, approximately
15. $\left[\begin{array}{lll}1.99934 & 1.00043 & 3.99684\end{array}\right]^{\top}$ (Jacobi, Step 5); [$\left.\begin{array}{llll}2.00004 & 0.998059 & 4.00072\end{array}\right]^{\top}$ (Gauss-Seidel)
19. $\sqrt{306}=17.49, \quad 12, \quad 12$

Problem Set 20.4, page 871

1. $18, \quad \sqrt{110}=10.49, \quad 8, \quad\left[\begin{array}{lllllll}0.125 & -0.375 & 1 & 0 & -0.75 & 0\end{array}\right]$
2. $5.9, \quad \sqrt{13.81}=3.716, \quad 3, \quad \frac{1}{3}[0.2 \quad 0.6-2.1 \quad 3.0]$
3. 5, $\quad \sqrt{5}, \quad 1, \quad\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right] \quad$ 7. $a b+b c+c a=0$
4. $\kappa=5 \cdot \frac{1}{2}=2.5$
5. $\kappa=(5+\sqrt{5})(1+1 / \sqrt{5})=6+2 \sqrt{5}$
6. $\kappa=19 \cdot 13=247$; ill-conditioned
7. $\kappa=20 \cdot 20=400 ;$ ill-conditioned
8. $167 \leqq 21 \cdot 15=315$
9. $\left[\begin{array}{ll}-2 & 4\end{array}\right]^{\top}, \quad\left[\begin{array}{ll}-144.0 & 184.0\end{array}\right]^{\top}, \quad \kappa=25,921, \quad$ extremely ill-conditioned
10. Small residual [0.145 0.120], but large deviation of $\widetilde{\mathbf{x}}$.
11. $27,748,28,375,943,656,29,070,279$

Problem Set 20.5, page 875

1. $1.846-1.038 x$
2. $1.48+0.09 x$
3. $s=90 t-675, \quad v_{\mathrm{av}}=90 \mathrm{~km} / \mathrm{hr}$
4. $-11.36+5.45 x-0.589 x^{2}$
5. $1.89-0.739 x+0.207 x^{2}$
6. $2.552+16.23 x, \quad-4.114+13.73 x+2.500 x^{2}, \quad 2.730+1.466 x$ $-1.778 x^{2}+2.852 x^{3}$

Problem Set 20.7, page 884

1. $5,0,7$; radii $6,4,6$. Spectrum $\{-1,4,9\}$
2. Centers 0 ; radii $0.5,0.7,0.4$. Skew-symmetric, hence $\lambda=i \mu,-0.7 \leqq \mu \leqq 0.7$.
3. $2,3,8$; radii $1+\sqrt{2}, 1, \sqrt{2} ; \quad$ actually (4 S) $1.163,3.511,8.326$
4. $t_{11}=100, \quad t_{22}=t_{33}=1$
5. They lie in the intervals with endpoints $a_{j j} \pm(n-1) \cdot 10^{-5}$. Why?
6. $\rho(\mathbf{A}) \leqq$ Row sum norm $\|\mathbf{A}\|_{\infty}=\max _{j} \sum_{k}\left|a_{j k}\right|=\max _{j}\left(\left|a_{j j}\right|+\right.$ Gerschgorin radius $)$
7. $\sqrt{122}=11.05$
8. $\sqrt{0.52}=0.7211$
9. Show that $\mathbf{A}^{\top}=\overline{\mathbf{A}}^{\top} \mathbf{A}$.
10. 0 lies in no Gerschgorin disk, by (3) with $>$; hence $\operatorname{det} \mathbf{A}=\lambda_{1} \cdots \lambda_{n} \neq 0$.

Problem Set 20.8, page 887

1. $q=10,10.9908,10.9999 ;|\epsilon| \leqq 3,0.3028,0.0275$
2. $q \pm \delta=4 \pm 1.633, \quad 4.786 \pm 0.619, \quad 4.917 \pm 0.398$
3. Same answer as in Prob. 3, possibly except for small roundoff errors.
4. $q=5.5,5.5738,5.6018 ; \quad|\epsilon| \leqq 0.5,0.3115,0.1899 ; \quad$ eigenvalues (4S) 1.697, 3.382, 5.303, 5.618
5. $\mathbf{y}=\mathbf{A} \mathbf{x}=\lambda \mathbf{x}, \quad \mathbf{y}^{\top} \mathbf{x}=\lambda \mathbf{x}^{\top} \mathbf{x}, \quad \mathbf{y}^{\top} \mathbf{y}=\lambda^{2} \mathbf{x}^{\top} \mathbf{x}$,
$\epsilon^{2} \leqq \mathbf{y}^{\top} \mathbf{y} / \mathbf{x}^{\top} \mathbf{x}-\left(\mathbf{y}^{\top} \mathbf{x} / \mathbf{x}^{\top} \mathbf{x}\right)^{2}=\lambda^{2}-\lambda^{2}=0$
6. $q=1, \cdots,-2.8993$ approximates -3 (0 of the given matrix),
$|\epsilon| \leqq 1.633, \cdots, 0.7024$ (Step 8)
Problem Set 20.9, page 896
7. $\left[\begin{array}{lrl}0.98 & -0.4418 & 0 \\ -0.4418 & 0.8702 & 0.3718 \\ 0 & 0.3718 & 0.4898\end{array}\right]$
8. $\left[\begin{array}{ccl}7 & -3.6056 & 0 \\ -3.6056 & 13.462 & 3.6923 \\ 0 & 3.6923 & 3.5385\end{array}\right]$
9. $\left[\begin{array}{cccc}3 & -67.59 & 0 & 0 \\ -67.59 & 143.5 & 45.35 & 0 \\ 0 & 45.35 & 23.34 & 3.126 \\ 0 & 0 & 3.126 & -33.87\end{array}\right]$
10. Eigenvalues 16, 6, 2

$$
\left[\begin{array}{lrl}
11.2903 & -5.0173 & 0 \\
-5.0173 & 10.6144 & 0.7499 \\
0 & 0.7499 & 2.0952
\end{array}\right],\left[\begin{array}{lrl}
14.9028 & -3.1265 & 0 \\
-3.1265 & 7.0883 & 0.1966 \\
0 & 0.1966 & 2.0089
\end{array}\right],\left[\begin{array}{lll}
15.8299 & -1.2932 & 0 \\
-1.2932 & 6.1692 & 0.0625 \\
0 & 0.0625 & 2.0010
\end{array}\right]
$$

9. Eigenvalues (4S) 141.4, 68.64, -30.04
$\left[\begin{array}{ccc}141.1 & 4.926 & 0 \\ 4.926 & 68.97 & 0.8691 \\ 0 & 0.8691 & -30.03\end{array}\right],\left[\begin{array}{ccc}141.3 & 2.400 & 0 \\ 2.400 & 68.72 & 0.3797 \\ 0 & 0.3797 & -30.04\end{array}\right],\left[\begin{array}{ccc}141.4 & 1.166 & 0 \\ 1.166 & 68.66 & 0.1661 \\ 0 & 0.1661 & -30.04\end{array}\right]$

Chapter 20 Review Questions and Problems, page 896

15. $\left[\begin{array}{lll}3.9 & 4.3 & 1.8\end{array}\right]^{\top}$
16. $\left[\begin{array}{lll}-2 & 0 & 5\end{array}\right]^{\top}$
17. $\left[\begin{array}{rrr}0.28193 & -0.15904 & -0.00482 \\ -0.15904 & 0.12048 & -0.00241 \\ -0.00482 & -0.00241 & 0.01205\end{array}\right]$
18. $\left[\begin{array}{l}5.750 \\ 3.600 \\ 0.838\end{array}\right],\left[\begin{array}{l}6.400 \\ 3.559 \\ 1.000\end{array}\right],\left[\begin{array}{l}6.390 \\ 3.600 \\ 0.997\end{array}\right]$

Exact: $\left.\begin{array}{lll}6.4 & 3.6 & 1.0\end{array}\right]^{\top}$
23. $\left[\begin{array}{l}1.700 \\ 1.180 \\ 4.043\end{array}\right],\left[\begin{array}{l}1.986 \\ 0.999 \\ 4.002\end{array}\right],\left[\begin{array}{l}2.000 \\ 1.000 \\ 4.000\end{array}\right]$

Exact: $\left[\begin{array}{lll}2 & 1 & 4\end{array}\right]^{\top}$
25. $42, \quad \sqrt{674}=25.96, \quad 21$
27. 30
29. 5
31. $115 \cdot 0.4458=51.27$
33. $5 \cdot \frac{21}{63}=\frac{5}{3}$
35. $1.514+1.129 x-0.214 x^{2}$
37. Centers $15,35,90$; radii $30,35,25$, respectively. Eigenvalues (3S) $2.63,40.8,96.6$
39. Centers $0,-1,-4$; radii $9,6,7$, respectively; eigenvalues $0,4.446,-9.446$

Problem Set 21.1, page 910

1. $y=5 e^{-0.2 x}, \quad 0.00458, \quad 0.00830$ (errors of y_{5}, y_{10})
2. $y=x-\tanh x($ set $y-x=u), \quad 0.00929, \quad 0.01885$ (errors of y_{5}, y_{10})
3. $y=e^{x}, \quad 0.0013, \quad 0.0042$ (errors of y_{5}, y_{10})
4. $y=1 /\left(1-x^{2} / 2\right), \quad 0.00029, \quad 0.01187$ (errors of $\left.y_{5}, y_{10}\right)$
5. Errors 0.03547 and 0.28715 of y_{5} and y_{10} much larger
6. $y=1 /\left(1-x^{2} / 2\right) ; \quad$ error $-10^{-8}, \quad-4 \cdot 10^{-8}, \cdots,-6 \cdot 10^{-7}, \quad+9 \cdot 10^{-6}$;
$\epsilon=0.0002 / 15=1.3 \cdot 10^{-5}$ (use RK with $h=0.2$)
7. $y=\tan x$; error $0.83 \cdot 10^{-7}, 0.16 \cdot 10^{-6}, \cdots,-0.56 \cdot 10^{-6},+0.13 \cdot 10^{-5}$
8. $y=3 \cos x-2 \cos ^{2} x$; error $\cdot 10^{7}: 0.18,0.74,1.73,3.28,5.59,9.04,14.3,22.8$, 36.8, 61.4
9. $y^{\prime}=1 /\left(2-x^{4}\right) ; \quad$ error $\cdot 10^{9}: 0.2,3.1,10.7,23.2,28.5,-32.3,-376,-1656$, $-3489,+80444$
10. Errors for Euler-Cauchy $0.02002,0.06286,0.05074$; for improved Euler-Cauchy $-0.000455,0.012086,0.009601$; for Runge-Kutta. $0.0000011,0.000016,0.000536$

Problem Set 21.2, page 915

1. $y=e^{x}, \quad y_{5}^{*}=1.648717, \quad y_{5}=1.648722, \quad \epsilon_{5}=-3.8 \cdot 10^{-8}$,
$y_{10}^{*}=2.718276, \quad y_{10}=2.718284, \quad \epsilon_{10}=-1.8 \cdot 10^{-6}$
2. $y=\tan x, \quad y_{4}, \cdots, y_{10}\left(\right.$ error $\left.\cdot 10^{5}\right) 0.422798(-0.49), \quad 0.546315(-1.2)$, $0.684161(-2.4), \quad 0.842332(-4.4), \quad 1.029714(-7.5), \quad 1.260288(-13)$, $1.557626(-22)$
3. RK error smaller in absolute value, error $\cdot 10^{5}=0.4,0.3,0.2,5.6$ (for $x=0.4,0.6,0.8,1.0$)
4. $y=1 /\left(4+e^{-3 x}\right), \quad y_{4}, \cdots, y_{10}\left(\right.$ error $\left.\cdot 10^{5}\right) 0.232490(0.34), 0.236787$ (0.44), 0.240075 (0.42), $0.242570(0.35), 0.244453$ (0.25), 0.245867 (0.16), 0.246926 (0.09)
5. $y=\exp \left(x^{3}\right)-1, \quad y_{4}, \cdots, y_{10}\left(\right.$ error $\left.\cdot 10^{7}\right) 0.008032(-4), 0.015749(-10)$, $0.027370(-17), 0.043810(-26), 0.066096(-39), 0.095411(-54)$, $0.133156(-74)$
6. $y=\exp \left(x^{2}\right)$. Errors $\cdot 10^{5}$ from $x=0.3$ to 0.7 : $-5,-11,-19,-31,-41$
7. (a) $0,0.02,0.0884,0.215848, y_{4}=0.417818, y_{5}=0.708887$ (poor)
(b) By $30-50 \%$

Problem Set 21.3, page 922

1. $y_{1}=-e^{-2 x}+4 e^{x}, \quad y_{2}=-e^{-2 x}+e^{x} ; \quad$ errors of $y_{1}\left(\right.$ of $\left.y_{2}\right)$ from 0.002 to 0.5 (from -0.01 to 0.1), monotone
2. $y_{1}^{\prime}=y_{2}, \quad y_{2}^{\prime}=-\frac{1}{4} y_{1}, \quad y=y_{1}=1, \quad 0.99,0.97,0.94,0.9005$, error $-0.005,-0.01,-0.015,-0.02,-0.0229$; exact $y=\cos \frac{1}{2} x$
3. $y_{1}^{\prime}=y_{2}, \quad y_{2}^{\prime}=y_{1}+x, \quad y_{1}(0)=1, \quad y_{2}(0)=-2, \quad y=y_{1}=e^{-x}-x, \quad y=0.8$ (error 0.005), 0.61 (0.01), 0.429 (0.012), 0.2561 (0.0142), 0.0905 (0.0160)
4. By about a factor $10^{5} \cdot \epsilon_{n}\left(y_{1}\right) \cdot 10^{6}=-0.082, \cdots,-0.27$, $\epsilon_{n}\left(y_{2}\right) \cdot 10^{6}=0.08, \cdots, 0.27$
5. Errors of y_{1} (of y_{2}) from $0.3 \cdot 10^{-5}$ to $1.3 \cdot 10^{-5}$ (from $0.3 \cdot 10^{-5}$ to $0.6 \cdot 10^{-5}$)
6. $\left(y_{1}, y_{2}\right)=(0,1),(0.20,0.98),(0.39,0.92), \cdots,(-0.23,-0.97),(-0.42,-0.91)$, $(-0.59),(-0.81)$; continuation will give an "ellipse."

Problem Set 21.4, page 930

3. $-3 u_{11}+u_{12}=-200, \quad u_{11}-3 u_{12}=-100$
4. $105,155,105,115$; Step 5: 104.94, 154.97, 104.97, 114.98
5. $0,0,0,0$. All equipotential lines meet at the corners (why?). Step 5: $0.29298,0.14649,0.14649,0.073245$
6. $0.108253,0.108253,0.324760,0.324760$; Step 10: 0.108538, 0.108396, $0.324902,0.324831$
7. (a) $u_{11}=-u_{12}=-66$. (b) Reduce to 4 equations by symmetry.
$u_{11}=u_{31}=-u_{15}=-u_{35}=-92.92, u_{21}=-u_{25}=-87.45$,
$u_{12}=u_{32}=-u_{14}=-u_{34}=-64.22, u_{22}=-u_{24}=-53.98$,
$u_{13}=u_{23}=u_{33}=0$
8. $u_{12}=u_{32}=31.25, \quad u_{21}=u_{23}=18.75, \quad u_{j k}=25$ at the others
9. $u_{21}=u_{23}=0.25, \quad u_{12}=u_{32}=-0.25, \quad u_{j k}=0$ otherwise
10. $\sqrt{3}, u_{11}=u_{21}=0.0849, u_{12}=u_{22}=0.3170$. ($0.1083,0.3248$ are 4 S -values of the solution of the linear system of the problem.)

Problem Set 21.5, page 935
5. $u_{11}=0.766, \quad u_{21}=1.109, \quad u_{12}=1.957, u_{22}=3.293$
7. A, as in Example 1, right sides -220, -220, -220, -220.

Solution $u_{11}=u_{21}=125.7, u_{21}=u_{22}=157.1$
13. $-4 u_{11}+u_{21}+u_{12}=-3, u_{11}-4 u_{21}+u_{22}=-12, u_{11}-4 u_{12}+u_{22}=0$, $2 u_{21}+2 u_{12}-12 u_{22}=-14, u_{11}=u_{22}=2, u_{21}=4, u_{12}=1$.
Here $-\frac{14}{3}=-\frac{4}{3}(1+2.5)$ with $\frac{4}{3}$ from the stencil.
15. $\mathbf{b}=[-200,-100,-100,0]^{\top} ; \quad u_{11}=73.68, u_{21}=u_{12}=47.37, u_{22}=15.79(4 \mathrm{~S})$

Problem Set 21.6, page 941
5. $0,0.6625,1.25,1.7125,2,2.1,2,1.7125,1.25,0.6625,0$
7. Substantially less accurate, $0.15,0.25(t=0.04), 0.100,0.163(t=0.08)$
9. Step 5 gives $0,0.06279,0.09336,0.08364,0.04707,0$.
11. Step 2: 0 (exact 0), 0.0453 (0.0422), 0.0672 (0.0658), 0.0671 (0.0628), 0.0394 (0.0373), 0 (0)
13. $0.3301,0.5706,0.4522,0.2380(t=0.04), 0.06538,0.10603,0.10565,0.6543$ ($t=0.20$)
15. $0.1018,0.1673,0.1673,0.1018(t=0.04), 0.0219,0.0355, \cdots(t=0.20)$

Problem Set 21.7, page 944

1. $u(x, 1)=0,-0.05,-0.10,-0.15,-0.20,0$
2. For $x=0.2,0.4$ we obtain $0.24,0.40(t=0.2), 0.08,0.16(t=0.4)$, $-0.08,-0.16(t=0.6)$, etc.
3. $0,0.354,0.766,1.271,1.679,1.834, \cdots(t=0.1) ; 0,0.575,0.935,1.135,1.296$, $1.357, \cdots(t=0.2)$
4. $0.190,0.308,0.308,0.190$, (3S-exact: $0.178,0.288,0.288,0.178$)

Chapter 21 Review Questions and Problems, page 945

17. $y=e^{x}, 0.038,0.125$ (errors of y_{5} and y_{10})
18. $y=\tan x ; 0(0), 0.10050(-0.00017), 0.20304(-0.00033), 0.30981(-0.00048)$, $0.42341(-0.00062), 0.54702(-0.00072), 0.68490(-0.00076)$, 0.84295 (-0.00066), 1.0299 (-0.0002), 1.2593 (0.0009), 1.5538 (0.0036)
19. $0.1003346\left(0.8 \cdot 10^{-7}\right) 0.2027099\left(1.6 \cdot 10^{-7}\right), 0.3093360\left(2.1 \cdot 10^{-7}\right)$, $0.4227930\left(2.3 \cdot 10^{-7}\right), 0.5463023\left(1.8 \cdot 10^{-7}\right)$
20. $y=\sin x, \quad y_{0.8}=0.717366, \quad y_{1.0}=0.841496$ (errors $-1.0 \cdot 10^{-5}$, $-2.5 \cdot 10^{-5}$)
21. $y_{1}^{\prime}=y_{2}, \quad y_{2}^{\prime}=x^{2} y_{1}, \quad y=y_{1}=1,1,1,1.0001,1.0006,1.002$
22. $y_{1}^{\prime}=y_{2}, \quad y_{2}^{\prime}=2 e^{x}-y_{1}, \quad y=e^{x}-\cos x, \quad y=y_{1}=0,0.241,0.571, \cdots$; errors between 10^{-6} and 10^{-5}
23. 3.93, 15.71, 58.93
24. $0,0.04,0.08,0.12,0.15,0.16,0.15,0.12,0.08,0.04,0(t=0.3 .3$ time steps $)$
25. $u\left(P_{11}\right)=u\left(P_{31}\right)=270, u\left(P_{21}\right)=u\left(P_{13}\right)=u\left(P_{23}\right)=u\left(P_{33}\right)=30$, $u\left(P_{12}\right)=u\left(P_{32}\right)=90, u\left(P_{22}\right)=60$
26. $0.043330,0.077321,0.089952,0.058488(t=0.04), 0.010956,0.017720,0.017747$, $0.010964(t=0.20)$

Problem Set 22.1, page 953
3. $f(\mathbf{x})=2\left(x_{1}-1\right)^{2}+\left(x_{2}+2\right)^{2}-6 ;$ Step 3: $(1.037,-1.926)$, value -5.992
9. Step 5: $(0.11247,-0.00012)$, value 0.000016

Problem Set 22.2, page 957

7. No
8. x_{3}, x_{4} is the unused time on M_{1}, M_{2}, respectively.
9. $f(2.5,2.5)=100$
10. $f\left(-\frac{11}{3}, \frac{26}{3}\right)=198 \frac{1}{3}$
11. $f(9,6)=360$
12. $0.5 x_{1}+0.75 x_{2} \leqq 45$ (copper), $0.5 x_{1}+0.25 x_{2} \leqq 30, f=120 x_{1}+100 x_{2}$, $f_{\text {max }}=f(45,30)=8400$
13. $f=x_{1}+x_{2}, 2 x_{1}+3 x_{2} \leqq 1200,4 x_{1}+2 x_{2} \leqq 1600, f_{\text {max }}=f(300,200)=500$
14. $x_{1} / 3+x_{2} / 2 \leqq 100, x_{1} / 3+x_{2} / 6 \leqq 80, f=150 x_{1}+100 x_{2}, f_{\text {max }}=f(210,60)=$ 37,500

Problem Set 22.3, page 961

3. $f(120 / 11,60 / 11)=480 / 11$
4. Eliminate in Column 3, so that 20 goes. $f_{\text {min }}=f\left(0, \frac{1}{2}\right)=-10$.
5. $f_{\text {max }}=f\left(\frac{60}{21}, 0, \frac{1500}{105}, 0\right)=\frac{2200}{7}$
6. $f_{\text {max }}=6$ on the segment from $(3,0,0)$ to $(0,0,2)$
7. We minimize! The augmented matrix is
$\mathbf{T}_{0}=\left[\begin{array}{rrrrrr}1 & 1.8 & 2.1 & 0 & 0 & 0 \\ 0 & 15 & 30 & 1 & 0 & 150 \\ 0 & 600 & 500 & 0 & 1 & 3900\end{array}\right]$.

The pivot is 600 . The calculation gives

$$
\mathbf{T}_{1}=\left[\begin{array}{cccccc}
1 & 0 & \frac{6}{10} & 0 & -\frac{3}{1000} & -\frac{117}{10} \\
0 & 0 & \frac{35}{2} & 1 & -\frac{1}{40} & \frac{105}{2} \\
0 & 600 & 500 & 0 & 1 & 3900
\end{array}\right] \quad \begin{aligned}
& \text { Row } 1-\frac{1.8}{600} \text { Row } 3 \\
& \text { Row } 2-\frac{15}{600} \text { Row } 3 \\
& \text { Row } 3
\end{aligned}
$$

The next pivot is $\frac{35}{2}$. The calculation gives

$$
\mathbf{T}_{2}=\left[\begin{array}{ccccrc}
1 & 0 & 0 & -\frac{6}{175} & -\frac{3}{1400} & -\frac{27}{2} \\
0 & 0 & \frac{35}{2} & 1 & -\frac{1}{40} & \frac{105}{2} \\
0 & 600 & 0 & -\frac{200}{7} & \frac{12}{7} & 2400
\end{array}\right] \quad \begin{aligned}
& \text { Row } 1-\frac{1.2}{35} \text { Row } 2 \\
& \text { Row } 2 \\
& \text { Row 3- }-\frac{1000}{35} \text { Row } 2
\end{aligned}
$$

Hence $-f$ has the maximum value -13.5 , so that f has the minimum value 13.5 , at the point

$$
\left(x_{1}, x_{2}\right)=\left(\frac{2400}{600}, \frac{105 / 2}{35 / 2}\right)=(4,3) .
$$

13. $f_{\text {max }}=f(5,4,6)=478$

Problem Set 22.4, page 968

1. $f(6,3)=84$
2. $f(20,20)=40$
3. $f(10,5)=5500$
4. $f(1,1,0)=13$
5. $f\left(4,0, \frac{1}{2}\right)=9$

Chapter 22 Review Questions and Problems, page 968

9. Step 5: $\left[\begin{array}{ll}0.353 & -0.028\end{array}\right]^{\top}$. Slower. Why?
10. Of course! Step 5: $\left[\begin{array}{ll}-1.003 & 1.897\end{array}\right]^{\top}$
11. $f(2,4)=100$
12. $f(3,6)=-54$

Problem Set 23.1, page 974
9. $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$
11. $\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
13. $\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
15. (1) (2)

17. If G is complete.

Edge

Problem Set 23.2, page 979

1. 5
2. 4
3. The idea is to go backward. There is a v_{k-1} adjacent to v_{k} and labeled $k-1$, etc. Now the only vertex labeled 0 is s. Hence $\lambda\left(v_{0}\right)=0$ implies $v_{0}=s$, so that $v_{0}-v_{1}-\cdots-v_{k-1}-v_{k}$ is a path $s \rightarrow v_{k}$ that has length k.
4. Delete the edge $(2,4)$.
5. No

Problem Set 23.3, page 983

1. $(1,2),(2,4),(4,3) ; \quad L_{2}=12, L_{3}=36, L_{4}=28$
2. $(1,2),(2,4),(3,4),(3,5) ; \quad L_{2}=2, L_{3}=4, L_{4}=3, L_{5}=6$
3. $(1,2),(2,4),(3,4) ; \quad L_{2}=10, L_{3}=15, L_{4}=13$
4. $(1,5),(2,3),(2,6),(3,4),(3,5) ; \quad L_{2}=9, L_{3}=7, L_{4}=8, L_{5}=4, L_{6}=14$

Problem Set 23.4, page 987

1. ${ }_{1}^{2} / 4-3-5 \quad L=10$
2. $5-3-6{ }_{2-4}^{1} \quad L=17$
3. 2
4. 1

5. Yes
6. $1-3-4\rangle_{5-6}^{2} \quad L=38$
7. New York-Washington-Chicago-Dalles-Denver-Los Angeles
8. G is connected. If G were not a tree, it would have a cycle, but this cycle would provide two paths between any pair of its vertices, contradicting the uniqueness.
9. If we add an edge (u, v) to T, then since T is connected, there is a path $u \rightarrow v$ in T which, together with (u, v), forms a cycle.

Problem Set 23.5, page 990

1. If G is a tree.
2. A shortest spanning tree of the largest connected graph that contains vertex 1 .
3. $(1,4),(1,3),(1,2),(2,6),(3,5) ; \quad L=32$
4. $(1,4),(4,3),(4,2),(3,5) ; \quad L=20$
5. $(1,4),(4,3),(4,5),(1,2) ; \quad L=12$

Problem Set 23.6, page 997

1. $\{3,6\}, \quad 11+3=14$
2. $\{4,5,6\}, \quad 10+5+13=28$
3. $\{3,6,7\}, 8+4+4=16$
4. $S=\{1,4\}, \quad 8+6=14$
5. One is interested in flows from s to t, not in the opposite direction.
6. $\Delta_{12}=5, \Delta_{24}=8, \Delta_{45}=2 ; \quad \Delta_{12}=5, \Delta_{25}=3 ; \quad \Delta_{13}=4, \Delta_{35}=9$ $P_{1}: 1-2-4-5, \Delta f=2 ; \quad P_{2}: 1-2-5, \Delta f=3 ; \quad P_{3}: 1-3-5, \Delta f=4$
7. $1-2-5, \Delta f=2 ; \quad 1-4-2-5, \Delta f=2$, etc.
8. $f_{13}=f_{35}=8, \quad f_{14}=f_{45}=5, \quad f_{12}=f_{24}=f_{46}=4, \quad f_{56}=13, \quad f=4+13=17$, $f=17$ is unique.
9. For instance, $f_{12}=10, \quad f_{24}=f_{45}=7, \quad f_{13}=f_{25}=5, \quad f_{35}=3, \quad f_{32}=2$, $f=3+5+7=15, \quad f=15$ is unique.

Problem Set 23.7, page 1000

3. $(2,3)$ and $(5,6)$
4. By considering only edges with one labeled end and one unlabeled end
5. $1-2-5, \Delta_{t}=2 ; \quad 1-4-2-5, \Delta_{t}=1 ; \quad f=6+2+1=9$, where 6 is the given flow
6. $1-2-4-6, \Delta_{t}=2 ; \quad 1-3-5-6, \Delta_{t}=1 ; \quad f=4+2+1=7$, where 4 is the given flow
7. $S=\{1,2,4,5\}, \quad T=\{3,6\}, \quad \operatorname{cap}(S, T)=14$

Problem Set 23.8, page 1005

1. No
2. No
3. Yes, $S=\{1,4,5,8\}$
4. Yes, $S=\{1,3,5\}$
5. $1-2-3-7-5-4$
6. $1-2-3-7-5-4$ is augmenting and gives $1-2-3-7-5-4$ and $(1,2)$, $(3,7),(5,4)$ is of maximum cardinality.
7. $1-4-3-6-7-8$ is augmenting and gives $1-4-3-6-7-8$ and $(1,4),(3,6),(7,8)$ is of maximum cardinality.
8. 3
9. 2
10. 3
11. K_{4}

Chapter 23 Review Questions and Problems, page 1006

11. $\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right]$
12. $\begin{array}{llllll}\text { To vertex } & 1 & 2 & 3 & 4\end{array}$

From vertex	1
	$\left.2\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right], ~\right], ~$

15.

17.

Vertex	Incident Edges
1	$(1,2),(1,4)$
2	$(2,1),(2,4)$
3	$(3,4)$
4	$(4,1),(4,2),(4,3)$

19. $(1,2),(1,4),(2,3) ; \quad L_{2}=2, L_{3}=5, L_{4}=5$
20. $(1,6),(4,5),(2,3),(7,8)$

Problem Set 24.1, page 1015

1. $q_{L}=19, q_{M}=20, q_{U}=20.5$
2. $q_{L}=138, q_{M}=144, q_{U}=154$
3. $q_{L}=199, q_{M}=201, q_{U}=201$
4. $q_{L}=1.3, q_{M}=1.4, q_{U}=1.45$
5. $q_{L}=89.9, q_{M}=91.0, q_{U}=91.8$
6. $\bar{x}=19.875, s=0.835, \mathrm{IQR}=1.5$
7. $\bar{x}=144.67, s=8.9735$, $\mathrm{IQR}=16$
8. $\bar{x}=1.355, s=0.136, \mathrm{IQR}=0.15$
9. $3.54,1.29$

Problem Set 24.2, page 1017

1. 2^{3} outcomes: $R R R, R R L, R L R, L R R, R L L, L R L, ~ L L R, ~ L L L ~$
2. $6^{2}=36$ outcomes $(1,1),(1,2), \cdots,(6,6)$, first number (second number) referring to the first die (second die)
3. Infinitely many outcomes $H \quad$ TH \quad TTH \quad TTTH $\quad \cdots \quad(H=$ Head, $T=$ Tail $)$
4. The space of ordered pairs of numbers
5. 10 outcomes: $D \quad N D \quad N N D \quad \cdots \quad N N N N N N N N N D$
6. Yes
7. $A \cup B=B$ implies $A \subseteq B$ by the definition of union. Conversely. $A \subseteq B$ implies that $A \cup B=B$ because always $B \subseteq A \cup B$, and if $A \subseteq B$, we must have equality in the previous relation.

Problem Set 24.3, page 1024

1. $1-4 / 216=98.15 \%$, by Theorem 1
2. (a) $0.9^{3}=72.9 \%$, (b) $\frac{90}{100} \cdot \frac{89}{99} \cdot \frac{88}{98}=72.65 \%$
3. $\frac{8}{9}$
4. Small sample from a large population containing many items in each class we are interested in (defectives and nondefectives, etc.)
5. $\frac{498}{500} \cdot \frac{497}{499} \cdot \frac{496}{498} \cdot \frac{495}{497} \cdot \frac{494}{496} \approx 0.98008$
6. (a) $\frac{100}{200} \cdot \frac{99}{199}=24.874 \%$, (b) $\frac{100}{200} \cdot \frac{100}{199}+\frac{100}{200} \cdot \frac{100}{199}=50.25 \%$, (c) same as (a).
(a) $+(\mathrm{b})+(\mathrm{c})=1$. Why?
7. $1-0.96^{3}=11.5 \%$
8. $1-0.875^{4}=0.4138<1-0.75^{2}=0.4375<0.5 \quad(\mathrm{c}<\mathrm{b}<\mathrm{a})$
9. $A=B \cup\left(A \cap B^{\mathrm{c}}\right)$, hence $P(A)=P(B)+P\left(A \cap B^{\mathrm{c}}\right) \geqq P(B)$ by disjointedness of B and $A \cap B^{C}$

Problem Set 24.4, page 1028

1. In $10!=3,628,800$ ways
2. $\frac{2}{6} \cdot \frac{1}{5} \cdot \frac{4}{4} \cdot \frac{3}{3} \cdot \frac{2}{2} \cdot \frac{1}{1}=\frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3} \cdot \frac{2}{2} \cdot \frac{1}{1}=\frac{4!2!}{6!}=\frac{2}{6} \cdot \frac{1}{5}=\frac{1}{15}$
3. $\binom{10}{3}\binom{5}{2}\binom{6}{2}=18,000$
4. $210,70,112,28$
5. In $6!/ 6=120$ ways
6. $9 \cdot 8=72$
7. (b) $1 /(12 n)$
8. P (No two people have a birthday in common) $=365 \cdot 364 \cdots 346 / 365^{20}=0.59$. Answer: 41%, which is surprisingly large.

Problem Set 24.5, page 1034

1. $k=\frac{1}{55}$ by (6)
2. $k=\frac{1}{4}$ by $(10), P(0 \leqq X \leqq 2)=\frac{1}{2}$
3. No, because of (6)
4. $k=\frac{1}{100}$ because of (6) and $1+8+27+64=100$
5. $k=5 ; 50 \%$
6. $0.5^{3}=12.5 \%$
7. $F(x)=0$ if $x<-1, F(x)=\frac{1}{2}(x+1)^{2}$ if $-1 \leqq x<0$ $F(x)=1-\frac{1}{2}(x-1)^{2}$ if $0 \leqq x<1, F(x)=1$ if $x \leqq 1$ Answer: 500 cans, $P=0.125,0$
8. $X>b, X \geqq b, X<c, X \leqq c$, etc.

Problem Set 24.6, page 1038

1. $k=\frac{1}{2}, \mu=\frac{4}{3}, \sigma^{2}=\frac{2}{9}$
2. $\mu=\pi, \sigma^{2}=\pi^{2} / 3$; cf. Example 2
3. $\mu=\frac{1}{4}, \sigma^{2}=\frac{1}{16}$
4. $C=\frac{1}{2}, \mu=2, \sigma^{2}=4$
5. 750, $1, \quad 0.002$
6. $c=0.073$
7. $\$ 643.50$
8. $X=$ Product of the 2 numbers. $E(X)=12.25,12$ cents
9. $(0+1 \cdot 3+3 \cdot 8+1 \cdot 27) / 8=54 / 8=6 \cdot 75$

Problem Set 24.7, page 1044
3. 38%
5. $\binom{5}{x} 0.5^{5}, 0.03125,0.15625,1-f(0)=0.96875,0.96875$
7. 0.265
9. $f(x)=0.5^{x} e^{-0.5} / x!, f(0)+f(1)=e^{-0.5}(1.0+0.5)=0.91$. Answer: 9%
11. $13 \frac{1}{4} \%$
13. $42 \%, 47.2 \%, 10.5 \%, 0.3 \%$
15. $1-e^{-0.2}=18 \%$

Problem Set 24.8, page 1050

1. $0.1587,0.5,0.6915,0.6247$
2. $45.065,56.978,2.022$
3. 15.9%
4. $31.1 \%, 95.4 \%$
5. About 58%
6. $t=1084$ hours
7. About 683 (Fig. 521a)

Problem Set 24.9, page 1059

1. $\frac{1}{8}, \frac{3}{16}, \frac{3}{8}$ 3. $\frac{2}{9}, \frac{1}{9}, \frac{1}{2}$
2. $f_{2}(y)=1 /\left(\beta_{2}-\alpha_{2}\right)$ if $\alpha_{2}<y<\beta_{2}$
3. $27.45 \mathrm{~mm}, 0.38 \mathrm{~mm}$
4. $25.26 \mathrm{~cm}, 0.0078 \mathrm{~cm}$
5. 50%
6. The distributions in Prob. 17 and Example 1
7. No

Chapter 24 Review Questions and Problems, page 1060
11. $Q_{L}=110, Q_{M}=112, Q_{U}=115$
13. $\bar{x}=111.9, s=4.0125, s^{2}=16.1$
21. $x_{\text {min }} \leqq x_{j} \leqq x_{\text {max }}$. Sum over j from 1 .
17. $\bar{x}=6, s=3.65$
19. $f(x)=\binom{50}{x} 0.03^{x} 0.97^{50-x} \approx 1.5^{x} e^{-1.5} / x$!
21. $f(x)=2^{-x}, x=1,2, \cdots$
23. $1, \frac{1}{2}$
25. $0.1587,0.6306,0.5,0.4950$

Problem Set 25.2, page 1067

1. In Example 1, $\mu=0$ so $\sum_{j=1}^{n} x_{j}=0 . \partial \ln \ell / \partial \ell=0$ and $\tilde{\sigma}^{2}$ is as before.
2. $\ell=e^{-n \mu} \mu^{\left(x_{1}+\cdots+x_{n}\right)} /\left(x_{1}!\cdots x_{n}!\right), \partial \ln \ell / \partial \mu=-n+\left(x_{1}+\cdots+x_{n}\right) / \mu=0$, $n \hat{\mu}=n \bar{x}, \hat{\mu}=\bar{x}=15.3$
3. $l=p^{k}(1-p)^{n-k}, \hat{p}=k / n, k=$ number of successes in n trails
4. $7 / 12$
5. $l=f=p(1-p)^{x-1}$, etc., $\hat{p}=1 / x$
6. $\hat{\theta}=n / \sum x_{j}=1 / \bar{x}$
7. $\hat{\theta}=1$
8. Variability larger than perhaps expected

Problem Set 25.3, page 1077

3. Shorter by a factor $\sqrt{2}$
4. 4,16
5. $c=1.96, \bar{x}=126, s^{2}=126 \cdot 674 / 800=106.155, k=c s / \sqrt{n}=0.714$, $\mathrm{CONF}_{0.95}\{125.3 \leqq \mu \leqq 126.7\}, \mathrm{CONF}_{0.95}\{0.1566 \leqq p \leqq 0.1583\}$
6. $\mathrm{CONF}_{0.99}\{63.72 \leqq \mu \leqq 66.28\}$
7. $n-1=5, F(c)=0.995, c=4.03, \bar{x}=9533.33, s^{2}=49,666.67$, $k=366.66$ (Table 25.2), $\operatorname{CONF}_{0.99}\{9166.7 \leqq \mu \leqq 9900\}$
8. $\operatorname{CONF}_{0.95}\left\{0.023 \leqq \sigma^{2} \leqq 0.085\right\}$
9. $n-1=99$ degrees of freedom. $F\left(c_{1}\right)=0.025, c_{1}=74.2, F\left(c_{2}\right)=0.975$, $c_{2}=129.6$. Hence $k_{1}=12.41, k_{2}=7.10 . \mathrm{CONF}_{0.95}\left\{7.10 \leqq \sigma^{2} \leqq 12.41\right\}$.
10. $\mathrm{CONF}_{0.95}\left\{0.74 \leqq \sigma^{2} \leqq 5.19\right\}$
11. $Z=X+Y$ is normal with mean 105 and variance 1.25 . Answer: $P(104 \leqq Z \leqq 106)=63 \%$

Problem Set 25.4, page 1086

3. $t=(0.286-0) /(4.31 / \sqrt{7})=0.18<c=1.94$; accept the hypothesis.
4. $c=6090>6019$: do not reject the hypothesis.
5. $\sigma^{2} / n=1.8, c=57.8$, accept the hypothesis.
6. $\mu<58.69$ or $\mu>61.31$
7. Alternative $\mu \neq 5000, t=(4990-5000) /(20 / \sqrt{50})=-3.54<c=-2.01$
(Table A9, Appendix 5). Reject the hypothesis $\mu=5000 \mathrm{~g}$.
8. Two-sided. $t=(0.55-0) / \sqrt{0.546 / 8}=2.11<c=2.37$ (Table A9, Appendix 5), no difference
9. $19 \cdot 1.0^{2} / 0.8^{2}=29.69<c=30.14$ (Table A10. Appendix 5), accept the hypothesis
10. By (12), $t_{0}=\sqrt{16}(20.2-19.6) / \sqrt{0.16+0.36}>c=1.70$. Assert that B is better.

Problem Set 25.5, page 1091

1. $\mathrm{LCL}=1-2.58 \cdot 0.02 / 2=0.974, \mathrm{UCL}=1.026$
2. 27
3. Choose 4 times the original sample size
4. $2.58 \sqrt{0.0004} / \sqrt{2}=0.036, \mathrm{LCL}=3.464, \mathrm{UCL}=3.536$
5. $\mathrm{LCL}=n p-3 \sqrt{n p(1-p)}, \mathrm{CL}=n p, \mathrm{UCL}=n p+3 \sqrt{n p(1-p)}$
6. In about $30 \%(5 \%)$ of the cases
7. $\mathrm{LCL}=\mu-3 \sqrt{\mu}$ is negative in (b) and we set $\mathrm{LCL}=0, \mathrm{CL}=\mu=3.6$, $\mathrm{UCL}=\mu+3 \sqrt{\mu}=9.3$.

Problem Set 25.6, page 1095

1. $0.9825,0.9384,0.4060$
2. $0.8187,0.6703,0.1353$
3. $e^{-25 \theta}(1+25 \theta), P(A ; 1.5)=94.5, \alpha=5.5 \%$
4. $19.5 \%, 14.7 \%$
5. $(1-\theta)^{n}+n \theta(1-\theta)^{n-1}$
6. $\left(1-\frac{1}{2}\right)^{3}+3 \cdot \frac{1}{2}\left(1-\frac{1}{2}\right)^{2}=\frac{1}{2}$
7. $\sum_{x=0}^{9}\binom{100}{x} 0.12^{x} 0.88^{100-x}=22 \%$ (by the normal approximation)
8. $(1-\theta)^{5},\left[\theta(1-\theta)^{5-1}\right]^{\prime}=0, \theta=\frac{1}{6}$, AOQL $=6.7 \%$

Problem Set 25.7, page 1099
3. $\chi_{0}^{2}=(40-50)^{2} / 50+(60-50)^{2} / 50=4>c=3.84$; по
5. $\chi_{0}^{2}=\frac{16}{10}>11.07$; yes
7. $\chi_{0}^{2}=10.264<11.07$; yes
9. 42 even digits, accept.
13. $\chi_{0}^{2}=\frac{(355-358.5)^{2}}{358.5}+\frac{(123-119.5)^{2}}{119.5}=0.137<c=3.84$ (1 degree of freedom, 95\%)
15. Combining the last three nonzero values, we have $K-r-1=9(r=1$ since we estimated the mean, $\frac{10,094}{2608} \approx 3.87$). $\chi_{0}^{2}=12.8<c=16.92$. Accept the hypothesis.

Problem Set 25.8, page 1102
3. $\left(\frac{1}{2}\right)^{8}+8 \cdot\left(\frac{1}{2}\right)^{8}=3.5 \%$ is the probability that 7 cases in 8 trials favor A under the hypothesis that A and B are equally good. Reject.
5. $\left(\frac{1}{2}\right)^{18}(1+18+153+816)=0.0038$
7. $\bar{x}=9.67, s=11.87 . t_{0}=9.67 /(11.87 / \sqrt{15})=3.16>c=1.76(\alpha=5 \%)$.

Hypothesis rejected.
9. Hypothesis $\tilde{\mu}=0$. Alternative $\tilde{\mu}>0, \bar{x}=1.58$, $t=\sqrt{10} \cdot 1.58 / 1.23=4.06>c=1.83(\alpha=5 \%)$. Hypothesis rejected.
11. Consider $y_{j}=x_{j}-\widetilde{\mu}_{0}$.
13. $n=8 ; 4$ transpositions, $P(T \leqq 4)=0.007$. Assert that fertilizing increases yield.
15. $P(T \leqq 2)=2.8 \%$. Assert that there is an increase.

Problem Set 25.9, page 1111

1. $y=0.98+0.495 x$
2. $y=-11,457.9+43.2 x$
3. $y=-10+0.55 x$
4. $y=0.5932+0.1138 x, R=1 / 0.1138$
5. $y=0.32923+0.00032 x, y(66)=0.35035$
6. $c=3.18$ (Table A9), $k_{1}=43.2, q_{0}=54,878, K=1.502$, $\mathrm{CONF}_{0.95}\left\{41.7 \leqq \kappa_{1} \leqq 44.7\right\}$.
7. $y-1.875=0.067(x-25), 3 s_{x}^{2}=500, q_{0}=0.023, K=0.021$, $\mathrm{CONF}_{0.95}\left\{0.046 \leqq \kappa_{1} \leqq 0.088\right\}$

Chapter 25 Review Questions and Problems, page 1111

15. $\hat{\mu}=20.325, \hat{\sigma}^{2}=\left(\frac{7}{8}\right) s^{2}=3.982 \quad$ 17. $\operatorname{CONF}_{0.99}\{27.94 \leqq \mu \leqq 34.81\}$
16. $c=14.74>14.5$, reject $\mu_{0} ; \Phi((14.74-14.50) / \sqrt{0.025})=0.9353$
17. $2.58 \cdot \sqrt{0.00024} / \sqrt{2}=0.028, \mathrm{LCL}=2.722$, $\mathrm{UCL}=2.778$
18. $\alpha=1-(1-\theta)^{6}=5.85 \%$, when $\theta=0.01$. For $\theta=15 \%$ we obtain $\beta=(1-\theta)^{6}=37.7 \%$. If n increases, so does α, whereas β decreases.
19. $y=3.4-1.85 x$

APPENDIX 3

Auxiliary Material

A3.1 Formulas for Special Functions

For tables of numeric values, see Appendix 5.

Exponential function e^{x} (Fig. 545)

$$
e=2.718281828459045235360287471353
$$

$$
\begin{equation*}
e^{x} e^{y}=e^{x+y} \tag{1}
\end{equation*}
$$

$$
e^{x} / e^{y}=e^{x-y}
$$

$$
\left(e^{x}\right)^{y}=e^{x y}
$$

Natural logarithm (Fig. 546)

$$
\begin{equation*}
\ln (x y)=\ln x+\ln y, \quad \ln (x / y)=\ln x-\ln y, \quad \ln \left(x^{a}\right)=a \ln x \tag{2}
\end{equation*}
$$

$\ln x$ is the inverse of e^{x}, and $e^{\ln x}=x, e^{-\ln x}=e^{\ln (1 / x)}=1 / x$.

Logarithm of base ten $\log _{10} x$ or simply $\log x$
(3) $\quad \log x=M \ln x, \quad M=\log e=0.434294481903251827651128918917$
(4) $\ln x=\frac{1}{M} \log x, \quad \frac{1}{M}=\ln 10=2.302585092994045684017991454684$
$\log x$ is the inverse of 10^{x}, and $10^{\log x}=x, 10^{-\log x}=1 / x$.
Sine and cosine functions (Figs. 547, 548). In calculus, angles are measured in radians, so that $\sin x$ and $\cos x$ have period 2π.
$\sin x$ is odd, $\sin (-x)=-\sin x$, and $\cos x$ is even, $\cos (-x)=\cos x$.

Fig. 545. Exponential function e^{x}

Fig. 546. Natural logarithm $\ln x$

Fig. 547. $\sin x$

Fig. 548. $\cos x$

$$
1^{\circ}=0.017453292519943 \text { radian }
$$

$$
1 \text { radian }=57^{\circ} 17^{\prime} 44.80625^{\prime \prime}
$$

$$
=57.2957795131^{\circ}
$$

$$
\begin{equation*}
\sin ^{2} x+\cos ^{2} x=1 \tag{5}
\end{equation*}
$$

$$
\left\{\begin{array}{r}
\sin (x+y)=\sin x \cos y+\cos x \sin y \tag{6}\\
\sin (x-y)=\sin x \cos y-\cos x \sin y \\
\cos (x+y)=\cos x \cos y-\sin x \sin y \\
\cos (x-y)=\cos x \cos y+\sin x \sin y
\end{array}\right.
$$

$$
\begin{equation*}
\sin 2 x=2 \sin x \cos x, \quad \cos 2 x=\cos ^{2} x-\sin ^{2} x \tag{7}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\sin x=\cos \left(x-\frac{\pi}{2}\right)=\cos \left(\frac{\pi}{2}-x\right) \tag{8}\\
\cos x=\sin \left(x+\frac{\pi}{2}\right)=\sin \left(\frac{\pi}{2}-x\right)
\end{array}\right.
$$

$$
\begin{equation*}
\sin (\pi-x)=\sin x, \quad \cos (\pi-x)=-\cos x \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\cos ^{2} x=\frac{1}{2}(1+\cos 2 x), \quad \sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \tag{10}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\sin x \sin y=\frac{1}{2}[-\cos (x+y)+\cos (x-y)] \tag{11}\\
\cos x \cos y=\frac{1}{2}[\cos (x+y)+\cos (x-y)] \\
\sin x \cos y=\frac{1}{2}[\sin (x+y)+\sin (x-y)]
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\sin u+\sin v=2 \sin \frac{u+v}{2} \cos \frac{u-v}{2} \tag{12}\\
\cos u+\cos v=2 \cos \frac{u+v}{2} \cos \frac{u-v}{2} \\
\cos v-\cos u=2 \sin \frac{u+v}{2} \sin \frac{u-v}{2}
\end{array}\right.
$$

(13) $\quad A \cos x+B \sin x=\sqrt{A^{2}+B^{2}} \cos (x \pm \delta), \quad \tan \delta=\frac{\sin \delta}{\cos \delta}=\mp \frac{B}{A}$
(14) $\quad A \cos x+B \sin x=\sqrt{A^{2}+B^{2}} \sin (x \pm \delta), \quad \tan \delta=\frac{\sin \delta}{\cos \delta}= \pm \frac{A}{B}$

Fig. 549. $\tan x$

Fig. 550. $\cot x$

Tangent, cotangent, secant, cosecant (Figs. 549, 550)
(15) $\tan x=\frac{\sin x}{\cos x}, \quad \cot x=\frac{\cos x}{\sin x}, \quad \sec x=\frac{1}{\cos x}, \quad \csc x=\frac{1}{\sin x}$

$$
\begin{equation*}
\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}, \quad \tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y} \tag{16}
\end{equation*}
$$

Hyperbolic functions (hyperbolic $\operatorname{sine} \sinh x$, etc.; Figs. 551, 552)

$$
\begin{equation*}
\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right), \quad \cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right) \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\tanh x=\frac{\sinh x}{\cosh x}, \quad \operatorname{coth} x=\frac{\cosh x}{\sinh x} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\cosh x+\sinh x=e^{x}, \quad \cosh x-\sinh x=e^{-x} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\cosh ^{2} x-\sinh ^{2} x=1 \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\sinh ^{2} x=\frac{1}{2}(\cosh 2 x-1), \quad \cosh ^{2} x=\frac{1}{2}(\cosh 2 x+1) \tag{21}
\end{equation*}
$$

Fig. 551. $\quad \sinh x($ dashed $)$ and $\cosh x$

Fig. 552. $\tanh x$ (dashed) and $\operatorname{coth} x$

$$
\left\{\begin{array}{c}
\sinh (x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y \\
\cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y \tag{23}\\
\tanh (x \pm y)=\frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}
\end{array}\right.
$$

Gamma function (Fig. 553 and Table A2 in App. 5). The gamma function $\Gamma(\alpha)$ is defined by the integral

$$
\begin{equation*}
\Gamma(\alpha)=\int_{0}^{\infty} e^{-t} t^{\alpha-1} d t \quad(\alpha>0) \tag{24}
\end{equation*}
$$

which is meaningful only if $\alpha>0$ (or, if we consider complex α, for those α whose real part is positive). Integration by parts gives the important functional relation of the gamma function,

$$
\begin{equation*}
\Gamma(\alpha+1)=\alpha \Gamma(\alpha) \tag{25}
\end{equation*}
$$

From (24) we readily have $\Gamma(1)=1$; hence if α is a positive integer, say k, then by repeated application of (25) we obtain

$$
\Gamma(k+1)=k!\quad(k=0,1, \cdots)
$$

This shows that the gamma function can be regarded as a generalization of the elementary factorial function. [Sometimes the notation $(\alpha-1)$! is used for $\Gamma(\alpha)$, even for noninteger values of α, and the gamma function is also known as the factorial function.]

By repeated application of (25) we obtain

$$
\Gamma(\alpha)=\frac{\Gamma(\alpha+1)}{\alpha}=\frac{\Gamma(\alpha+2)}{\alpha(\alpha+1)}=\cdots=\frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2) \cdots(\alpha+k)}
$$

Fig. 553. Gamma function
and we may use this relation

$$
\begin{equation*}
\Gamma(\alpha)=\frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1) \cdots(\alpha+k)} \quad(\alpha \neq 0,-1,-2, \cdots), \tag{27}
\end{equation*}
$$

for defining the gamma function for negative $\alpha(\neq-1,-2, \cdots)$, choosing for k the smallest integer such that $\alpha+k+1>0$. Together with (24), this then gives a definition of $\Gamma(\alpha)$ for all α not equal to zero or a negative integer (Fig. 553).

It can be shown that the gamma function may also be represented as the limit of a product, namely, by the formula

$$
\begin{equation*}
\Gamma(\alpha)=\lim _{n \rightarrow \infty} \frac{n!n^{\alpha}}{\alpha(\alpha+1)(\alpha+2) \cdots(\alpha+n)} \quad(\alpha \neq 0,-1, \cdots) . \tag{28}
\end{equation*}
$$

From (27) or (28) we see that, for complex α, the gamma function $\Gamma(\alpha)$ is a meromorphic function with simple poles at $\alpha=0,-1,-2, \cdots$.

An approximation of the gamma function for large positive α is given by the Stirling formula

$$
\begin{equation*}
\Gamma(\alpha+1) \approx \sqrt{2 \pi \alpha}\left(\frac{\alpha}{e}\right)^{\alpha} \tag{29}
\end{equation*}
$$

where e is the base of the natural logarithm. We finally mention the special value

$$
\begin{equation*}
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} . \tag{30}
\end{equation*}
$$

Incomplete gamma functions

$$
\begin{gather*}
P(\alpha, x)=\int_{0}^{x} e^{-t} t^{\alpha-1} d t, \quad Q(\alpha, x)=\int_{x}^{\infty} e^{-t} t^{\alpha-1} d t \quad(\alpha>0) \tag{31}\\
\Gamma(\alpha)=P(\alpha, x)+Q(\alpha, x) \tag{32}
\end{gather*}
$$

Beta function

$$
\begin{equation*}
B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t \quad(x>0, y>0) \tag{33}
\end{equation*}
$$

Representation in terms of gamma functions:

$$
\begin{equation*}
B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \tag{34}
\end{equation*}
$$

Error function (Fig. 554 and Table A4 in App. 5)

$$
\begin{gather*}
\operatorname{erf} x=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \tag{35}\\
\operatorname{erf} x=\frac{2}{\sqrt{\pi}}\left(x-\frac{x^{3}}{1!3}+\frac{x^{5}}{2!5}-\frac{x^{7}}{3!7}+\cdots\right) \tag{36}
\end{gather*}
$$

Fig. 554. Error function
erf $(\infty)=1$, complementary error function

$$
\begin{equation*}
\operatorname{erfc} x=1-\operatorname{erf} x=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t \tag{37}
\end{equation*}
$$

Fresnel integrals ${ }^{1}$ (Fig. 555)

$$
\begin{equation*}
\mathrm{C}(x)=\int_{0}^{x} \cos \left(t^{2}\right) d t, \quad \mathrm{~S}(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t \tag{38}
\end{equation*}
$$

$C(\infty)=\sqrt{\pi / 8}, S(\infty)=\sqrt{\pi / 8}$, complementary functions

$$
\begin{align*}
& \mathrm{c}(x)=\sqrt{\frac{\pi}{8}}-\mathrm{C}(x)=\int_{x}^{\infty} \cos \left(t^{2}\right) d t \tag{39}\\
& \mathrm{~s}(x)=\sqrt{\frac{\pi}{8}}-\mathrm{S}(x)=\int_{x}^{\infty} \sin \left(t^{2}\right) d t
\end{align*}
$$

Sine integral (Fig. 556 and Table A4 in App. 5)

$$
\begin{equation*}
\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} d t \tag{40}
\end{equation*}
$$

Fig. 555. Fresnel integrals

[^30]

Fig. 556. Sine integral
$\operatorname{Si}(\infty)=\pi / 2$, complementary function

$$
\begin{equation*}
\operatorname{si}(x)=\frac{\pi}{2}-\operatorname{Si}(x)=\int_{x}^{\infty} \frac{\sin t}{t} d t \tag{41}
\end{equation*}
$$

Cosine integral (Table A4 in App. 5)

$$
\begin{equation*}
\operatorname{ci}(x)=\int_{x}^{\infty} \frac{\cos t}{t} d t \quad(x>0) \tag{42}
\end{equation*}
$$

Exponential integral

$$
\begin{equation*}
\operatorname{Ei}(x)=\int_{x}^{\infty} \frac{e^{-t}}{t} d t \quad(x>0) \tag{43}
\end{equation*}
$$

Logarithmic integral

$$
\begin{equation*}
\operatorname{li}(x)=\int_{0}^{x} \frac{d t}{\ln t} \tag{44}
\end{equation*}
$$

A3.2 Partial Derivatives

For differentiation formulas, see inside of front cover.
Let $z=f(x, y)$ be a real function of two independent real variables, x and y. If we keep y constant, say, $y=y_{1}$, and think of x as a variable, then $f\left(x, y_{1}\right)$ depends on x alone. If the derivative of $f\left(x, y_{1}\right)$ with respect to x for a value $x=x_{1}$ exists, then the value of this derivative is called the partial derivative of $f(x, y)$ with respect to x at the point $\left(x_{1}, y_{1}\right)$ and is denoted by

$$
\left.\frac{\partial f}{\partial x}\right|_{\left(x_{1}, y_{1}\right)} \quad \text { or by }\left.\quad \frac{\partial z}{\partial x}\right|_{\left(x_{1}, y_{1}\right)}
$$

Other notations are

$$
f_{x}\left(x_{1}, y_{1}\right) \quad \text { and } \quad z_{x}\left(x_{1}, y_{1}\right)
$$

these may be used when subscripts are not used for another purpose and there is no danger of confusion.

We thus have, by the definition of the derivative,

$$
\begin{equation*}
\left.\frac{\partial f}{\partial x}\right|_{\left(x_{1}, y_{1}\right)}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{1}+\Delta x, y_{1}\right)-f\left(x_{1}, y_{1}\right)}{\Delta x} \tag{1}
\end{equation*}
$$

The partial derivative of $z=f(x, y)$ with respect to y is defined similarly; we now keep x constant, say, equal to x_{1}, and differentiate $f\left(x_{1}, y\right)$ with respect to y. Thus

$$
\begin{equation*}
\left.\frac{\partial f}{\partial y}\right|_{\left(x_{1}, y_{1}\right)}=\left.\frac{\partial z}{\partial y}\right|_{\left(x_{1}, y_{1}\right)}=\lim _{\Delta y \rightarrow 0} \frac{f\left(x_{1}, y_{1}+\Delta y\right)-f\left(x_{1}, y_{1}\right)}{\Delta y} . \tag{2}
\end{equation*}
$$

Other notations are $f_{y}\left(x_{1}, y_{1}\right)$ and $z_{y}\left(x_{1}, y_{1}\right)$.
It is clear that the values of those two partial derivatives will in general depend on the point $\left(x_{1}, y_{1}\right)$. Hence the partial derivatives $\partial z / \partial x$ and $\partial z / \partial y$ at a variable point (x, y) are functions of x and y. The function $\partial z / \partial x$ is obtained as in ordinary calculus by differentiating $z=f(x, y)$ with respect to x, treating y as a constant, and $\partial z / \partial y$ is obtained by differentiating z with respect to y, treating \boldsymbol{x} as a constant.

EXAMPLE 1 Let $z=f(x, y)=x^{2} y+x \sin y$. Then

$$
\frac{\partial f}{\partial x}=2 x y+\sin y, \quad \frac{\partial f}{\partial y}=x^{2}+x \cos y
$$

The partial derivatives $\partial z / \partial x$ and $\partial z / \partial y$ of a function $z=f(x, y)$ have a very simple geometric interpretation. The function $z=f(x, y)$ can be represented by a surface in space. The equation $y=y_{1}$ then represents a vertical plane intersecting the surface in a curve, and the partial derivative $\partial z / \partial x$ at a point $\left(x_{1}, y_{1}\right)$ is the slope of the tangent (that is, $\tan \alpha$ where α is the angle shown in Fig. 557) to the curve. Similarly, the partial derivative $\partial z / \partial y$ at $\left(x_{1}, y_{1}\right)$ is the slope of the tangent to the curve $x=x_{1}$ on the surface $z=f(x, y)$ at $\left(x_{1}, y_{1}\right)$.

Fig. 557. Geometrical interpretation of first partial derivatives

The partial derivatives $\partial z / \partial x$ and $\partial z / \partial y$ are called first partial derivatives or partial derivatives of first order. By differentiating these derivatives once more, we obtain the four second partial derivatives (or partial derivatives of second order) ${ }^{2}$

$$
\begin{align*}
\frac{\partial^{2} f}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=f_{x x} \\
\frac{\partial^{2} f}{\partial x \partial y} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=f_{y x} \\
\frac{\partial^{2} f}{\partial y \partial x} & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=f_{x y} \tag{3}\\
\frac{\partial^{2} f}{\partial y^{2}} & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=f_{y y}
\end{align*}
$$

It can be shown that if all the derivatives concerned are continuous, then the two mixed partial derivatives are equal, so that the order of differentiation does not matter (see Ref. [GenRef4] in App. 1), that is,

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x} \tag{4}
\end{equation*}
$$

EXAMPLE 2 For the function in Example 1.

$$
f_{x x}=2 y, \quad f_{x y}=2 x+\cos y=f_{y x}, \quad f_{y y}=-x \sin y .
$$

By differentiating the second partial derivatives again with respect to x and y, respectively, we obtain the third partial derivatives or partial derivatives of the third order of f, etc.

If we consider a function $f(x, y, z)$ of three independent variables, then we have the three first partial derivatives $f_{x}(x, y, z), f_{y}(x, y, z)$, and $f_{z}(x, y, z)$. Here f_{x} is obtained by differentiating f with respect to x, treating both y and z as constants. Thus, analogous to (1), we now have

$$
\left.\frac{\partial f}{\partial x}\right|_{\left(x_{1}, y_{1}, z_{1}\right)}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{1}+\Delta x, y_{1}, z_{1}\right)-f\left(x_{1}, y_{1}, z_{1}\right)}{\Delta x},
$$

etc. By differentiating f_{x}, f_{y}, f_{z} again in this fashion we obtain the second partial derivatives of f, etc.

EXAMPLE 3 Let $f(x, y, z)=x^{2}+y^{2}+z^{2}+x y e^{z}$. Then

$$
\begin{aligned}
& f_{x}=2 x+y e^{z}, \quad f_{y}=2 y+x e^{z}, \quad f_{z}=2 z+x y e^{z}, \\
& f_{x x}=2, \quad f_{x y}=f_{y x}=e^{z}, \quad f_{x z}=f_{z x}=y e^{z}, \\
& f_{y y}=2, \quad f_{y z}=f_{z y}=x e^{z}, \quad f_{z z}=2+x y e^{z} .
\end{aligned}
$$

[^31]
A3.3 Sequences and Series

See also Chap. 15.

Monotone Real Sequences

We call a real sequence $x_{1}, x_{2}, \cdots, x_{n}, \cdots$ a monotone sequence if it is either monotone increasing, that is,

$$
x_{1} \leqq x_{2} \leqq x_{3} \leqq \cdots
$$

or monotone decreasing, that is,

$$
x_{1} \geqq x_{2} \geqq x_{3} \geqq \cdots .
$$

We call x_{1}, x_{2}, \cdots a bounded sequence if there is a positive constant K such that $\left|x_{n}\right|<K$ for all n.

THEOREM 1

If a real sequence is bounded and monotone, it converges.

PROOF Let x_{1}, x_{2}, \cdots be a bounded monotone increasing sequence. Then its terms are smaller than some number B and, since $x_{1} \leqq x_{n}$ for all n, they lie in the interval $x_{1} \leqq x_{n} \leqq B$, which will be denoted by I_{0}. We bisect I_{0}; that is, we subdivide it into two parts of equal length. If the right half (together with its endpoints) contains terms of the sequence, we denote it by I_{1}. If it does not contain terms of the sequence, then the left half of I_{0} (together with its endpoints) is called I_{1}. This is the first step.

In the second step we bisect I_{1}, select one half by the same rule, and call it I_{2}, and so on (see Fig. 558).

In this way we obtain shorter and shorter intervals $I_{0}, I_{1}, I_{2}, \cdots$ with the following properties. Each I_{m} contains all I_{n} for $n>m$. No term of the sequence lies to the right of I_{m}, and, since the sequence is monotone increasing, all x_{n} with n greater than some number N lie in I_{m}; of course, N will depend on m, in general. The lengths of the I_{m} approach zero as m approaches infinity. Hence there is precisely one number, call it L, that lies in all those intervals, ${ }^{3}$ and we may now easily prove that the sequence is convergent with the limit L.

In fact, given an $\epsilon>0$, we choose an m such that the length of I_{m} is less than ϵ. Then L and all the x_{n} with $n>N(m)$ lie in I_{m}, and, therefore, $\left|x_{n}-L\right|<\epsilon$ for all those n. This completes the proof for an increasing sequence. For a decreasing sequence the proof is the same, except for a suitable interchange of "left" and "right" in the construction of those intervals.

[^32]

Fig. 558. Proof of Theorem 1

Real Series

Leibniz Test for Real Series

Let x_{1}, x_{2}, \cdots be real and monotone decreasing to zero, that is,
(a) $x_{1} \geqq x_{2} \geqq x_{3} \geqq \cdots$,
(b) $\lim _{m \rightarrow \infty} x_{m}=0$.

Then the series with terms of alternating signs

$$
x_{1}-x_{2}+x_{3}-x_{4}+-\cdots
$$

converges, and for the remainder R_{n} after the nth term we have the estimate

$$
\begin{equation*}
\left|R_{n}\right| \leqq x_{n+1} \tag{2}
\end{equation*}
$$

PROOF Let s_{n} be the nth partial sum of the series. Then, because of (1a),

$$
\begin{array}{ll}
s_{1}=x_{1}, & s_{2}=x_{1}-x_{2} \leqq s_{1}, \\
s_{3}=s_{2}+x_{3} \geqq s_{2}, & s_{3}=s_{1}-\left(x_{2}-x_{3}\right) \leqq s_{1},
\end{array}
$$

so that $s_{2} \leqq s_{3} \leqq s_{1}$. Proceeding in this fashion, we conclude that (Fig. 559)

$$
\begin{equation*}
s_{1} \geqq s_{3} \geqq s_{5} \geqq \cdots \geqq s_{6} \geqq s_{4} \geqq s_{2} \tag{3}
\end{equation*}
$$

which shows that the odd partial sums form a bounded monotone sequence, and so do the even partial sums. Hence, by Theorem 1, both sequences converge, say,

$$
\lim _{n \rightarrow \infty} s_{2 n+1}=s, \quad \quad \lim _{n \rightarrow \infty} s_{2 n}=s^{*}
$$

Fig. 559. Proof of the Leibniz test

Now, since $s_{2 n+1}-s_{2 n}=x_{2 n+1}$, we readily see that (lb) implies

$$
s-s^{*}=\lim _{n \rightarrow \infty} s_{2 n+1}-\lim _{n \rightarrow \infty} s_{2 n}=\lim _{n \rightarrow \infty}\left(s_{2 n+1}-s_{2 n}\right)=\lim _{n \rightarrow \infty} x_{2 n+1}=0
$$

Hence $s^{*}=s$, and the series converges with the sum s.
We prove the estimate (2) for the remainder. Since $s_{n} \rightarrow s$, it follows from (3) that

$$
s_{2 n+1} \geqq s \geqq s_{2 n} \quad \text { and also } \quad s_{2 n-1} \geqq s \geqq s_{2 n}
$$

By subtracting $s_{2 n}$ and $s_{2 n-1}$, respectively, we obtain

$$
s_{2 n+1}-s_{2 n} \geqq s-s_{2 n} \geqq 0, \quad 0 \geqq s-s_{2 n-1} \geqq s_{2 n}-s_{2 n-1}
$$

In these inequalities, the first expression is equal to $x_{2 n+1}$, the last is equal to $-x_{2 n}$, and the expressions between the inequality signs are the remainders $R_{2 n}$ and $R_{2 n-1}$. Thus the inequalities may be written

$$
x_{2 n+1} \geqq R_{2 n} \geqq 0, \quad 0 \geqq R_{2 n-1} \geqq-x_{2 n}
$$

and we see that they imply (2). This completes the proof.

A3.4 Grad, Div, Curl, ∇^{2} in Curvilinear Coordinates

To simplify formulas, we write Cartesian coordinates $x=x_{1}, y=x_{2}, z=x_{3}$. We denote curvilinear coordinates by q_{1}, q_{2}, q_{3}. Through each point P there pass three coordinate surfaces $q_{1}=$ const, $q_{2}=$ const, $q_{3}=$ const. They intersect along coordinate curves. We assume the three coordinate curves through P to be orthogonal (perpendicular to each other). We write coordinate transformations as

$$
\begin{equation*}
x_{1}=x_{1}\left(q_{1}, q_{2}, q_{3}\right), \quad x_{2}=x_{2}\left(q_{1}, q_{2}, q_{3}\right), \quad x_{3}=x_{3}\left(q_{1}, q_{2}, q_{3}\right) \tag{1}
\end{equation*}
$$

Corresponding transformations of grad, div, curl, and ∇^{2} can all be written by using

$$
\begin{equation*}
h_{j}^{2}=\sum_{k=1}^{3}\left(\frac{\partial x_{k}}{\partial q_{j}}\right)^{2} \tag{2}
\end{equation*}
$$

Next to Cartesian coordinates, most important are cylindrical coordinates $q_{1}=r, q_{2}=\theta$, $q_{3}=z$ (Fig. 560a) defined by
(3) $x_{1}=q_{1} \cos q_{2}=r \cos \theta, \quad x_{2}=q_{1} \sin q_{2}=r \sin \theta, \quad x_{3}=q_{3}=z$ and spherical coordinates $q_{1}=r, q_{2}=\theta, q_{3}=\phi$ (Fig. 560b) defined by ${ }^{4}$

$$
\begin{gather*}
x_{1}=q_{1} \cos q_{2} \sin q_{3}=r \cos \theta \sin \phi, \quad x_{2}=q_{1} \sin q_{2} \sin q_{3}=r \sin \theta \sin \phi \tag{4}\\
x_{3}=q_{1} \cos q_{3}=r \cos \phi
\end{gather*}
$$

[^33]

Fig. 560. Special curvilinear coordinates

In addition to the general formulas for any orthogonal coordinates q_{1}, q_{2}, q_{3}, we shall give additional formulas for these important special cases.

Linear Element ds. In Cartesian coordinates,

$$
\begin{equation*}
d s^{2}=d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2} \tag{Sec.9.5}
\end{equation*}
$$

For the q-coordinates,

$$
\begin{gather*}
d s^{2}=h_{1}^{2} d q_{1}^{2}+h_{2}^{2} d q_{2}^{2}+h_{3}^{2} d q_{3}^{2} \tag{5}\\
d s^{2}=d r^{2}+r^{2} d \theta^{2}+d z^{2} \quad \text { (Cylindrical coordinates). }
\end{gather*}
$$

For polar coordinates set $d z^{2}=0$.

$$
d s^{2}=d r^{2}+r^{2} \sin ^{2} \phi d \theta^{2}+r^{2} d \phi^{2} \quad \text { (Spherical coordinates) }
$$

Gradient. grad $f=\nabla f=\left[\begin{array}{lll}f_{x_{1}} & f_{x_{2}}, & f_{x_{3}}\end{array}\right]$ (partial derivatives; Sec. 9.7). In the q-system, with $\mathbf{u}, \mathbf{v}, \mathbf{w}$ denoting unit vectors in the positive directions of the q_{1}, q_{2}, q_{3} coordinate curves, respectively,
(6) $\operatorname{grad} f=\nabla f=\frac{1}{h_{1}} \frac{\partial f}{\partial q_{1}} \mathbf{u}+\frac{1}{h_{2}} \frac{\partial f}{\partial q_{2}} \mathbf{v}+\frac{1}{h_{3}} \frac{\partial f}{\partial q_{3}} \mathbf{w}$
(6') $\operatorname{grad} f=\nabla f=\frac{\partial f}{\partial r} \mathbf{u}+\frac{1}{r} \frac{\partial f}{\partial \theta} \mathbf{v}+\frac{\partial f}{\partial z} \mathbf{w} \quad$ (Cylindrical coordinates)
(6") $\operatorname{grad} f=\nabla f=\frac{\partial f}{\partial r} \mathbf{u}+\frac{1}{r \sin \phi} \frac{\partial f}{\partial \theta} \mathbf{v}+\frac{1}{r} \frac{\partial f}{\partial \phi} \mathbf{w} \quad$ (Spherical coordinates).

Divergence div $\mathbf{F}=\nabla \cdot \mathbf{F}=\left(F_{1}\right)_{x_{1}}+\left(F_{2}\right)_{x_{2}}+\left(F_{3}\right)_{x_{3}}\left(\mathbf{F}=\left[F_{1}, F_{2}, F_{3}\right]\right.$, Sec. 9.8);
(7) $\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial q_{1}}\left(h_{2} h_{3} F_{1}\right)+\frac{\partial}{\partial q_{2}}\left(h_{3} h_{1} F_{2}\right)+\frac{\partial}{\partial q_{3}}\left(h_{1} h_{2} F_{3}\right)\right]$
(7') $\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{1}{r} \frac{\partial}{\partial r}\left(r F_{1}\right)+\frac{1}{r} \frac{\partial F_{2}}{\partial \theta}+\frac{\partial F_{3}}{\partial z} \quad$ (Cylindrical coordinates)
$\left(7^{\prime \prime}\right) \quad \operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} F_{1}\right)+\frac{1}{r \sin \phi} \frac{\partial F_{2}}{\partial \theta}+\frac{1}{r \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi F_{3}\right)$
(Spherical coordinates).
Laplacian $\nabla^{2} f=\nabla \cdot \nabla f=\operatorname{div}(\operatorname{grad} f)=f_{x_{1} x_{1}}+f_{x_{2} x_{2}}+f_{x_{3} x_{3}}($ Sec. 9.8 $)$:
(8) $\quad \nabla^{2} f=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial q_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial f}{\partial q_{1}}\right)+\frac{\partial}{\partial q_{2}}\left(\frac{h_{3} h_{1}}{h_{2}} \frac{\partial f}{\partial q_{2}}\right)+\frac{\partial}{\partial q_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial f}{\partial q_{3}}\right)\right]$

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \quad \quad \text { (Cylindrical coordinates) }
$$

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial r^{2}}+\frac{2}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2} \sin ^{2} \phi} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}+\frac{\cot \phi}{r^{2}} \frac{\partial f}{\partial \phi}
$$

(Spherical coordinates).
Curl (Sec. 9.9):

$$
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1} \mathbf{u} & h_{2} \mathbf{v} & h_{3} \mathbf{w} \tag{9}\\
\frac{\partial}{\partial q_{1}} & \frac{\partial}{\partial q_{2}} & \frac{\partial}{\partial q_{3}} \\
h_{1} F_{1} & h_{2} F_{2} & h_{3} F_{3}
\end{array}\right|
$$

For cylindrical coordinates we have in (9) (as in the previous formulas)

$$
h_{1}=h_{r}=1, \quad h_{2}=h_{\theta}=q_{1}=r, \quad h_{3}=h_{z}=1
$$

and for spherical coordinates we have

$$
h_{1}=h_{r}=1, \quad h_{2}=h_{\theta}=q_{1} \sin q_{3}=r \sin \phi, \quad h_{3}=h_{\phi}=q_{1}=r
$$

APPENDIX 4
 Additional Proofs

Section 2.6, page 74
PROOF OF THEOREM 1 Uniqueness ${ }^{1}$
Assuming that the problem consisting of the ODE

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{1}
\end{equation*}
$$

and the two initial conditions

$$
\begin{equation*}
y\left(x_{0}\right)=K_{0}, \quad y^{\prime}\left(x_{0}\right)=K_{1} \tag{2}
\end{equation*}
$$

has two solutions $y_{1}(x)$ and $y_{2}(x)$ on the interval I in the theorem, we show that their difference

$$
y(x)=y_{1}(x)-y_{2}(x)
$$

is identically zero on I; then $y_{1} \equiv y_{2}$ on I, which implies uniqueness.
Since (1) is homogeneous and linear, y is a solution of that ODE on I, and since y_{1} and y_{2} satisfy the same initial conditions, y satisfies the conditions

$$
\begin{equation*}
y\left(x_{0}\right)=0, \quad y^{\prime}\left(x_{0}\right)=0 . \tag{11}
\end{equation*}
$$

We consider the function

$$
z(x)=y(x)^{2}+y^{\prime}(x)^{2}
$$

and its derivative

$$
z^{\prime}=2 y y^{\prime}+2 y^{\prime} y^{\prime \prime}
$$

From the ODE we have

$$
y^{\prime \prime}=-p y^{\prime}-q y .
$$

By substituting this in the expression for z^{\prime} we obtain

$$
\begin{equation*}
z^{\prime}=2 y y^{\prime}-2 p y^{\prime 2}-2 q y y^{\prime} . \tag{12}
\end{equation*}
$$

Now, since y and y^{\prime} are real,

$$
\left(y \pm y^{\prime}\right)^{2}=y^{2} \pm 2 y y^{\prime}+y^{\prime 2} \geqq 0 .
$$

[^34]From this and the definition of z we obtain the two inequalities

$$
\begin{equation*}
\text { (a) } 2 y y^{\prime} \leqq y^{2}+y^{\prime 2}=z, \quad \text { (b) } \quad-2 y y^{\prime} \leqq y^{2}+y^{\prime 2}=z \tag{13}
\end{equation*}
$$

From (13b) we have $2 y y^{\prime} \geqq-z$. Together, $\left|2 y y^{\prime}\right| \leqq z$. For the last term in (12) we now obtain

$$
-2 q y y^{\prime} \leqq\left|-2 q y y^{\prime}\right|=|q|\left|2 y y^{\prime}\right| \leqq|q| z
$$

Using this result as well as $-p \leqq|p|$ and applying (13a) to the term $2 y y^{\prime}$ in (12), we find

$$
z^{\prime} \leqq z+2|p| y^{\prime 2}+|q| z
$$

Since $y^{\prime 2} \leqq y^{2}+y^{\prime 2}=z$, from this we obtain

$$
z^{\prime} \leqq(1+2|p|+|q|) z
$$

or, denoting the function in parentheses by h,

$$
\begin{equation*}
z^{\prime} \leqq h z \quad \text { for all } x \text { on } I \tag{14a}
\end{equation*}
$$

Similarly, from (12) and (13) it follows that

$$
\begin{align*}
-z^{\prime} & =-2 y y^{\prime}+2 p y^{\prime 2}+2 q y y^{\prime} \tag{14b}\\
& \leqq z+2|p| z+|q| z=h z
\end{align*}
$$

The inequalities (14a) and (14b) are equivalent to the inequalities

$$
\begin{equation*}
z^{\prime}-h z \leqq 0, \quad z^{\prime}+h z \geqq 0 \tag{15}
\end{equation*}
$$

Integrating factors for the two expressions on the left are

$$
F_{1}=e^{-\int h(x) d x} \quad \text { and } \quad F_{2}=e^{\int h(x) d x}
$$

The integrals in the exponents exist because h is continuous. Since F_{1} and F_{2} are positive, we thus have from (15)

$$
F_{1}\left(z^{\prime}-h z\right)=\left(F_{1} z\right)^{\prime} \leqq \quad \text { and } \quad F_{2}\left(z^{\prime}+h z\right)=\left(F_{2} z\right)^{\prime} \geqq 0
$$

This means that $F_{1} z$ is nonincreasing and $F_{2} z$ is nondecreasing on I. Since $z\left(x_{0}\right)=0$ by (11), when $x \leqq x_{0}$ we thus obtain

$$
F_{1} z \geqq\left(F_{1} z\right)_{x_{0}}=0, \quad F_{2} z \leqq\left(F_{2} z\right)_{x_{0}}=0
$$

and similarly, when $x \geqq x_{0}$,

$$
F_{1} z \leqq 0, \quad F_{2} z \geqq 0
$$

Dividing by F_{1} and F_{2} and noting that these functions are positive, we altogether have

$$
z \leqq 0, \quad z \geqq 0 \quad \text { for all } x \text { on } I
$$

This implies that $z=y^{2}+y^{\prime 2} \equiv 0$ on I. Hence $y \equiv 0$ or $y_{1} \equiv y_{2}$ on I.

PROOF OF THEOREM 2 Frobenius Method. Basis of Solutions. Three Cases

The formula numbers in this proof are the same as in the text of Sec. 5.3. An additional formula not appearing in Sec. 5.3 will be called (A) (see below).

The ODE in Theorem 2 is

$$
\begin{equation*}
y^{\prime \prime}+\frac{b(x)}{x} y^{\prime}+\frac{c(x)}{x^{2}} y=0 \tag{1}
\end{equation*}
$$

where $b(x)$ and $c(x)$ are analytic functions. We can write it

$$
x^{2} y^{\prime \prime}+x b(x) y^{\prime}+c(x) y=0
$$

The indicial equation of (1) is

$$
\begin{equation*}
r(r-1)+b_{0} r+c_{0}=0 \tag{4}
\end{equation*}
$$

The roots r_{1}, r_{2} of this quadratic equation determine the general form of a basis of solutions of (1), and there are three possible cases as follows.

Case 1. Distinct Roots Not Differing by an Integer. A first solution of (1) is of the form

$$
\begin{equation*}
y_{1}(x)=x^{r_{1}}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right) \tag{5}
\end{equation*}
$$

and can be determined as in the power series method. For a proof that in this case, the ODE (1) has a second independent solution of the form

$$
\begin{equation*}
y_{2}(x)=x^{r_{2}}\left(A_{0}+A_{1} x+A_{2} x^{2}+\cdots\right) \tag{6}
\end{equation*}
$$

see Ref. [A11] listed in App. 1.

Case 2. Double Root. The indicial equation (4) has a double root r if and only if $\left(b_{0}-1\right)^{2}-4 c_{0}=0$, and then $r=\frac{1}{2}\left(1-b_{0}\right)$. A first solution

$$
\begin{equation*}
y_{1}(x)=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right), \quad r=\frac{1}{2}\left(1-b_{0}\right) \tag{7}
\end{equation*}
$$

can be determined as in Case 1 . We show that a second independent solution is of the form

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln x+x^{r}\left(A_{1} x+A_{2} x^{2}+\cdots\right) \quad(x>0) \tag{8}
\end{equation*}
$$

We use the method of reduction of order (see Sec. 2.1), that is, we determine $u(x)$ such that $y_{2}(x)=u(x) y_{1}(x)$ is a solution of (1). By inserting this and the derivatives

$$
y_{2}^{\prime}=u^{\prime} y_{1}+u y_{1}^{\prime}, \quad y_{2}^{\prime \prime}=u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}
$$

into the ODE (1^{\prime}) we obtain

$$
x^{2}\left(u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}\right)+x b\left(u^{\prime} y_{1}+u y_{1}^{\prime}\right)+c u y_{1}=0
$$

Since y_{1} is a solution of $\left(1^{\prime}\right)$, the sum of the terms involving u is zero, and this equation reduces to

$$
x^{2} y_{1} u^{\prime \prime}+2 x^{2} y_{1}^{\prime} u^{\prime}+x b y_{1} u^{\prime}=0 .
$$

By dividing by $x^{2} y_{1}$ and inserting the power series for b we obtain

$$
u^{\prime \prime}+\left(2 \frac{y_{1}^{\prime}}{y_{1}}+\frac{b_{0}}{x}+\cdots\right) u^{\prime}=0 .
$$

Here, and in the following, the dots designate terms that are constant or involve positive powers of x. Now, from (7), it follows that

$$
\begin{aligned}
\frac{y_{1}^{\prime}}{y_{1}} & =\frac{x^{r-1}\left[r a_{0}+(r+1) a_{1} x+\cdots\right]}{x^{r}\left[a_{0}+a_{1} x+\cdots\right]} \\
& =\frac{1}{x}\left(\frac{r a_{0}+(r+1) a_{1} x+\cdots}{a_{0}+a_{1} x+\cdots}\right)=\frac{r}{x}+\cdots .
\end{aligned}
$$

Hence the previous equation can be written

$$
\begin{equation*}
u^{\prime \prime}+\left(\frac{2 r+b_{0}}{x}+\cdots\right) u^{\prime}=0 \tag{A}
\end{equation*}
$$

Since $r=\left(1-b_{0}\right) / 2$, the term $\left(2 r+b_{0}\right) / x$ equals $1 / x$, and by dividing by u^{\prime} we thus have

$$
\frac{u^{\prime \prime}}{u^{\prime}}=-\frac{1}{x}+\cdots .
$$

By integration we obtain $\ln u^{\prime}=-\ln x+\cdots$, hence $u^{\prime}=(1 / x) e^{(\cdots)}$. Expanding the exponential function in powers of x and integrating once more, we see that u is of the form

$$
u=\ln x+k_{1} x+k_{2} x^{2}+\cdots .
$$

Inserting this into $y_{2}=u y_{1}$, we obtain for y_{2} a representation of the form (8).
Case 3. Roots Differing by an Integer. We write $r_{1}=r$ and $r_{2}=r-p$ where p is a positive integer. A first solution

$$
\begin{equation*}
y_{1}(x)=x^{r_{1}}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right) \tag{9}
\end{equation*}
$$

can be determined as in Cases 1 and 2. We show that a second independent solution is of the form

$$
\begin{equation*}
y_{2}(x)=k y_{1}(x) \ln x+x^{r_{2}}\left(A_{0}+A_{1} x+A_{2} x^{2}+\cdots\right) \tag{10}
\end{equation*}
$$

where we may have $k \neq 0$ or $k=0$. As in Case 2 we set $y_{2}=u y_{1}$. The first steps are literally as in Case 2 and give Eq. (A),

$$
u^{\prime \prime}+\left(\frac{2 r+b_{0}}{x}+\cdots\right) u^{\prime}=0 .
$$

Now by elementary algebra, the coefficient $b_{0}-1$ of r in (4) equals minus the sum of the roots,

$$
b_{0}-1=-\left(r_{1}+r_{2}\right)=-(r+r-p)=-2 r+p
$$

Hence $2 r+b_{0}=p+1$, and division by u^{\prime} gives

$$
\frac{u^{\prime \prime}}{u^{\prime}}=-\left(\frac{p+1}{x}+\cdots\right)
$$

The further steps are as in Case 2. Integrating, we find

$$
\ln u^{\prime}=-(p+1) \ln x+\cdots, \quad \text { thus } \quad u^{\prime}=x^{-(p+1)} e^{(\cdots)}
$$

where dots stand for some series of nonnegative integer powers of x. By expanding the exponential function as before we obtain a series of the form

$$
u^{\prime}=\frac{1}{x^{p+1}}+\frac{k_{1}}{x^{p}}+\cdots+\frac{k_{p-1}}{x^{2}}+\frac{k_{p}}{x}+k_{p+1}+k_{p+2} x+\cdots .
$$

We integrate once more. Writing the resulting logarithmic term first, we get

$$
u=k_{p} \ln x+\left(-\frac{1}{p x^{p}}-\cdots-\frac{k_{p-1}}{x}+k_{p+1} x+\cdots\right)
$$

Hence, by (9) we get for $y_{2}=u y_{1}$ the formula

$$
y_{2}=k_{p} y_{1} \ln x+x^{r_{1}-p}\left(-\frac{1}{p}-\cdots-k_{p-1} x^{p-1}+\cdots\right)\left(a_{0}+a_{1} x+\cdots\right)
$$

But this is of the form (10) with $k=k_{p}$ since $r_{1}-p=r_{2}$ and the product of the two series involves nonnegative integer powers of x only.

Section 7.7, page 293

THEOREM

Determinants

The definition of a determinant

$$
D=\operatorname{det} \mathbf{A}=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{7}\\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|
$$

as given in Sec. 7.7 is unambiguous, that is, it yields the same value of D no matter which rows or columns we choose in the development.

PROOF In this proof we shall use formula numbers not yet used in Sec. 7.7.
We shall prove first that the same value is obtained no matter which row is chosen.
The proof is by induction. The statement is true for a second-order determinant, for which the developments by the first row $a_{11} a_{22}+a_{12}\left(-a_{21}\right)$ and by the second row $a_{21}\left(-a_{12}\right)+a_{22} a_{11}$ give the same value $a_{11} a_{22}-a_{12} a_{21}$. Assuming the statement to be true for an $(n-1)$ st-order determinant, we prove that it is true for an n th-order determinant.

For this purpose we expand D in terms of each of two arbitrary rows, say, the i th and the j th, and compare the results. Without loss of generality let us assume $i<j$.

First Expansion. We expand D by the i th row. A typical term in this expansion is

$$
\begin{equation*}
a_{i k} C_{i k}=a_{i k} \cdot(-1)^{i+k} M_{i k} \tag{19}
\end{equation*}
$$

The minor $M_{i k}$ of $a_{i k}$ in D is an $(n-1)$ st-order determinant. By the induction hypothesis we may expand it by any row. We expand it by the row corresponding to the j th row of D. This row contains the entries $a_{j l}(l \neq k)$. It is the $(j-1)$ st row of $M_{i k}$, because $M_{i k}$ does not contain entries of the i th row of D, and $i<j$. We have to distinguish between two cases as follows.

Case I. If $l<k$, then the entry $a_{j l}$ belongs to the l th column of $M_{i k}$ (see Fig. 561). Hence the term involving $a_{j l}$ in this expansion is

$$
\begin{equation*}
a_{j l} \cdot\left(\text { cofactor of } a_{j l} \text { in } M_{i k}\right)=a_{j l} \cdot(-1)^{(j-1)+l} M_{i k j l} \tag{20}
\end{equation*}
$$

where $M_{i k j l}$ is the minor of $a_{j l}$ in $M_{i k}$. Since this minor is obtained from $M_{i k}$ by deleting the row and column of $a_{j l}$, it is obtained from D by deleting the i th and j th rows and the k th and l th columns of D. We insert the expansions of the $M_{i k}$ into that of D. Then it follows from (19) and (20) that the terms of the resulting representation of D are of the form

$$
\begin{equation*}
a_{i k} a_{j l} \cdot(-1)^{b} M_{i k j l} \tag{21a}
\end{equation*}
$$

where

$$
b=i+k+j+l-1
$$

Case II. If $l>k$, the only difference is that then $a_{j l}$ belongs to the $(l-1)$ st column of $M_{i k}$, because $M_{i k}$ does not contain entries of the k th column of D, and $k<l$. This causes an additional minus sign in (20), and, instead of (21a), we therefore obtain

$$
\begin{equation*}
-a_{i k} a_{j l} \cdot(-1)^{b} M_{i k j l} \tag{21b}
\end{equation*}
$$

where b is the same as before.

Fig. 561. Cases I and II of the two expansions of D

Second Expansion. We now expand D at first by the j th row. A typical term in this expansion is

$$
\begin{equation*}
a_{j l} C_{j l}=a_{j l} \cdot(-1)^{j+l} M_{j l} . \tag{22}
\end{equation*}
$$

By the induction hypothesis we may expand the minor $M_{j l}$ of $a_{j l}$ in D by its i th row, which corresponds to the i th row of D, since $j>i$.

Case I. If $k>l$, the entry $a_{i k}$ in that row belongs to the $(k-1)$ st column of $M_{j l}$, because $M_{j l}$ does not contain entries of the l th column of D, and $l<k$ (see Fig. 561). Hence the term involving $a_{i k}$ in this expansion is

$$
\begin{equation*}
a_{i k} \cdot\left(\text { cofactor of } a_{i k} \text { in } M_{j l}\right)=a_{i k} \cdot(-1)^{i+(k-1)} M_{i k j l} \tag{23}
\end{equation*}
$$

where the minor $M_{i k j l}$ of $a_{i k}$ in $M_{j l}$ is obtained by deleting the i th and j th rows and the k th and l th columns of D [and is, therefore, identical with $M_{i k j l}$ in (20), so that our notation is consistent]. We insert the expansions of the $M_{j l}$ into that of D. It follows from (22) and (23) that this yields a representation whose terms are identical with those given by (21a) when $l<k$.

Case II. If $k<l$, then $a_{i k}$ belongs to the k th column of $M_{j l}$, we obtain an additional minus sign, and the result agrees with that characterized by (21b).

We have shown that the two expansions of D consist of the same terms, and this proves our statement concerning rows.

The proof of the statement concerning columns is quite similar; if we expand D in terms of two arbitrary columns, say, the k th and the l th, we find that the general term involving $a_{j l} a_{i k}$ is exactly the same as before. This proves that not only all column expansions of D yield the same value, but also that their common value is equal to the common value of the row expansions of D.

This completes the proof and shows that our definition of an nth-order determinant is unambiguous.

Section 9.3, page 368

PROOFOF FORMULA (2)

We prove that in right-handed Cartesian coordinates, the vector product

$$
\mathbf{v}=\mathbf{a} \times \mathbf{b}=\left[\begin{array}{lll}
a_{1}, & a_{2}, & a_{3}
\end{array}\right] \times\left[b_{1}, \quad b_{2}, \quad b_{3}\right]
$$

has the components

$$
\begin{equation*}
v_{1}=a_{2} b_{3}-a_{3} b_{2}, \quad v_{2}=a_{3} b_{1}-a_{1} b_{3}, \quad v_{3}=a_{1} b_{2}-a_{2} b_{1} \tag{2}
\end{equation*}
$$

We need only consider the case $\mathbf{v} \neq \mathbf{0}$. Since \mathbf{v} is perpendicular to both \mathbf{a} and \mathbf{b}, Theorem 1 in Sec. 9.2 gives $\mathbf{a} \cdot \mathbf{v}=0$ and $\mathbf{b} \cdot \mathbf{v}=0$; in components [see (2), Sec. 9.2],

$$
\begin{align*}
& a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=0 \\
& b_{1} v_{1}+b_{2} v_{2}+b_{3} v_{3}=0 \tag{3}
\end{align*}
$$

Multiplying the first equation by b_{3}, the last by a_{3}, and subtracting, we obtain

$$
\left(a_{3} b_{1}-a_{1} b_{3}\right) v_{1}=\left(a_{2} b_{3}-a_{3} b_{2}\right) v_{2}
$$

Multiplying the first equation by b_{1}, the last by a_{1}, and subtracting, we obtain

$$
\left(a_{1} b_{2}-a_{2} b_{1}\right) v_{2}=\left(a_{3} b_{1}-a_{1} b_{3}\right) v_{3}
$$

We can easily verify that these two equations are satisfied by

$$
\begin{equation*}
v_{1}=c\left(a_{2} b_{3}-a_{3} b_{2}\right), \quad v_{2}=c\left(a_{3} b_{1}-a_{1} b_{3}\right), \quad v_{3}=c\left(a_{1} b_{2}-a_{2} b_{1}\right) \tag{4}
\end{equation*}
$$

where c is a constant. The reader may verify, by inserting, that (4) also satisfies (3). Now each of the equations in (3) represents a plane through the origin in $v_{1} v_{2} v_{3}$-space. The vectors \mathbf{a} and \mathbf{b} are normal vectors of these planes (see Example 6 in Sec. 9.2). Since $\mathbf{v} \neq \mathbf{0}$, these vectors are not parallel and the two planes do not coincide. Hence their intersection is a straight line L through the origin. Since (4) is a solution of (3) and, for varying c, represents a straight line, we conclude that (4) represents L, and every solution of (3) must be of the form (4). In particular, the components of \mathbf{v} must be of this form, where c is to be determined. From (4) we obtain

$$
|\mathbf{v}|^{2}=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=c^{2}\left[\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{3} b_{1}-a_{1} b_{3}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}\right]
$$

This can be written

$$
|\mathbf{v}|^{2}=c^{2}\left[\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2}\right]
$$

as can be verified by performing the indicated multiplications in both formulas and comparing. Using (2) in Sec. 9.2, we thus have

$$
|\mathbf{v}|^{2}=c^{2}\left[(\mathbf{a} \cdot \mathbf{a})(\mathbf{b} \cdot \mathbf{b})-(\mathbf{a} \cdot \mathbf{b})^{2}\right]
$$

By comparing this with formula (12) in Prob. 4 of Problem Set 9.3 we conclude that $c= \pm 1$.

We show that $c=+1$. This can be done as follows.
If we change the lengths and directions of \mathbf{a} and \mathbf{b} continuously and so that at the end $\mathbf{a}=\mathbf{i}$ and $\mathbf{b}=\mathbf{j}$ (Fig. 188a in Sec. 9.3), then \mathbf{v} will change its length and direction continuously, and at the end, $\mathbf{v}=\mathbf{i} \times \mathbf{j}=\mathbf{k}$. Obviously we may effect the change so that both \mathbf{a} and \mathbf{b} remain different from the zero vector and are not parallel at any instant. Then \mathbf{v} is never equal to the zero vector, and since the change is continuous and c can only assume the values +1 or -1 , it follows that at the end c must have the same value as before. Now at the end $\mathbf{a}=\mathbf{i}, \mathbf{b}=\mathbf{j}, \mathbf{v}=\mathbf{k}$ and, therefore, $a_{1}=1, b_{2}=1, v_{3}=1$, and the other components in (4) are zero. Hence from (4) we see that $v_{3}=c=+1$. This proves Theorem 1.

For a left-handed coordinate system, $\mathbf{i} \times \mathbf{j}=-\mathbf{k}$ (see Fig. 188b in Sec. 9.3), resulting in $c=-1$. This proves the statement right after formula (2).

Section 9.9, page 408

PROOF OF THE INVARIANCE OF THE CURL

This proof will follow from two theorems (A and B), which we prove first.

Transformation Law for Vector Components

For any vector \mathbf{v} the components v_{1}, v_{2}, v_{3} and $v_{1}^{*}, v_{2}^{*}, v_{3}^{*}$ in any two systems of Cartesian coordinates x_{1}, x_{2}, x_{3} and $x_{1}^{*}, x_{2}^{*}, x_{3}^{*}$, respectively, are related by

$$
\begin{align*}
& v_{1}^{*}=c_{11} v_{1}+c_{12} v_{2}+c_{13} v_{3} \\
& v_{2}^{*}=c_{21} v_{1}+c_{22} v_{2}+c_{23} v_{3} \tag{1}\\
& v_{3}^{*}=c_{31} v_{1}+c_{32} v_{2}+c_{33} v_{3}
\end{align*}
$$

and conversely

$$
\begin{align*}
& v_{1}=c_{11} v_{1}^{*}+c_{21} v_{2}^{*}+c_{31} v_{3}^{*} \\
& v_{2}=c_{12} v_{1}^{*}+c_{22} v_{2}^{*}+c_{32} v_{3}^{*} \tag{2}\\
& v_{3}=c_{13} v_{1}^{*}+c_{23} v_{2}^{*}+c_{33} v_{3}^{*}
\end{align*}
$$

with coefficients

$$
\begin{array}{lll}
c_{11}=\mathbf{i}^{*} \cdot \mathbf{i} & c_{12}=\mathbf{i}^{*} \cdot \mathbf{j} & c_{13}=\mathbf{i}^{*} \cdot \mathbf{k} \\
c_{21}=\mathbf{j}^{*} \cdot \mathbf{i} & c_{22}=\mathbf{j}^{*} \cdot \mathbf{j} & c_{23}=\mathbf{j}^{*} \cdot \mathbf{k} \tag{3}\\
c_{31}=\mathbf{k}^{*} \cdot \mathbf{i} & c_{32}=\mathbf{k}^{*} \cdot \mathbf{j} & c_{33}=\mathbf{k}^{*} \cdot \mathbf{k}
\end{array}
$$

satisfying

$$
\begin{equation*}
\sum_{j=1}^{3} c_{k j} c_{m j}=\delta_{k m} \quad(k, m=1,2,3) \tag{4}
\end{equation*}
$$

where the Kronecker delta ${ }^{2}$ is given by

$$
\delta_{k m}= \begin{cases}0 & (k \neq m) \\ 1 & (k=m)\end{cases}
$$

and $\mathbf{i}, \mathbf{j}, \mathbf{k}$ and $\mathbf{i}^{*}, \mathbf{j}^{*}, \mathbf{k}^{*}$ denote the unit vectors in the positive $x_{1^{-}}, x_{2^{-}}, x_{3^{-}}$and $x_{1}^{*}-, x_{2}^{*}-, x_{3}^{*}$-directions, respectively.

[^35]PROOF The representation of \mathbf{v} in the two systems are
(a) $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$
(b) $\quad \mathbf{v}=v_{1}^{*} \mathbf{i}^{*}+v_{2}^{*} \mathbf{j}^{*}+v_{3}^{*} \mathbf{k}^{*}$.

Since $\mathbf{i}^{*} \cdot \mathbf{i}^{*}=1, \mathbf{i}^{*} \cdot \mathbf{j}^{*}=0, \mathbf{i}^{*} \cdot \mathbf{k}^{*}=0$, we get from (5b) simply $\mathbf{i}^{*} \cdot \mathbf{v}=v_{1}^{*}$ and from this and (5a)

$$
v_{1}^{*}=\mathbf{i}^{*} \cdot \mathbf{v}=\mathbf{i}^{*} \cdot v_{1} \mathbf{i}+\mathbf{i}^{*} \cdot v_{2} \mathbf{j}+\mathbf{i}^{*} \cdot v_{3} \mathbf{k}=v_{1} \mathbf{i}^{*} \cdot \mathbf{i}+v_{2} \mathbf{i}^{*} \cdot \mathbf{j}+v_{3} \mathbf{i}^{*} \cdot \mathbf{k} .
$$

Because of (3), this is the first formula in (1), and the other two formulas are obtained similarly, by considering $\mathbf{j}^{*} \cdot \mathbf{v}$ and then $\mathbf{k}^{*} \cdot \mathbf{v}$. Formula (2) follows by the same idea, taking $\mathbf{i} \cdot \mathbf{v}=v_{1}$ from (5a) and then from (5b) and (3)

$$
v_{1}=\mathbf{i} \cdot \mathbf{v}=v_{1}^{*} \mathbf{i} \cdot \mathbf{i}^{*}+v_{2}^{*} \mathbf{i} \cdot \mathbf{j}^{*}+v_{3}^{*} \mathbf{i} \cdot \mathbf{k}^{*}=c_{11} v_{1}^{*}+c_{21} v_{2}^{*}+c_{31} v_{3}^{*}
$$

and similarly for the other two components.
We prove (4). We can write (1) and (2) briefly as

$$
\begin{equation*}
\text { (a) } v_{j}=\sum_{m=1}^{3} c_{m j} v_{m}^{*}, \quad \text { (b) } \quad v_{k}^{*}=\sum_{j=1}^{3} c_{k j} v_{j} \tag{6}
\end{equation*}
$$

Substituting v_{j} into v_{k}^{*}, we get

$$
v_{k}^{*}=\sum_{j=1}^{3} c_{k j} \sum_{m=1}^{3} c_{m j} v_{m}^{*}=\sum_{m=1}^{3} v_{m}^{*}\left(\sum_{j=1}^{3} c_{k j} c_{m j}\right)
$$

where $k=1,2,3$. Taking $k=1$, we have

$$
v_{1}^{*}=v_{1}^{*}\left(\sum_{j=1}^{3} c_{1 j} c_{1 j}\right)+v_{2}^{*}\left(\sum_{j=1}^{3} c_{1 j} c_{2 j}\right)+v_{3}^{*}\left(\sum_{j=1}^{3} c_{1 j} c_{3 j}\right)
$$

For this to hold for every vector \mathbf{v}, the first sum must be 1 and the other two sums 0 . This proves (4) with $k=1$ for $m=1,2,3$. Taking $k=2$ and then $k=3$, we obtain (4) with $k=2$ and 3 , for $m=1,2,3$.

Transformation Law for Cartesian Coordinates

The transformation of any Cartesian $x_{1} x_{2} x_{3}$-coordinate system into any other Cartesian $x_{1}^{*} x_{2}^{*} x_{3}^{*}$-coordinate system is of the form

$$
\begin{equation*}
x_{m}^{*}=\sum_{j=1}^{3} c_{m j} x_{j}+b_{m}, \quad m=1,2,3 \tag{7}
\end{equation*}
$$

with coefficients (3) and constants b_{1}, b_{2}, b_{3}; conversely,

$$
\begin{equation*}
x_{k}=\sum_{n=1}^{3} c_{n k} x_{n}^{*}+\widetilde{b}_{k}, \quad k=1,2,3 \tag{8}
\end{equation*}
$$

Theorem B follows from Theorem A by noting that the most general transformation of a Cartesian coordinate system into another such system may be decomposed into a transformation of the type just considered and a translation; and under a translation, corresponding coordinates differ merely by a constant.

PROOF OF THE INVARIANCE OF THE CURL

We write again x_{1}, x_{2}, x_{3} instead of x, y, z, and similarly $x_{1}^{*}, x_{2}^{*}, x_{3}^{*}$ for other Cartesian coordinates, assuming that both systems are right-handed. Let a_{1}, a_{2}, a_{3} denote the components of curl \mathbf{v} in the $x_{1} x_{2} x_{3}$-coordinates, as given by (1), Sec. 9.9 , with

$$
x=x_{1}, \quad y=x_{2}, \quad z=x_{3}
$$

Similarly, let $a_{1}^{*}, a_{2}^{*}, a_{3}^{*}$ denote the components of curl \mathbf{v} in the $x_{1}^{*} x_{2}^{*} x_{3}^{*}$-coordinate system. We prove that the length and direction of curl \mathbf{v} are independent of the particular choice of Cartesian coordinates, as asserted. We do this by showing that the components of curl \mathbf{v} satisfy the transformation law (2), which is characteristic of vector components. We consider a_{1}. We use (6a), and then the chain rule for functions of several variables (Sec. 9.6). This gives

$$
\begin{aligned}
a_{1} & =\frac{\partial v_{3}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{3}}=\sum_{m=1}^{3}\left(c_{m 3} \frac{\partial v_{m}^{*}}{\partial x_{2}}-c_{m 2} \frac{\partial v_{m}^{*}}{\partial x_{3}}\right) \\
& =\sum_{m=1}^{3} \sum_{j=1}^{3}\left(c_{m 3} \frac{\partial v_{m}^{*}}{\partial x_{j}^{*}} \frac{\partial x_{j}^{*}}{\partial x_{2}}-c_{m 2} \frac{\partial v_{m}^{*}}{\partial x_{j}^{*}} \frac{\partial x_{j}^{*}}{\partial x_{3}}\right) .
\end{aligned}
$$

From this and (7) we obtain

$$
\begin{gathered}
a_{1}=\sum_{m=1}^{3} \sum_{j=1}^{3}\left(c_{m 3} c_{j 2}-c_{m 2} c_{j 3}\right) \frac{\partial v_{m}^{*}}{\partial x_{j}^{*}} \\
=\left(c_{33} c_{22}-c_{32} c_{23}\right)\left(\frac{\partial v_{3}^{*}}{\partial x_{2}^{*}}-\frac{\partial v_{2}^{*}}{\partial x_{3}^{*}}\right)+\cdots \\
=\left(c_{33} c_{22}-c_{32} c_{23}\right) a_{1}^{*}+\left(c_{13} c_{32}-c_{12} c_{33}\right) a_{2}^{*}+\left(c_{23} c_{12}-c_{22} c_{13}\right) a_{3}^{*}
\end{gathered}
$$

Note what we did. The double sum had $3 \times 3=9$ terms, 3 of which were zero (when $m=j$), and the remaining 6 terms we combined in pairs as we needed them in getting $a_{1}^{*}, a_{2}^{*}, a_{3}^{*}$.

We now use (3), Lagrange's identity (see Formula (15) in Team Project 24 in Problem Set 9.3) and $\mathbf{k}^{*} \times \mathbf{j}^{*}=-\mathbf{i}^{*}$ and $\mathbf{k} \times \mathbf{j}=-\mathbf{i}$. Then

$$
\begin{aligned}
c_{33} c_{22}-c_{32} c_{23} & =\left(\mathbf{k}^{*} \cdot \mathbf{k}\right)\left(\mathbf{j}^{*} \cdot \mathbf{j}\right)-\left(\mathbf{k}^{*} \cdot \mathbf{j}\right)\left(\mathbf{j}^{*} \cdot \mathbf{k}\right) \\
& =\left(\mathbf{k}^{*} \times \mathbf{j}^{*}\right) \cdot(\mathbf{k} \times \mathbf{j})=\mathbf{i}^{*} \cdot \mathbf{i}=c_{11}
\end{aligned}
$$

etc.

Hence $a_{1}=c_{11} a_{1}^{*}+c_{21} a_{2}^{*}+c_{31} a_{3}^{*}$. This is of the form of the first formula in (2) in Theorem A, and the other two formulas of the form (2) are obtained similarly. This proves the theorem for right-handed systems. If the $x_{1} x_{2} x_{3}$-coordinates are left-handed, then $\mathbf{k} \times \mathbf{j}=+\mathbf{i}$, but then there is a minus sign in front of the determinant in (1), Sec. 9.9.

Section 10.2, page 420
PROOF OF THEOREM 1, PART (b) We prove that if

$$
\begin{equation*}
\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}=\int_{C}\left(F_{1} d x+F_{2} d y+F_{3} d z\right) \tag{1}
\end{equation*}
$$

with continuous F_{1}, F_{2}, F_{3} in a domain D is independent of path in D, then $F=\operatorname{grad} f$ in D for some f; in components
(2')

$$
F_{1}=\frac{\partial f}{\partial x}, \quad F_{2}=\frac{\partial f}{\partial y}, \quad F_{3}=\frac{\partial f}{\partial z}
$$

We choose any fixed $A:\left(x_{0}, y_{0}, z_{0}\right)$ in D and any $B:(x, y, z)$ in D and define f by

$$
\begin{equation*}
f(x, y, z)=f_{0}+\int_{A}^{B}\left(F_{1} d x^{*}+F_{2} d y^{*}+F_{3} d z^{*}\right) \tag{3}
\end{equation*}
$$

with any constant f_{0} and any path from A to B in D. Since A is fixed and we have independence of path, the integral depends only on the coordinates x, y, z, so that (3) defines a function $f(x, y, z)$ in D. We show that $\mathbf{F}=\operatorname{grad} f$ with this f, beginning with the first of the three relations $\left(2^{\prime}\right)$. Because of independence of path we may integrate from A to $B_{1}:\left(x_{1}, y, z\right)$ and then parallel to the x-axis along the segment $B_{1} B$ in Fig. 562 with B_{1} chosen so that the whole segment lies in D. Then

$$
f(x, y, z)=f_{0}+\int_{A}^{B_{1}}\left(F_{1} d x^{*}+F_{2} d y^{*}+F_{3} d z^{*}\right)+\int_{B_{1}}^{B}\left(F_{1} d x^{*}+F_{2} d y^{*}+F_{3} d z^{*}\right)
$$

We now take the partial derivative with respect to x on both sides. On the left we get $\partial f / \partial x$. We show that on the right we get F_{1}. The derivative of the first integral is zero because $A:\left(x_{0}, y_{0}, z_{0}\right)$ and $B_{1}:\left(x_{1}, y, z\right)$ do not depend on x. We consider the second integral. Since on the segment $B_{1} B$, both y and z are constant, the terms $F_{2} d y^{*}$ and

Fig. 562. Proof of Theorem 1
$F_{3} d z^{*}$ do not contribute to the derivative of the integral. The remaining part can be written as a definite integral,

$$
\int_{B_{1}}^{B} F_{1} d x^{*}=\int_{x_{1}}^{x} F_{1}\left(x^{*}, y, z\right) d x^{*}
$$

Hence its partial derivative with respect to x is $F_{1}(x, y, z)$, and the first of the relations $\left(2^{\prime}\right)$ is proved. The other two formulas in $\left(2^{\prime}\right)$ follow by the same argument.

Section 11.5, page 500

Reality of Eigenvalues

If p, q, r, and p^{\prime} in the Sturm-Liouville equation (1) of Sec. 11.5 are real-valued and continuous on the interval $a \leqq x \leqq b$ and $r(x)>0$ throughout that interval (or $r(x)<0$ throughout that interval), then all the eigenvalues of the Sturm-Liouville problem (1), (2), Sec. 11.5, are real.

PROOF Let $\lambda=\alpha+i \beta$ be an eigenvalue of the problem and let

$$
y(x)=u(x)+i v(x)
$$

be a corresponding eigenfunction; here α, β, u, and v are real. Substituting this into (1), Sec. 11.5, we have

$$
\left(p u^{\prime}+i p v^{\prime}\right)^{\prime}+(q+\alpha r+i \beta r)(u+i v)=0
$$

This complex equation is equivalent to the following pair of equations for the real and the imaginary parts:

$$
\begin{aligned}
& \left(p u^{\prime}\right)^{\prime}+(q+\alpha r) u-\beta r v=0 \\
& \left(p v^{\prime}\right)^{\prime}+(q+\alpha r) v+\beta r u=0
\end{aligned}
$$

Multiplying the first equation by v, the second by $-u$ and adding, we get

$$
\begin{aligned}
-\beta\left(u^{2}+v^{2}\right) r & =u\left(p v^{\prime}\right)^{\prime}-v\left(p u^{\prime}\right)^{\prime} \\
& =\left[\left(p v^{\prime}\right) u-\left(p u^{\prime}\right) v\right]^{\prime}
\end{aligned}
$$

The expression in brackets is continuous on $a \leqq x \leqq b$, for reasons similar to those in the proof of Theorem 1, Sec. 11.5. Integrating over x from a to b, we thus obtain

$$
-\beta \int_{a}^{b}\left(u^{2}+v^{2}\right) r d x=\left[p\left(u v^{\prime}-u^{\prime} v\right)\right]_{a}^{b}
$$

Because of the boundary conditions, the right side is zero; this is as in that proof. Since y is an eigenfunction, $u^{2}+v^{2} \not \equiv 0$. Since y and r are continuous and $r>0$ (or $r<0$) on the interval $a \leqq x \leqq b$, the integral on the left is not zero. Hence, $\beta=0$, which means that $\lambda=\alpha$ is real. This completes the proof.

PROOF OF THEOREM 2 Cauchy-Riemann Equations
 We prove that Cauchy-Riemann equations

$$
\begin{equation*}
u_{x}=v_{y}, \quad u_{y}=-v_{x} \tag{1}
\end{equation*}
$$

are sufficient for a complex function $f(z)=u(x, y)+i v(x, y)$ to be analytic; precisely, if the real part u and the imaginary part v of $f(z)$ satisfy (1) in a domain D in the complex plane and if the partial derivatives in (1) are continuous in D, then $f(z)$ is analytic in D.

In this proof we write $\Delta z=\Delta x+i \Delta y$ and $\Delta f=f(z+\Delta z)-f(z)$. The idea of proof is as follows.
(a) We express Δf in terms of first partial derivatives of u and v, by applying the mean value theorem of Sec. 9.6.
(b) We get rid of partial derivatives with respect to y by applying the Cauchy-Riemann equations.
(c) We let Δz approach zero and show that then $\Delta f / \Delta z$, as obtained, approaches a limit, which is equal to $u_{x}+i v_{x}$, the right side of (4) in Sec. 13.4, regardless of the way of approach to zero.
(a) Let $P:(x, y)$ be any fixed point in D. Since D is a domain, it contains a neighborhood of P. We can choose a point $Q:(x+\Delta x, y+\Delta y)$ in this neighborhood such that the straight-line segment $P Q$ is in D. Because of our continuity assumptions we may apply the mean value theorem in Sec. 9.6. This yields

$$
\begin{aligned}
& u(x+\Delta x, y+\Delta y)-u(x, y)=(\Delta x) u_{x}\left(M_{1}\right)+(\Delta y) u_{y}\left(M_{1}\right) \\
& v(x+\Delta x, y+\Delta y)-v(x, y)=(\Delta x) v_{x}\left(M_{2}\right)+(\Delta y) v_{y}\left(M_{2}\right)
\end{aligned}
$$

where M_{1} and $M_{2}\left(\neq M_{1}\right.$ in general!) are suitable points on that segment. The first line is $\operatorname{Re} \Delta f$ and the second is $\operatorname{Im} \Delta f$, so that

$$
\Delta f=(\Delta x) u_{x}\left(M_{1}\right)+(\Delta y) u_{y}\left(M_{1}\right)+i\left[(\Delta x) v_{x}\left(M_{2}\right)+(\Delta y) v_{y}\left(M_{2}\right)\right]
$$

(b) $u_{y}=-v_{x}$ and $v_{y}=u_{x}$ by the Cauchy-Riemann equations, so that

$$
\Delta f=(\Delta x) u_{x}\left(M_{1}\right)-(\Delta y) v_{x}\left(M_{1}\right)+i\left[(\Delta x) v_{x}\left(M_{2}\right)+(\Delta y) u_{x}\left(M_{2}\right)\right] .
$$

Also $\Delta z=\Delta x+i \Delta y$, so that we can write $\Delta x=\Delta z-i \Delta y$ in the first term and $\Delta y=(\Delta z-\Delta x) / i=-i(\Delta z-\Delta x)$ in the second term. This gives

$$
\Delta f=(\Delta z-i \Delta y) u_{x}\left(M_{1}\right)+i(\Delta z-\Delta x) v_{x}\left(M_{1}\right)+i\left[(\Delta x) v_{x}\left(M_{2}\right)+(\Delta y) u_{x}\left(M_{2}\right)\right]
$$

By performing the multiplications and reordering we obtain

$$
\begin{aligned}
\Delta f= & (\Delta z) u_{x}\left(M_{1}\right)-i \Delta y\left\{u_{x}\left(M_{1}\right)-u_{x}\left(M_{2}\right)\right\} \\
& +i\left[(\Delta z) v_{x}\left(M_{1}\right)-\Delta x\left\{v_{x}\left(M_{1}\right)-v_{x}\left(M_{2}\right)\right\}\right] .
\end{aligned}
$$

Division by Δz now yields
(A) $\frac{\Delta f}{\Delta z}=u_{x}\left(M_{1}\right)+i v_{x}\left(M_{1}\right)-\frac{i \Delta y}{\Delta z}\left\{u_{x}\left(M_{1}\right)-u_{x}\left(M_{2}\right)\right\}-\frac{i \Delta x}{\Delta z}\left\{v_{x}\left(M_{1}\right)-v_{x}\left(M_{2}\right)\right\}$.
(c) We finally let Δz approach zero and note that $|\Delta y / \Delta z| \leqq 1$ and $|\Delta x / \Delta z| \leqq 1$ in (A). Then $Q:(x+\Delta x, y+\Delta y)$ approaches $P:(x, y)$, so that M_{1} and M_{2} must approach P. Also, since the partial derivatives in (A) are assumed to be continuous, they approach their value at P. In particular, the differences in the braces $\{\cdots\}$ in (A) approach zero. Hence the limit of the right side of (A) exists and is independent of the path along which $\Delta z \rightarrow 0$. We see that this limit equals the right side of (4) in Sec. 13.4. This means that $f(z)$ is analytic at every point z in D, and the proof is complete.

Section 14.2, pages 653-654
GOURSAT'S PROOF OF CAUCHY'S INTEGRAL THEOREM Goursat proved Cauchy's integral theorem without assuming that $f^{\prime}(z)$ is continuous, as follows.

We start with the case when C is the boundary of a triangle. We orient C counterclockwise. By joining the midpoints of the sides we subdivide the triangle into four congruent triangles (Fig. 563). Let $C_{\mathrm{I}}, C_{\mathrm{II}}, C_{\mathrm{III}}, C_{\mathrm{IV}}$ denote their boundaries. We claim that (see Fig. 563).

$$
\begin{equation*}
\oint_{C} f d z=\oint_{C_{\mathrm{I}}} f d z+\oint_{C_{\mathrm{II}}} f d z+\oint_{C_{\mathrm{II}}} f d z+\oint_{C_{\mathrm{IV}}} f d z \tag{1}
\end{equation*}
$$

Indeed, on the right we integrate along each of the three segments of subdivision in both possible directions (Fig. 563), so that the corresponding integrals cancel out in pairs, and the sum of the integrals on the right equals the integral on the left. We now pick an integral on the right that is biggest in absolute value and call its path C_{1}. Then, by the triangle inequality (Sec. 13.2),

$$
\left|\oint_{C} f d z\right| \leqq\left|\oint_{C_{\mathrm{I}}} f d z\right|+\left|\oint_{C_{\mathrm{II}}} f d z\right|+\left|\oint_{C_{\mathrm{II}}} f d z\right|+\left|\oint_{C_{\mathrm{IV}}} f d z\right| \leqq 4\left|\oint_{C_{1}} f d z\right| .
$$

We now subdivide the triangle bounded by C_{1} as before and select a triangle of subdivision with boundary C_{2} for which

$$
\left|\oint_{C_{1}} f d z\right| \leqq 4\left|\oint_{C_{2}} f d z\right| . \quad \text { Then } \quad\left|\oint_{C} f d z\right| \leqq 4^{2}\left|\oint_{C_{2}} f d z\right| \text {. }
$$

Fig. 563. Proof of Cauchy's integral theorem

Continuing in this fashion, we obtain a sequence of triangles T_{1}, T_{2}, \cdots with boundaries C_{1}, C_{2}, \cdots that are similar and such that T_{n} lies in T_{m} when $n>m$, and

$$
\begin{equation*}
\left|\oint_{C} f d z\right| \leqq 4^{n}\left|\oint_{C_{n}} f d z\right|, \quad n=1,2, \cdots . \tag{2}
\end{equation*}
$$

Let z_{0} be the point that belongs to all these triangles. Since f is differentiable at $z=z_{0}$, the derivative $f^{\prime}\left(z_{0}\right)$ exists. Let

$$
\begin{equation*}
h(z)=\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-f^{\prime}\left(z_{0}\right) . \tag{3}
\end{equation*}
$$

Solving this algebraically for $f(z)$ we have

$$
f(z)=f\left(z_{0}\right)+\left(z-z_{0}\right) f^{\prime}\left(z_{0}\right)+h(z)\left(z-z_{0}\right) .
$$

Integrating this over the boundary C_{n} of the triangle T_{n} gives

$$
\oint_{C_{n}} f(z) d z=\oint_{C_{n}} f\left(z_{0}\right) d z+\oint_{C_{n}}\left(z-z_{0}\right) f^{\prime}\left(z_{0}\right) d z+\oint_{C_{n}} h(z)\left(z-z_{0}\right) d z .
$$

Since $f\left(z_{0}\right)$ and $f^{\prime}\left(z_{0}\right)$ are constants and C_{n} is a closed path, the first two integrals on the right are zero, as follows from Cauchy's proof, which is applicable because the integrands do have continuous derivatives (0 and const, respectively). We thus have

$$
\oint_{C_{n}} f(z) d z=\oint_{C_{n}} h(z)\left(z-z_{0}\right) d z .
$$

Since $f^{\prime}\left(z_{0}\right)$ is the limit of the difference quotient in (3), for given $\epsilon>0$ we can find a $\delta>0$ such that

$$
\begin{equation*}
|h(z)|<\epsilon \quad \text { when } \quad\left|z-z_{0}\right|<\delta . \tag{4}
\end{equation*}
$$

We may now take n so large that the triangle T_{n} lies in the disk $\left|z-z_{0}\right|<\delta$. Let L_{n} be the length of C_{n}. Then $\left|z-z_{0}\right|<L_{n}$ for all z on C_{n} and z_{0} in T_{n}. From this and (4) we have $\left|h(z)\left(z-z_{0}\right)\right|<\epsilon L_{n}$. The $M L$-inequality in Sec. 14.1 now gives

$$
\begin{equation*}
\left|\oint_{C_{n}} f(z) d z\right|=\left|\oint_{C_{n}} h(z)\left(z-z_{0}\right) d z\right| \leqq \epsilon L_{n} \cdot L_{n}=\epsilon L_{n}^{2} . \tag{5}
\end{equation*}
$$

Now denote the length of C by L. Then the path C_{1} has the length $L_{1}=L / 2$, the path C_{2} has the length $L_{2}=L_{1} / 2=L / 4$, etc., and C_{n} has the length $L_{n}=L / 2^{n}$. Hence $L_{n}^{2}=L^{2} / 4^{n}$. From (2) and (5) we thus obtain

$$
\left|\oint_{C} f d z\right| \leqq 4^{n}\left|\oint_{C_{n}} f d z\right| \leqq 4^{n} \epsilon L_{n}^{2}=4^{n} \epsilon \frac{L^{2}}{4^{n}}=\epsilon L^{2} .
$$

By choosing $\epsilon(>0)$ sufficiently small we can make the expression on the right as small as we please, while the expression on the left is the definite value of an integral. Consequently, this value must be zero, and the proof is complete.

The proof for the case in which C is the boundary of a polygon follows from the previous proof by subdividing the polygon into triangles (Fig. 564). The integral corresponding to each such triangle is zero. The sum of these integrals is equal to the integral over C, because we integrate along each segment of subdivision in both directions, the corresponding integrals cancel out in pairs, and we are left with the integral over C.

The case of a general simple closed path C can be reduced to the preceding one by inscribing in C a closed polygon P of chords, which approximates C "sufficiently accurately," and it can be shown that there is a polygon P such that the integral over P differs from that over C by less than any preassigned positive real number $\tilde{\epsilon}$, no matter how small. The details of this proof are somewhat involved and can be found in Ref. [D6] listed in App. 1.

Fig. 564. Proof of Cauchy's integral theorem for a polygon

Section 15.1, page 674
PROOF OF THEOREM 4 Cauchy's Convergence Principle for Series
(a) In this proof we need two concepts and a theorem, which we list first.

1. A bounded sequence s_{1}, s_{2}, \cdots is a sequence whose terms all lie in a disk of (sufficiently large, finite) radius K with center at the origin; thus $\left|s_{n}\right|<K$ for all n.
2. A limit point a of a sequence s_{1}, s_{2}, \cdots is a point such that, given an $\epsilon>0$, there are infinitely many terms satisfying $\left|s_{n}-a\right|<\epsilon$. (Note that this does not imply convergence, since there may still be infinitely many terms that do not lie within that circle of radius ϵ and center a.)

Example: $\frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{7}{8}, \frac{1}{16}, \frac{15}{16}, \cdots$ has the limit points 0 and 1 and diverges.
3. A bounded sequence in the complex plane has at least one limit point. (Bolzano-Weierstrass theorem; proof below. Recall that "sequence" always means infinite sequence.)
(b) We now turn to the actual proof that $z_{1}+z_{2}+\cdots$ converges if and only if, for every $\epsilon>0$, we can find an N such that

$$
\begin{equation*}
\left|z_{n+1}+\cdots+z_{n+p}\right|<\epsilon \quad \text { for every } n>N \text { and } p=1,2, \cdots \tag{1}
\end{equation*}
$$

Here, by the definition of partial sums,

$$
s_{n+p}-s_{n}=z_{n+1}+\cdots+z_{n+p} .
$$

Writing $n+p=r$, we see from this that (1) is equivalent to

$$
\begin{equation*}
\left|s_{r}-s_{n}\right|<\epsilon \quad \text { for all } r>N \text { and } n>N \tag{*}
\end{equation*}
$$

Suppose that s_{1}, s_{2}, \cdots converges. Denote its limit by s. Then for a given $\epsilon>0$ we can find an N such that

$$
\left|s_{n}-s\right|<\frac{\epsilon}{2} \quad \text { for every } n>N
$$

Hence, if $r>N$ and $n>N$, then by the triangle inequality (Sec. 13.2),

$$
\left|s_{r}-s_{n}\right|=\left|\left(s_{r}-s\right)-\left(s_{n}-s\right)\right| \leqq\left|s_{r}-s\right|+\left|s_{n}-s\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon,
$$

that is, (1*) holds.
(c) Conversely, assume that s_{1}, s_{2}, \cdots satisfies (1*). We first prove that then the sequence must be bounded. Indeed, choose a fixed ϵ and a fixed $n=n_{0}>N$ in (1*). Then (1*) implies that all s_{r} with $r>N$ lie in the disk of radius ϵ and center $s_{n_{0}}$ and only finitely many terms s_{1}, \cdots, s_{N} may not lie in this disk. Clearly, we can now find a circle so large that this disk and these finitely many terms all lie within this new circle. Hence the sequence is bounded. By the Bolzano-Weierstrass theorem, it has at least one limit point, call it s.

We now show that the sequence is convergent with the limit s. Let $\epsilon>0$ be given. Then there is an N^{*} such that $\left|s_{r}-s_{n}\right|<\epsilon / 2$ for all $r>N^{*}$ and $n>N^{*}$, by (1^{*}). Also, by the definition of a limit point, $\left|s_{n}-s\right|<\epsilon / 2$ for infinitely many n, so that we can find and fix an $n>N^{*}$ such that $\left|s_{n}-s\right|<\epsilon / 2$. Together, for every $r>N^{*}$,

$$
\left|s_{r}-s\right|=\left|\left(s_{r}-s_{n}\right)+\left(s_{n}-s\right)\right| \leqq\left|s_{r}-s_{n}\right|+\left|s_{n}-s\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon ;
$$

that is, the sequence s_{1}, s_{2}, \cdots is convergent with the limit s.

Bolzano-Weierstrass Theorem ${ }^{3}$

A bounded infinite sequence $z_{1}, z_{2}, z_{3}, \cdots$ in the complex plane has at least one limit point.

PROOF It is obvious that we need both conditions: a finite sequence cannot have a limit point, and the sequence $1,2,3, \cdots$, which is infinite but not bounded, has no limit point. To prove the theorem, consider a bounded infinite sequence z_{1}, z_{2}, \cdots and let K be such that $\left|z_{n}\right|<K$ for all n. If only finitely many values of the z_{n} are different, then, since the sequence is infinite, some number z must occur infinitely many times in the sequence, and, by definition, this number is a limit point of the sequence.

We may now turn to the case when the sequence contains infinitely many different terms. We draw a large square Q_{0} that contains all z_{n}. We subdivide Q_{0} into four congruent squares, which we number $1,2,3,4$. Clearly, at least one of these squares (each taken with its complete boundary) must contain infinitely many terms of the sequence. The square of this type with the lowest number $(1,2,3$, or 4$)$ will be denoted by Q_{1}. This is

[^36]the first step. In the next step we subdivide Q_{1} into four congruent squares and select a square Q_{2} by the same rule, and so on. This yields an infinite sequence of squares Q_{0}, $Q_{1}, Q_{2}, \cdots, Q_{n}, \cdots$ with the property that the side of Q_{n} approaches zero as n approaches infinity, and Q_{m} contains all Q_{n} with $n>m$. It is not difficult to see that the number which belongs to all these squares, ${ }^{4}$ call it $z=a$, is a limit point of the sequence. In fact, given an $\epsilon>0$, we can choose an N so large that the side of the square Q_{N} is less than ϵ and, since Q_{N} contains infinitely many z_{n}, we have $\left|z_{n}-a\right|<\epsilon$ for infinitely many n. This completes the proof.

Section 15.3, pages 688-689
PART (b) OF THE PROOF OF THEOREM 5
We have to show that

$$
\begin{gathered}
\sum_{n=2}^{\infty} a_{n}\left[\frac{(z+\Delta z)^{n}-z^{n}}{\Delta z}-n z^{n-1}\right] \\
=\sum_{n=2}^{\infty} a_{n} \Delta z\left[(z+\Delta z)^{n-2}+2 z(z+\Delta z)^{n-3}+\cdots+(n-1) z^{n-2}\right],
\end{gathered}
$$

thus,

$$
\begin{gathered}
\frac{(z+\Delta z)^{n}-z^{n}}{\Delta z}-n z^{n-1} \\
=\Delta z\left[(z+\Delta z)^{n-2}+2 z(z+\Delta z)^{n-3}+\cdots+(n-1) z^{n-2}\right] .
\end{gathered}
$$

If we set $z+\Delta z=b$ and $z=a$, thus $\Delta z=b-a$, this becomes simply

$$
\begin{equation*}
\frac{b^{n}-a^{n}}{b-a}-n a^{n-1}=(b-a) A_{n} \quad(n=2,3, \cdots) \tag{7a}
\end{equation*}
$$

where A_{n} is the expression in the brackets on the right,

$$
\begin{equation*}
A_{n}=b^{n-2}+2 a b^{n-3}+3 a^{2} b^{n-4}+\cdots+(n-1) a^{n-2} \tag{7b}
\end{equation*}
$$

thus, $A_{2}=1, A_{3}=b+2 a$, etc. We prove (7) by induction. When $n=2$, then (7) holds, since then

$$
\frac{b^{2}-a^{2}}{b-a}-2 a=\frac{(b+a)(b-a)}{b-a}-2 a=b-a=(b-a) A_{2}
$$

Assuming that (7) holds for $n=k$, we show that it holds for $n=k+1$. By adding and subtracting a term in the numerator and then dividing we first obtain

$$
\frac{b^{k+1}-a^{k+1}}{b-a}=\frac{b^{k+1}-b a^{k}+b a^{k}-a^{k+1}}{b-a}=b \frac{b^{k}-a^{k}}{b-a}+a^{k}
$$

[^37]By the induction hypothesis, the right side equals $b\left[(b-a) A_{k}+k a^{k-1}\right]+a^{k}$. Direct calculation shows that this is equal to

$$
(b-a)\left\{b A_{k}+k a^{k-1}\right\}+a k a^{k-1}+a^{k}
$$

From (7b) with $n=k$ we see that the expression in the braces $\{\cdots\}$ equals

$$
b^{k-1}+2 a b^{k-2}+\cdots+(k-1) b a^{k-2}+k a^{k-1}=A_{k+1}
$$

Hence our result is

$$
\frac{b^{k+1}-a^{k+1}}{b-a}=(b-a) A_{k+1}+(k+1) a^{k}
$$

Taking the last term to the left, we obtain (7) with $n=k+1$. This proves (7) for any integer $n \geqq 2$ and completes the proof.

Section 18.2, page 763
ANOTHER PROOF OF THEOREM 1 without the use of a harmonic conjugate
We show that if $w=u+i v=f(z)$ is analytic and maps a domain D conformally onto a domain D^{*} and $\Phi^{*}(u, v)$ is harmonic in D^{*}, then

$$
\begin{equation*}
\Phi(x, y)=\Phi^{*}(u(x, y), v(x, y)) \tag{1}
\end{equation*}
$$

is harmonic in D, that is, $\nabla^{2} \Phi=0$ in D. We make no use of a harmonic conjugate of Φ^{*}, but use straightforward differentiation. By the chain rule,

$$
\Phi_{x}=\Phi_{u}^{*} u_{x}+\Phi_{v}^{*} v_{x}
$$

We apply the chain rule again, underscoring the terms that will drop out when we form $\nabla^{2} \Phi$:

$$
\begin{aligned}
& \Phi_{x x}=\underline{\Phi_{u}^{*} u_{x x}}+\left(\Phi_{u u}^{*} u_{x}+\underline{\Phi_{u v}^{*} v_{x}}\right) u_{x} \\
& +\underline{\Phi_{u}^{*} v_{x x}}+\left(\underline{\Phi_{v u}^{*} u_{x}}+\Phi_{v v}^{*} v_{x}\right) v_{x}
\end{aligned}
$$

$\Phi_{y y}$ is the same with each x replaced by y. We form the sum $\nabla^{2} \Phi$. In it, $\Phi_{v u}^{*}=\Phi_{u v}^{*}$ is multiplied by

$$
u_{x} v_{x}+u_{y} v_{y}
$$

which is 0 by the Cauchy-Riemann equations. Also $\nabla^{2} u=0$ and $\nabla^{2} v=0$. There remains

$$
\nabla^{2} \Phi=\Phi_{u u}^{*}\left(u_{x}^{2}+u_{y}^{2}\right)+\Phi_{v v}^{*}\left(v_{x}^{2}+v_{y}^{2}\right)
$$

By the Cauchy-Riemann equations this becomes

$$
\nabla^{2} \Phi=\left(\Phi_{u u}^{*}+\Phi_{v v}^{*}\right)\left(u_{x}^{2}+v_{x}^{2}\right)
$$

and is 0 since Φ^{*} is harmonic.

APPENDIX 5

Tables

For Tables of Laplace Transforms see Secs. 6.8 and 6.9. For Tables of Fourier Transforms see Sec. 11.10.
If you have a Computer Algebra System (CAS), you may not need the present tables, but you may still find them convenient from time to time.

Table A1 Bessel Functions
For more extensive tables see Ref. [GenRef1] in App. 1.

x	$J_{0}(x)$	$J_{1}(x)$	x	$J_{0}(x)$	$J_{1}(x)$	x	$J_{0}(x)$	$J_{1}(x)$
0.0	1.0000	0.0000	3.0	-0.2601	0.3391	6.0	0.1506	-0.2767
0.1	0.9975	0.0499	3.1	-0.2921	0.3009	6.1	0.1773	-0.2559
0.2	0.9900	0.0995	3.2	-0.3202	0.2613	6.2	0.2017	-0.2329
0.3	0.9776	0.1483	3.3	-0.3443	0.2207	6.3	0.2238	-0.2081
0.4	0.9604	0.1960	3.4	-0.3643	0.1792	6.4	0.2433	-0.1816
0.5	0.9385	0.2423	3.5	-0.3801	0.1374	6.5	0.2601	-0.1538
0.6	0.9120	0.2867	3.6	-0.3918	0.0955	6.6	0.2740	-0.1250
0.7	0.8812	0.3290	3.7	-0.3992	0.0538	6.7	0.2851	-0.0953
0.8	0.8463	0.3688	3.8	-0.4026	0.0128	6.8	0.2931	-0.0652
0.9	0.8075	0.4059	3.9	-0.4018	-0.0272	6.9	0.2981	-0.0349
1.0	0.7652	0.4401	4.0	-0.3971	-0.0660	7.0	0.3001	-0.0047
1.1	0.7196	0.4709	4.1	-0.3887	-0.1033	7.1	0.2991	0.0252
1.2	0.6711	0.4983	4.2	-0.3766	-0.1386	7.2	0.2951	0.0543
1.3	0.6201	0.5220	4.3	-0.3610	-0.1719	7.3	0.2882	0.0826
1.4	0.5669	0.5419	4.4	-0.3423	-0.2028	7.4	0.2786	0.1096
1.5	0.5118	0.5579	4.5	-0.3205	-0.2311	7.5	0.2663	0.1352
1.6	0.4554	0.5699	4.6	-0.2961	-0.2566	7.6	0.2516	0.1592
1.7	0.3980	0.5778	4.7	-0.2693	-0.2791	7.7	0.2346	0.1813
1.8	0.3400	0.5815	4.8	-0.2404	-0.2985	7.8	0.2154	0.2014
1.9	0.2818	0.5812	4.9	-0.2097	-0.3147	7.9	0.1944	0.2192
2.0	0.2239	0.5767	5.0	-0.1776	-0.3276	8.0	0.1717	0.2346
2.1	0.1666	0.5683	5.1	-0.1443	-0.3371	8.1	0.1475	0.2476
2.2	0.1104	0.5560	5.2	-0.1103	-0.3432	8.2	0.1222	0.2580
2.3	0.0555	0.5399	5.3	-0.0758	-0.3460	8.3	0.0960	0.2657
2.4	0.0025	0.5202	5.4	-0.0412	-0.3453	8.4	0.0692	0.2708
2.5	-0.0484	0.4971	5.5	-0.0068	-0.3414	8.5	0.0419	0.2731
2.6	-0.0968	0.4708	5.6	0.0270	-0.3343	8.6	0.0146	0.2728
2.7	-0.1424	0.4416	5.7	0.0599	-0.3241	8.7	-0.0125	0.2697
2.8	-0.1850	0.4097	5.8	0.0917	-0.3110	8.8	-0.0392	0.2641
2.9	-0.2243	0.3754	5.9	0.1220	-0.2951	8.9	-0.0653	0.2559

$J_{0}(x)=0$ for $x=2.40483,5.52008,8.65373,11.7915,14.9309,18.0711,21.2116,24.3525,27.4935,30.6346$ $J_{1}(x)=0$ for $x=3.83171,7.01559,10.1735,13.3237,16.4706,19.6159,22.7601,25.9037,29.0468,32.1897$

Table A1 (continued)

x	$Y_{\mathbf{0}}(x)$	$Y_{1}(x)$	x	$Y_{0}(x)$	$Y_{1}(x)$	x	$Y_{0}(x)$	$Y_{1}(x)$
0.0	$(-\infty)$	$(-\infty)$	2.5	0.498	0.146	5.0	-0.309	0.148
0.5	-0.445	-1.471	3.0	0.377	0.325	5.5	-0.339	-0.024
1.0	0.088	-0.781	3.5	0.189	0.410	6.0	-0.288	-0.175
1.5	0.382	-0.412	4.0	-0.017	0.398	6.5	-0.173	-0.274
2.0	0.510	-0.107	4.5	-0.195	0.301	7.0	-0.026	-0.303

Table A2 Gamma Function [see (24) in App. A3.1]

α	$\Gamma(\alpha)$								
1.00	1.000000	1.20	0.918169	1.40	0.887264	1.60	0.893515	1.80	0.931384
1.02	0.988844	1.22	0.913106	1.42	0.886356	1.62	0.895924	1.82	0.936845
1.04	0.978438	1.24	0.908521	1.44	0.885805	1.64	0.898642	1.84	0.942612
1.06	0.968744	1.26	0.904397	1.46	0.885604	1.66	0.901668	1.86	0.948687
1.08	0.959725	1.28	0.900718	1.48	0.885747	1.68	0.905001	1.88	0.955071
1.10	0.951351	1.30	0.897471	1.50	0.886227	1.70	0.908639	1.90	0.961766
1.12	0.943590	1.32	0.894640	1.52	0.887039	1.72	0.912581	1.92	0.968774
1.14	0.936416	1.34	0.892216	1.54	0.888178	1.74	0.916826	1.94	0.976099
1.16	0.929803	1.36	0.890185	1.56	0.889639	1.76	0.921375	1.96	0.983743
1.18	0.923728	1.38	0.888537	1.58	0.891420	1.78	0.926227	1.98	0.991708
1.20	0.918169	1.40	0.887264	1.60	0.893515	1.80	0.931384	2.00	1.000000

Table A3 Factorial Function and Its Logarithm with Base 10

n	$n!$	$\log (n!)$	n	$n!$	$\log (n!)$	n	$n!$	$\log (n!)$
1	1	0.000000	6	720	2.857332	11	39916800	7.601156
2	2	0.301030	7	5040	3.702431	12	479001600	8.680337
3	6	0.778151	8	40320	4.605521	13	6227020800	9.794280
4	24	1.380211	9	362880	5.559763	14	87178291200	10.940408
5	120	2.079181	10	3628800	6.559763	15	1307674368000	12.116500

Table A4 Error Function, Sine and Cosine Integrals [see (35), (40), (42) in App. A3.1]

x	$\operatorname{erf} x$	$\operatorname{Si}(x)$	$\operatorname{ci}(x)$	x	$\operatorname{erf} x$	$\operatorname{Si}(x)$	$\operatorname{ci}(x)$
0.0	0.0000	0.0000	∞	2.0	0.9953	1.6054	-0.4230
0.2	0.2227	0.1996	1.0422	2.2	0.9981	1.6876	-0.3751
0.4	0.4284	0.3965	0.3788	2.4	0.9993	1.7525	-0.3173
0.6	0.6039	0.5881	0.0223	2.6	0.9998	1.8004	-0.2533
0.8	0.7421	0.7721	-0.1983	2.8	0.9999	1.8321	-0.1865
1.0	0.8427	0.9461	-0.3374	3.0	1.0000	1.8487	-0.1196
1.2	0.9103	1.1080	-0.4205	3.2	1.0000	1.8514	-0.0553
1.4	0.9523	1.2562	-0.4620	3.4	1.0000	1.8419	0.0045
1.6	0.9763	1.3892	-0.4717	3.6	1.0000	1.8219	0.0580
1.8	0.9891	1.5058	-0.4568	3.8	1.0000	1.7934	0.1038
2.0	0.9953	1.6054	-0.4230	4.0	1.0000	1.7582	0.1410

Table A5 Binomial Distribution
Probability function $f(x)$ [see (2), Sec. 24.7] and distribution function $F(x)$

n	x	$p=0.1$		$p=0.2$		$p=0.3$		$p=0.4$		$p=0.5$	
		$f(x)$									
1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \mathbf{0 .} \\ 9000 \end{gathered}$	$\begin{aligned} & 0.9000 \\ & 1.0000 \end{aligned}$	$\begin{gathered} \mathbf{0 .} \\ 8000 \\ 2000 \end{gathered}$	0.8000	$\begin{gathered} \mathbf{0 .} \\ 7000 \\ 3000 \end{gathered}$	$\begin{aligned} & 0.7000 \\ & 1.0000 \end{aligned}$	$\begin{gathered} \mathbf{0 .} \\ 6000 \end{gathered}$	0.6000 1.0000	$\begin{gathered} \mathbf{0 .} \\ 5000 \\ 5000 \end{gathered}$	$\begin{aligned} & 0.5000 \\ & 1.0000 \end{aligned}$
2	0	8100	0.8100	6400	0.6400	4900	0.4900	3600	0.3600	2500	0.2500
	1	1800	0.9900	3200	0.9600	4200	0.9100	4800	0.8400	5000	0.7500
	2	0100	1.0000	0400	1.0000	0900	1.0000	1600	1.0000	2500	1.0000
3	0	7290	0.7290	5120	0.5120	3430	0.3430	2160	0.2160	1250	0.1250
	1	2430	0.9720	3840	0.8960	4410	0.7840	4320	0.6480	3750	0.5000
	2	0270	0.9990	0960	0.9920	1890	0.9730	2880	0.9360	3750	0.8750
	3	0010	1.0000	0080	1.0000	0270	1.0000	0640	1.0000	1250	1.0000
4	0	6561	0.6561	4096	0.4096	2401	0.2401	1296	0.1296	0625	0.0625
	1	2916	0.9477	4096	0.8192	4116	0.6517	3456	0.4752	2500	0.3125
	2	0486	0.9963	1536	0.9728	2646	0.9163	3456	0.8208	3750	0.6875
	3	0036	0.9999	0256	0.9984	0756	0.9919	1536	0.9744	2500	0.9375
	4	0001	1.0000	0016	1.0000	0081	1.0000	0256	1.0000	0625	1.0000
5	0	5905	0.5905	3277	0.3277	1681	0.1681	0778	0.0778	0313	0.0313
	1	3281	0.9185	4096	0.7373	3602	0.5282	2592	0.3370	1563	0.1875
	2	0729	0.9914	2048	0.9421	3087	0.8369	3456	0.6826	3125	0.5000
	3	0081	0.9995	0512	0.9933	1323	0.9692	2304	0.9130	3125	0.8125
	4	0005	1.0000	0064	0.9997	0284	0.9976	0768	0.9898	1563	0.9688
	5	0000	1.0000	0003	1.0000	0024	1.0000	0102	1.0000	0313	1.0000
6	0	5314	0.5314	2621	0.2621	1176	0.1176	0467	0.0467	0156	0.0156
	1	3543	0.8857	3932	0.6554	3025	0.4202	1866	0.2333	0938	0.1094
	2	0984	0.9841	2458	0.9011	3241	0.7443	3110	0.5443	2344	0.3438
	3	0146	0.9987	0819	0.9830	1852	0.9295	2765	0.8208	3125	0.6563
	4	0012	0.9999	0154	0.9984	0595	0.9891	1382	0.9590	2344	0.8906
	5	0001	1.0000	0015	0.9999	0102	0.9993	0369	0.9959	0938	0.9844
	6	0000	1.0000	0001	1.0000	0007	1.0000	0041	1.0000	0156	1.0000
7	0	4783	0.4783	2097	0.2097	0824	0.0824	0280	0.0280	0078	0.0078
	1	3720	0.8503	3670	0.5767	2471	0.3294	1306	0.1586	0547	0.0625
	2	1240	0.9743	2753	0.8520	3177	0.6471	2613	0.4199	1641	0.2266
	3	0230	0.9973	1147	0.9667	2269	0.8740	2903	0.7102	2734	0.5000
	4	0026	0.9998	0287	0.9953	0972	0.9712	1935	0.9037	2734	0.7734
	5	0002	1.0000	0043	0.9996	0250	0.9962	0774	0.9812	1641	0.9375
	6	0000	1.0000	0004	1.0000	0036	0.9998	0172	0.9984	0547	0.9922
	7	0000	1.0000	0000	1.0000	0002	1.0000	0016	1.0000	0078	1.0000
8	0	4305	0.4305	1678	0.1678	0576	0.0576	0168	0.0168	0039	0.0039
	1	3826	0.8131	3355	0.5033	1977	0.2553	0896	0.1064	0313	0.0352
	2	1488	0.9619	2936	0.7969	2965	0.5518	2090	0.3154	1094	0.1445
	3	0331	0.9950	1468	0.9437	2541	0.8059	2787	0.5941	2188	0.3633
	4	0046	0.9996	0459	0.9896	1361	0.9420	2322	0.8263	2734	0.6367
	5	0004	1.0000	0092	0.9988	0467	0.9887	1239	0.9502	2188	0.8555
	6	0000	1.0000	0011	0.9999	0100	0.9987	0413	0.9915	1094	0.9648
	7	0000	1.0000	0001	1.0000	0012	0.9999	0079	0.9993	0313	0.9961
	8	0000	1.0000	0000	1.0000	0001	1.0000	0007	1.0000	0039	1.0000

Table A6 Poisson Distribution
Probability function $f(x)$ [see (5), Sec. 24.7] and distribution function $F(x)$

	$\mu=0.1$		$\mu=0.2$		$\mu=0.3$			$\mu=0.4$		
$\mu=0.5$										
x	$f(x)$									
	$\mathbf{0 .}$									
0	9048	0.9048	8187	0.8187	7408	0.7408	6703	0.6703	6065	0.6065
1	0905	0.9953	1637	0.9825	2222	0.9631	2681	0.9384	3033	0.9098
2	0045	0.9998	0164	0.9989	0333	0.9964	0536	0.9921	0758	0.9856
3	0002	1.0000	0011	0.9999	0033	0.9997	0072	0.9992	0126	0.9982
4	0000	1.0000	0001	1.0000	0003	1.0000	0007	0.9999	0016	0.9998
5							0001	1.0000	0002	1.0000

	$\mu=0.6$		$\mu=0.7$		$\mu=0.8$		$\mu=0.9$		$\mu=1$	
x	$f(x)$									
	$\mathbf{0 .}$									
0	5488	0.5488	4966	0.4966	4493	0.4493	4066	0.4066	3679	0.3679
1	3293	0.8781	3476	0.8442	3595	0.8088	3659	0.7725	3679	0.7358
2	0988	0.9769	1217	0.9659	1438	0.9526	1647	0.9371	1839	0.9197
3	0198	0.9966	0284	0.9942	0383	0.9909	0494	0.9865	0613	0.9810
4	0030	0.9996	0050	0.9992	0077	0.9986	0111	0.9977	0153	0.9963
5	0004	1.0000	0007	0.9999	0012	0.9998	0020	0.999	0031	0.9994
6			0001	1.0000	0002	1.0000	0003	1.0000	0005	0.9999
7									0001	1.0000

x	$\mu=1.5$		$\mu=2$		$\mu=3$		$\mu=4$		$\mu=5$	
	$f(x)$									
0	$\begin{gathered} \mathbf{0 .} \\ 2231 \end{gathered}$	0.2231	$\begin{gathered} \mathbf{0 .} \\ 1353 \end{gathered}$	0.1353	$\begin{gathered} \mathbf{0 .} \\ 0498 \end{gathered}$	0.0498	$\begin{gathered} \mathbf{0 .} \\ 0183 \end{gathered}$	0.0183	$\begin{gathered} \mathbf{0 .} \\ 0067 \end{gathered}$	0.0067
1	3347	0.5578	2707	0.4060	1494	0.1991	0733	0.0916	0337	0.0404
2	2510	0.8088	2707	0.6767	2240	0.4232	1465	0.2381	0842	0.1247
3	1255	0.9344	1804	0.8571	2240	0.6472	1954	0.4335	1404	0.2650
4	0471	0.9814	0902	0.9473	1680	0.8153	1954	0.6288	1755	0.4405
5	0141	0.9955	0361	0.9834	1008	0.9161	1563	0.7851	1755	0.6160
6	0035	0.9991	0120	0.9955	0504	0.9665	1042	0.8893	1462	0.7622
7	0008	0.9998	0034	0.9989	0216	0.9881	0595	0.9489	1044	0.8666
8	0001	1.0000	0009	0.9998	0081	0.9962	0298	0.9786	0653	0.9319
9			0002	1.0000	0027	0.9989	0132	0.9919	0363	0.9682
10					0008	0.9997	0053	0.9972	0181	0.9863
11					0002	0.9999	0019	0.9991	0082	0.9945
12					0001	1.0000	0006	0.9997	0034	0.9980
13							0002	0.9999	0013	0.9993
14							0001	1.0000	0005	0.9998
15									0002	0.9999
16									0000	1.0000

Table A7 Normal Distribution
Values of the distribution function $\Phi(z)$ [see (3), Sec. 24.8]. $\Phi(-z)=1-\Phi(z)$

z	$\Phi(z)$										
	0.		0.		0.		0.		0.		0.
0.01	5040	0.51	6950	1.01	8438	1.51	9345	2.01	9778	2.51	9940
0.02	5080	0.52	6985	1.02	8461	1.52	9357	2.02	9783	2.52	9941
0.03	5120	0.53	7019	1.03	8485	1.53	9370	2.03	9788	2.53	9943
0.04	5160	0.54	7054	1.04	8508	1.54	9382	2.04	9793	2.54	9945
0.05	5199	0.55	7088	1.05	8531	1.55	9394	2.05	9798	2.55	9946
0.06	5239	0.56	7123	1.06	8554	1.56	9406	2.06	9803	2.56	9948
0.07	5279	0.57	7157	1.07	8577	1.57	9418	2.07	9808	2.57	9949
0.08	5319	0.58	7190	1.08	8599	1.58	9429	2.08	9812	2.58	9951
0.09	5359	0.59	7224	1.09	8621	1.59	9441	2.09	9817	2.59	9952
0.10	5398	0.60	7257	1.10	8643	1.60	9452	2.10	9821	2.60	9953
0.11	5438	0.61	7291	1.11	8665	1.61	9463	2.11	9826	2.61	9955
0.12	5478	0.62	7324	1.12	8686	1.62	9474	2.12	9830	2.62	9956
0.13	5517	0.63	7357	1.13	8708	1.63	9484	2.13	9834	2.63	9957
0.14	5557	0.64	7389	1.14	8729	1.64	9495	2.14	9838	2.64	9959
0.15	5596	0.65	7422	1.15	8749	1.65	9505	2.15	9842	2.65	9960
0.16	5636	0.66	7454	1.16	8770	1.66	9515	2.16	9846	2.66	9961
0.17	5675	0.67	7486	1.17	8790	1.67	9525	2.17	9850	2.67	9962
0.18	5714	0.68	7517	1.18	8810	1.68	9535	2.18	9854	2.68	9963
0.19	5753	0.69	7549	1.19	8830	1.69	9545	2.19	9857	2.69	9964
0.20	5793	0.70	7580	1.20	8849	1.70	9554	2.20	9861	2.70	9965
0.21	5832	0.71	7611	1.21	8869	1.71	9564	2.21	9864	2.71	9966
0.22	5871	0.72	7642	1.22	8888	1.72	9573	2.22	9868	2.72	9967
0.23	5910	0.73	7673	1.23	8907	1.73	9582	2.23	9871	2.73	9968
0.24	5948	0.74	7704	1.24	8925	1.74	9591	2.24	9875	2.74	9969
0.25	5987	0.75	7734	1.25	8944	1.75	9599	2.25	9878	2.75	9970
0.26	6026	0.76	7764	1.26	8962	1.76	9608	2.26	9881	2.76	9971
0.27	6064	0.77	7794	1.27	8980	1.77	9616	2.27	9884	2.77	9972
0.28	6103	0.78	7823	1.28	8997	1.78	9625	2.28	9887	2.78	9973
0.29	6141	0.79	7852	1.29	9015	1.79	9633	2.29	9890	2.79	9974
0.30	6179	0.80	7881	1.30	9032	1.80	9641	2.30	9893	2.80	9974
0.31	6217	0.81	7910	1.31	9049	1.81	9649	2.31	9896	2.81	9975
0.32	6255	0.82	7939	1.32	9066	1.82	9656	2.32	9898	2.82	9976
0.33	6293	0.83	7967	1.33	9082	1.83	9664	2.33	9901	2.83	9977
0.34	6331	0.84	7995	1.34	9099	1.84	9671	2.34	9904	2.84	9977
0.35	6368	0.85	8023	1.35	9115	1.85	9678	2.35	9906	2.85	9978
0.36	6406	0.86	8051	1.36	9131	1.86	9686	2.36	9909	2.86	9979
0.37	6443	0.87	8078	1.37	9147	1.87	9693	2.37	9911	2.87	9979
0.38	6480	0.88	8106	1.38	9162	1.88	9699	2.38	9913	2.88	9980
0.39	6517	0.89	8133	1.39	9177	1.89	9706	2.39	9916	2.89	9981
0.40	6554	0.90	8159	1.40	9192	1.90	9713	2.40	9918	2.90	9981
0.41	6591	0.91	8186	1.41	9207	1.91	9719	2.41	9920	2.91	9982
0.42	6628	0.92	8212	1.42	9222	1.92	9726	2.42	9922	2.92	9982
0.43	6664	0.93	8238	1.43	9236	1.93	9732	2.43	9925	2.93	9983
0.44	6700	0.94	8264	1.44	9251	1.94	9738	2.44	9927	2.94	9984
0.45	6736	0.95	8289	1.45	9265	1.95	9744	2.45	9929	2.95	9984
0.46	6772	0.96	8315	1.46	9279	1.96	9750	2.46	9931	2.96	9985
0.47	6808	0.97	8340	1.47	9292	1.97	9756	2.47	9932	2.97	9985
0.48	6844	0.98	8365	1.48	9306	1.98	9761	2.48	9934	2.98	9986
0.49	6879	0.99	8389	1.49	9319	1.99	9767	2.49	9936	2.99	9986
0.50	6915	1.00	8413	1.50	9332	2.00	9772	2.50	9938	3.00	9987

Table A8 Normal Distribution
Values of z for given values of $\Phi(z)$ [see (3), Sec. 24.8] and $D(z)=\Phi(z)-\Phi(-z)$ Example: $z=0.279$ if $\Phi(z)=61 \% ; z=0.860$ if $D(z)=61 \%$.

\%	$z(\Phi)$	$z(D)$	\%	$z(\Phi)$	$z(D)$	\%	$z(\Phi)$	$z(D)$
1	-2.326	0.013	41	-0.228	0.539	81	0.878	1.311
2	-2.054	0.025	42	-0.202	0.553	82	0.915	1.341
3	-1.881	0.038	43	-0.176	0.568	83	0.954	1.372
4	-1.751	0.050	44	-0.151	0.583	84	0.994	1.405
5	-1.645	0.063	45	-0.126	0.598	85	1.036	1.440
6	-1.555	0.075	46	-0.100	0.613	86	1.080	1.476
7	-1.476	0.088	47	-0.075	0.628	87	1.126	1.514
8	-1.405	0.100	48	-0.050	0.643	88	1.175	1.555
9	-1.341	0.113	49	-0.025	0.659	89	1.227	1.598
10	-1.282	0.126	50	0.000	0.674	90	1.282	1.645
11	-1.227	0.138	51	0.025	0.690	91	1.341	1.695
12	-1.175	0.151	52	0.050	0.706	92	1.405	1.751
13	-1.126	0.164	53	0.075	0.722	93	1.476	1.812
14	-1.080	0.176	54	0.100	0.739	94	1.555	1.881
15	-1.036	0.189	55	0.126	0.755	95	1.645	1.960
16	-0.994	0.202	56	0.151	0.772	96	1.751	2.054
17	-0.954	0.215	57	0.176	0.789	97	1.881	2.170
18	-0.915	0.228	58	0.202	0.806	97.5	1.960	2.241
19	-0.878	0.240	59	0.228	0.824	98	2.054	2.326
20	-0.842	0.253	60	0.253	0.842	99	2.326	2.576
21	-0.806	0.266	61	0.279	0.860	99.1	2.366	2.612
22	-0.772	0.279	62	0.305	0.878	99.2	2.409	2.652
23	-0.739	0.292	63	0.332	0.896	99.3	2.457	2.697
24	-0.706	0.305	64	0.358	0.915	99.4	2.512	2.748
25	-0.674	0.319	65	0.385	0.935	99.5	2.576	2.807
26	-0.643	0.332	66	0.412	0.954	99.6	2.652	2.878
27	-0.613	0.345	67	0.440	0.974	99.7	2.748	2.968
28	-0.583	0.358	68	0.468	0.994	99.8	2.878	3.090
29	-0.553	0.372	69	0.496	1.015	99.9	3.090	3.291
30	-0.524	0.385	70	0.524	1.036			
31	-0.496	0.399	71	0.553	1.058	99.91	3.121	3.320
32	-0.468	0.412	72	0.583	1.080	99.92	3.156	3.353
33	-0.440	0.426	73	0.613	1.103	99.93	3.195	3.390
34	-0.412	0.440	74	0.643	1.126	99.94	3.239	3.432
35	-0.385	0.454	75	0.674	1.150	99.95	3.291	3.481
36	-0.358	0.468	76	0.706	1.175	99.96	3.353	3.540
37	-0.332	0.482	77	0.739	1.200	99.97	3.432	3.615
38	-0.305	0.496	78	0.772	1.227	99.98	3.540	3.719
39	-0.279	0.510	79	0.806	1.254	99.99	3.719	3.891
40	-0.253	0.524	80	0.842	1.282			

Table A9 \boldsymbol{t}-Distribution
Values of z for given values of the distribution function $F(z)$ (see (8) in Sec. 25.3). Example: For 9 degrees of freedom, $z=1.83$ when $F(z)=0.95$.

$F(z)$	Number of Degrees of Freedom									
	1	2	3	4	5	6	7	8	9	10
0.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.6	0.32	0.29	0.28	0.27	0.27	0.26	0.26	0.26	0.26	0.26
0.7	0.73	0.62	0.58	0.57	0.56	0.55	0.55	0.55	0.54	0.54
0.8	1.38	1.06	0.98	0.94	0.92	0.91	0.90	0.89	0.88	0.88
0.9	3.08	1.89	1.64	1.53	1.48	1.44	1.41	1.40	1.38	1.37
0.95	6.31	2.92	2.35	2.13	2.02	1.94	1.89	1.86	1.83	1.81
0.975	12.7	4.30	3.18	2.78	2.57	2.45	2.36	2.31	2.26	2.23
0.99	31.8	6.96	4.54	3.75	3.36	3.14	3.00	2.90	2.82	2.76
0.995	63.7	9.92	5.84	4.60	4.03	3.71	3.50	3.36	3.25	3.17
0.999	318.3	22.3	10.2	7.17	5.89	5.21	4.79	4.50	4.30	4.14

$F(z)$	Number of Degrees of Freedom									
	11	12	13	14	15	16	17	18	19	20
0.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.6	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26
0.7	0.54	0.54	0.54	0.54	0.54	0.54	0.53	0.53	0.53	0.53
0.8	0.88	0.87	0.87	0.87	0.87	0.86	0.86	0.86	0.86	0.86
0.9	1.36	1.36	1.35	1.35	1.34	1.34	1.33	1.33	1.33	1.33
0.95	1.80	1.78	1.77	1.76	1.75	1.75	1.74	1.73	1.73	1.72
0.975	2.20	2.18	2.16	2.14	2.13	2.12	2.11	2.10	2.09	2.09
0.99	2.72	2.68	2.65	2.62	2.60	2.58	2.57	2.55	2.54	2.53
0.995	3.11	3.05	3.01	2.98	2.95	2.92	2.90	2.88	2.86	2.85
0.999	4.02	3.93	3.85	3.79	3.73	3.69	3.65	3.61	3.58	3.55

$F(z)$	Number of Degrees of Freedom									
	22	24	26	28	30	40	50	100	200	∞
0.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.6	0.26	0.26	0.26	0.26	0.26	0.26	0.25	0.25	0.25	0.25
0.7	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.52
0.8	0.86	0.86	0.86	0.85	0.85	0.85	0.85	0.85	0.84	0.84
0.9	1.32	1.32	1.31	1.31	1.31	1.30	1.30	1.29	1.29	1.28
0.95	1.72	1.71	1.71	1.70	1.70	1.68	1.68	1.66	1.65	1.65
0.975	2.07	2.06	2.06	2.05	2.04	2.02	2.01	1.98	1.97	1.96
0.99	2.51	2.49	2.48	2.47	2.46	2.42	2.40	2.36	2.35	2.33
0.995	2.82	2.80	2.78	2.76	2.75	2.70	2.68	2.63	2.60	2.58
0.999	3.50	3.47	3.43	3.41	3.39	3.31	3.26	3.17	3.13	3.09

Table A10 Chi-square Distribution
Values of x for given values of the distribution function $F(z)$ (see Sec. 25.3 before (17)).
Example: For 3 degrees of freedom, $z=11.34$ when $F(z)=0.99$.

$F(z)$	Number of Degrees of Freedom									
	1	2	3	4	5	6	7	8	9	10
0.005	0.00	0.01	0.07	0.21	0.41	0.68	0.99	1.34	1.73	2.16
0.01	0.00	0.02	0.11	0.30	0.55	0.87	1.24	1.65	2.09	2.56
0.025	0.00	0.05	0.22	0.48	0.83	1.24	1.69	2.18	2.70	3.25
0.05	0.00	0.10	0.35	0.71	1.15	1.64	2.17	2.73	3.33	3.94
0.95	3.84	5.99	7.81	9.49	11.07	12.59	14.07	15.51	16.92	18.31
0.975	5.02	7.38	9.35	11.14	12.83	14.45	16.01	17.53	19.02	20.48
0.99	6.63	9.21	11.34	13.28	15.09	16.81	18.48	20.09	21.67	23.21
0.995	7.88	10.60	12.84	14.86	16.75	18.55	20.28	21.95	23.59	25.19

$F(z)$	Number of Degrees of Freedom									
	11	12	13	14	15	16	17	18	19	20
0.005	2.60	3.07	3.57	4.07	4.60	5.14	5.70	6.26	6.84	7.43
0.01	3.05	3.57	4.11	4.66	5.23	5.81	6.41	7.01	7.63	8.26
0.025	3.82	4.40	5.01	5.63	6.26	6.91	7.56	8.23	8.91	9.59
0.05	4.57	5.23	5.89	6.57	7.26	7.96	8.67	9.39	10.12	10.85
0.95	19.68	21.03	22.36	23.68	25.00	26.30	27.59	28.87	30.14	31.41
0.975	21.92	23.34	24.74	26.12	27.49	28.85	30.19	31.53	32.85	34.17
0.99	24.72	26.22	27.69	29.14	30.58	32.00	33.41	34.81	36.19	37.57
0.995	26.76	28.30	29.82	31.32	32.80	34.27	35.72	37.16	38.58	40.00

$F(z)$	Number of Degrees of Freedom									
	21	22	23	24	25	26	27	28	29	30
0.005	8.0	8.6	9.3	9.9	10.5	11.2	11.8	12.5	13.1	13.8
0.01	8.9	9.5	10.2	10.9	11.5	12.2	12.9	13.6	14.3	15.0
0.025	10.3	11.0	11.7	12.4	13.1	13.8	14.6	15.3	16.0	16.8
0.05	11.6	12.3	13.1	13.8	14.6	15.4	16.2	16.9	17.7	18.5
0.95	32.7	33.9	35.2	36.4	37.7	38.9	40.1	41.3	42.6	43.8
0.975	35.5	36.8	38.1	39.4	40.6	41.9	43.2	44.5	45.7	47.0
0.99	38.9	40.3	41.6	43.0	44.3	45.6	47.0	48.3	49.6	50.9
0.995	41.4	42.8	44.2	45.6	46.9	48.3	49.6	51.0	52.3	53.7

$F(z)$	Number of Degrees of Freedom							
	40	50	60	70	80	90	100	> 100 (Approximation)
0.005	20.7	28.0	35.5	43.3	51.2	59.2	67.3	$\frac{1}{2}(h-2.58)^{2}$
0.01	22.2	29.7	37.5	45.4	53.5	61.8	70.1	$\frac{1}{2}(h-2.33)^{2}$
0.025	24.4	32.4	40.5	48.8	57.2	65.6	74.2	$\frac{1}{2}(h-1.96)^{2}$
0.05	26.5	34.8	43.2	51.7	60.4	69.1	77.9	$\frac{1}{2}(h-1.64)^{2}$
0.95	55.8	67.5	79.1	90.5	101.9	113.1	124.3	$\frac{1}{2}(h+1.64)^{2}$
0.975	59.3	71.4	83.3	95.0	106.6	118.1	129.6	$\frac{1}{2}(h+1.96)^{2}$
0.99	63.7	76.2	88.4	100.4	112.3	124.1	135.8	$\frac{1}{2}(h+2.33)^{2}$
0.995	66.8	79.5	92.0	104.2	116.3	128.3	140.2	$\frac{1}{2}(h+2.58)^{2}$

In the last column, $h=\sqrt{2 m-1}$, where m is the number of degrees of freedom.

Table A11 \boldsymbol{F}-Distribution with $(\boldsymbol{m}, \boldsymbol{n})$ Degrees of Freedom
Values of z for which the distribution function $F(z)$ [see (13), Sec. 25.4] has the value $\mathbf{0 . 9 5}$ Example: For (7, 4) d.f., $z=6.09$ if $F(z)=0.95$.

n	$m=1$	$m=2$	$m=3$	$m=4$	$m=5$	$m=6$	$m=7$	$m=8$	$m=9$
1	161	200	216	225	230	234	237	239	241
2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4
3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
22									
24	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
32	4.15	3.29	2.90	2.67	2.51	2.40	2.31	2.24	2.19
34	4.13	3.28	2.88	2.65	2.49	2.38	2.29	2.23	2.17
36	4.11	3.26	2.87	2.63	2.48	2.36	2.28	2.21	2.15
38	4.10	3.24	2.85	2.62	2.46	2.35	2.26	2.19	2.14
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
70	3.98	3.13	2.74	2.50	2.35	2.23	2.14	2.07	2.02
80	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	2.00
90	3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.99
100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.97
150	3.90	3.06	2.66	2.43	2.27	2.16	2.07	2.00	1.94
200	3.89	3.04	2.65	2.42	2.26	2.14	2.06	1.98	1.93
000	3.85	3.00	2.61	2.38	2.22	2.11	2.02	1.95	1.89
	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88

Table A11 \boldsymbol{F}-Distribution with ($\boldsymbol{m}, \boldsymbol{n}$) Degrees of Freedom (continued)
Values of z for which the distribution function $F(z)$ [see (13), Sec. 25.4] has the value $\mathbf{0 . 9 5}$

n	$m=10$	$m=15$	$m=20$	$m=30$	$m=40$	$m=50$	$m=100$	∞
1	242	246	248	250	251	252	253	254
2	19.4	19.4	19.4	19.5	19.5	19.5	19.5	19.5
3	8.79	8.70	8.66	8.62	8.59	8.58	8.55	8.53
4	5.96	5.86	5.80	5.75	5.72	5.70	5.66	5.63
5	4.74	4.62	4.56	4.50	4.46	4.44	4.41	4.37
6	4.06	3.94	3.87	3.81	3.77	3.75	3.71	3.67
7	3.64	3.51	3.44	3.38	3.34	3.32	3.27	3.23
8	3.35	3.22	3.15	3.08	3.04	3.02	2.97	2.93
9	3.14	3.01	2.94	2.86	2.83	2.80	2.76	2.71
10	2.98	2.85	2.77	2.70	2.66	2.64	2.59	2.54
11	2.85	2.72	2.65	2.57	2.53	2.51	2.46	2.40
12	2.75	2.62	2.54	2.47	2.43	2.40	2.35	2.30
13	2.67	2.53	2.46	2.38	2.34	2.31	2.26	2.21
14	2.60	2.46	2.39	2.31	2.27	2.24	2.19	2.13
15	2.54	2.40	2.33	2.25	2.20	2.18	2.12	2.07
16	2.49	2.35	2.28	2.19	2.15	2.12	2.07	2.01
17	2.45	2.31	2.23	2.15	2.10	2.08	2.02	1.96
18	2.41	2.27	2.19	2.11	2.06	2.04	1.98	1.92
19	2.38	2.23	2.16	2.07	2.03	2.00	1.94	1.88
20	2.35	2.20	2.12	2.04	1.99	1.97	1.91	1.84
22	2.30	2.15	2.07	1.98	1.94	1.91	1.85	1.78
24	2.25	2.11	2.03	1.94	1.89	1.86	1.80	1.73
26	2.22	2.07	1.99	1.90	1.85	1.82	1.76	1.69
28	2.19	2.04	1.96	1.87	1.82	1.79	1.73	1.65
30	2.16	2.01	1.93	1.84	1.79	1.76	1.70	1.62
32	2.14	1.99	1.91	1.82	1.77	1.74	1.67	1.59
34	2.12	1.97	1.89	1.80	1.75	1.71	1.65	1.57
36	2.11	1.95	1.87	1.78	1.73	1.69	1.62	1.55
38	2.09	1.94	1.85	1.76	1.71	1.68	1.61	1.53
40	2.08	1.92	1.84	1.74	1.69	1.66	1.59	1.51
50	2.03	1.87	1.78	1.69	1.63	1.60	1.52	1.44
60	1.99	1.84	1.75	1.65	1.59	1.56	1.48	1.39
70	1.97	1.81	1.72	1.62	1.57	1.53	1.45	1.35
80	1.95	1.79	1.70	1.60	1.54	1.51	1.43	1.32
90	1.94	1.78	1.69	1.59	1.53	1.49	1.41	1.30
100	1.93	1.77	1.68	1.57	1.52	1.48	1.39	1.28
150	1.89	1.73	1.64	1.54	1.48	1.44	1.34	1.22
200	1.88	1.72	1.62	1.52	1.46	1.41	1.32	1.19
1000	1.84	1.68	1.58	1.47	1.41	1.36	1.26	1.08
∞	1.83	1.67	1.57	1.46	1.39	1.35	1.24	1.00

Table A11 \boldsymbol{F}-Distribution with ($\boldsymbol{m}, \boldsymbol{n}$) Degrees of Freedom (continued)
Values of z for which the distribution function $F(z)$ [see (13), Sec. 25.4] has the value
0.99

n	$m=1$	$m=2$	$m=3$	$m=4$	$m=5$	$m=6$	$m=7$	$m=8$	$m=9$
1	4052	4999	5403	5625	5764	5859	5928	5981	6022
2	98.5	99.0	99.2	99.2	99.3	99.3	99.4	99.4	99.4
3	34.1	30.8	29.5	28.7	28.2	27.9	27.7	27.5	27.3
4	21.2	18.0	16.7	16.0	15.5	15.2	15.0	14.8	14.7
5	16.3	13.3	12.1	11.4	11.0	10.7	10.5	10.3	10.2
6	13.7	10.9	9.78	9.15	8.75	8.47	8.26	8.10	7.98
7	12.2	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72
8	11.3	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91
9	10.6	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35
10	10.0	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07
32	7.50	5.34	4.46	3.97	3.65	3.43	3.26	3.13	3.02
34	7.44	5.29	4.42	3.93	3.61	3.39	3.22	3.09	2.98
36	7.40	5.25	4.38	3.89	3.57	3.35	3.18	3.05	2.95
38	7.35	5.21	4.34	3.86	3.54	3.32	3.15	3.02	2.92
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89
50	7.17	5.06	4.20	3.72	3.41	3.19	3.02	2.89	2.78
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72
70	7.01	4.92	4.07	3.60	3.29	3.07	2.91	2.78	2.67
80	6.96	4.88	4.04	3.56	3.26	3.04	2.87	2.74	2.64
90	6.93	4.85	4.01	3.54	3.23	3.01	2.84	2.72	2.61
100	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.59
150	6.81	4.75	3.91	3.45	3.14	2.92	2.76	2.63	2.53
200	6.76	4.71	3.88	3.41	3.11	2.89	2.73	2.60	2.50
1000	6.66	4.63	3.80	3.34	3.04	2.82	2.66	2.53	2.43
∞	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41

Table A11 \boldsymbol{F}-Distribution with ($\boldsymbol{m}, \boldsymbol{n}$) Degrees of Freedom (continued)
Values of z for which the distribution function $F(z)$ [see (13), Sec. 25.4] has the value $\mathbf{0 . 9 9}$

n	$m=10$	$m=15$	$m=20$	$m=30$	$m=40$	$m=50$	$m=100$	∞
1	6056	6157	6209	6261	6287	6303	6334	6366
2	99.4	99.4	99.4	99.5	99.5	99.5	99.5	99.5
3	27.2	26.9	26.7	26.5	26.4	26.4	26.2	26.1
4	14.5	14.2	14.0	13.8	13.7	13.7	13.6	13.5
5	10.1	9.72	9.55	9.38	9.29	9.24	9.13	9.02
6	7.87	7.56	7.40	7.23	7.14	7.09	6.99	6.88
7	6.62	6.31	6.16	5.99	5.91	5.86	5.75	5.65
8	5.81	5.52	5.36	5.20	5.12	5.07	4.96	4.86
9	5.26	4.96	4.81	4.65	4.57	4.52	4.42	4.31
10	4.85	4.56	4.41	4.25	4.17	4.12	4.01	3.91
11	4.54	4.25	4.10	3.94	3.86	3.81	3.71	3.60
12	4.30	4.01	3.86	3.70	3.62	3.57	3.47	3.36
13	4.10	3.82	3.66	3.51	3.43	3.38	3.27	3.17
14	3.94	3.66	3.51	3.35	3.27	3.22	3.11	3.00
15	3.80	3.52	3.37	3.21	3.13	3.08	2.98	2.87
16	3.69	3.41	3.26	3.10	3.02	2.97	2.86	2.75
17	3.59	3.31	3.16	3.00	2.92	2.87	2.76	2.65
18	3.51	3.23	3.08	2.92	2.84	2.78	2.68	2.57
19	3.43	3.15	3.00	2.84	2.76	2.71	2.60	2.49
20	3.37	3.09	2.94	2.78	2.69	2.64	2.54	2.42
22	3.26	2.98	2.83	2.67	2.58	2.53	2.42	2.31
24	3.17	2.89	2.74	2.58	2.49	2.44	2.33	2.21
26	3.09	2.81	2.66	2.50	2.42	2.36	2.25	2.13
28	3.03	2.75	2.60	2.44	2.35	2.30	2.19	2.06
30	2.98	2.70	2.55	2.39	2.30	2.25	2.13	2.01
32	2.93	2.65	2.50	2.34	2.25	2.20	2.08	1.96
34	2.89	2.61	2.46	2.30	2.21	2.16	2.04	1.91
36	2.86	2.58	2.43	2.26	2.18	2.12	2.00	1.87
38	2.83	2.55	2.40	2.23	2.14	2.09	1.97	1.84
40	2.80	2.52	2.37	2.20	2.11	2.06	1.94	1.80
50	2.70	2.42	2.27	2.10	2.01	1.95	1.82	1.68
60	2.63	2.35	2.20	2.03	1.94	1.88	1.75	1.60
70	2.59	2.31	2.15	1.98	1.89	1.83	1.70	1.54
80	2.55	2.27	2.12	1.94	1.85	1.79	1.65	1.49
90	2.52	2.24	2.09	1.92	1.82	1.76	1.62	1.46
100	2.34	2.06	1.90	1.72	1.61	1.54	1.38	1.11
100	2.50	2.22	2.07	1.89	1.80	1.74	1.60	1.43
10	2.44	2.16	2.00	1.83	1.73	1.66	1.52	1.33
0	2.41	2.3	1.97	1.79	1.69	1.63	1.48	1.28
	2.04	1.88	1.70	1.59	1.52	1.36	1.00	

Table A12 Distribution Function $F(x)=P(T \leqq x)$ of the Random Variable T in Section 25.8
，

		＊	N－O	＊	
		$\frac{11}{6}=$	氙可㤩：	$\stackrel{11}{+}=$	
	＊		＋ N N－0	\％	
	$\frac{11}{\infty}=$			$\\|_{\sim}^{\prime \prime}=$	

	n
x	$=11$
	$\mathbf{0 .}$
8	001
9	002
10	003
11	005
12	008
13	013
14	020
15	030
16	043
17	060
18	082
19	109
20	141
21	179
22	223
23	271
24	324
25	381
26	440
27	500

Abel, Niels Henrik, 79n. 6
Abel's formula, 79
Absolute convergence (series): defined, 674
and uniform convergence, 704
Absolute frequency (probability):
of an event, 1019
cumulative, 1012
of a value, 1012
Absolutely integrable nonperiodic function, 512-513
Absolute value (complex numbers), 613
Acceleration, 386-389
Acceleration of gravity, 8
Acceleration vector, 386
Acceptable lots, 1094
Acceptable quality level (AQL), 1094
Acceptance:
of a hypothesis, 1078
of products, 1092
Acceptance number, 1092
Acceptance sampling, 1092-1096, 1113
errors in, 1093-1094
rectification, 1094-1095
Adams, John Couch, 912n. 2
Adams-Bashforth methods, 911-914, 947
Adams-Moulton methods, 913-914, 947
Adaptive integration, 835-836, 843
Addition:
for arbitrary events, 1021-1022
of complex numbers, 609, 610
of matrices and vectors, 126 , 259-261
of means, 1057-1058
for mutually exclusive events, 1021
of power series, 687
termwise, 173, 687
of variances, 1058-1059
vector, 309, 357-359
ADI (alternating direction implicit) method, 928-930
Adjacency matrix:
of a digraph, 973
of a graph, 972-973

Adjacent vertices, 971, 977
Airy, Sir George Bidell, 556n.2, 918n. 4
Airy equation, 556
RK method, 917-919
RKN method, 919-920
Airy function:
RK method, 917-919
RKN method, 919-920
Algebraic equations, 798
Algebraic multiplicity, 326, 878
Algorithms:
complexity of, 978-979
defined, 796
numeric analysis, 796
numeric methods as, 788
numeric stability of, 796, 842
ALGORITHMS:
BISECT, A46
DIJKSTRA, 982
EULER, 903
FORD-FULKERSON, 998
GAUSS, 849
GAUSS-SEIDEL, 860
INTERPOL, 814
KRUSKAL, 985
MATCHING, 1003
MOORE, 977
NEWTON, 802
PRIM, 989
RUNGE-KUTTA, 905
SIMPSON, 832
Aliasing, 531
Alternating direction implicit (ADI) method, 928-930
Alternating path, 1002
Alternative hypothesis, 1078
Ampère, André Marie, 93n. 7
Amplification, 91
Amplitude, 90
Amplitude spectrum, 511
Analytic functions, 172, 201, 641
complex analysis, 623-624
conformal mapping, 737-742
derivatives of, 664-668, 688-689, A95-A96
integration of: indefinite, 647
by use of path, 647-650

Analytic functions (Cont.)
Laurent series:
analytics at infinity, 718-719
zeros of, 717-718
maximum modulus theorem, 782-783
mean value property, 781-782
power series representation of, 688-689
real functions vs., 694
Analyticity, 623
Angle of intersection:
conformal mapping, 738
between two curves, 36
Angular speed (rotation), 372
Angular velocity (fluid flow), 775
AOQ (average outgoing quality), 1095
AOQL (average outgoing quality limit), 1095
Apparent resistance (RLC circuits), 95
Approximation(s):
errors involved in, 794
polynomial, 808
by trigonometric polynomials, 495-498
Approximation theory, 495
A priori estimates, 805
AQL (acceptable quality level), 1094
Arbitrary positive, 191
Arc, of a curve, 383
Archimedes, 391n. 4
Arc length (curves), 385-386
Area:
of a region, 428
of region bounded by ellipses, 436
of a surface, 448-450
Argand, Jean Robert, 611n. 2
Argand diagram, 611n. 2
Argument (complex numbers), 613
Artificial variables, 965-968
Assignment problems (combinatorial optimization), 1001-1006
Associative law, 264
Asymptotically equal, 189, 1027, 1050
Asymptotically normal, 1076

Asymptotically stable critical points, 149
Augmented matrices, 258, 272, 273, 321, 845, 959
Augmenting path, 1002-1003. See also Flow augmenting paths
Autonomous ODEs, 11, 33
Autonomous systems, 152, 165
Auxiliary equation, 54. See also Characteristic equation
Average flow, 458
Average outgoing quality (AOQ), 1095
Average outgoing quality limit (AOQL), 1095
Axioms of probability, 1020

Back substitution (linear systems), 274-276, 846
Backward edges:
cut sets, 994
initial flow, 998
of a path, 992
Backward Euler formula, 909
Backward Euler method (BEM):
first-order ODEs, 909-910
stiff systems, 920-921
Backward Euler scheme, 909
Balance law, 14
Band matrices, 928
Bashforth, Francis, 912n. 2
Basic feasible solution:
normal form of linear optimization problems, 957
simplex method, 959
Basic Rule (method of undetermined coefficients):
higher-order homogeneous linear ODEs, 115
second-order nonhomogeneous linear ODEs, 81, 82
Basic variables, 960
Basis:
eigenvectors, 339-340
of solutions:
higher-order linear ODEs, 106, 113, 123
homogeneous linear systems, 290
homogeneous ODEs, 50-52, 75, 104, 106, 113
second-order homogeneous linear ODEs, 50-52, 75, 104
systems of ODEs, 139
standard, 314
vector spaces, 286, 311, 314
Beats (oscillation), 89

Bellman, Richard, 981n. 3
Bellman equations, 981
Bellman's principle, 980-981
Bell-shaped curve, 13, 574
BEM, see Backward Euler method
Benoulli, Niklaus, 31n. 7
Bernoulli, Daniel, 31n. 7
Bernoulli, Jakob, 31n. 7
Bernoulli, Johann, 31n. 7
Bernoulli distribution, 1040. See also Binomial distributions
Bernoulli equation, 45
defined, 31
linear ODEs, 31-33
Bernoulli's law of large numbers, 1051
Bessel, Friedrich Wilhelm, 187n. 6
Bessel functions, 167, 187-191, 202
of the first kind, 189-190
with half-integer $v, 193-194$
of order 1, 189
of order $v, 191$
orthogonality of, 506
of the second kind: general solution, 196-200 of order $v, 198-200$
table, A97-A98
of the third kind, 200
Bessel's equation, 167, 187-196, 202
Bessel functions, 167, 187-191, 196-200
circular membrane, 587
general solution, 194-200
Bessel's inequality:
for Fourier coefficients, 497
orthogonal series, 508-509
Beta function, formula for, A67
Bezier curve, 827
BFS algorithms, see Breadth First search algorithms
Bijective mapping, 737n. 1
Binomial coefficients:
Newton's forward difference formula, 816
probability theory, 1027-1028
Binomial distributions, 1039-1041, 1061
normal approximation of, 1049-1050
sampling with replacement for, 1042
table, A99
Binomial series, 696
Binomial theorem, 1029
Bipartite graphs, 1001-1006, 1008
BISECT, ALGORITHM, A46
Bisection method, 807-808
Bolzano, Bernard, A94n. 3

Bolzano-Weierstrass theorem, A94-A95
Bonnet, Ossian, 180n. 3
Bonnet's recursion, 180
Borda, J. C., 16n. 4
Boundaries:
ODEs, 39
of regions, 426n. 2
sets in complex plane, 620
Boundary conditions:
one-dimensional heat equation, 559
PDEs, 541, 605
periodic, 501
two-dimensional wave equation, 577
vibrating string, 545-547
Boundary points, 426 n .2
Boundary value problem (BVP), 499
conformal mapping for, 763-767, A96
first, see Dirichlet problem
mixed, see Mixed boundary value problem
second, see Neumann problem
third, see Mixed boundary value problem
two-dimensional heat equation, 564
Bounded domains, 652
Bounded regions, 426n. 2
Bounded sequence, A93-A95
Boxplots, 1013
Boyle, Robert, 19n. 5
Boyle-Mariotte's law for idea gases, 19
Bragg, Sir William Henry, 938n. 5
Bragg, Sir William Lawrence, 938n. 5
Branch, of logarithm, 639
Branch cut, of logarithm, 639
Branch point (Riemann surfaces), 755
Breadth First search (BFS) algorithms, 977
defined, 977,998
Moore's, 977-980
BVP, see Boundary value problem

CAD (computer-aided design), 820
Cancellation laws, 306-307
Canonical form, 344
Cantor, Georg, A72n. 3
Cantor-Dedekind axiom, A72n.3, A95n. 4
Capacity:
cut sets, 994
networks, 991
Cardano, Girolamo, 608n. 1
Cardioid, 391, 437

Cartesian coordinates:
linear element in, A75
transformation law, A86-A87
vector product in, A83-A84 writing, A74
Cartesian coordinate systems: complex plane, 611
left-handed, 369, 370, A84
right-handed, 368-369, A83-A84
in space, 315,356
transformation law for vector components, A85-A86
Cartesius, Renatus, 356n. 1
Cauchy, Augustin-Louis, 71n.4, 625n.4, 683n. 1
Cauchy determinant, 113
Cauchy-Goursat theorem, see Cauchy's integral theorem
Cauchy-Hadamard formula, 683
Cauchy principal value, 727, 730
Cauchy-Riemann equations, 38, 642 complex analysis, 623-629 proof of, A90-A91
Cauchy-Schwarz inequality, 363, 871-782
Cauchy's convergence principle, 674-675, A93-A94
Cauchy's inequality, 666
Cauchy's integral formula, 660-663, 670
Cauchy's integral theorem, 652-660, 669
existence of indefinite integral, 656-658
Goursat's proof of, A91-A93
independence of path, 655
for multiply connected domains, 658-659
principle of deformation of path, 656
Cayley, Arthur, 748n. 2
c-charts, 1092
Center:
as critical point, 144, 165
of a graph, 991
of power series, 680
Center control line (CL), 1088
Center of gravity, of mass in a region, 429
Central difference notation, 819
Central limit theorem, 1076
Central vertex, 991
Centrifugal force, 388
Centripetal acceleration, 387-388
Chain rules, 392-394
Characteristics, 555
Characteristics, method of, 555
Characteristic determinant, of a matrix, $129,325,326,353,877$

Characteristic equation:
matrices, $129,325,326,353,877$
PDEs, 555
second-order homogeneous linear ODEs, 54
Characteristic matrix, 326
Characteristic polynomial, 325, 353, 877
Characteristic values, 87, 324, 353. See also Eigenvalues
Characteristic vectors, 324, 877. See also eigenvectors
Chebyshev, Pafnuti, 504n. 6
Chebyshev equation, 504
Chebyshev polynomials, 504
Checkerboard pattern (determinants), 294
Chi-square (χ^{2}) distribution, 1074-1076, A104
Chi-square (χ^{2}) test, 1096-1097, 1113
Choice of numeric method, for matrix eigenvalue problems, 879
Cholesky, André-Louis, 855n. 3
Cholesky's method, 855-856, 898
Chopping, error caused by, 792
Chromatic number, 1006
Circle, 386
Circle of convergence (power series), 682
Circulation, of flow, 467, 774
CL (center control line), 1088
Clairaut equation, 35
Clamped condition (spline interpolation), 823
Class intervals, 1012
Class marks, 1012
Closed annulus, 619
Closed circular disk, 619
Closed integration formulas, 833, 838
Closed intervals, A72n. 3
Closed Newton-Cotes formulas, 833
Closed paths, 414, 645, 975-976
Closed regions, 426n. 2
Closed sets, 620
Closed trails, 975-976
Closed walks, 975-976
CN (Crank-Nicolson) method, 938-941
Coefficients:
binomial:
Newton's forward difference formula, 816
probability theory, 1027-1028
constant:
higher-order homogeneous
linear ODEs, 111-116
second-order homogeneous
linear ODEs, 53-60

Coefficients: (Cont.)
second-order nonhomogeneous linear ODEs, 81
systems of ODEs, 140-151
correlation, 1108-1111, 1113
Fourier, 476, 484, 538, 582-583
of kinetic friction, 19
of linear systems, 272, 845
of ODEs, 47
higher-order homogeneous linear ODEs, 105
second-order homogeneous linear ODEs, 53-60, 73
second-order nonhomogeneous linear ODEs, 81-85
series of ODEs, 168, 174
variable, 167, 240-241
of power series, 680
regression, 1105, 1107-1108
variable:
Frobenius method, 180-187
Laplace transforms ODEs with, 240-241
of ODEs, 167, 240-241
power series method, 167-175
second-order homogeneous linear ODEs, 73
Coefficient matrices, 257, 273
Hermitian or skew-Hermitian forms, 351
linear systems, 845
quadratic form, 343
Cofactor (determinants), 294
Collatz, Lothar, 883n. 9
Collatz inclusion theorem, 883-884
Columns:
determinants, 294
matrix, 125, 257, 320
Column "sum" norm, 861
Column vectors, 126
matrices, 257, 284-285, 320
rank in terms of, 284-285
Combinations (probability theory), 1024, 1026-1027
of n things taken k at a time without repetitions, 1026
of n things taken k at a time with repetitions, 1026
Combinatorial optimization, 970, 975-1008
assignment problems, 1001-1006
flow problems in networks, 991-997
cut sets, 994-996
flow augmenting paths, 992-993
paths, 992
Ford-Fulkerson algorithm for maximum flow, 998-1001

Combinatorial optimization (Cont.) shortest path problems, 975-980

Bellman's principle, 980-981
complexity of algorithms, 978-980
Dijkstra's algorithm, 981-983
Moore's BFS algorithm, 977-980
shortest spanning trees:
Greedy algorithm, 984-988
Prim's algorithm, 988-991
Commutation (matrices), 271
Complements:
of events, 1016
of sets in complex plane, 620
Complementation rule, 1020-1021
Complete bipartite graphs, 1005
Complete graphs, 974
Complete matching, 1002
Completeness (orthogonal series), 508-509
Complete orthonormal set, 508
Complex analysis, 607
analytic functions, 623-624
Cauchy-Riemann equations, 623-629
circles and disks, 619
complex functions, 620-623
exponential, 630-633
general powers, 639-640
hyperbolic, 635
logarithm, 636-639
trigonometric, 633-635
complex integration, 643-670
Cauchy's integral formula, 660-663, 670
Cauchy's integral theorem, 652-660, 669
derivatives of analytic functions, 664-668
Laurent series, 708-719
line integrals, 643-652, 669
power series, 671-707
residue integration, 719-733
complex numbers, 608-619
addition of, 609, 610
conjugate, 612
defined, 608
division of, 610
multiplication of, 609, 610
polar form of, 613-618
subtraction of, 610
complex plane, 611
conformal mapping, 736-757
geometry of analytic functions, 737-742
linear fractional transformations, 742-750

Complex analysis (Cont.)
Riemann surfaces, 754-756
by trigonometric and hyperbolic analytic functions, 750-754
half-planes, 619-620
harmonic functions, 628-629
Laplace's equation, 628-629
Laurent series, 708-719, 734
analytic or singular at infinity, 718-719
point at infinity, 718
Riemann sphere, 718
singularities, 715-717
zeros of analytic functions, 717
power series, 168, 671-707
convergence behavior of, 680-682
convergence tests, 674-676, A93-A94
functions given by, 685-690
Maclaurin series, 690
in powers of $x, 168$
radius of convergence, 682-684
ratio test, 676-678
root test, 678-679
sequences, 671-673
series, 673-674
Taylor series, 690-697
uniform convergence, 698-705
residue integration, 719-733
formulas for residues, 721-722
of real integrals, 725-733
several singularities inside contour, 723-725
Taylor series, 690-697, 707
Complex conjugate numbers, 612
Complex conjugate roots, 72-73
Complex Fourier integral, 523
Complex functions, 620-623
exponential, 630-633
general powers, 639-640
hyperbolic, 635
logarithm, 636-639
trigonometric, 633-635
Complex heat potential, 767
Complex integration, 643-670
Cauchy's integral formula, 660-663, 670
Cauchy's integral theorem, 652-660, 669
existence of indefinite integral, 656-658
independence of path, 655
for multiply connected domains, 658-659
principle of deformation of path, 656

Complex integration (Cont.)
derivatives of analytic functions, 664-668
Laurent series, 708-719 analytic or singular at infinity, 718-719
point at infinity, 718
Riemann sphere, 718
singularities, 715-717
zeros of analytic functions, 717-718
line integrals, 643-652, 669
basic properties of, 645
bounds for, 650-651
definition of, 643-645
existence of, 646
indefinite integration and substitution of limits, 646-647
representation of a path, 647-650
power series, 671-707
convergence behavior of, 680-682
convergence tests, 674-676
functions given by, 685-690
Maclaurin series, 690
radius of convergence of, 682-684
ratio test, 676-678
root test, 678-679
sequences, 671-673
series, 673-674
Taylor series, 690-697
uniform convergence, 698-705
residue integration, 719-733
formulas for residues, 721-722
of real integrals, 725-733
several singularities inside contour, 723-725
Complexity, of algorithms, 978-979
Complex line integrals, see Line integrals
Complex matrices and forms, 346-352
Complex numbers, 608-619, 641
addition of, 609, 610
conjugate, 612
defined, 608
division of, 610
multiplication of, 609, 610
polar form of, 613-618
subtraction of, 610
Complex plane, 611
extended, 718, 744-745
sets in, 620
Complex potential, 786
electrostatic fields, 760-761
of fluid flow, 771, 773-774

Complex roots:
higher-order homogeneous linear ODEs:
multiple, 115
simple, 113-114
second-order homogeneous linear ODEs, 57-59
Complex trigonometric polynomials, 529
Complex variables, 620-621
Complex vector space, 309, 310, 349
Components (vectors), 126, 356, 365
Composition, of linear transformations, 316-317
Computer-aided design (CAD), 820
Condition:
of incompressibility, 405
spline interpolation, 823
Conditionally convergent series, 675
Conditional probability, 1022-1023, 1061
Condition number, 868-870, 899
Confidence intervals, 1063, 1068-1077, 1113
interval estimates, 1065
for mean of normal distribution: with known variance, 1069-1071 with unknown variance, 1071-1073
for parameters of distributions other than normal, 1076
in regression analysis, 1107-1108
for variance of a normal distribution, 1073-1076
Confidence level, 1068
Conformality, 738
Conformal mapping, 736-757
boundary value problems, 763-767, A96
defined, 738
geometry of analytic functions, 737-742
linear fractional transformations, 742-750
extended complex plane, 744-745
mapping standard domains, 747-750
Riemann surfaces, 754-756
by trigonometric and hyperbolic analytic functions, 750-754
Connected graphs, 977, 981, 984
Connected set, in complex plane, 620
Conservative physical systems, 422
Conservative vector fields, 400, 408
Consistent linear systems, 277

Constant coefficients:
higher-order homogeneous linear ODEs, 111-116
distinct real roots, 112-113
multiple real roots, 114-115
simple complex roots, 113-114
second-order homogeneous linear
ODEs, 53-60
complex roots, 57-59
real double root, 55-56
two distinct real roots, 54-55
second-order nonhomogeneous
linear ODEs, 81
systems of ODEs, 140-151
critical points, 142-146, 148-151
graphing solutions in phase plane, 141-142
Constant of gravity, at the Earth's surface, 63
Constant of integration, 18
Constant revenue, lines of, 954
Constrained (linear) optimization, 951, 954-958, 969
normal form of problems, 955-957
simplex method, 958-968
degenerate feasible solution, 962-965
difficulties in starting, 965-968
Constraints, 951
Consumers, 1092
Consumer's risk, 1094
Consumption matrix, 334
Continuity equation (compressible fluid flow), 405
Continuous complex functions, 621
Continuous distributions, 1029, 1032-1034
marginal distribution of, 1055
two-dimensional, 1053
Continuous random variables, 1029, 1032-1034, 1061
Continuous vector functions, 378-379
Contour integral, 653
Contour lines, 21, 36
Control charts, 1088
for mean, 1088-1089
for range, 1090-1091
for standard deviation, 1090
for variance, 1089-1090
Controlled variables, in regression analysis, 1103
Control limits, 1088, 1089
Control variables, 951
Convergence:
absolute:
defined, 674
and uniform convergence, 704
of approximate and exact solutions, 936

Convergence: (Cont.)
circle of, 682
defined, 861
Gauss-Seidel iteration, 861-862
mean square (orthogonal series), 507-508
in the norm, 507
power series, 680-682
convergence tests, 674-676, A93-A94
radius of convergence of, 682-684, 706
uniform convergence, 698-705
radius of, 172
defined, 172
power series, 682-684, 706
sequence of vectors, 378
speed of (numeric analysis), 804-805
superlinear, 806
uniform:
and absolute convergence, 704
power series, 698-705
Convergence interval, 171, 683
Convergence tests, 674-676
power series, 674-676, A93-A94
uniform convergence, 698-705
Convergent iteration processes, 800
Convergent sequence of functions, 507-508, 672
Convergent series, 171, 673
Convolution:
defined, 232
Fourier transforms, 527-528
Laplace transforms, 232-237
Convolution theorem, 232-233
Coriolis, Gustave Gaspard, 389 n .3
Coriolis acceleration, 388-389
Corrector (improved Euler method), 903
Correlation analysis, 1063, 1108-1111, 1113
defined, 1103
test for correlation coefficient, 1110-1111
Correlation coefficient, 1108-1111, 1113
Cosecant, formula for, A65
Cosine function: conformal mapping by, 752
formula for, A63-A65
Cosine integral:
formula for, A69
table, A98
Cosine series, 781
Cotangent, formula for, A65
Coulomb, Charles Augustin de, 19n.6, 93n.7, 401n. 6
Coulomb's law, 19, 401

Covariance:
in correlation analysis, 1109 defined, 1058
Cramer, Gabriel, 31n.7, 298n. 2
Cramer's rule, 292, 298-300, 321
for three equations, 293
for two equations, 292
Cramer's Theorem, 298
Crank, John, 938n. 5
Crank-Nicolson (CN) method, 938-941
Critical damping, 65, 66
Critical points, 33, 165
asymptotically stable, 149
and conformal mapping, 738, 757
constant-coefficient systems of ODEs, 142-146
center, 144
criteria for, 148-151
degenerate node, 145-146
improper node, 142
proper node, 143
saddle point, 143
spiral point, 144-145
stability of, 149-151
isolated, 152
nonlinear systems, 152
stable, 140, 149
stable and attractive, 140, 149
unstable, 140, 149
Critical region, 1079
Cross product, 368, 410. See also Vector product
Crout, Prescott Durand, 853n. 2
Crout's method, 853,898
Cubic spline, 821
Cumulative absolute frequencies (of values), 1012
Cumulative distribution functions, 1029
Cumulative relative frequencies (of values), 1012
Curl, A76
invariance of, A85-A88
of vector fields, 406-409, 412
Curvature, of a curve, 389-390
Curves:
arc of, 383
bell-shaped, 13, 574
Bezier, 827
deflection, 120
elastic, 120
equipotential, 36, 759, 761
one-parameter family of, 36-37
operating characteristic, 1081, 1092, 1095
oriented, 644
orthogonal coordinate, A74
parameter, 442
plane, 383

Curves: (Cont.)
regression, 1103
simple, 383
simple closed, 646
smooth, 414, 644
solution, 4-6
twisted, 383
vector differential calculus, 381-392, 411
arc length of, 385-386
length of, 385
in mechanics, 386-389
tangents to, 384-385
and torsion, 389-390
Curve fitting, 872-876
method of least squares, 872-874
by polynomials of degree m, 874-875
Curvilinear coordinates, 354, 412, A74
Cut sets, 994-996, 1008
Cycle (paths), 976, 984
Cylindrical coordinates, 593-594, A74-A76

D'Alembert, Jean le Rond, 554n. 1
D'Alembert's solution, 553-556
Damped oscillations, 67
Damping constant, 65
Dantzig, George Bernard, 959
Data processing:
frequency distributions, 1011-1012
and randomness, 1064
Data representation:
frequency distributions, 1011-1015
Empirical Rule, 1014
graphic, 1012
mean, 1013-1014
standard deviation, 1014
variation, 1014
and randomness, 1064
Decisions:
false, risks of making, 1080
statistics for, 1077-1078
Dedekind, Richard, A72n. 3
Defect (eigenvalue), 328
Defectives, 1092
Definite integrals, complex, see Line integrals
Deflection curve, 120
Deformation of path, principle of, 656
Degenerate feasible solution (simplex method), 962-965
Degenerate node, 145-146
Degrees of freedom (d.f.), number of, 1071, 1074
Degree of incidence, 971

Degree of precision (DP), 833
Deleted neighborhood, 720
Demand vector, 334
De Moivre, Abraham, 616n. 3
De Moivre-Laplace limit theorem, 1050
De Moivre's formula, 616
De Morgan's laws, 1018
Density, 1061
continuous two-dimensional distributions, 1053
of a distribution, 1033
Dependent random variables, 1055, 1056
Dependent variables, 393, 1055, 1056
Depth First Search (DFS) algorithms, 977
Derivatives:
of analytic functions, 664-668, 688-689, A95-A96
of complex functions, 622,641
Laplace transforms of, 211-212
of matrices or vectors, 127
of vector functions, 379-380
Derived series, 687
Descartes, René, 356n.1, 391n. 4
Determinants, 293-301, 321
Cauchy, 113
Cramer's rule, 298-300
defined, A81
general properties of, 295-298
of a matrix, 128
of matrix products, 307-308
of order $n, 293$
proof of, A81-A83
second-order, 291-292
second-order homogeneous linear ODEs, 76
third-order, 292-293
Vandermonde, 113
Wronski: second-order homogeneous linear ODEs, 75-78 systems of ODEs, 139
Developed, in a power series, 683
D.f. (degrees of freedom), number of, 1071, 1074
DFS (Depth First Search) algorithms, 977
DFTs (discrete Fourier transforms), 528-531
Diagonalization of matrices, 341-342
Diagonally dominant matrices, 881
Diagonal matrices, 268
inverse of, 305-306
scalar, 268
Diameter (graphs), 991
Difference:
complex numbers, 610
scalar multiplication, 260

Difference equations (elliptic PDEs), 923-925
Difference quotients, 923
Difference table, 814
Differentiable complex functions, 622-623
Differentiable vector functions, 379
Differential (total differential), 20, 45
Differential equations:
applications of, 3
defined, 2
Differential form, 422
exact, 21, 470
first fundamental form, of $S, 451$
floating-point, of numbers, 791-792
path independence and exactness of, 422, 470
Differential geometry, 381
Differential operators:
second-order, 60
for second-order homogeneous linear ODEs, 60-62
Differentiation:
of Laplace transforms, 238-240
matrices or vectors, 127
numeric, 838-839
of power series, 687-688, 703
termwise, 173, 687-688, 703
Diffusion equation, 459-460, 558. See also Heat equation
Digraphs (directed graphs), 971-972, 1007
computer representation of, 972-974
defined, 972
incidence matrix of, 975
subgraphs, 972
Dijkstra, Edsger Wybe, 981n. 4
Dijkstra's algorithm, 981-983, 1008
DIJKSTRA, ALGORITHM, 982
Dimension of vector spaces, 286, 311, 359
Diocles, 391n. 4
Dirac, Paul, 226n. 2
Dirac delta function, 226-228, 237
Directed graphs, see Digraphs (directed graphs)
Directed path, 1000
Directional derivatives (scalar functions), 396-397, 411
Direction field (slope field), 9-10, 44
Direct methods (linear system solutions), 858, 898. See also iteration
Dirichlet, Peter Gustav LeJeune, 462n. 8
Dirichlet boundary condition, 564

Dirichlet problem, 605, 923
ADI method, 929
heat equation, 564-566
Laplace equation, 593-596, 925-928, 934-935
Poisson equation, 925-928
two-dimensional heat equation, 564-565
uniqueness theorem for, 462, 784
Dirichlet's discontinuous factor, 514
Discharge (flow modeling), 776
Discrete distributions, 1029-1032
marginal distributions of, 1053-1054
two-dimensional, 1052-1053
Discrete Fourier transforms (DFTs), 528-531
Discrete random variables, 1029, 1030-1032, 1061
defined, 1030
marginal distributions of, 1054
Discrete spectrum, 525
Disjoint events, 1016
Disks:
circular, open and closed, 619
mapping, 748-750
Poisson's integral formula, 779-780
Dissipative physical systems, 422
Distance:
graphs, 991
vector norms, 866
Distinct real roots:
higher-order homogeneous linear ODEs, 112-113
second-order homogeneous linear ODEs, 54-55
Distinct roots (Frobenius method), 182
Distributions, 226n.2. See also Frequency distributions; Probability distributions
Distribution-free tests, 1100
Distribution function, 1029-1032
cumulative, 1029
normal distributions, 1046-1047
of random variables, 1056, A109
sample, 1096
two-dimensional probability distributions, 1051-1052
Distributive laws, 264
Distributivity, 363
Divergence, A75
fluid flow, 775
of vector fields, 402-406
of vector functions, 411, 453
Divergence theorem of Gauss, 405, 470
applications, 458-463
vector integral calculus, 453-457
Divergent sequence, 672

Divergent series, 171, 673
Division, of complex numbers, 610, 615-616
Domain(s), 393
bounded, 652
doubly connected, 658, 659
of $f, 620$
holes of, 653
mapping, 737, 747-750
multiply connected:
Cauchy's integral formula, 662-663
Cauchy's integral theorem, 658-659
p-fold connected, 652-653
sets in complex plane, 620
simply connected, $423,646,652$, 653
triply connected, 653, 658, 659
Dominant eigenvalue, 883
Doolittle, Myrick H., 853n. 1
Doolittle's method, 853-855, 898
Dot product, 312, 410. See also Inner product
Double Fourier series:
defined, 582
rectangular membrane, 577-585
Double integrals (vector integral calculus), 426-432, 470
applications of, 428-429
change of variables in, 429-431
evaluation of, by two successive integrations, 427-428
Double precision, floating-point standard for, 792
Double root (Frobenius method), 183
Double subscript notation, 125
Doubly connected domains, 658, 659
DP (degree of precision), 833
Driving force, see Input (driving force)
Duffing equation, 160
Duhamel, Jean-Marie Constant, 603n. 4
Duhamel's formula, 603

Eccentricity, of vertices, 991
Edges:
backward:
cut sets, 994
initial flow, 998
of a path, 992
forward:
cut sets, 994
initial flow, 998
of a path, 992
graphs, 971, 1007
incident, 971
Edge chromatic number, 1006

Edge condition, 991
Edge incidence list (graphs), 973
Efficient algorithms, 979
Eigenbases, 339-341
Eigenfunctions, 605
circular membrane, 588
one-dimensional heat equation, 560
Sturm-Liouville Problems, 499-500
two-dimensional heat equation, 565
two-dimensional wave equation, 578, 580
vibrating string, 547
Eigenfunction expansion, 504
Eigenspaces, 326, 878
Eigenvalues, 129-130, 166, 353, 605, 877, 899. See also Matrix eigenvalue problems
circular membrane, 588
complex matrices, 347-351
and critical points, 149
defined, 324
determining, 323-329
dominant, 883
finding, 324-328
one-dimensional heat equation, 560
Sturm-Liouville Problems, 499-500, A89
two-dimensional wave equation, 580
vibrating string, 547
Eigenvalues of A, 322
Eigenvalue problem, 140
Eigenvectors, 129-130, 166, 353, 877, 899
basis of, 339-340
convergent sequence of, 886
defined, 324
determining, 323-329
finding, 324-328
Eigenvectors of A, 322
EISPACK, 789
Elastic curve, 120
Electric circuits:
analogy of electrical and mechanical quantities, 97-98
second-order nonhomogeneous linear ODEs, 93-99
Electrostatic fields (potential theory), 759-763
complex potential, 760-761
superposition, 761-762
Electrostatic potential, 759
Electrostatics (Laplace's equation), 593
Elementary matrix, 281

Elementary row operations (linear systems), 277
Ellipses, area of region bounded by, 436
Elliptic PDEs:
defined, 923
numeric analysis, 922-936
ADI method, 928-930
difference equations, 923-925
Dirichlet problem, 925-928
irregular boundary, 933-935
mixed boundary value problems, 931-933
Neumann problem, 931
Empirical Rule, 1014
Energies, 157
Entire function, 630, 642, 707, 718
Entries:
determinants, 294
matrix, 125, 257
Equal complex numbers, 609
Equality:
of matrices, 126, 259
of vectors, 355
Equally likely events, 1018
Equal spacing (interpolation):
Newton's backward difference formula, 818-819
Newton's forward difference formula, 815-818
Equilibrium harvest, 36
Equilibrium solutions (equilibrium points), 33-34
Equipotential curves, 36, 759, 761
Equipotential lines, 38
electrostatic fields, 759, 761
fluid flow, 771
Equipotential surfaces, 759
Equivalent vector norms, 871
Error(s):
in acceptance sampling, 1093-1094
of approximations, 495
in numeric analysis, 842
basic error principle, 796
error propagation, 795
errors of numeric results, 794-795
roundoff, 792
in statistical tests, 1080-1081
and step size control, 906-907
trapezoidal rule, 830
vector norms, 866
Error bounds, 795
Error estimate, 908
Error function, 828, A67-A68, A98
Essential singularity, 715-716
Estimation of parameters, 1063
EULER, ALGORITHM, 903
Euler, Leonhard, 31n.7, 71n. 4

Euler-Cauchy equations, 71-74, 104
higher-order nonhomogeneous linear ODEs, 119-120
Laplace's equation, 595
third-order, IVP for, 108
Euler-Cauchy method, 901
Euler constant, 198
Euler formulas, 58
complex Fourier integral, 523
derivation of, 479-480
exponential function, 631
Fourier coefficients given by, 476, 484
generalized, 582
Taylor series, 694
trigonometric function, 634
Euler graph, 980
Euler's method:
defined, 10
error of, 901-902, 906, 908
first-order ODEs, 10-11, 901-902
backward method, 909-910
improved method, 902-904
higher order ODEs, 916-917
Euler trail, 980
Even functions, 486-488
Even periodic extension, 488-490
Events (probability theory), 1016-1017, 1060
addition rule for, 1021-1022
arbitrary, 1021-1022
complements of, 1016
defined, 1015
disjoint, 1016
equally likely, 1018
independent, 1022-1023
intersection, 1016, 1017
mutually exclusive, 1016, 1021
simple, 1015
union, 1016-1017
Exact differential equation, 21
Exact differential form, 422, 470
Exact ODEs, 20-27, 45
defined, 21
integrating factors, 23-26
Existence, problem of, 39
Existence theorems:
cubic splines, 822
first-order ODEs, 39-42
homogeneous linear ODEs: higher-order, 108
second-order, 74
of the inverse, 301-302
Laplace transforms, 209-210
linear systems, 138
power series solutions, 172
systems of ODEs, 137
Expectation, 1035, 1037-1038, 1057

Experiments:
defined, 1015, 1060
in probability theory, 1015-1016
random, 1011, 1015-1016, 1060
Experimental error, 794
Explicit formulas, 913
Explicit method:
heat equation, 937, 940-941
wave equation, 943
Explicit solution, 21
Exponential decay, 5, 7
Exponential function, 630-633, 642
formula for, A63
Taylor series, 694
Exponential growth, 5
Exponential integral, formula for, A69
Exposed vertices, 1001, 1003
Extended complex plane:
conformal mapping, 744-745
defined, 718
Extended method (separable ODEs), 17-18
Extended problems, 966
Extrapolation, 808
Extrema (unconstrained optimization), 951

Factorial function, 1027, A66, A98. See also Gamma functions
Failing to reject a hypothesis, 1081
Fair die, 1018, 1019
False decisions, risks of making, 1080
False position, method of, 807-808
Family of curves, one-parameter, 36-37
Family of solutions, 5
Faraday, Michael, 93n. 7
Fast Fourier transforms (FFTs), 531-532
F-distribution, 1086, A105-A108
Feasibility region, 954
Feasible solutions, 954-955
basic, 957, 959
degenerate, 962-965
normal form of linear optimization problems, 957
Fehlberg, E., 907
Fehlberg's fifth-order RK method, 907-908
Fehlberg's fourth-order RK method, 907-908
FFTs (fast Fourier transforms), 531-532
Fibonacci (Leonardo of Pisa), 690n. 2
Fibonacci numbers, 690
Fibonacci's rabbit problem, 690
Finite complex plane, 718. See also Complex plane

Finite jumps, 209
First boundary value problem, see Dirichlet problem
First fundamental form, of $S, 451$
First-order method, Euler method as, 902
First-order ODEs, 2-45, 44
defined, 4
direction fields, $9-10$
Euler's method, 10-11
exact, 20-27, 45
defined, 21
integrating factors, 23-26
explicit form, 4
geometric meanings of, 9-12
implicit form, 4
initial value problem, 38-43
linear, 27-36
Bernoulli equation, 31-33
homogeneous, 28
nonhomogeneous, 28-29
population dynamics, 33-34
modeling, 2-8
numeric analysis, 901-915
Adams-Bashforth methods, 911-914
Adams-Moulton methods, 913-914
backward Euler method, 909-910
Euler's method, 901-902
improved Euler's method, 902-904
multistep methods, 911-915
Runge-Kutta-Fehlberg method, 906-908
Runge-Kutta methods, 904-906
orthogonal trajectories, 36-38
separable, 12-20, 44
extended method, 17-18
modeling, 13-17
systems of, 165
transformation of systems to, 157-159
First (first order) partial derivatives, A71
First shifting theorem (s-shifting), 208-209
First transmission line equation, 599
Fisher, Sir Ronald Aylmer, 1086
Fixed points:
defined, 799
of a mapping, 745
Fixed-point iteration (numeric analysis), 798-801, 842
Fixed-point systems, numbers in, 791
Floating, 793
Floating-point form of numbers, 791-792

Flow augmenting paths, 992-993, 998, 1008
Flow problems in networks (combinatorial optimization), 991-997
cut sets, 994-996
flow augmenting paths, 992-993
paths, 992
Fluid flow:
Laplace's equation, 593
potential theory, 771-777
Fluid state, 404
Flux (motion of a fluid), 404
Flux integral, 444, 450
Forced motions, 68, 86
Forced oscillations:
Fourier analysis, 492-495
second-order nonhomogeneous linear ODEs, 85-92
damped, 89-90 resonance, 88-91
undamped, 87-89
Forcing function, 86
Ford, Lester Randolph, Jr., 998n. 7
FORD-FULKERSON, ALGORITHM, 998
Ford-Fulkerson algorithm for maximum flow, 998-1001, 1008
Forest (graph), 987
Form(s):
canonical, 344
complex, 351
differential, 422
exact, 21, 470
path independence and
exactness of, 422
Hesse's normal, 366
Lagrange's, 812
normal (linear optimization problems), 955-957, 959, 969
Pfaffian, 422
polar, of complex numbers, 613-618, 631
quadratic, 343-344, 346
reduced echelon, 279
row echelon, 279-280
skew-Hermitian and Hermitian, 351
standard:
first-order ODEs, 27
higher-order homogeneous
linear ODEs, 105
higher-order linear ODEs, 123
power series method, 172
second-order linear ODEs, 46, 103
triangular (Gauss elimination), 846

Forward edge:
cut sets, 994
initial flow, 998
of a path, 992
Four-color theorem, 1006
Fourier, Jean-Baptiste Joseph, 473n. 1
Fourier analysis, 473-539
approximation by trigonometric polynomials, 495-498
forced oscillations, 492-495
Fourier integral, 510-517
applications, 513-515
complex form of, 522-523
sine and cosine, 515-516
Fourier series, 474-483
convergence and sum of, 480-481
derivation of Euler formulas, 479-480
even and odd functions, 486-488
half-range expansions, 488-490
from period 2π to $2 L$, 483-486
Fourier transforms, 522-536
complex form of Fourier integral, 522-523
convolution, 527-528
cosine, 518-522, 534
discrete, 528-531
fast, 531-532
and its inverse, 523-524
linearity, 526-527
sine, 518-522, 535
spectrum representation, 525
orthogonal series (generalized
Fourier series), 504-510
completeness, 508-509
mean square convergence, 507-508
Sturm-Liouville Problems, 498-504
eigenvalues, eigenfunctions, 499-500
orthogonal functions, 500-503
Fourier-Bessel series, 506-507, 589
Fourier coefficients, 476, 484, 538, 582-583
Fourier constants, 504-505
Fourier cosine integral, 515-516
Fourier cosine series, 484, 486, 538
Fourier cosine transforms, 518-522, 534
Fourier cosine transform method, 518
Fourier integrals, 510-517, 539
applications, 513-515
complex form of, 522-523
heat equation, 568-571
residue integration, 729-730
sine and cosine, 515-516

Fourier-Legendre series, 505-506, 596-598
Fourier matrix, 530
Fourier series, 473-483, 538
convergence and sum or, 480-481
derivation of Euler formulas, 479-480
double, 577-585
even and odd functions, 486-488
half-range expansions, 488-490
heat equation, 558-563
from period 2π to $2 L, 483-486$
Fourier sine integral, 515-516
Fourier sine series, 477, 486, 538
one-dimensional heat equation, 561
vibrating string, 548
Fourier sine transforms, 518-522, 535
Fourier transforms, 522-536, 539
complex form of Fourier integral, 522-523
convolution, 527-528
cosine, 518-522, 534, 539
defined, 522,523
discrete, 528-531
fast, 531-532
heat equation, 571-574
and its inverse, 523-524
linearity of, 526-527
sine, 518-522, 535, 539
spectrum representation, 525
Fourier transform method, 524
Four-point formulas, 841
Fraction defective chars, 1091-1092
Francis, J. G. F., 892
Fredholm, Erik Ivar, 198n.7, 263n. 3
Free condition (spline interpolation), 823
Free oscillations of mass-spring system (second-order ODEs), 62-70
critical damping, 65, 66
damped system, 64-65
overdamping, 65-66
undamped system, 63-64
underdamping, 65, 67
Frenet, Jean-Frédéric, 392
Frenet formulas, 392
Frequency (in statistics):
absolute, 1012, 1019
cumulative absolute, 1012
cumulative relative, 1012
relative class, 1012
Frequency (of vibrating string), 547
Frequency distributions, mean and variance of:
expectation, 1037-1038
moments, 1038
transformation of, 1036-1037

Fresnel, Augustin, 697n.4, A68n. 1
Fresnel integrals, 697, A68
Frobenius, Georg, 180n. 4
Frobenius method, 167, 180-187, 201
indicial equation, 181-183
proof of, A77-A81
typical applications, 183-185
Frobenius norm, 861
Fulkerson, Delbert Ray, 998n. 7
Function, of complex variable, 620-621
Function spaces, 313
Fundamental matrix, 139
Fundamental period, 475
Fundamental region (exponential function), 632
Fundamental system, 50, 104. See also Basis, of solutions
Fundamental Theorem:
higher-order homogeneous linear ODEs, 106
for linear systems, 288
PDEs, 541-542
second-order homogeneous linear ODEs, 48

Galilei, Galileo, 16n. 4
Gamma functions, 190-191, 208
formula for, A66-A67
incomplete, A67
table, A98
GAMS (Guide to Available Mathematical Software), 789
GAUSS, ALGORITHM, 849
Gauss, Carl Friedrich, 186n.5, 608n.1, 1103
Gauss distribution, 1045. See also Normal distributions
Gauss "Double Ring," 451
Gauss elimination, 320, 849
linear systems, 274-280, 844-852, 898 back substitution, 274-276, 846 elementary row operations, 277
if infinitely many solutions exist, 278
if no solution exists, 278-279 operation count, 850-851 row echelon form, 279-280
operation count, 850-851
Gauss integration formulas, 807, 836-838, 843
Gauss-Jordan elimination, 302-304, 856-857
GAUSS-SEIDEL, ALGORITHM, 860

Gauss-Seidel iteration, 858-863, 898
Gauss's hypergeometric ODE, 186, 202
Geiger, H., 1044, 1100
Generalized Euler formula, 582
Generalized Fourier series, see Orthogonal series
Generalized solution (vibrating string), 550
Generalized triangle inequality, 615
General powers, 639-640, 642
General solution:
Bessel's equation, 194-200
first-order ODEs, 6, 44
higher-order linear ODEs, 106, 110-111, 123
nonhomogeneous linear systems, 160
second-order linear ODEs: homogeneous, 49-51, 77-78, 104
nonhomogeneous, 80-81
systems of ODEs, 131-132, 139
Generating functions, 179, 241
Geometric interpretation:
partial derivatives, A70
scalar triple product, 373, 374
Geometric multiplicity, 326, 878
Geometric series, 168, 675
Taylor series, 694
uniformly convergent, 698
Gerschgorin, Semyon Aranovich, 879n. 6
Gerschgorin's theorem, 879-881, 899
Gibbs phenomenon, 515
Global error, 902
Golden Rule, 15, 24
Gompertz model, 19
Goodness of fit, 1096-1100
Gosset, William Sealy, 1086n. 4
Goursat, Édouard, 654n. 1
Goursat's proof, 654
Gradient, A75
fluid flow, 771
of a scalar field, 395-402
directional derivatives, 396-397
maximum increase, 398
as surface normal vector, 398-399
vector fields that are, 400-401
of a scalar function, 396, 411
unconstrained optimization, 952
Gradient method, 952. See also Method of steepest descent
Graphs, 970-971, 1007
bipartite, 1001-1006, 1008
center of, 991
complete, 974

Graphs (Cont.)
complete bipartite, 1005
computer representation of, 972-974
connected, 977, 981, 984
diameter of, 991
digraphs (directed graphs), 971-974, 1007
computer representation of, 972-974
defined, 972
incidence matrix of, 975
subgraphs, 972
Euler, 980
forest, 987
incidence matrix of, 975
planar, 1005
radius of, 991
sparse, 974
subgraphs, 972
trees, 984
vertices, 971, 977, 1007
adjacent, 971, 977
central, 991
coloring, 1005-1006
double labeling of, 986
eccentricity of, 991
exposed, 1001, 1003
four-color theorem, 1006
scanning, 998
weighted, 976
Graphic data representation, 1012
Gravitation (Laplace's equation), 593
Gravity, acceleration of, 8
Gravity constant, at the Earth's surface, 63
Greedy algorithm, 984-988
Green, George, 433n. 4
Green's first formula, 461, 470
Green's second formula, 461, 470
Green's theorem:
first and second forms of, 461
in the plane, 433-438, 470
Gregory, James, 816n. 2
Gregory-Newton's (Newton's) backward difference interpolation formula, 818-819
Gregory-Newton's (Newton's) forward difference interpolation formula, 815-818
Growth restriction, 209
Guidepoints, 827
Guide to Available Mathematical Software (GAMS), 789
Guldin, Habakuk, 452n. 7
Guldin's theorem, 452n. 7

Hadamard, Jacques, 683n. 1
Half-planes:
complex analysis, 619-620
mapping, 747-749
Half-range expansions (Fourier series), 488-490, 538
Hamilton, William Rowan, 976n. 1
Hamiltonian cycle, 976
Hankel, Hermann, 200n. 8
Hankel functions, 200
Harmonic conjugate function
(Laplace's equation), 629
Harmonic functions, 460, 462, 758
complex analysis, 628-629
under conformal mapping, 763
defined, 758
Laplace's equation, 593, 628-629
maximum modulus theorem, 783-784
potential theory, 781-784, 786
Harmonic oscillation, 63-64
Heat equation, 459-460, 557-558
Dirichlet problem, 564-566
Laplace's equation, 564
numeric analysis, 936-941, 948
Crank-Nicolson method, 938-941
explicit method, 937, 940-941
one-dimensional, 559
solution:
by Fourier integrals, 568-571
by Fourier series, 558-563
by Fourier transforms, 571-574
steady two-dimensional heat problems, 546-566
two-dimensional, 564-566
unifying power of methods, 566
Heat flow:
Laplace's equation, 593
potential theory, 767-770
Heat flow lines, 767
Heaviside, Oliver, 204n. 1
Heaviside calculus, 204n. 1
Heaviside expansions, 228
Heaviside function, 217-219
Helix, 386
Henry, Joseph, 93n. 7
Hermite, Charles, 510n. 8
Hermite interpolation, 826
Hermitian form, 351
Hermitian matrices, 347, 348, 350, 353
Hertz, Heinrich, 63n. 3
Hesse, Ludwig Otto, 366n. 2
Hesse's normal form, 366
Heun, Karl, 905n. 1
Heun's method, 903. See also Improved Euler's method
Higher functions, 167. See also Special functions

Higher-order linear ODEs, 105-123
homogeneous, 105-116, 123
nonhomogeneous, 116-123
systems of, see Systems of ODEs
Higher order ODEs (numeric analysis), 915-922
Euler method, 916-917
Runge-Kutta methods, 917-919
Runge-Kutta-Nyström methods, 919-921
Higher transcendental functions, 920
High-frequency line equations, 600
Hilbert, David, 198n.7, 312n. 4
Hilbert spaces, 363
Histograms, 1012
Holes, of domains, 653
Homogeneous first-order linear ODEs, 28
Homogeneous higher-order linear ODEs, 105-111
Homogeneous linear systems, 138, 165, 272, 290-291, 845
constant-coefficient systems, 140-151
matrices and vectors, 124-130, 321
trivial solution, 290
Homogeneous PDEs, 541
Homogeneous second-order linear ODEs, 46-48
basis, 50-52
with constant coefficients, 53-60
complex roots, 57-59
real double root, 55-56
two distinct real-roots, 54-55
differential operators, 60-62
Euler-Cauchy equations, 71-74
existence and uniqueness of solutions, 74-79
general solution, 49-51, 77-78
initial value problem, 49-50
modeling free oscillations of mass-spring system, 62-70
particular solution, 49-51
reduction of order, 51-52
Wronskian, 75-78
Hooke, Robert, 62
Hooke's law, 62
Householder, Alston Scott, 888n. 11
Householder's tridiagonalization method, 888-892
Hyperbolic analytic functions (conformal mapping), 750-754
Hyperbolic cosine, 635, 752
Hyperbolic functions, 635, 642
formula for, A65-A66
inverse, 640
Taylor series, 695
Hyperbolic PDEs:
defined, 923
numeric analysis, 942-945

Hyperbolic sine, 635, 752
Hypergeometric distributions, 1042-1044, 1061
Hypergeometric equations, 167, 185-187
Hypergeometric functions, 167, 186
Hypergeometric series, 186
Hypothesis, 1077
Hypothesis testing (in statistics), 1063, 1077-1087
comparison of means, 1084-1085
comparison of variances, 1086
errors in tests, 1080-1081
for mean of normal distribution with known variance, 1081-1083
for mean of normal distribution with unknown variance, 1083-1084
one- and two-sided alternatives, 1079-1080

Idempotent matrices, 270
Identity mapping, 745
Identity matrices, 268
Identity operator (second-order
homogeneous linear ODEs), 60
Ill-conditioned equations, 805
Ill-conditioned problems, 864
Ill-conditioned systems, 864, 865, 899
Ill-conditioning (linear systems), 864-872
condition number of a matrix, 868-870
matrix norms, 866-868
vector norms, 866
Image:
conformal mapping, 737
linear transformations, 313
Imaginary axis (complex plane), 611
Imaginary part (complex numbers), 609
Imaginary unit, 609
Impedance (RLC circuits), 95
Implicit formulas, 913
Implicit method:
backward Euler scheme as, 909
for hyperbolic PDEs, 943
Implicit solution, 21
Improper integrals:
defined, 205
residue integration, 726-732
Improper node, 142
Improved Euler's method:
error of, 904, 906, 908
first-order ODEs, 902-904
Impulse, of a force, 225
short impulses, 225-226
unit impulse function, 226

Incidence matrices (graphs and digraphs), 975
Incident edges, 971
Inclusion theorems:
defined, 882
matrix eigenvalue problems, 879-884
Incomplete gamma functions, formula for, A67
Inconsistent linear systems, 277
Indefinite (quadratic form), 346
Indefinite integrals:
defined, 643
existence of, 656-658
Indefinite integration (complex line integral), 646-647
Independence:
of path, 669
of path in domain (integrals), 470, 655
of random variables, 1055-1056
Independent events, 1022-1023, 1061
Independent sample values, 1064
Independent variables:
in calculus, 393
in regression analysis, 1103
Indicial equation, 181-183, 188, 202
Indirect methods (solving linear systems), 858, 898
Inference, statistical, 1059, 1063
Infinite dimensional vector space, 311
Infinite populations, 1044
Infinite sequences:
bounded, A93-A95
monotone real, A72-A73
power series, 671-673
Infinite series, 673-674
Infinity:
analytic of singular at, 718-719
point at, 718
Initial conditions:
first-order ODEs, 6, 7, 44
heat equation, $559,568,569$
higher-order linear ODEs:
homogeneous, 107
nonhomogeneous, 117
one-dimensional heat equation, 559
PDEs, 541, 605
second-order homogeneous linear ODEs, 49-50, 104
systems of ODEs, 137
two-dimensional wave equation, 577
vibrating string, 545
Initial point (vectors), 355
Initial value problem (IVP):
defined, 6
first-order ODEs, 6, 39, 44, 901

Initial value problem (IVP): (Cont.) bell-shaped curve, 13 existence and uniqueness of solutions for, 38-43
higher-order linear ODEs, 123 homogeneous, 107-108 nonhomogeneous, 117
Laplace transforms, 213-216
for RLC circuit, 99
second-order homogeneous linear ODEs, 49, 74-75, 104
systems of ODEs, 137
Injective mapping, 737n. 1
Inner product (dot product), 312
for complex vectors, 349
invariance of, 336
vector differential calculus, 361-367, 410
applications, 364-366
orthogonality, 361-363
Inner product spaces, 311-313
Input (driving force), 27, 86, 214
Instability, numeric vs. mathematical, 796
Integrals, see Line integrals
Integral equations:
defined, 236
Laplace transforms, 236-237
Integral of a function, Laplace transforms of, 212-213
Integral transforms, 205, 518
Integrand, 414, 644
Integrating factors, 23-26, 45
defined, 24
finding, 24-26
Integration. See also Complex integration
constant of, 18
of Laplace transforms, 238-240
numeric, 827-838 adaptive, 835-836
Gauss integration formulas, 836-838 rectangular rule, 828 Simpson's rule, 831-835 trapezoidal rule, 828-831
termwise, of power series, 687, 688
Intermediate value theorem, 807-808
Intermediate variables, 393
Intermittent harvesting, 36
INTERPOL, ALGORITHM, 814
Interpolation, 529
defined, 808
numeric analysis, 808-820, 842
equal spacing, 815-819
Lagrange, 809-812
Newton's backward difference formula, 818-819
Newton's divided difference, 812-815

Interpolation (Cont.)
Newton's forward difference formula, 815-818 spline, 820-827
Interpolation polynomial, 808, 842
Interquartile range, 1013
Intersection, of events, 1016, 1017
Intervals. See also Confidence intervals class, 1012
closed, A72n. 3
convergence, 171, 683
open, 4, A72n. 3
Interval estimates, 1065
Invariance, of curl, A85-A88
Invariant rank, 283
Invariant subspace, 878
Inverse cosine, 640
Inverse cotangent, 640
Inverse Fourier cosine transform, 518
Inverse Fourier sine transform, 519
Inverse Fourier sine transform method, 519
Inverse Fourier transform, 524
Inverse hyperbolic function, 640
Inverse hyperbolic sine, 640
Inverse mapping, 741, 745
Inverse of a matrix, 128, 301-309, 321
cancellation laws, 306-307
determinants of matrix products, 307-308
formulas for, 304-306
Gauss-Jordan method, 302-304, 856-857
Inverse sine, 640
Inverse tangent, 640
Inverse transform, 205, 253
Inverse transformation, 315
Inverse trigonometric function, 640
Irreducible, 883
Irregular boundary (elliptic PDEs), 933-935
Irrotational flow, 774
Isocline, 10
Isolated critical point, 152
Isolated essential singularity, 715
Isolated singularity, 715
Isotherms, 36, 38, 402, 767
Iteration (iterative) methods:
numeric analysis, 798-808
fixed-point iteration, 798-801
Newton's (Newton-Raphson) method, 801-805
secant method, 805-806
speed of convergence, 804-805
numeric linear algebra, 858-864, 898
Gauss-Seidel iteration, 858-862
Jacobi iteration, 862-863
IVP, see Initial value problem

Jacobi, Carl Gustav Jacob, 430n. 3
Jacobians, 430, 741
Jacobi iteration, 862-863
Jordan, Wilhelm, 302n. 3
Joukowski airfoil, 739-740

Kantorovich, Leonid Vitaliyevich, 959n. 1
KCL (Kirchhoff's Current Law), 93n.7, 274
Kernel, 205
Kinetic friction, coefficient of, 19
Kirchhoff, Gustav Robert, 93n. 7
Kirchhoff's Current Law (KCL), 93n.7, 274
Kirchhoff's law, 991
Kirchhoff's Voltage Law (KVL), 29, 93, 274
Koopmans, Tjalling Charles, 959n. 1
Kreyszig, Erwin, 855n. 3
Kronecker, Leopold, 500n. 5
Kronecker delta, A85
Kronecker symbol, 500
Kruskal, Joseph Bernard, 985n. 5
KRUSKAL, ALGORITHM, 985
Kruskal's Greedy algorithm, 984-988, 1008
k th backward difference, 818
k th central moment, 1038
k th divided difference, 813
k th forward difference, 815-816
k th moment, 1038, 1065
Kublanovskaya, V. N., 892
Kutta, Wilhelm, 905n. 1
Kutta's third-order method, 911
KVL, see Kirchhoff's Voltage Law

Lagrange, Joseph Louis, 51n. 1
Lagrange interpolation, 809-812
Lagrange's form, 812, 842
Laguerre, Edmond, 504n. 7
Laguerre polynomials, 241, 504
Laguerre's equation, 240-241
LAPACK, 789
Laplace, Pierre Simon Marquis de, 204n. 1
Laplace equation, 400, 564, 593-600, 642, 923
boundary value problem in spherical coordinates, 594-596
complex analysis, 628-629
in cylindrical coordinates, 593-594
Fourier-Legendre series, 596-598
heat equation, 564
numeric analysis, 922-936, 948
ADI method, 928-930
difference equations, 923-925

Laplace equation (Cont.)
Dirichlet problem, 925-928, 934-935
Liebmann's method, 926-928
in spherical coordinates, 594
theory of solutions of, 460, 786. See also Potential theory two-dimensional heat equation, 564
two-dimensional problems, 759
uniqueness theorem for, 462
Laplace integrals, 516
Laplace operator, 401. See also Laplacian
Laplace transforms, 203-253
convolution, 232-237
defined, 204, 205
of derivatives, 211-212
differentiation of, 238-240
Dirac delta function, 226-228
existence, 209-210
first shifting theorem (s-shifting), 208-209
general formulas, 248
initial value problems, 213-216
integral equations, 236-237
of integral of a function, 212-213
integration of, 238-240
linearity of, 206-208
notation, 205
ODEs with variable coefficients, 240-241
partial differential equations, 600-603
partial fractions, 228-230
second shifting theorem (t-shifting), 219-223
short impulses, 225-226
systems of ODEs, 242-247
table of, 249-251
uniqueness, 210
unit step function (Heaviside function), 217-219
Laplacian, 400, 463, 605, A76
in cylindrical coordinates, 593-594
heat equation, 557
Laplace's equation, 593
in polar coordinates, 585-592
in spherical coordinates, 594
of u in polar coordinates, 586
Lattice points, 925-926
Laurent, Pierre Alphonse, 708n. 1
Laurent series, 708-719, 734
analytic or singular at infinity, 718-719
point at infinity, 718
Riemann sphere, 718
singularities, 715-717
zeros of analytic functions, 717

Laurent's theorem, 709
LCL (lower control limit), 1088
Least squares approximation, of a function, 875-876
Least squares method, 872-876, 899
Least squares principle, 1103
Lebesgue, Henri, 876n. 5
Left-handed Cartesian coordinate system, 369, 370, A84
Left-hand limit (Fourier series), 480
Left-sided tests, 1079, 1082
Legendre, Adrien-Marie, 175n.1, 1103
Legendre function, 175
Legendre polynomials, 167, 177-179, 202
Legendre's equation, 167, 175-177, 201, 202
Laplace's equation, 595-596 special, 169-170
Leibniz, Gottfried Wilhelm, 15 n .3
Leibniz test for real series, A73-A74
Length:
curves, 385
vectors, $355,356,410$
Leonardo of Pisa, 690n. 2
Leontief, Wassily, 334n. 1
Leontief input-output model, 334
Leslie model, 331
Level surfaces, 380, 398
LFTs, see Linear fractional transformations
Libby, Willard Frank, 13n. 2
Liebmann's method, 926-928
Likelihood function, 1066
Limit (sequences), 672
Limit cycle, 158-159, 621
Limit $l, 378$
Limit point, A93
Limit vector, 378
Linear algebra, 255. See also Numeric linear algebra determinants, 293-301

Cramer's rule, 298-300 general properties of, 295-298 of matrix products, 307-308 second-order, 291-292 third-order, 292-293
inverse of a matrix, 301-309
cancellation laws, 306-307
determinants of matrix products, 307-308
formulas for, 304-306
Gauss-Jordan method, 302-304
linear systems, 272-274
back substitution, 274-276
elementary row operations, 277
Gauss elimination, 274-280
homogeneous, 290-291

Linear algebra (Cont.)
nonhomogeneous, 291
solutions of, 288-291
matrices and vectors, 257-262
addition and scalar multiplication of, 259-261
diagonal matrices, 268
linear independence and dependence of vectors, 282-283
matrix multiplication, 263-266, 269-279
notation, 258
rank of, 283-285
symmetric and skew-symmetric matrices, 267-268
transposition of, 266-267
triangular matrices, 268
matrix eigenvalue problems, 322-353
applications, 329-334
complex matrices and forms, 346-352
determining eigenvalues and eigenvectors, 323-329
diagonalization of matrices, 341-342
eigenbases, 339-341
orthogonal matrices, 337-338
orthogonal transformations, 336
quadratic forms, 343-344
symmetric and skewsymmetric matrices, 334-336
transformation to principal axes, 344
vector spaces:
inner product spaces, 311-313
linear transformations, 313-317
real, 309-311
special, 285-287
Linear combination:
homogeneous linear ODEs:
higher-order, 107
second-order, 48
of matrices, 129, 271
of vectors, 129, 282
of vectors in vector space, 311
Linear dependence, of vectors,
282-283
Linear element, 386
Linear equations, systems of, see
Linear systems
Linear fractional transformations
(LFTs), 742-750, 757
extended complex plane, 744-745
mapping standard domains, 747-750

Linear independence:
scalar triple product, 373
of vectors, 282-283
Linear inequalities, 954
Linear interpolation, 809-810
Linearity:
Fourier transforms, 526-527
Laplace transforms, 206-208
line integrals, 645
Linearity principle, see Superposition principle
Linearization, 152-155
Linearized system, 153
Linearly dependent functions:
higher-order homogeneous linear ODEs, 106, 109
second-order homogeneous linear ODEs, 50, 75
Linearly dependent sets, 129, 311
Linearly dependent vectors, 282-283, 285
Linearly independent functions:
higher-order homogeneous linear ODEs, 106, 109, 113
second-order homogeneous linear ODEs, 50, 75
Linearly independent sets, 128-129, 311
Linearly independent vectors, 282-283
Linearly related variables, 1109
Linear mapping, 314. See also Linear transformations
Linear ODEs, 45, 46
first order, 27-36
Bernoulli equation, 31-33
homogeneous, 28
nonhomogeneous, 28-29
population dynamics, 33-34
higher-order, 105-123
homogeneous, 105-116
nonhomogeneous, 116-122
higher-order homogeneous, 105
second-order, 46-104
homogeneous, 46-78, 103
nonhomogeneous, 79-102, 103
Linear operations:
Fourier cosine and sine transforms as, 520
integration as, 645
Linear operators (second-order homogeneous linear ODEs), 61
Linear optimization, see Constrained
(linear) optimization
Linear PDEs, 541
Linear programming problems, 954-958
normal form of problems, 955-957
simplex method, 958-968
degenerate feasible solution, 962-965
difficulties in starting, 965-968

Linear systems, 138-139, 165, 272-274, 320, 845
back substitution, 274-276
defined, 267, 845
elementary row operations, 277
Gauss elimination, 274-280, 844-852
applications, 277-180
back substitution, 274-276
elementary row operations, 277
operation count, 850-851
row echelon form, 279-280
Gauss-Jordan elimination, 856-857
homogeneous, 138, 165, 272, 290-291
constant-coefficient systems, 140-151
matrices and vectors, 124-130
ill-conditioning, 864-872
condition number of a matrix, 868-870
matrix norms, 866-868
vector norms, 866
iterative methods, 858-864
Gauss-Seidel iteration, 858-882
Jacobi iteration, 862-863
LU-factorization, 852-855
Cholesky's method, 855-856
of m equations in n unknowns, 272
nonhomogeneous, 138, 160-163, 272, 290, 291
solutions of, 288-291, 898
Linear transformations, 320
motivation of multiplication by, 265-266
vector spaces, 313-317
Line integrals, 643-652, 669
basic properties of, 645
bounds for, 650-651
definition of, 414, 643-645
existence of, 646
indefinite integration and substitution of limits, 646-647
path dependence of, and integration around closed curves, 421-425
representation of a path, 647-650
vector integral calculus, 413-419
definition and evaluation of, 414-416
path dependence of, 418-426
work done by a force, 416-417
Lines of constant revenue, 954
Lines of force, 760-762
LINPACK, 789
Liouville, Joseph, 499n. 4
Liouville's theorem, 666-667

Lipschitz, Rudolf, 42n. 9
Lipschitz condition, 42
Ljapunov, Alexander Michailovich, 149n. 2
Local error, 830
Local maximum (unconstrained optimization), 952
Local minimum (unconstrained optimization), 951
Local truncation error, 902
Logarithm, 636-639
natural, 636-638, 642, A63
Taylor series, 695
Logarithmic decrement, 70
Logarithmic integral, formula for, A69
Logarithm of base ten, formula for, A63
Logistic equation, 32-33
Longest path, 976
Loss of significant digits (numeric analysis), 793-794
Lotka, Alfred J., 155n. 3
Lotka-Volterra population model, 155-156
Lot tolerance percent defective (LTPD), 1094
Lower confidence limits, 1068
Lower control limit (LCL), 1088
Lower triangular matrices, 268
LTPD (lot tolerance percent defective), 1094
LU-factorization (linear systems), 852-855

Machine numbers, 792
Maclaurin, Colin, 690n.2, 712
Maclaurin series, 690, 694-696
Main diagonal:
determinants, 294
matrix, 125, 258
Malthus, Thomas Robert, 5n. 1
Malthus' law, 5, 33
Maple, 789
Maple Computer Guide, 789
Mapping, 313, 736, 737, 757
bijective, 737 n .1
conformal, 736-757
boundary value problems, 763-767, A96
defined, 738
geometry of analytic functions, 737-742
linear fractional transformations, 742-750
Riemann surfaces, 754-756
by trigonometric and hyperbolic analytic functions, 750-754

Mapping (Cont.)
of disks, 748-750
fixed points of, 745
of half-planes onto half-planes, 748
identity, 745
injective, 737n. 1
inverse, 741, 745
linear, 314. See also Linear transformations
one-to-one, 737n. 1
spectral mapping theorem, 878
surjective, 737n. 1
Marconi, Guglielmo, 63n. 3
Marginal distributions, 1053-1055, 1062
of continuous distributions, 1055
of discrete distributions,
1053-1054
Mariotte, Edme, 19n. 5
Markov, Andrei Andrejevitch, 270n. 1
Markov process, 270, 331
MATCHING, ALGORITHM, 1003
Matching, 1008
assignment problems, 1001
complete, 1002
maximum cardinality, 1001, 1008
Mathcad, 789
Mathematica, 789
Mathematica Computer Guide, 789
Mathematical models, see Models
Mathematical modeling, see Modeling
Mathematical statistics, 1009, 1063-1113
acceptance sampling, 1092-1096
errors in, 1093-1094
rectification, 1094-1095
confidence intervals, 1068-1077
for mean of normal distribution with known variance, 1069-1071
for mean of normal distribution with unknown variance, 1071-1073
for parameters of distributions other than normal, 1076
for variance of a normal distribution, 1073-1076
correlation analysis, 1108-1111
defined, 1103
test for correlation coefficient, 1110-1111
defined, 1063
goodness of fit, 1096-1100
hypothesis testing, 1077-1087
comparison of means, 1084-1085
comparison of variances, 1086
errors in tests, 1080-1081
for mean of normal distribution with known variance, 1081-1083
for mean of normal distribution with unknown variance, 1083-1084
one- and two-sided alternatives, 1079-1080
main purpose of, 1015
nonparametric tests, 1100-1102
point estimation of parameters, 1065-1068
quality control, 1087-1092
for mean, 1088-1089
for range, 1090-1091
for standard deviation, 1090
for variance, 1089-1090
random sampling, 1063-1065
regression analysis, 1103-1108
confidence intervals in, 1107-1108
defined, 1103
Matlab, 789
Matrices, 124-130, 256-262, 320
addition and scalar multiplication of, 259-261
calculations with, 126-127
condition number of, 868-870
definitions and terms, 125-126, 128, 257
diagonal, 268
diagonalization of, 341-342
eigenvalues, 129-130
equality of, 126, 259
fundamental, 139
inverse of, 128, 301-309, 321
cancellation laws, 306-307
determinants of matrix products, 307-308
formulas for, 304-306
Gauss-Jordan method, 302-304, 856-857
matrix multiplication, 127 , 263-266, 269-279
applications of, 269-279
cancellation laws, 306-307
determinants of matrix products, 307-308
scalar, 259-261
normal, 352, 882
notation, 258
orthogonal, 337-338
rank of, 283-285
square, 126
symmetric and skew-symmetric, 267-268
transposition of, 266-267
triangular, 268
unitary, 347-350, 353

Matrix eigenvalue problems, 322-353, 876-896
applications, 329-334
choice of numeric method for, 879
complex matrices and forms, 346-352
determining eigenvalues and eigenvectors, 323-329
diagonalization of matrices, 341-342
eigenbases, 339-341
inclusion theorems, 879-884
orthogonal matrices, 337-338
orthogonal transformations, 336
power method, 885-888
QR-factorization, 892-896
quadratic forms, 343-344
symmetric and skew-symmetric matrices, 334-336
transformation to principal axes, 344
tridiagonalization, 888-892
Matrix multiplication, 127, 263-266, 269-279
applications of, 269-279
cancellation laws, 306-307
determinants of matrix products, 307-308
scalar, 259-261
Matrix norms, 861, 866-868
Maximum cardinality matching, 1001, 1003-1004, 1008
Maximum flow:
Ford-Fulkerson algorithm, 998-1000
and minimum cut set, 996
Maximum increase:
gradient of a scalar field, 398
unconstrained optimization, 951
Maximum likelihood estimates (MLEs), 1066-1067
Maximum likelihood method, 1066-1067, 1113
Maximum modulus theorem, 782-784
Maximum principle, 783
Mean(s), 1013-1014, 1061
comparison of, 1084-1085
control chart for, 1088-1089
of normal distributions:
confidence intervals for, 1069-1073
hypothesis testing for, 1081-1084
probability distributions, 1035-1039
addition of, 1057-1058
transformation of, 1036-1037
sample, 1064

Mean square convergence (orthogonal series), 507-508
Mean value (fluid flow), 774n. 1
Mean value property:
analytic functions, 781-782
harmonic functions, 782
Mean value theorem, 395
for double integrals, 427
for surface integrals, 448
for triple integrals, 456-457
Median, 1013, 1100-1101
Mendel, Gregor, 1100
Meromorphic function, 719
Mesh incidence matrix, 262
Mesh points (lattice points, nodes), 925-926
Mesh size, 924
Method of characteristics (PDEs), 555
Method of least squares, 872-876, 899
Method of moments, 1065
Method of separating variables, 12-13
circular membrane, 587
partial differential equations, 545-553, 605
Fourier series, 548-551
satisfying boundary conditions, 546-548
two ODEs from wave equation, 545-546
vibrating string, 545-546
Method of steepest descent, 952-954
Method of undetermined coefficients:
higher-order homogeneous linear ODEs, 115, 123
nonhomogeneous linear systems of ODEs, 161
second-order nonhomogeneous linear ODEs, 81-85, 104
Method of variation of parameters:
higher-order nonhomogeneous linear ODEs, 118-120, 123
nonhomogeneous linear systems of ODEs, 162-163
second-order nonhomogeneous linear ODEs, 99-102, 104
Minimization (normal form of linear optimization problems), 957
Minimum (unconstrained optimization), 951
Minimum cut set, 996
Minors, of determinants, 294
Mixed boundary condition (twodimensional heat equation), 564
Mixed boundary value problem, 605, 923. See also Robin problem
elliptic PDEs, 931-933
heat conduction, 768-769

Mixed type PDEs, 555
Mixing problems, 14
MLEs (maximum likelihood estimates), 1066-1067
$M L$-inequality, 650-651
Möbius, August Ferdinand, 447n. 5
Möbius strip, 447
Möbius transformations, 743. See also Linear fractional transformations (LFTs)
Models, 2
Modeling, 1, 2-8, 44
and concept of solution, 4-6 defined, 2
first-order ODEs, 2-8
initial value problem, 6
separable ODEs, 13-17
typical steps of, 6-7
and unifying power of mathematics, 766
Modification Rule (method of undetermined coefficients):
higher-order homogeneous linear ODEs, 115-116
second-order nonhomogeneous linear ODEs, 81, 83
Modulus (complex numbers), 613
Moments, method of, 1065
Moments of inertia, of a region, 429
Moment vector (vector moment), 371
Monotone real sequences, A72-A73
Moore, Edward Forrest, 977n. 2
MOORE, ALGORITHM, 977
Moore's BFS algorithm, 977-980, 1008
Morera's theorem, 667
Moulton, Forest Ray, 913n. 3
Multinomial distribution, 1045
Multiple complex roots, 115
Multiple points, curves with, 383
Multiplication:
of complex numbers, 609, 610, 615
in conditional probability, 1022-1023
matrix, 127, 263-266
applications of, 269-279
cancellation laws, 306-307
determinants of matrix products, 307-308
scalar, 259-261
of means, 1057-1058
of power series, 687
scalar, 126-127, 259-261, 310
termwise, 173, 687
of transforms, 232. See also Convolution
Multiplicity, algebraic, 326, 878

Multiply connected domains, 652, 653
Cauchy's integral formula, 662-663
Cauchy's integral theorem, 658-659
Multistep methods, 911-915, 947
Adams-Bashforth methods, 911-914
Adams-Moulton methods, 913-914
defined, 908
first-order ODEs, 911
Mutually exclusive events, 1016, 1021
$m \times n$ matrix, 258

Nabla, 396
NAG (Numerical Algorithms Group, Inc.), 789
National Institute of Standards and Technology (NIST), 789
Natural condition (spline interpolation), 823
Natural frequency, 63
Natural logarithm, 636-638, 642, A63
Natural spline, 823
n-dimensional vector spaces, 311
Negative (scalar multiplication), 260
Negative definite (quadratic form), 346
Neighborhood, 619, 720
Net flow, through cut set, 994-995
NETLIB, 789
Networks:
defined, 991
flow problems in, 991-997
cut sets, 994-996
flow augmenting paths, 992-993
paths, 992
Neumann, Carl, 198n. 7
Neumann, John von, 959n. 1
Neumann boundary condition, 564
Neumann problem, 605, 923
elliptic PDEs, 931
Laplace's equation, 593
two-dimensional heat equation, 564
Neumann's function, 198
NEWTON, ALGORITHM, 802
Newton, Sir Isaac, 15n. 3
Newton-Cotes formulas, 833, 843
Newton's (Gregory-Newton's) backward difference interpolation formula, 818-819
Newton's divided difference interpolation, 812-815, 842

Newton's divided difference interpolation formula, 814-815
Newton's (Gregory-Newton's) forward difference interpolation formula, 815-818, 842
Newton's law of cooling, 15-16
Newton's law of gravitation, 377
Newton's (Newton-Raphson) method, 801-805, 842
Newton's second law, 11, 63, 245, 544, 576
Neyman, Jerzy, 1068n.1, 1077n. 2
Nicolson, Phyllis, 938 n. 5
Nicomedes, 391n. 4
Nilpotent matrices, 270
NIST (National Institute of Standards and Technology), 789
Nodal incidence matrix, 262
Nodal lines, 580-581, 588
Nodes, 165, 925-926
degenerate, 145-146
improper, 142
interpolation, 808
proper, 143
spline interpolation, 820
trapezoidal rule, 829
vibrating string, 547
Nonbasic variables, 960
Nonconservative physical systems, 422
Nonhomogeneous linear ODEs: convolution, 235-236
first-order, 28-29
higher-order, 106, 116-122
second-order, 79-102
defined, 47
method of undetermined coefficients, 81-85
modeling electric circuits, 93-99
modeling forced oscillations, 85-92
particular solution, 80
solution by variation of parameters, 99-102
Nonhomogeneous linear systems,
138, 160-163, 166, 272, 290, 291, 845
method of undetermined coefficients, 161
method of variation of parameters, 162-163
Nonhomogeneous PDEs, 541
Nonlinear ODEs, 46
first-order, 27
higher-order homogeneous, 105
second-order, 46
Nonlinear PDEs, 541

Nonlinear systems, qualitative methods for, 152-160
linearization, 152-155
Lotka-Volterra population model, 155-156
transformation to first-order equation in phase plane, 157-159
Nonparametric tests (statistics), 1100-1102, 1113
Nonsingular matrices, 128, 301
Norm(s):
matrix, 861, 866-868
orthogonal functions, 500
vector, $312,355,410,866$
Normal accelerations, 391
Normal acceleration vector, 387
Normal derivative, 437
defined, 437
mixed problems, 768, 931
Neumann problems, 931
solutions of Laplace's equation, 460
Normal distributions, 1045-1051, 1062
as approximation of binomial distribution, 1049-1050
confidence intervals:
for means of, 1069-1073
for variances of, 1073-1076
distribution function, 1046-1047
means of:
confidence intervals for, 1069-1073
hypothesis testing for, 1081-1084
numeric values, 1047-1048
tables, A101-A102
two-dimensional, 1110
working with normal tables, 1048-1049
Normal equations, 873, 1105-1106
Normal form (linear optimization problems), 955-957, 959, 969
Normalizing, eigenvectors, 326
Normal matrices, 352, 882
Normal mode:
circular membrane, 588
vibrating string, 547-548
Normal plane, 390
Normal random variables, 1045
Normal vectors, 366, 441
Not rejecting a hypothesis, 1081
No trend hypothesis, 1101
nth order linear ODEs, 105, 123
n th-order ODEs, 134-135
nth partial sum, 170
Fourier series, 495
of series, 673
nth roots, 616
nth roots of unity, 617
Null hypothesis, 1078
Nullity, 287, 291
Null space, 287, 291
Numbers:
acceptance, 1092
Bernoulli's law of large numbers, 1051
chromatic, 1006
complex, 608-619, 641
addition of, 609, 610
conjugate, 612
defined, 608
division of, 610
multiplication of, 609, 610
polar form of, 613-618
subtraction of, 610
condition, 868-870, 899
Fibonacci, 690
floating-point form of, 791-792
machine, 792
random, 1064
Number of degrees of freedom, 1071, 1074
Numerics, see Numeric analysis
Numerical Algorithms Group, Inc. (NAG), 789
Numerically stable algorithms, 796, 842
Numerical Recipes, 789
Numeric analysis (numerics), 787-843
algorithms, 796
basic error principle, 796
error propagation, 795
errors of numeric results, 794-795
floating-point form of numbers, 791-792
interpolation, 808-820
equal spacing, 815-819
Lagrange, 809-812
Newton's backward difference formula, 818-819
Newton's divided difference, 812-815
Newton's forward difference formula, 815-818 spline, 820-827
loss of significant digits, 793-794
numeric differentiation, 838-839
numeric integration, 827-838
adaptive, 835-836
Gauss integration formulas, 836-838
rectangular rule, 828
Simpson's rule, 831-835
trapezoidal rule, 828-831
for ODEs, 901-922
first-order, 901-915
higher order, 915-922
numeric integration (Cont.)
for PDEs, 922-945
elliptic, 922-936
hyperbolic, 942-945
parabolic, 936-942
roundoff, 792-793
software for, 788-789
solution of equations by iteration, 798-808
fixed-point iteration, 798-801
Newton's (Newton-Raphson) method, 801-805
secant method, 805-806
speed of convergence, 804-805
spline interpolation, 820-827
Numeric differentiation, 838-839
Numeric integration, 827-838
adaptive, 835-836
Gauss integration formulas, 836-838
rectangular rule, 828
Simpson's rule, 831-835
trapezoidal rule, 828-831
Numeric linear algebra, 844-899
curve fitting, 872-876
least squares method, 872-876
linear systems, 845
Gauss elimination, 844-852
Gauss-Jordan elimination, 856-857
ill-conditioning norms, 864-872
iterative methods, 858-864
LU-factorization, 852-855
matrix eigenvalue problems, 876-896
inclusion theorems, 879-884
power method, 885-888
QR-factorization, 892-896
tridiagonalization, 888-892
Numeric methods:
choice of, 791, 879
defined, 791
$n \times n$ matrix, 125
Nyström, E. J., 919

Objective function, 951, 969
OCs (operating characteristics), 1081
OC curve, see Operating characteristic curve
Odd functions, 486-488
Odd periodic extension, 488-490
ODEs, see Ordinary differential equations
Ohm, Georg Simon, 93n. 7
Ohm's law, 29
One-dimensional heat equation, 559
One-dimensional wave equation, 544-545

One-parameter family of curves, 36-37
One-sided alternative (hypothesis testing), 1079-1080
One-sided tests, 1079
One-step methods, 908, 911, 947
One-to-one mapping, 737n. 1
Open annulus, 619
Open circular disk, 619
Open integration formula, 838
Open intervals, 4, A72n. 3
Open Leontief input-output model, 334
Open set, in complex plane, 620
Operating characteristic curve (OC curve), 1081, 1092, 1095
Operating characteristics (OCs), 1081
Operational calculus, 60, 203
Operation count (Gauss elimination), 850
Operators, 60-61, 313
Optimal solutions (normal form of linear optimization problems), 957
Optimization:
combinatorial, 970, 975-1008
assignment problems, 1001-1006
flow problems in networks, 991-997
Ford-Fulkerson algorithm for maximum flow, 998-1001 shortest path problems, 975-980
constrained (linear), 951, 954-968 normal form of problems, 955-957 simplex method, 958-968
unconstrained: basic concepts, 951-952 method of steepest descent, 952-954
Optimization methods, 949
Optimization problems, 949, 954-958
normal form of problems, 955-957
objective, 951
simplex method, 958-968 degenerate feasible solution, 962-965
difficulties in starting, 965-968
Order:
and complexity of algorithms, 978
Gauss elimination, 850
of iteration process, 804
of PDE, 540
singularities, 714
Ordering (Greedy algorithm), 987
Order statistics, 1100

Ordinary differential equations (ODEs), 44
autonomous, 11, 33
defined, 1, 3-4
first-order, 2-45
direction fields, $9-10$
Euler's method, 10-11
exact, 20-27
geometric meanings of, 9-12
initial value problem, 38-43
linear, 27-36
modeling, 2-8
numeric analysis, 901-915
orthogonal trajectories, 36-38
separable, 12-20
higher-order linear, 105-123
homogeneous, 105-116, 123
nonhomogeneous, 116-123
systems of, see Systems of ODEs
Laplace transforms, 203-253
convolution, 232-237
defined, 204, 205
of derivatives, 211-212
differentiation of, 238-240
Dirac delta function, 226-228
existence, 209-210
first shifting theorem (s-shifting), 208-209
general formulas, 248
initial value problems, 213-216
integral equations, 236-237
of integral of a function, 212-213
integration of, 238-240
linearity of, 206-208
notation, 205
ODEs with variable coefficients, 240-241
partial differential equations, 600-603
partial fractions, 228-230
second shifting theorem (t-shifting), 219-223
short impulses, 225-226
systems of ODEs, 242-247
table of, 249-251
uniqueness, 210
unit step function (Heaviside function), 217-219
linear, 46
nonlinear, 46
numeric analysis, 901-922
first-order ODEs, 901-915
higher order ODEs, 915-922
second-order linear, 46-104
homogeneous, 46-79
nonhomogeneous, 79-102
second-order nonlinear, 46

Ordinary differential equations (Cont.) series solutions of ODEs, 167-202

Bessel functions, 187-194, 196-200
Bessel's equation, 187-200
Frobenius method, 180-187
Legendre polynomials, 177-179
Legendre's equation, 175-179
power series method, 167-175
systems of, 124-166
basic theory, 137-139
constant-coefficient, 140-151
conversion of n th-order ODEs to, 134-135
homogeneous, 138
Laplace transforms, 242-247
linear, 124-130, 138-151, 160-163
matrices and vectors, 124-130
as models of applications, 130-134
nonhomogeneous, 138, 160-163
nonlinear, 152-160
in phase plane, 124, 141-146, 157-159
qualitative methods for nonlinear systems, 152-160
Orientable surfaces, 446-447
Oriented curve, 644
Oriented surfaces, integrals over, 446-447
Origin (vertex), 980
Orthogonal, to a vector, 362
Orthogonal coordinate curves, A74
Orthogonal expansion, 504
Orthogonal functions:
defined, 500
Sturm-Liouville Problems, 500-503
Orthogonality:
trigonometric system, 479-480, 538
vector differential calculus, 361-363
Orthogonal matrices, 335, 337-338, 353, A85n. 2
Orthogonal polynomials, 179
Orthogonal series (generalized Fourier series), 504-510
completeness, 508-509
mean square convergence, 507-508
Orthogonal trajectories: defined, 36
first-order ODEs, 36-38
Orthogonal transformations, 336, A85n. 2
Orthogonal vectors, 312, 362, 410
Orthonormal functions, 500, 501, 508

Orthonormal system, 337
Oscillations:
forced, 85-92
free, 62-70
harmonic, 63-64
second-order linear ODEs: homogeneous, 62-70
nonhomogeneous, 85-92
Osculating plane, 389, 390
Outcomes:
of experiments, 1015, 1060
probability theory, 1015
Outer normal derivative, 460, 931
Outliers, 1013-1015
Output (response to input), 27, 86, 214
Overdamping, 65-66
Overdetermined linear systems, 277
Overflow (floating-point numbers), 792
Overrelaxation factor, 863

Paired comparison, 1084, 1113
Pappus, theorem of, 452
Pappus of Alexandria, 452n. 7
Parabolic PDEs:
defined, 923
numeric analysis, 936-942
Parallelogram law, 357
Parallel processing of products (on computer), 265
Parameters, 175, 381, 1112
estimation of, 1063
point estimation of, 1065-1068
probability distributions, 1035
of a sample, 1065
Parameter curves, 442
Parametric representations, 381, 439-441
Parseval, Marc Antoine, 497n. 3
Parseval equality, 509
Parseval's identity, 497
Parseval's theorem, 497
Partial derivatives, A69-A71
defined, A69
first (first order), A71
second (second order), A71
third (third order), A71
of vector functions, 380
Partial differential equations (PDEs), 473, 540-605
basic concepts of, 540-543
d'Alembert's solution, 553-556
defined, 540
double Fourier series solution, 577-585
heat equation, 557-558 Dirichlet problem, 564-566

Partial differential equations (Cont.)
Laplace's equation, 564
solution by Fourier integrals, 568-571
solution by Fourier series, 558-563
solution by Fourier transforms, 571-574
steady two-dimensional heat problems, 546-566
unifying power of methods, 566
homogeneous, 541
Laplace's equation, 593-600
boundary value problem in spherical coordinates, 594-596
in cylindrical coordinates, 593-594
Fourier-Legendre series, 596-598
in spherical coordinates, 594
Laplace transforms, solution by, 600-603
Laplacian in polar coordinates, 585-592
linear, 541
method of separating variables, 545-553
Fourier series, 548-551
satisfying boundary conditions, 546-548
two ODEs from wave equation, 545-546
nonhomogeneous, 541
nonlinear, 541
numeric analysis, 922-945
elliptic, 922-936
hyperbolic, 942-945
parabolic, 936-942
ODEs vs., 4
wave equation, 544-545
d'Alembert's solution, 553-556
solution by separating variables, 545-553
two-dimensional, 575-584
Partial fractions (Laplace transforms), 228-230
Partial pivoting, 276, 846-848, 898
Partial sums, of series, 477, 478, 495
Particular solution(s):
first-order ODEs, 6, 44
higher-order homogeneous linear ODEs, 106
nonhomogeneous linear systems, 160
second-order linear ODEs:
homogeneous, 49-51, 104
nonhomogeneous, 80

Partitioning, of a path, 645
Pascal, Blaise, 391 n .4
Pascal, Étienne, 391n. 4
Paths:
alternating, 1002
augmenting, 1002-1003
closed, 414, 645, 975-976
deformation of, 656
directed, 1000
flow augmenting, 992-993, 998, 1008
flow problems in networks, 992
integration by use of, 647-650
longest, 976
partitioning of, 645
principle of deformation of, 656
shortest, 976
shortest path problems, 975-976
simple closed, 652
Path dependence (line integrals), 418-426, 470, 649-650
defined, 418
and integration around closed curves, 421-425
Path independence, 669
Cauchy's integral theorem, 655
in a domain D in space, 419
proof of, A88-A89
Stokes's Theorem applied to, 468
Path of integration, 414,644
Pauli spin matrices, 351
p-charts, 1091-1092
PDEs, see Partial differential equations
Pearson, Egon Sharpe, 1077n. 2
Pearson, Karl, 1077, 1086n. 4
Period, 475
Periodic boundary conditions, 501
Periodic extensions, 488-490
Periodic function, 474-475, 538
Periodic Sturm-Liouville problem, 501
Permutations:
of n things taken k at a time, 1025
of n things taken k at a time with repetitions, 1025-1026
probability theory, 1024-1026
Perron, Oskar, 882n. 8
Perron-Frobenius Theorem, 883
Perron's theorem, 334, 882-883
Pfaff, Johann Friedrich, 422n. 1
Pfaffian form, 422
p-fold connected domains, 652-653
Phase angle, 90
Phase lag, 90
Phase plane, 134, 165
linear systems, 141, 148
nonlinear systems, 152

Phase plane method, 124
linear systems:
critical points, 142-146
graphing solutions, 141-142
nonlinear systems, 152
linearization, 152-155
Lotka-Volterra population model, 155-156
transformation to first-order equation in, 157-159
Phase plane representations, 134
Phase portrait, 165
linear systems, 141-142, 148
nonlinear systems, 152
Picard, Emile, 42n. 10
Picard's Iteration Method, 42
Picard's theorem, 716
Piecewise continuous functions, 209
Piecewise smooth path of integration, 414, 645
Piecewise smooth surfaces, 442, 447
Pivot, 276, 898, 960
Pivot equation, 276, 846, 898, 960
Planar graphs, 1005
Plane:
complex, 611
extended, 718, 744-745
finite, 718
sets in, 620
normal, 390
osculating, 389, 390
phase, 134,165
linear systems, 141, 148
nonlinear systems, 152
rectifying, 390
tangent, 398, 441-442
vectors in, 309
Plane curves, 383
Planimeters, 436
Poincaré, Henri, 141n.1, 510n. 8
Points:
boundary, 426n.2, 620
branch, 755
center, 144, 165
critical, 33, 144, 165
asymptotically stable, 149
and conformal mapping, 738, 757
constant-coefficient systems of ODEs, 142-151
isolated, 152
nonlinear systems, 152
stable, 140, 149
stable and attractive, 140, 149
unstable, 140, 149
equilibrium, 33-34
fixed, 745,799
guidepoints, 827
at infinity, 718
initial (vectors), 355

Points: (Cont.)
lattice, 925-926
limit, A93
mesh, 925-926
regular, 181
regular singular, 180n. 4
saddle, 143, 165
sample, 1015
singular, 181, 201
analytic functions, 693
regular, 180n. 4
spiral, 144-145, 165
stagnation, 773
stationary, 952
terminal (vectors), 355
Point estimation of parameters (statistics), 1065-1068, 1113 defined, 1065 maximum likelihood method, 1066-1067
Point set, in complex plane, 620
Point source (flow modeling), 776
Point spectrum, 525
Poisson, Siméon Denis, 779n. 2
Poisson distributions, 1041-1042, 1061, A100
Poisson equation:
defined, 923
numeric analysis, 922-936 ADI method, 928-930
difference equations, 923-925 Dirichlet problem, 925-928 mixed boundary value problem, 931-933
Poisson's integral formula:
derivation of, 778-778
potential theory, 777-781
series for potentials in disks, 779-780
Polar coordinates, 431
Laplacian in, 585-592
notation for, 594
two-dimensional wave equation in, 586
Polar form, of complex numbers, 613-618, 631
Polar moment of inertia, of a region, 429
Poles (singularities), 714-715
of order $m, 735$
and zeros, 717
Polynomials, 624
characteristic, 325, 353, 877
Chebyshev, 504
interpolation, 808, 842
Laguerre, 241, 504
Legendre, 167, 177-179, 202
orthogonal, 179
trigonometric: approximation by, 495-498

Polynomials (Cont.)

complex, 529
of the same degree $\mathrm{N}, 495$
Polynomial approximations, 808
Polynomial interpolation, 808, 842
Polynomially bounded, 979
Polynomial matrix, 334, 878-879
Populations:
infinite, 1044
for statistical sampling, 1063
Population dynamics:
defined, 33
logistic equation, 33-34
Position vector, 356
Positive correlation, 1111
Positive definite (quadratic form), 346
Positive sense, on curve, 644
Possible values (random variables), 1030
Postman problem, 980
Potential (potential function), 400
complex, 760-761
Laplace's equation, 593
Poisson's integral formula for, 777-781
Potential theory, 179, 420, 460, 758-786
conformal mapping for boundary value problems, 763-767
defined, 758
electrostatic fields, 759-763 complex potential, 760-761 superposition, 761-762
fluid flow, 771-777
harmonic functions, 781-784
heat problems, 767-770
Laplace's equation, 593, 628
Poisson's integral formula, 777-781
Power function, of a test, 1081, 1113
Power method (matrix eigenvalue problems), 885-888, 899
Power series, 168, 671-707
convergence behavior of, 680-682
convergence tests, 674-676, A93-A94
functions given by, 685-690
Maclaurin series, 690
in powers of $x, 168$
radius of convergence, 682-684
ratio test, 676-678
root test, 678-679
sequences, 671-673
series, 673-674
Taylor series, 690-697
uniform convergence, 698-705 and absolute convergence, 704 properties of, 700-701
termwise integration, 701-703
test for, 703-704

Power series method, 167-175, 201
extension of, see Frobenius method idea and technique of, 168-170 operations on, 173-174 theory of, 170-174
Practical resonance, 90
Predator-prey population model, 155-156
Predictor-corrector method, 913
PRIM, ALGORITHM, 989
Prim, Robert Clay, 988n. 6
Prim's algorithm, 988-991, 1008
Principal axes, transformation to, 344
Principal branch, of logarithm, 639
Principal directions, 330
Principal minors, 346
Principal part, 735
of isolated singularities, 715 of singularities, 708, 709
Principal value (complex numbers), 614, 617, 642
complex logarithm, 637
general powers, 639
Principle of deformation of path, 656
Prior estimates, 805
Probability, 1060
axioms of, 1020
basic theorems of, 1020-1022
conditional, 1022-1023
definitions of, 1018-1020
independent events, 1023
Probability distributions, 1029, 1061
binomial, 1039-1042
continuous, 1032-1034
discrete, 1030-1032
hypergeometric, 1042-1044
mean and variance of, 1035-1039
multinomial, 1045
normal, 1045-1051
Poisson, 1041-1042
of several random variables, 1051-1060
addition of means, 1057-1058
addition of variances, 1058-1059
continuous two-dimensional distributions, 1053
discrete two-dimensional distributions, 1052-1053
function of random variables, 1056
independence of random variables, 1055-1056
marginal distributions, 1053-1055
symmetric, 1036
two-dimensional, 1051
continuous, 1053
discrete, 1052-1053
uniform, 1035-1036

Probability function, 1030-1032, 1052, 1061
Probability theory, 1009, 1015-1062
binomial coefficients, 1027-1028
combinations, 1024, 1026-1027
distributions (probability distributions), 1029
binomial, 1039-1042
continuous, 1032-1034
discrete, 1030-1032
hypergeometric, 1042-1044
mean and variance of, 1035-1039
normal, 1045-1051
Poisson, 1041-1042
of several random variables, 1051-1060
events, 1016-1017
experiments, 1015-1016
factorial function, 1027
outcomes, 1015
permutations, 1024-1026
probability:
basic theorems of, 1020-1022
conditional, 1022-1023
definition of, 1018-1020
independent events, 1023
random variables, 1029-1030
continuous, 1032-1034
discrete, 1030-1032
Problem of existence, 39
Problem of uniqueness, 39
Producers, 1092
Producer's risk, 1094
Product:
inner (dot), 312
for complex vectors, 349
invariance of, 336
vector differential calculus, 361-367, 410
of matrix, 260
determinants of, 307-308
inverting, 306
matrix multiplication, 263, 320
parallel processing of (on computer), 265
scalar multiplication, 260
scalar triple, 373-374, 411
vector (cross):
in Cartesian coordinates, A83-A84
vector differential calculus, 368-375, 410
Product method, 605. See also
Method of separating variables
Projection (vectors), 365
Proper node, 143
Pseudocode, 796
Pure imaginary complex numbers, 609

QR-factorization, 892-896
Quadrant, of a circle, 604
Quadratic forms (matrix eigenvalue problems), 343-344
Quadratic interpolation, 810-811
Qualitative methods, 124, 141n. 1
defined, 152
for nonlinear systems, 152-160
linearization, 152-155
Lotka-Volterra population model, 155-156
transformation to first-order equation in phase plane, 157-159
Quality control (statistics), 1087-1092, 1113
for mean, 1088-1089
for range, 1090-1091
for standard deviation, 1090
for variance, 1089-1090
Quantitative methods, 124
Quasilinear equations, 555, 923
Quotient:
complex numbers, 610
difference, 923
Rayleigh, 885, 899

Radius:
of convergence, 172
defined, 172
power series, 682-684, 706
of a graph, 991
Random experiments, 1011, 1015-1016, 1060
Randomly selected samples, 1064
Randomness, 1015, 1064. See also Random variables
Random numbers, 1064
Random number generators, 1064
Random sampling (statistics), 1063-1065
Random selections, 1064
Random variables, 1011, 1029-1030, 1061
continuous, 1029, 1032-1034, 1055
defined, 1030
dependent, 1055
discrete, 1029-1032, 1054
function of, 1056
independence of, 1055-1056
marginal distribution of, 1054, 1055
normal, 1045
occurrence of, 1063
probability distributions of, 1051-1060
addition of means, 1057-1058
addition of variances, 1058-1059
continuous two-dimensional distributions, 1053
discrete two-dimensional distributions, 1052-1053
function of random variables, 1056
independence of random variables, 1055-1056
marginal distributions, 1053-1055
skewness of, 1039
standardized, 1037
two-dimensional, 1051, 1062
Random variation, 1063
Range, 1013
control chart for, 1090-1091
defined, 1090
of $f, 620$
Rank:
of A, 279
of a matrix, 279, 283, 321
in terms of column vectors, 284-285
in terms of determinants, 297
of R, 279
Raphson, Joseph, 801n. 1
Rational functions, 624, 725-729
Ratio test (power series), 676-678
Rayleigh, Lord (John William Strutt), 160n.5, 885n. 10
Rayleigh equation, 160
Rayleigh quotient, 885, 899
Reactance (RLC circuits), 94
Real axis (complex plane), 611
Real different roots, 71
Real double root, 55-56, 72
Real functions, complex analytic functions vs., 694
Real inner product space, 312
Real integrals, residue integration of, 725-733
Fourier integrals, 729-730
improper integrals, 730-732
of rational functions of $\cos \theta$ $\sin \theta, 725-729$
Real part (complex numbers), 609
Real pre-Hilbert space, 312
Real roots:
different, 71
double, 55-56
higher-order homogeneous linear ODEs:
distinct, 112-113
multiple, 114-115
second-order homogeneous linear ODEs:
distinct, 54-55
double, 55-56

Real sequence, 671
Real series, A73-A74
Real vector spaces, 309-311, 359, 410
Recording, of sample values, 1011-1012
Rectangular cross-section, 120
Rectangular matrix, 258
Rectangular membrane R, 577-584
Rectangular rule (numeric integration), 828
Rectifiable (curves), 385
Rectification (acceptance sampling), 1094-1095
Rectifying plane, 390
Recurrence formula, 201
Recurrence relation, 176
Recursion formula, 176
Reduced echelon form, 279
Reduction of order (second-order homogeneous linear ODEs), 51-52
Regions, 426n. 2
bounded, 426n. 2
center of gravity of mass in, 429
closed, 426n. 2
critical, 1079
feasibility, 954
fundamental (exponential function), 632
moments of inertia of, 429
polar moment of inertia of, 429
rejection, 1079
sets in complex plane, 620
total mass of, 429
volume of, 428
Regression analysis, 1063, 1103-1108, 1113
confidence intervals in, 1107-1108
defined, 1103
Regression coefficient, 1105, 1107-1108
Regression curve, 1103
Regression line, 1103, 1104, 1106
Regular point, 181
Regular singular point, 180n. 4
Regular Sturm-Liouville problem, 501
Rejectable quality level (RQL), 1094
Rejection:
of a hypothesis, 1078
of products, 1092
Rejection region, 1079
Relative class frequency, 1012
Relative error, 794
Relative frequency (probability): of an event, 1019 class, 1012 cumulative, 1012

Relaxation methods, 862
Remainder, 170
of a series, 673
of Taylor series, 691
Remarkable parallelogram, 375
Removable singularities, 717
Repeated factors, 220, 221
Representation, 315
by Fourier series, 476
by power series, 683
spectral, 525
Residual, 805, 862, 899
Residues, 708, 720, 735
at m th-order pole, 722
at simple poles, 721-722
Residue integration, 719-733
formulas for residues, 721-722
of real integrals, 725-733
Fourier integrals, 729-730
improper integrals, 730-732
of rational functions of $\cos \theta$ $\sin \theta, 725-729$
several singularities inside contour, 723-725
Residue theorem, 723-724
Resistance, apparent, 95
Resonance:
practical, 90
undamped forced oscillations, 88-89
Resonance factor, 88
Response to input, see Output (response to input)
Resultant, of forces, 357
Riccati equation, 35
Riemann, Bernhard, 625n. 4
Riemannian geometry, 625n. 4
Riemann sphere, 718
Riemann surfaces (conformal mapping), 754-757
Right-hand derivatives (Fourier series), 480
Right-handed Cartesian coordinate system, 368-369, A83-A84
Right-handed triple, 369
Right-hand limit (Fourier series), 480
Right-sided tests, 1079, 1082
Risks of making false decisions, 1080
RKF method, see Runge-Kutta-Fehlberg method
RK methods, see Runge-Kutta methods
RKN methods, see Runge-Kutta-Nyström methods
Robin problem:
Laplace's equation, 593
two-dimensional heat equation, 564
Rodrigues, Olinde, 179n. 2
Rodrigues's formula, 179, 241
Romberg integration, 840, 843

Roots:
complex:
higher-order homogeneous
linear ODEs, 113-115
second-order homogeneous
linear ODEs, 57-59
complex conjugate, 72-73
differing by an integer, 183
Frobenius method, 183
distinct (Frobenius method), 182
double (Frobenius method), 183
of equations, 798
multiple complex, 115
n th, 616
nth roots of unity, 617
simple complex, 113-114
Root test (power series), 678-679
Rotation (vorticity of flow), 774
Rounding, 792
Rounding unit, 793
Roundoff (numeric analysis), 792-793
Roundoff errors, 792, 794, 902
Roundoff rule, 793
Rows:
determinants, 294
matrix, 125, 257, 320
Row echelon form, 279-280
Row-equivalent matrices, 283-284
Row-equivalent systems, 277
Row operations (linear systems), 276, 277
Row scaling (Gauss elimination), 850
Row "sum" norm, 861
Row vectors, 126, 257, 320
RQL (rejectable quality level), 1094
Runge, Carl, 820n. 3
Runge, Karl, 905n. 1
RUNGE-KUTTA, ALGORITHM, 905
Runge-Kutta-Fehlberg (RKF) method, 947
error of, 908
first-order ODEs, 906-908
Runge-Kutta (RK) methods, 915, 947
error of, 908
first-order ODEs, 904-906
higher order ODEs, 917-919
Runge-Kutta-Nyström (RKN) methods, 919-921, 947
Rutherford, E., 1044, 1100
Rutherford-Geiger experiments, 1044, 1100
Rutishauser, Heinz, 892n. 12

Saddle point, 143, 165
Samples:
for experiments, 1015
in mathematical statistics, 1063-1064
selection of, 1063-1064

Sample covariance, 1105
Sampled function, 529
Sample distribution function, 1096
Sample mean, 1064, 1113
Sample points, 1015
Sample regression line, 1104
Sample size, 1015, 1064
Sample space, 1015, 1016, 1060
Sample standard deviation, 1065
Sample variance, 1015, 1113
Sampling:
from a population, 1023
random, 1063-1065
with replacement, 1023
binomial distribution, 1042 hypergeometric distribution, 1043-1044
in statistics, 1063
without replacement, 1018, 1023
binomial distribution, 1042-1043
hypergeometric distribution, 1043-1044
Sampling plan, 1092-1093
Scalar(s), 260, 310, 354
Scalar fields, vector fields that are gradients of, 400-401
Scalar functions:
defined, 376
vector differential calculus, 376
Scalar matrices, 268
Scalar multiplication, 126-127, 310
of matrices and vectors, 259-261
vectors in 2 -space and 3 -space, 358-359
Scalar triple product, 373-374, 411
Scale (vectors), 886-887
Scanning labeled vertices, 998
Schrödinger, Erwin, 226n. 2
Schur, Issai, 882n. 7
Schur's inequality, 882
Schur's theorem, 882
Schwartz, Laurent, 226n. 2
Secant, formula for, A65
Secant method (numeric analysis), 805-806, 842
Second boundary value problem, see Neumann problem
Second-order determinants, 291-292
Second-order differential operator, 60
Second-order linear ODEs, 46-104
homogeneous, 46-79
basis, 50-52
with constant coefficients, 53-60
differential operators, 60-62
Euler-Cauchy equations, 71-74
existence and uniqueness of solutions, 74-79

Second-order linear ODEs (Cont.) general solution, 49-51, 77-78
initial value problem, 49-50 modeling free oscillations of mass-spring system, 62-70
reduction of order, 51-52 superposition principle, 47-48 Wronskian, 75-78
nonhomogeneous, 79-102
defined, 47
general solution, 80-81
method of undetermined coefficients, 81-85
modeling electric circuits, 93-99 modeling forced oscillations, 85-92
solution by variation of parameters, 99-102
Second-order method, improved Euler method as, 904
Second-order nonlinear ODEs, 46
Second-order PDEs, 540-541
Second (second order) partial derivatives, A71
Second shifting theorem (t-shifting), 219-223
Second transmission line equation, 599
Seidel, Philipp Ludwig von, 858n. 4
Self-starting methods, 911
Sense reversal (complex line integrals), 645
Separable equations, 12-13
Separable ODEs, 44
first-order, 12-20 extended method, 17-18 modeling, 13-17
reduction of nonseparable ODEs to, 17-18
Separating variables, method of, 12-13
circular membrane, 587
partial differential equations, 545-553, 605
Fourier series, 548-551
satisfying boundary conditions, 546-548
two ODEs from wave equation, 545-546
vibrating string, 545-546
Separation constant, 546
Sequences (infinite sequences):
bounded, A93-A95
convergent, 507-508, 672
divergent, 672
limit point of, A93
monotone real, A72-A73
power series, 671-673
real, 671

Series, A73-A74
binomial, 696
conditionally convergent, 675
convergent, 171, 673
cosine, 781
derived, 687
divergent, 171, 673
double Fourier:
defined, 582
rectangular membrane,
577-585
Fourier, 473-483, 538
convergence and sum or, 480-481
derivation of Euler formulas, 479-480
double, 577-585
even and odd functions, 486-488
half-range expansions, 488-490
heat equation, 558-563
from period 2π to $2 L$, 483-486
Fourier-Bessel, 506-507, 589
Fourier cosine, 484, 486, 538
Fourier-Legendre, 505-506, 596-598
Fourier sine, 477, 486, 538
one-dimensional heat equation, 561
vibrating string, 548
geometric, 168, 675
Taylor series, 694
uniformly convergent, 698
hypergeometric, 186
infinite, 673-674
Laurent, 708-719, 734
analytic or singular at infinity, 718-719
point at infinity, 718
Riemann sphere, 718
singularities, 715-717
zeros of analytic functions, 717
Maclaurin, 690, 694-696
orthogonal, 504-510
completeness, 508-509
mean square convergence, 507-508
power, 168, 671-707
convergence behavior of, 680-682
convergence tests, 674-676, A93-A94
functions given by, 685-690
Maclaurin series, 690
in powers of $x, 168$
radius of convergence, 682-684
ratio test, 676-678
root test, 678-679

Series (Cont.)
sequences, 671-673
series, 673-674
Taylor series, 690-697
uniform convergence, 698-705
real, A73-A74
Taylor, 690-697, 707
trigonometric, 476, 484
value (sum) of, 171, 673
Series solutions of ODEs, 167-202
Bessel functions, 187-188
of the first kind, 189-194
of the second kind, 196-200
Bessel's equation, 187-196
Bessel functions, 187-188, 196-200
general solution, 194-200
Frobenius method, 180-187
indicial equation, 181-183
typical applications, 183-185
Legendre polynomials, 177-179
Legendre's equation, 175-179
power series method, 167-175
idea and technique of, 168-170
operations on, 173-174
theory of, 170-174
Sets:
complete orthonormal, 508
in the complex plane, 620
cut, 994-996, 1008
linearly dependent, 129, 311
linearly independent, 128-129, 311
Shewhart, W. A., 1088
Shifted function, 219
Shortest path, 976
Shortest path problems
(combinatorial optimization), 975-980, 1008
Bellman's principle, 980-981
complexity of algorithms, 978-980
Dijkstra's algorithm, 981-983
Moore's BFS algorithm, 977-980
Shortest spanning trees:
combinatorial optimization, 1008
Greedy algorithm, 984-988
Prim's algorithm, 988-991
defined, 984
Short impulses (Laplace transforms), 225-226
Sifting property, 226
Significance (in statistics), 1078
Significance level, 1078, 1080, 1113
Significance tests, 1078
Significant digits, 791-792
Similarity transformation, 340
Similar matrices, 340-341, 878
Simple closed curves, 646

Simple closed path, 652
Simple complex roots, 113-114
Simple curves, 383
Simple events, 1015
Simple general properties of the line integral, 415-416
Simple poles, 714
Simplex method, 958-968
degenerate feasible solution, 962-965
difficulties in starting, 965-968
Simplex table, 960
Simplex tableau, 960
Simple zero, 717
Simply connected domains, 423, 646, 652, 653
SIMPSON, ALGORITHM, 832
Simpson, Thomas, 832n. 4
Simpson's rule, 832, 843
adaptive integration with, 835-836
numeric integration, 831-835
Simultaneous corrections, 862
Sine function:
conformal mapping by, 750-751
formula for, A63-A65
Sine integral, 514, 697, A68-A69, A98
Single precision, floating-point standard for, 792
Singularities (singular, having a singularity), 693, 707, 715
analytic functions, 693
essential, 715-716
inside a contour, 723-725
isolated, 715
isolated essential, 715
Laurent series, 715-719
principal part of, 708
removable, 717
Singular matrices, 301
Singular point, 181, 201
analytic functions, 693
regular, 180n. 4
Singular solutions:
first-order ODEs, 8,35
higher-order homogeneous linear ODEs, 110
second-order homogeneous linear ODEs, 50, 78
Singular Sturm-Liouville problem, 501, 503
Sink(s):
motion of a fluid, 404, 458, 775, 776
networks, 991
Size:
of matrices, 258
sample, 1015, 1064
Skew-Hermitian form, 351
Skew-Hermitian matrices, 347, 348, 350, 353

Skewness, of a random variables, 1039
Skew-symmetric matrices, 268, 320, 334-336, 353
Slack variables, 956, 969
Slope field (direction field), 9-10
Smooth curves, 414, 644
Smooth surfaces, 442
Sobolev, Sergei L'Vovich, 226n. 2
Software:
for data representation in statistics, 1011
numeric analysis, 788-789
variable step size selection in, 902
Solenoid, 405
Solutions. See also specific methods
defined, 4, 798
first-order ODEs:
concept of, 4-6
equilibrium solutions, 33-34
explicit solutions, 21
family of solutions, 5
general solution, 6, 44
implicit solutions, 21
particular solution, 6, 44
singular solution, 8,35
solution by calculus, 5
trivial solution, 28, 35
graphing in phase plane, 141-142
higher-order homogeneous linear
ODEs, 106
general solution, 106, 110-111
particular solution, 106
singular solution, 110
linear systems, 273, 745
nonhomogeneous linear systems:
general solution, 160
particular solution, 160
PDEs, 541
second-order homogeneous linear ODEs:
general solution, 49-51, 77-78
linear dependence and independence of, 75
particular solution, 49-51
singular solution, 50, 78
second-order linear ODEs, 47
second-order nonhomogeneous linear ODEs:
general solution, 80-81
particular solution, 80
systems of ODEs, 137, 139
Solution curves, 4-6
Solution space, 290
Solution vector, 273, 745
SOR (successive overrelaxation), 863
SOR formula for Gauss-Seidel, 863
Sorting, of sample values, 1011-1012
Source(s):
motion of a fluid, 404, 458, 775
networks, 991

Source intensity, 458
Source line (flow modeling), 776
Span, of vectors, 286
Spanning trees, 984, 988
Sparse graphs, 974
Sparse matrices, 823, 925
Sparse systems, 858
Special functions, 167, 202
formulas for, A63-A69
theory of, 175
Special vector spaces, 285-287
Specific circulation, of flow, 467
Spectral density, 525
Spectral mapping theorem, 878
Spectral radius, 324, 861
Spectral representation, 525
Spectral shift, 896
Spectrum, 877
of matrix, 324
vibrating string, 547
Speed, 386, 391
angular (rotation), 372
of convergence, 804-805
Spherical coordinates, A74-A76
boundary value problem in, 594-596
defined, 594
Laplacian in, 594
Spiral point, 144-145, 165
Spline, 821, 843
Spline interpolation, 820-827
Spring constant, 62
Square error, 496-497, 539
Square matrices, 126, 257, 258, 301-309, 320
s-shifting, 208-209
Stability:
of critical points, 165
of solutions, 33-34, 124, 936
of systems, 84, 124
Stability chart, 149
Stable algorithms, 796, 842
Stable and attractive critical points, 140, 149
Stable critical points, 140, 149
Stable equilibrium solution, 33-34
Stable systems, 84
Stagnation points, 773
Standard basis, 314, 359, 365
Standard deviation, 1014, 1035, 1090
Standard form:
first-order ODEs, 27
higher-order homogeneous linear ODEs, 105
higher-order linear ODEs, 123
power series method, 172
second-order linear ODEs, 46, 103
Standardized normal distribution, 1046

Standardized random variables, 1037
Standard trick (confidence intervals), 1068
Stationary point (unconstrained optimization), 952
Statistics, 1015, 1063. See also Mathematical statistics
Statistical inference, 1059, 1063
Steady flow, 405, 458
Steady heat flow, 767
Steady-state case (heat problems), 591
Steady-state current, 98
Steady-state heat flow, 460
Steady-state solution, 31, 84, 89-91
Steady two-dimensional heat problems, 546-566, 605
Steepest descent, method of, 952-954
Steiner, Jacob, 451n. 6
Stem-and-leaf plots, 1012
Stencil (pattern, molecule, star), 925
Step-by-step methods, 901
Step function, 828, 1031
Step size, 901, 902
Stereographic projection, 718
Stiff ODEs, 909-910
Stiff systems, 920-921
Stirling, James, 1027n. 2
Stirling formula, 1027, A67
Stochastic matrices, 270
Stochastic variables, 1029. See also Random variables
Stokes, Sir George Gabriel, 464n.9, 703n. 5
Stokes's Theorem, 463-470
Stream function, 771
Streamline, 771
Strength (flow modeling), 776
Strictly diagonally dominant matrices, 881
Sturm, Jacques Charles François, 499n. 4
Sturm-Liouville equation, 499
Sturm-Liouville expansions, 474
Sturm-Liouville Problems, 498-504
eigenvalues, eigenfunctions, 499-500
orthogonal functions, 500-503
Subgraphs, 972
Submarine cable equations, 599
Submatrices, 288
Subsidiary equation, 203, 253
Subspace, of vector space, 286
Subtraction:
of complex numbers, 610
termwise, of power series, 687
Success corrections, 862
Successive overrelaxation (SOR), 863
Sufficient convergence condition, 861

Sum:
of matrices, 320
partial, of series, 477, 478, 495
of a series, 171,673
of vectors, 357
Sum Rule (method of undetermined coefficients):
higher-order homogeneous linear ODEs, 115
second-order nonhomogeneous linear ODEs, 81, 83-84
Superlinear convergence, 806
Superposition (electrostatic fields), 761-762
Superposition (linearity) principle:
higher-order homogeneous linear ODEs, 106
higher-order linear ODEs, 123
homogeneous linear systems, 138
PDEs, 541-542
second-order homogeneous linear ODEs, 47-48, 104
undamped forced oscillations, 87
Surfaces, for surface integrals, 439-443
orientation of, 446-447
representation of surfaces, 439-441
tangent plane and surface normal, 441-442
Surface integrals, 470
defined, 443
surfaces for, 439-443
orientation of, 446-447
representation of surfaces, 439-441
tangent plane and surface normal, 441-442
vector integral calculus, 443-452
orientation of surfaces, 446-447
without regard to orientation, 448-450
Surface normal, 398-399, 442
Surface normal vector, 398-399
Surjective mapping, 737n. 1
Sustainable yield, 36
Symbol O, 979
Symmetric coefficient matrix, 343
Symmetric distributions, 1036
Symmetric matrices, 267-268, 320, 334-336, 353
Systems of ODEs, 124-166
basic theory of, 137-139
constant-coefficient, 140-151 critical points, 142-146, 148-151
graphing solutions in phase plane, 141-142

Systems of ODEs (Cont.)
conversion of n th-order ODEs to, 134-135
homogeneous, 138
Laplace transforms, 242-247
linear, 138-139. See also Linear systems
constant-coefficient systems, 140-151
matrices and vectors, 124-130
nonhomogeneous, 160-163
matrices and vectors, $124-130$
calculations with, 125-127
definitions and terms, 125-126, 128-129
eigenvalues and eigenvectors, 129-130
systems of ODEs as vector equations, 127-128
as models of applications: electrical network, 132-134 mixing problem involving two tanks, 130-132
nonhomogeneous, 138, 160-163
method of undetermined coefficients, 161
method of variation of parameters, 162-163
nonlinear systems:
qualitative methods for, 152-160
transformation to first-order equation in phase plane, 157-159
in phase plane, 124
critical points, 142-146
graphing solutions in, 141-142
transformation to first-order equation in, 157-159
qualitative methods for nonlinear systems, 152-160
linearization, 152-155
Lotka-Volterra population model, 155-156

Tangent:
to a curve, 384
formula for, A65
Tangent function, conformal mapping by, 752-753
Tangential accelerations, 391
Tangential acceleration vector, 387
Tangent plane, 398, 441-442
Tangent vector, 384, 411
Target (networks), 991
Taylor, Brook, 690n. 2
Taylor series, 690-697, 707
Taylor's formula, 691
Taylor's theorem, 691
t-distribution, 1071-1073, 1078, A103
Telegraph equations, 599
Term(s):
of a sequence, 671
of a series, 673
Terminal point (vectors), 355
Termination criterion, 802-803
Termwise addition, 173, 687
Termwise differentiation, 173, 687-688, 703
Termwise integration, 687, 688, 701-703
Termwise multiplication, 173, 687
Termwise subtraction, 687
Tests, statistical, 1077, 1113
Theory of special functions, 175
Thermal diffusivity, 460
Third boundary value problem, see Robin problem
Third-order determinants, 292-293
Third (third order) partial derivatives, A71
3 -space, vectors in, 309, 354
components of a vector, 356-357
scalar multiplication, 358-359
vector addition, 357-359
Three-sigma limits, 1047
Time (curves in mechanics), 386
TI-Nspire, 789
Todd, John, 855n. 3
Tolerance (adaptive integration), 835
Torricelli, Evangelista, 16n. 4
Torricelli's law, 16-17
Torsion, curvature and, 389-390
Total differential, 20, 45
Total energy, of physical system, 525
Total error, 902
Total mass, of a region, 429
Total orthonormal set, 508
Total pivoting, 846
Trace, 345
Trail (shortest path problems), 975
closed trails, 975-976
Euler trail, 980
Trajectories, 134, 165
linear systems, 141-142, 148
nonlinear systems, 152
Transcendental equations, 798
Transducers, 98
Transfer function, 214
Transformation(s), 313
orthogonal, 336
to principal axes, 344
Transient solution, 84, 89
Transient-state solution, 31
Translation (vectors), 355
Transposition(s): of matrices or vectors, 128,320 in samples, 1101

Trapezoidal rule, 828, 843
error bounds and estimate for, 829-831
numeric integration, 828-831
Trees (graphs), 984, 988. See also Shortest spanning trees
Trials (experiments), 1011, 1015
Triangle inequality, 363, 614-615
Triangular form (Gauss elimination), 846
Triangular matrices, 268
Tricomi, Francesco, 556n. 2
Tricomi equation, 555, 556
Tridiagonalization (matrix eigenvalue problems), 888-892
Tridiagonal matrices, 823, 888, 928
Trigonometric analytic functions (conformal mapping), 750-754
Trigonometric function, 633-635, 642
inverse, 640
Taylor series, 695
Trigonometric polynomials:
approximation by, 495-498
complex, 529
of the same degree N, 495
Trigonometric series, 476, 484
Trigonometric system, 475, 479-480, 538
Trihedron, 390
Triple integrals, 470
defined, 452
mean value theorem for, 456-457
vector integral calculus, 452-458
Triply connected domains, 653, 658, 659
Trivial solution, 28, 35
homogeneous linear systems, 290
linear systems, 273
Sturm-Liouville problem, 499
Truncating, 794
t-shifting, 219-223
Tuning (vibrating string), 548
Twisted curves, 383
2-space (plane), vectors in, 354
components of a vector, 356-357
scalar multiplication, 358-359
vector addition, 357-359
2×2 matrix, 125
Two-dimensional heat equation, 564-566
Two-dimensional normal distribution, 1110
Two-dimensional probability distributions:
continuous, 1053
discrete, 1052-1053
Two-dimensional problems (potential theory), 759, 771

Two-dimensional random variables, 1051, 1062
Two-dimensional wave equation, 575-584, 586
Two-sided alternative (hypothesis testing), 1079-1080
Two-sided tests, 1079, 1082-1083
Type I errors, 1080, 1081
Type II errors, 1080-1081

UCL (upper control limit), 1088
Unacceptable lots, 1094
Unconstrained optimization, 969
basic concepts, 951-952
method of steepest descent, 952-954
Uncorrelated related variables, 1109
Underdamping, 65, 67
Underdetermined linear systems, 277
Underflow (floating-point numbers), 792
Undetermined coefficients, method of:
higher-order homogeneous linear ODEs, 115
higher-order linear ODEs, 123
nonhomogeneous linear systems of ODEs, 161
second-order linear ODEs: homogeneous, 104 nonhomogeneous, 81-85
Uniform convergence:
and absolute convergence, 704
power series, 698-705 properties of uniform convergence, 700-701 termwise integration, 701-703 test for, 703-704
Uniform distributions, 1035-1036, 1053
Unifying power of mathematics, 97
Union, of events, 1016-1017
Uniqueness:
of Laplace transforms, 210
of Laurent series, 712
of power series representation, 685-686
problem of, 39
Uniqueness theorems:
cubic splines, 822
Dirichlet problem, 462, 784
first-order ODEs, 39-42
higher-order homogeneous linear ODEs, 108
Laplace's equation, 462
linear systems, 138
proof of, A77-A79
second-order homogeneous linear ODEs, 74
systems of ODEs, 137

Unitary matrices, 347-350, 353
Unitary systems, 349
Unitary transformation, 349
Unit binormal vector, 389
Unit circle, 617, 619
Unit impulse function, 226. See also Dirac delta function
Unit matrices, 128, 268
Unit normal vectors, 366, 441
Unit principal normal vector, 389
Unit step function (Heaviside function), 217-219
Unit tangent vector, 384
Unit vectors, 312, 355
Universal gravitational constant, 63
Unknowns, 257
Unrepeated factors, 220-221
Unstable algorithms, 796
Unstable critical points, 140, 149
Unstable equilibrium solution, 33-34
Unstable systems, 84
Upper bound, for flows, 995
Upper confidence limits, 1068
Upper control limit (UCL), 1088
Upper triangular matrices, 268

Value (sum) of series, 171, 673
Vandermonde, Alexandre Théophile, 113n. 1
Vandermonde determinant, 113
Van der Pol, Balthasar, 158n. 4
Van der Pol equation, 158-160
Variables:
artificial, 965-968
basic, 960
complex, 620-621
control, 951
controlled, 1103
dependent, 393, 1055, 1056
independent, 393, 1103
intermediate, 393
linearly, 1109
nonbasic, 960
random, 1011, 1029-1030, 1061
continuous, 1029, 1032-1034, 1055
defined, 1030
dependent, 1055
discrete, 1029-1032, 1054
function of, 1056
independence of, 1055-1056
marginal distribution of, 1054, 1055
normal, 1045
occurrence of, 1063
probability distributions of, 1051-1060
skewness of, 1039

Variables: (Cont.)
standardized, 1037
two-dimensional, 1051, 1062
slack, 956, 969
stochastic, 1029
uncorrelated related, 1109
Variable coefficients:
Frobenius method, 180-187
indicial equation, 181-183
typical applications, 183-185
Laplace transforms ODEs with, 240-241
power series method, 167-175
idea and technique of, 168-170
operations on, 173-174
theory of, 170-174
second-order homogeneous linear ODEs, 73
Variance(s), 1014, 1061
comparison of, 1086
control chart for, 1089-1090
equality of, 1084n. 3
of normal distributions, confidence intervals for, 1073-1076
of probability distributions, 1035-1039
addition of, 1058-1059
transformation of, 1036-1037
sample, 1015
Variation, random, 1063
Variation of parameters, method of:
higher-order linear ODEs, 123
high-order nonhomogeneous linear ODEs, 118-120
nonhomogeneous linear systems of ODEs, 162-163
second-order linear ODEs:
homogeneous, 104
nonhomogeneous, 99-102
Vectors, 256, 259
addition and scalar multiplication of, 259-261
calculations with, 126-127
definitions and terms, 126, 128-129, 257, 259, 309
eigenvalues, 129-130
eigenvectors, 129-130
linear independence and dependence of, 282-283
multiplying matrices by, 263-265
in the plane, 309, 355
systems of ODEs as vector equations, 127-128
in 3-space, 309
transposition of, 266-267
Vector addition, 309, 357-359

Vector calculus, 354, 378-380
differential, see Vector differential calculus
integral, see Vector integral calculus
Vector differential calculus, 354-412
curves, 381-392
arc length of, 385-386
length of, 385
in mechanics, 386-389
tangents to, 384-385
and torsion, 389-390
gradient of a scalar field, 395-402
directional derivatives, 396-397
maximum increase, 398
as surface normal vector, 398-399
vector fields that are, 400-401
inner product (dot product), 361-367
applications, 364-366
orthogonality, 361-363
scalar functions, 376
and vector calculus, 378-380
vector fields, 377-378
curl of, 406-409
divergence of, 402-406
that are gradients of scalar fields, 400-401
vector functions, 375-376
partial derivatives of, 380
of several variables, 392-395
vector product (cross product), 368-375
applications, 371-372
scalar triple product, 373-374
vectors in 2 -space and 3 -space:
components of a vector, 356-357
scalar multiplication, 358-359
vector addition, 357-359
Vector fields:
defined, 376
vector differential calculus, 377-378
curl of, 406-409, 412
divergence of, 402-406
that are gradients of scalar fields, 400-401
Vector functions:
continuous, 378-379
defined, 375-376
differentiable, 379
divergence theorem of Gauss, 453-457
of several variables, 392-395
chain rules, 392-394
mean value theorem, 395

Vector functions: (Cont.)
vector differential calculus, 375-376, 411
partial derivatives of, 380
of several variables, 392-395
Vectors in 2-space and 3-space:
components of a vector, 356-357
scalar multiplication, 358-359
vector addition, 357-359
Vector integral calculus, 413-471
divergence theorem of Gauss, 453-463
double integrals, 426-432
applications of, 428-429
change of variables in, 429-431
evaluation of, by two successive integrations, 427-428
Green's theorem in the plane, 433-438
line integrals, 413-419
definition and evaluation of, 414-416
path dependence of, 418-426
work done by a force, 416-417
path dependence of line integrals, 418-426
defined, 418
and integration around closed curves, 421-425
Stokes's Theorem, 463-469
surface integrals, 443-452
orientation of surfaces, 446-447
without regard to orientation, 448-450
surfaces for surface integrals, 439-443
representation of surfaces, 439-441

Vector integral calculus (Cont.)
tangent plane and surface normal, 441-442
triple integrals, 452-458
Vector moment, 371
Vector norms, 866
Vector product (cross product):
in Cartesian coordinates, A83-A84
vector differential calculus, 368-375, 410
applications, 371-372
scalar triple product, 373-374
Vector spaces, 482
complex, 309-310, 349
inner product spaces, 311-313
linear transformations, 313-317
real, 309-311
special, 285-287
Velocity, 391, 411, 771
Velocity potential, 771
Velocity vector, 386, 771
Venn, John, 1017n. 1
Venn diagrams, 1017
Verhulst, Pierre-François, 32n.8
Verhulst equation, 32-33
Vertices (graphs), 971, 977, 1007
adjacent, 971, 977
central, 991
coloring, 1005-1006
double labeling of, 986
eccentricity of, 991
exposed, 1001, 1003
four-color theorem, 1006
scanning, 998
Vertex condition, 991
Vertex incidence list (graphs), 973
Volta, Alessandro, 93n. 7
Voltage drop, 29
Volterra, Vito, 155n.3, 198n.7, 236n. 3
Volterra integral equations, of the second kind, 236-237

Volume, of a region, 428
Vortex (fluid flow), 777
Vorticity, 774

Walk (shortest path problems), 975
Wave equation, 544-545, 942
d'Alembert's solution, 553-556
numeric analysis, 942-944, 948
one-dimensional, 544-545
solution by separating variables, 545-553
two-dimensional, 575-584
Weber's equation, 510
Weber's functions, 198n. 7
Weierstrass, Karl, 625n.4, 703n. 5
Weierstrass approximation theorem, 809
Weierstrass M-test for uniform convergence, 703-704
Weighted graphs, 976
Weight function, 500
Well-conditioned problems, 864
Well-conditioning (linear systems), 865
Wessel, Caspar, 611n. 2
Work done by a force, 416-417
Work integral, 415
Wronski, Josef Maria Höne, 76n. 5
Wronskian (Wronski determinant): second-order homogeneous linear ODEs, 75-78
systems of ODEs, 139

Zeros, of analytic functions, 717
Zero matrix, 260
Zero surfaces, 598
Zero vector, 129, 260, 357
z-score, 1014

Part A Opener: © Denis Jr. Tangney/iStockphoto
Part B Opener: © Jill Fromer/iStockphoto
Part C Opener: © Science Photo Library/Photo Researchers, Inc
Part D Opener: © Rafa Irusta/iStockphoto
Part E Opener: © Alberto Pomares/iStockphoto
Chapter 19, Figure 437: © Eddie Gerald/Alamy
Part F Opener: © Rainer Plendl/iStockphoto
Part G Opener: © Sean Locke/iStockphoto
Appendix 1 Opener: © Ricardo De Mattos/iStockphoto
Appendix 2 Opener: © joel-t/iStockphoto
Appendix 3 Opener: © Luke Daniek/iStockphoto
Appendix 4 Opener: © Andrey Prokhorov/iStockphoto
Appendix 5 Opener: © Pedro Castellano/iStockphoto

Some Constants

$e=2.71828182845904523536$
$\sqrt{e}=1.64872127070012814685$
$e^{2}=7.38905609893065022723$
$\pi=3.14159265358979323846$
$\pi^{2}=9.86960440108935861883$
$\sqrt{\pi}=1.77245385090551602730$
$\log _{10} \pi=0.49714987269413385435$
$\ln \pi=1.14472988584940017414$
$\log _{10} e=0.43429448190325182765$
$\ln 10=2.30258509299404568402$
$\sqrt{2}=1.41421356237309504880$
$\sqrt[3]{2}=1.25992104989487316477$
$\sqrt{3}=1.73205080756887729353$
$\sqrt[3]{3}=1.44224957030740838232$
$\ln 2=0.69314718055994530942$
$\ln 3=1.09861228866810969140$

$$
\gamma=0.57721566490153286061
$$

ln $\gamma=-0.54953931298164482234$
(see Sec. 5.6)
$1^{\circ}=0.01745329251994329577 \mathrm{rad}$
$1 \mathrm{rad}=57.29577951308232087680^{\circ}$

$$
=57^{\circ} 17^{\prime} 44.806^{\prime \prime}
$$

Polar Coordinates

$$
\begin{array}{ll}
x=r \cos \theta & y=r \sin \theta \\
r=\sqrt{x^{2}+y^{2}} & \tan \theta=\frac{y}{x}
\end{array}
$$

$d x d y=r d r d \theta$

Series

$$
\frac{1}{1-x}=\sum_{m=0}^{\infty} x^{m} \quad(|x|<1)
$$

$$
e^{x}=\sum_{m=0}^{\infty} \frac{x^{m}}{m!}
$$

$$
\sin x=\sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m+1}}{(2 m+1)!}
$$

$$
\cos x=\sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m}}{(2 m)!}
$$

$$
\ln (1-x)=-\sum_{m=1}^{\infty} \frac{x^{m}}{m} \quad(|x|<1)
$$

$\arctan x=\sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m+1}}{2 m+1} \quad(|x|<1)$

Vectors

$\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
$\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$
$\operatorname{grad} f=\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}$
$\operatorname{div} \mathbf{v}=\nabla \cdot \mathbf{v}=\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}+\frac{\partial v_{3}}{\partial z}$
$\operatorname{curl} \mathbf{v}=\nabla \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_{1} & v_{2} & v_{3}\end{array}\right|$

[^0]: ${ }^{1}$ JOSEPH RAPHSON (1648-1715), English mathematician who published a method similar to Newton's method. For historical details, see Ref. [GenRef2], p. 203, listed in App. 1.

[^1]: ${ }^{2}$ JAMES GREGORY (1638-1675), Scots mathematician, professor at St. Andrews and Edinburgh. Δ in (14) and ∇^{2} (on p. 818) have nothing to do with the Laplacian.

[^2]: ${ }^{3}$ CARL RUNGE (1856-1927), German mathematician, also known for his work on ODEs (Sec. 21.1).

[^3]: ${ }^{4}$ THOMAS SIMPSON (1710-1761), self-taught English mathematician, author of several popular textbooks. Simpson's rule was used much earlier by Torricelli, Gregory (in 1668), and Newton (in 1676).

[^4]: ${ }^{1}$ MYRICK H. DOOLITTLE (1830-1913). American mathematician employed by the U.S. Coast and Geodetic Survey Office. His method appeared in U.S. Coast and Geodetic Survey, 1878, 115-120.
 ${ }^{2}$ PRESCOTT DURAND CROUT (1907-1984), American mathematician, professor at MIT, also worked at General Electric.

[^5]: ${ }^{3}$ ANDRÉ-LOUIS CHOLESKY (1875-1918), French military officer, geodecist, and mathematician. Surveyed Crete and North Africa. Died in World War I. His method was published posthumously in Bulletin Géodésique in 1924 but received little attention until JOHN TODD (1911-2007) - Irish-American mathematician, numerical analysist, and early pioneer of computer methods in numerics, professor at Caltech, and close personal friend and collaborator of ERWIN KREYSZIG, see [E20]-taught Cholesky's method in his analysis course at King's College, London, in the 1940s.

[^6]: ${ }^{5}$ HENRI LEBESGUE (1875-1941), great French mathematician, creator of a modern theory of measure and integration in his famous doctoral thesis of 1902.

[^7]: ${ }^{6}$ SEMYON ARANOVICH GERSCHGORIN (1901-1933), Russian mathematician.

[^8]: ${ }^{7}$ ISSAI SCHUR (1875-1941), German mathematician, also known by his important work in group theory.
 ${ }^{8}$ OSKAR PERRON (1880-1975) and GEORG FROBENIUS (1849-1917), German mathematicians, known for their work in potential theory, ODEs (Sec. 5.4), and group theory.

[^9]: ${ }^{9}$ LOTHAR COLLATZ (1910-1990), German mathematician known for his work in numerics.

[^10]: ${ }^{10}$ LORD RAYLEIGH (JOHN WILLIAM STRUTT) (1842-1919), great English physicist and mathematician, professor at Cambridge and London, known for his important contributions to various branches of applied mathematics and theoretical physics, in particular, the theory of waves, elasticity, and hydrodynamics. In 1904 he received a Nobel Prize in physics.

[^11]: ${ }^{11}$ ALSTON SCOTT HOUSEHOLDER (1904-1993), American mathematician, known for his work in numerical analysis and mathematical biology. He was head of the mathematics division at Oakridge National Laboratory and later professor at the University of Tennessee. He was both president of ACM (Association for Computing Machinery) 1954-1956 and SIAM (Society for Industrial and Applied Mathematics) 1963-1964.

[^12]: ${ }^{12}$ HEINZ RUTISHAUSER (1918-1970). Swiss mathematician, professor at ETH Zurich. Known for his pioneering work in numerics and computer science.

[^13]: ${ }^{1}$ Named after the German mathematicians KARL RUNGE (Sec. 19.4) and WILHELM KUTTA (1867-1944). Runge [Math. Annalen 46 (1895), 167-178], the German mathematician KARL HEUN (1859-1929) [Zeitschr. Math. Phys. 45 (1900), 23-38], and Kutta [Zeitschr. Math. Phys. 46 (1901), 435-453] developed various similar methods. Theoretically, there are infinitely many fourth-order methods using four function values per step. The method in Table 21.3 is most popular from a practical viewpoint because of its "symmetrical" form and its simple coefficients. It was given by Kutta.

[^14]: ${ }^{2}$ Named after JOHN COUCH ADAMS (1819-1892), English astronomer and mathematician, one of the predictors of the existence of the planet Neptune (using mathematical calculations), director of the Cambridge Observatory; and FRANCIS BASHFORTH (1819-1912), English mathematician.

[^15]: ${ }^{4}$ Named after Sir GEORGE BIDELL AIRY (1801-1892), English mathematician, who is known for his work in elasticity and in PDEs.

[^16]: ${ }^{5}$ JOHN CRANK (1916-2006), English mathematician and physicist at Courtaulds Fundamental Research Laboratory, professor at Brunel University, England. Student of Sir WILLIAM LAWRENCE BRAGG (1890-1971), Australian British physicist, who with his father, Sir WILLIAM HENRY BRAGG (1862-1942) won the Nobel Prize in physics in 1915 for their fundamental work in X-ray crystallography. (This is the only case where a father and a son shared the Nobel Prize for the same research. Furthermore, W. L. Bragg is the youngest Nobel laureate ever.) PHYLLIS NICOLSON (1917-1968), English mathematician, professor at the University of Leeds, England.

[^17]: ${ }^{1}$ GEORGE BERNARD DANTZIG (1914-2005), American mathematician, who is one of the pioneers of linear programming and inventor of the simplex method. According to Dantzig himself (see G. B. Dantzig, Linear programming: The story of how it began, in J. K. Lenestra et al., History of Mathematical Programming: A Collection of Personal Reminiscences. Amsterdam: Elsevier, 1991, pp. 19-31), he was particularly fascinated by Wassilly Leontief's input-output model (Sec. 8.2) and invented his famous method to solve large-scale planning (logistics) problems. Besides Leontief, Dantzig credits others for their pioneering work in linear programming, that is, JOHN VON NEUMANN (1903-1957), Hungarian American mathematician, Institute for Advanced Studies, Princeton University, who made major contributions to game theory, computer science, functional analysis, set theory, quantum mechanics, ergodic theory, and other areas, the Nobel laureates LEONID VITALIYEVICH KANTOROVICH (1912-1986), Russian economist, and TJALLING CHARLES KOOPMANS (1910-1985), Dutch-American economist, who shared the 1975 Nobel Prize in Economics for their contributions to the theory of optimal allocation of resources. Dantzig was a driving force in establishing the field of linear programming and became professor of transportation sciences, operations research, and computer science at Stanford University. For his work see R. W. Cottle (ed.), The Basic George B. Dantzig. Palo Alto, CA: Stanford University Press, 2003.

[^18]: ${ }^{1}$ WILLIAM ROWAN HAMILTON (1805-1865), Irish mathematician, known for his work in dynamics.

[^19]: ${ }^{2}$ EDWARD FORREST MOORE (1925-2003), American mathematician and computer scientist, who did pioneering work in theoretical computer science (automata theory, Turing machines).

[^20]: ${ }^{3}$ RICHARD BELLMAN (1920-1984), American mathematician, known for his work in dynamic programming.
 ${ }^{4}$ EDSGER WYBE DIJKSTRA (1930-2002), Dutch computer scientist, 1972 recipient of the ACM Turing Award. His algorithm appeared in Numerische Mathematik 1 (1959), 269-271.

[^21]: ${ }^{5}$ JOSEPH BERNARD KRUSKAL (1928-), American mathematician who worked at Bell Laboratories. He is known for his contributions to graph theory and statistics.

[^22]: ${ }^{6}$ ROBERT CLAY PRIM (1921-), American computer scientist at General Electric, Bell Laboratories, and Sandia National Laboratories.

[^23]: ${ }^{7}$ LESTER RANDOLPH FORD Jr. (1927-) and DELBERT RAY FULKERSON (1924-1976), American mathematicians known for their pioneering work on flow algorithms.

[^24]: ${ }^{1}$ JOHN VENN (1834-1923), English mathematician.

[^25]: ${ }^{2}$ JAMES STIRLING (1692-1770), Scots mathematician.

[^26]: ${ }^{1}$ JERZY NEYMAN (1894-1981), American statistician, developed the theory of confidence intervals (Annals of Mathematical Statistics 6 (1935), 111-116).

[^27]: ${ }^{2}$ Beginning around 1930, a systematic theory of tests was developed by NEYMAN (see Sec. 25.3) and EGON SHARPE PEARSON (1895-1980), English statistician, the son of Karl Pearson (see the footnote on p. 1086).

[^28]: ${ }^{3}$ This assumption of equality of variances can be tested, as shown in the next example. If the test shows that they differ significantly, choose two samples of the same size $n_{1}=n_{2}=n$ (not too small, >30, say), use the test in Example 2 together with the fact that (12) is an observed value of an approximately standardized normal random variable.

[^29]: ${ }^{4}$ After the pioneering work of the English statistician and biologist, KARL PEARSON (1857-1936), the founder of the English school of statistics, and WILLIAM SEALY GOSSET (1876-1937), who discovered the t-distribution (and published under the name "Student"), the English statistician Sir RONALD AYLMER FISHER (1890-1962), professor of eugenics in London (1933-1943) and professor of genetics in Cambridge, England (1943-1957) and Adelaide, Australia (1957-1962), had great influence on the further development of modern statistics.

[^30]: ${ }^{1}$ AUGUSTIN FRESNEL (1788-1827), French physicist and mathematician. For tables see Ref. [GenRef1].

[^31]: ${ }^{2}$ CAUTION! In the subscript notation, the subscripts are written in the order in which we differentiate, whereas in the " ∂ " notation the order is opposite.

[^32]: ${ }^{3}$ This statement seems to be obvious, but actually it is not; it may be regarded as an axiom of the real number system in the following form. Let J_{1}, J_{2}, \cdots be closed intervals such that each J_{m} contains all J_{n} with $n>m$, and the lengths of the J_{m} approach zero as m approaches infinity. Then there is precisely one real number that is contained in all those intervals. This is the so-called Cantor-Dedekind axiom, named after the German mathematicians GEORG CANTOR (1845-1918), the creator of set theory, and RICHARD DEDEKIND (1831-1916), known for his fundamental work in number theory. For further details see Ref. [GenRef2] in App. 1. (An interval I is said to be closed if its two endpoints are regarded as points belonging to I. It is said to be open if the endpoints are not regarded as points of I.)

[^33]: ${ }^{4}$ This is the notation used in calculus and in many other books. It is logical since in it, θ plays the same role as in polar coordinates. CAUTION! Some books interchange the roles of θ and ϕ.

[^34]: ${ }^{1}$ This proof was suggested by my colleague, Prof. A. D. Ziebur. In this proof, we use some formula numbers that have not yet been used in Sec. 2.6.

[^35]: ${ }^{2}$ LEOPOLD KRONECKER (1823-1891), German mathematician at Berlin, who made important contributions to algebra, group theory, and number theory.

 We shall keep our discussion completely independent of Chap. 7, but readers familiar with matrices should recognize that we are dealing with orthogonal transformations and matrices and that our present theorem follows from Theorem 2 in Sec. 8.3.

[^36]: ${ }^{3}$ BERNARD BOLZANO (1781-1848), Austrian mathematician and professor of religious studies, was a pioneer in the study of point sets, the foundation of analysis, and mathematical logic.

 For Weierstrass, see Sec. 15.5.

[^37]: ${ }^{4}$ The fact that such a unique number $z=a$ exists seems to be obvious, but it actually follows from an axiom of the real number system, the so-called Cantor-Dedekind axiom: see footnote 3 in App. A3.3.

